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Abstract—While machine learning (ML) use has become preva-
lent across most domains, there is a growing gap between pro-
grammers and non-programmers in their use of ML. Indeed,
choosing the best models, applying the models, and verifying
their quality is out of reach for individuals who rely on this
kind of quantitative analysis but have limited programming
experience–particularly those in the natural and social sciences.
Automatic ML (AutoML) is supposed to be the stopgap giving
non-programmers the ability to fully use ML, but in practice,
these tools fall short. In response to this challenge, we built a
data-centric machine learning web service we call “AReS” that
both simplifies and streamlines the entire ML pipeline. AReS at
its simplest requires only data. It chooses among dozens of di-
verse regression algorithms, picking the best. AReS gives both
symbolic and visual assessments of the model’s performance
through novel data-centric visualizations that provide insight
into the data itself, both individual points and collections. To
validate AReS, two cases using real-world Kaggle competitions
(kaggle.com) are studied with AReS’ default settings. AReS
delivers competitive results in both but is among the best results
in one. This paper’s novel web service, AReS, can be accessed
at https://dalkilic.luddy.indiana.edu/.

1. Introduction

The rapid growth of machine learning (ML) algorithms
coincides with their appearance in many diverse, unrelated
domains e.g., sports, healthcare, finance, transportation, en-
tertainment, policy, agriculture, and service industries [1].
Unfortunately, ML’s ease-of-use has not kept up. For those
outside of computer science and a few related groups, using
ML is nearly impossible. The recent disruption of generative
AI shows that a “smart” intermediary can give more power
to non-experts by removing a problem’s technical details
and replacing them with general tasks. This paradigm is not
confined to simple search. Indeed, most research done in the
natural and social sciences is conducted by non-computer
scientists who need computation–in particular, modeling
with its accompanying analytics. Why not have a service

driven by AI that helps scientists effectively use computation
for analysis without having to program?

The most ubiquitous model is linear regression; there
is certainly no quantitative analysis in the natural and so-
cial sciences that does not rely heavily on it [2] [3] [4].
While several tools purport to be either no-code or low-
code automatic machine learning (AutoML) solutions, they
are still more or less oriented towards technical individuals,
or as Google describes them on their AutoML webpage:
“developers with limited machine learning experience” [5].
Popular AutoML software includes Google’s Cloud Au-
toML [5], Microsoft’s Azure Machine Learning [6], and
Amazon Web Service’s AutoML Solutions [7]. Each offers a
comprehensive AutoML tool designed to handle data inges-
tion, basic data cleaning, and modeling services to build,
tune, and deploy ML models. Amazon even promotes an
open-source framework called AutoGluon, a Python pack-
age offering solutions for modeling. While each of these
tools is simple and powerful compared to interfacing with
the libraries directly, they all require programming and are,
therefore, inaccessible to most of the individuals to whom
they are offered.

Scientists have had to rely on spreadsheets. This versa-
tile tool allows for keeping track of data, building simple
functions, and performing a few standard statistical tests.
Although a full programming language exists for the most
popular, Microsoft Excel, the environment is not suited for
modern machine learning. Excel provides no tools for either
classification or clustering. Only one kind of regression is
offered: linear. Analysis of this regression is limited to a few
standard error metrics such as Mean Squared Error (MSE) or
Mean Absolute Error (MAE). On their own, these numbers
do little to aid in the interpretation of model performance.
For example, an MSE of 5.7 does not inform the user which
region of the data is poorly captured by the model, whether
the model could be improved by adding more data, or
whether the data is linear. The only alternative is polynomial
regression over 2D data. Clearly, this is out of touch with
the current state of the art, but with a growing programming
gap, scientists have no other choice. The other reason to
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Figure 1. High-level view of AReS. After verifying the input (I), AReS
sends the information to two pipelines: (1) for model building, testing, and
selection, and (2) for data-centric exploration and visualization. The results
of both pipelines are delivered to the report generator (R).

use spreadsheets is their visualization capability. Indeed,
every research paper which is not purely formal employs
analytics and visualization as a critical part of its argument.
But just as spreadsheets are limited in what can be done with
their built-in functions, their visualization options consist of
only simple 2D plots with some 3D elements. There are
no options for visualizing high-dimensional data, much less
along with its model.

A very recent term describing the importance of data
in ML is “data-centric.” Instead of laboring to fine-tune a
particular model (usually by only a marginal amount), the
focus is squarely on data: improving quality, expressiveness,
management strategy, etc [8]. As we move toward a system
for scientists, we prioritize its data-centric tenets of data
quality, analysis of regional model performance, and inter-
pretable visualizations.

To this end, we have built an elegant web service for
scientists to model and explore their data for a multitude of
available regression algorithms. We employ a data-centric
perspective by visualizing important aspects of the data itself
that we expect will be actionable. We designed an automatic
pipeline to inspect the data, create training and test data,
train and select ML models, score the models to show the
best performing, and ultimately generate a human-readable
report. We allow for some human-in-the-loop, but our aim is
to aid non-expert scientists who require more than a single
regression with a simple line plot.

The core components of our web service are a user-
friendly interface for data ingestion, a selection of state-of-
the-art ML algorithms, an automated model training routine,
and a novel model evaluation and visualization framework.
The service is designed to scale with the size and com-
plexity of the data. The system only requires a modicum
of information, for example, names of chosen regressors.
In this paper, we discuss the underlying principles and
design of our data-centric machine learning web service,
and we highlight its key advantages, along with several
innovative data-centric visualizations. We then present a
series of case studies demonstrating both its effectiveness

and versatility using real-world problems. The end-product
is a report that gives textual and visual information about the
data, model, and performance. We call this service “AReS”
(AutoML Regression Service); AReS can be accessed at
https://dalkilic.luddy.indiana.edu/.

2. Web Service

AReS is available to users through a web application.
Users configure a pipeline that reflects different expertise
and requirements. Parameters for the pipeline include regres-
sors, cross-validation settings, evaluation metrics, and the
model ranking mechanism. The parameters can be initialized
in two ways: the default form is useful for non-expert
users and an advanced form gives users fine-grained control
over the pipeline’s execution. AReS’ default setting requires
only the dataset, and the pipeline’s other parameters are
intelligently selected. In the advanced mode, AReS allows
for modifying all of the pipeline’s parameters.

When the user submits a request, a request ID is gen-
erated and AReS executes asynchronously. The user should
expect processing times to vary according to the size of
their data; requests with datasets approaching 10,000 rows
by 100 columns may take as long as 48 hours. The user
can return to the site after the run is complete and enter
their request ID to view a data visualization dashboard
(VDB). The VDB is implemented using Apache ECharts
[9] and Plotly [10]: open-source data visualization libraries
for creating charts and graphs in web applications. AReS’
interface is configurable, giving the user control over the
regressors, metrics, and visualizations. Additionally, in the
Point Predictability and Region Predictability plots to be
introduced later, the user can adjust how much data is shown
on the plot based on predictability. High-quality plot images,
suitable for publication or presentations, can be saved to the
user’s desktop.

AReS is designed using a cloud-native architecture with
the latest software stack to meet current software develop-
ment standards. The cloud-native architecture enables the
package to be deployed to any existing cloud platform,
giving it the flexibility to scale based on the workload.
However, this service is intended for use on open-source
problems; as such, no safeguards are in place to ensure
data privacy. We supply a link for our GitHub repository
in Supplementary Materials to allow interested individuals
to utilize our novel pipeline for their own purposes.

3. AReS: A Detailed Look

Our system leverages a novel framework first presented
in [11]. Fig. 2 shows AReS in more detail (see Fig. 1 for
a general description). The pipeline begins when a user
submits a form, called a request, that includes a dataset
and several parameters for the pipeline. Upon reception
of the request, the dataset undergoes validation, including
confirmation of the following attributes: dataset contains
only numeric data, does not exceed 10,000 rows, and does
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Class Regressor

Linear Models LinearRegression, Ridge, Lasso, ElasticNet, Lars, LassoLars, LassoLarsIC, BayesianRidge,
OrthogonalMatchingPursuit, ARDRegression, TransformedTargetRegressor

Generalized Linear Models TweedieRegressor, GammaRegressor, PoissonRegressor

Linear Models Robust to Outliers HuberRegressor, TheilSenRegressor, RANSACRegressor

Support Vector Machines NuSVR, SVR, LinearSVR

Nearest Neighbor Models KNeighborsRegressor, RadiusNeighborsRegressor

Tree-Based Models DecisionTreeRegressor, BaggingRegressor, ExtraTreesRegressor, ExtraTreeRegressor,
RandomForestRegressor, AdaBoostRegressor, HistGradientBoostingRegressor, Gradient-
BoostingRegressor

Miscellaneous MLPRegressor, PassiveAggressiveRegressor, PLSRegression

Table 1. Groupings of scikit-learn regressors selected for the final AutoML pipeline.

Figure 2. A more detailed look at the AReS pipeline (see Fig. 1). (1) is a
user request. (∀) is the training of all models, from which (M) is selected.
(E), (C), and (m) are then produced and delivered in a report (R). Workflow
(2) is activated and figures (P), (R), and (Q) are generated and added to
the report.

not exceed 100 columns. All variables are standardized by
subtracting the mean and scaling to unit variance. This
is necessary to eliminate the effect of variable scale on
regressors that rely on distance calculations, such as k-
Nearest Neighbors (k-NN), or Support Vector Machine
(SVM). None of the regressors used in the pipeline allow
training data to have missing values. If a user submits a
dataset with missing values, our pipeline performs missing
value imputation using the k-NN method with parameters
k = 5 and Euclidean distance. The data is then shuffled and
split into one training set and one test set. The proportion
of data allocated to the test set is determined by the user

and defaults to 0.1 if unspecified.
Currently, scikit-learn implements 55 regressors. We

hand-selected 33, removing those that either consistently
performed poorly in tests, were relatively slow to train, or
performed multi-output regression or cross-validation. These
33 selected regressors are displayed in Table 1 along with
their assigned groupings. The user can select from among
these regressors when they submit a request.

To train models, AReS performs k-Fold Cross-
Validation training (CV). AReS splits the training data into
the k evenly-sized folds specified by the user, then for each
regressor, AReS fits k models and uses each model to predict
the labels of the holdout fold. Each metric chosen by the
user is computed for these predictions. The best-performing
of the k models trained is selected according to the model-
ranking metric specified by the user. Each of these models
is then evaluated on the test set held out at the beginning
of the pipeline. After training and evaluating each model,
several additional processes are triggered which generate
traditional and data-centric visualizations that can aid the
user in making informed decisions from their data.

4. Data-Centric Visualization Techniques

Traditional ML visualizations are intended to aid in
understanding the model and data. In addition to producing
these standard plots, AReS provides a set of novel data-
centric visualizations that can help scientists better under-
stand their data. For example, they might develop an insight
into how their data can be better curated to create more
impactful models. More complete descriptions and examples
can be found in Supplementary Materials.

4.1. Quantity Curve

Learning curves are used as a diagnostic tool when
training neural networks. This idea led us to design and
implement what we call the “Quantity Curve”. In contrast
to a learning curve, which plots error as a function of the
number of training iterations, the Quantity Curve plots error
as a function of the amount of training data provided to



the model. The purpose of showing error as a function of
training data is to determine when the model is overfitting;
as test error begins to increase, the likelihood of overfitting
increases as well. The tail-end behavior of a plot can be
used to mitigate overfitting. If the training and test error
have not converged and test error has a negative slope, then
providing the model with more data is likely to reduce the
prediction error.

Algorithm 1 shows the steps for building a Quantity
Curve plot for a single regressor. The process begins by par-
titioning the data into 11 folds and then training a regressor
on each fold. For each regressor, training set error is mea-
sured. The test set error is then computed from predictions
for the target attribute of the holdout fold. The inclusion of
CV in the algorithm prevents the initial partitioning of the
dataset from introducing bias. The plot shows, for each value
on the abscissa, the average error for a model trained on that
percentage of the data. For example, k = 1 corresponds to
training on 10% of the data, k = 2 corresponds to training
on 20% of the data, and so on. We repeat this process for
each regressor selected by the user. Figure 3 is provided as
an example of a Quantity Curve graph from our web service.

4.2. Point Predictability

Data is akin to a sand dune–individual grains at once
comprise it and disappear into it. Each interpretation exhibits
different properties, and AReS provides both of these useful
perspectives. For each point, AReS assesses its “predictabil-
ity” by examining the model’s error on the datum. To begin
the construction of this plot, model training is conducted
via k-fold CV. Then, AReS predicts the target variable of
the original dataset using each of the k models and records
the predicted target value for each data point. The Mean

Figure 3. An example Quantity Curve displaying Root Mean Squared Error
for the AdaBoost regressor over training and test sets of the Concrete
Compressive Strength (CCS) Dataset [12]. The training and test error
converge for this regressor trained on 100% of the training data; this
indicates that training on more data will yield only marginal improvements
to the model.

Algorithm 1 Quantity Curve Algorithm
Data: X = Predictor Attributes, Y = Target Attribute
Result: α = Training Errors, β = Test Errors

α← [ ] {Empty list}
β ← [ ]
K ← 11
X ′ ← X randomly partitioned into K folds
Y ′ ← Y partitioned into same K folds
for i← 1 to K do

a← {X ′
j |j ̸= i}

b← X ′
i

c← {Y ′
j |j ̸= i}

d← Y ′
i

for p← 1 to K − 1 do
a′ ← a0 to ap
c′ ← c0 to cp
m← train regressor over a′ {m is a fitted model}
ztr ← m predict over a′
zte ← m predict over b
Append(α,dissim(ztr, c

′)) {any error metric}
Append(β,dissim(zte, d))

end for
end for

Absolute Percentage Error (MAPE) is determined from the
ground-truth target value for each data point x1, x2, . . . xn:

MAPE(xi) =
1

k

k∑
j=1

|mj(xi)− yi|
yi

(1)

where m1,m2, . . .mj . . .mk are the models generated by
k-fold CV and mj(xi) is a prediction for xi using model
mj . Each data point with a MAPE value v ∈ [0, 1] is
assigned a color on an even gradient from blue to red.
Points where v ≈ 0 have high predictability and are colored
blue. v ≈ 1 represents predictions more than double or less
than half of their ground-truth value and are colored red. In
other words, red indicates low predictability, which perhaps
indicates noise. Sample Point Predictability plots are shown
in Figures 4 and 6.

AReS produces the visualization by first applying a di-
mensionality reduction technique and then plotting in either
2D or 3D. Data reduction is done using either principal
component analysis (PCA) or an innovative new technique,
t-Distributed Stochastic Neighbor Embedding (t-SNE). PCA
can be used to compute a projection of the data points
that preserves a meaningful portion of the variance in the
data [13]. The t-SNE algorithm is able to extract non-linear
relationships between features, making it a powerful tool for
data visualization in 2D and 3D space [14]; this has spurred
its widespread use in the natural sciences.

AReS’ data-centric Point Predictability plot provides
information unavailable from other visualizations. For exam-
ple, consider the case of one low-predictability data point
nestled within a group of high-predictability data points;
this likely indicates an outlier. As another example, the
presence of a collection of low-predictability data points



Figure 4. An example Point Predictability graph created using 2D PCA and
Linear Regression on the CCS dataset. The arrows point to regions of high
predictability.

Figure 5. A sample Region Predictability plot using PCA for SVR on the
CCS dataset. This plot exposes potential bias in the model for data regions
in the lower extremes of both dimensions.

Figure 6. Two views of an example Point Predictability graph created using 3D PCA for SVR on the CCS dataset. The user may notice a clump of
low-predictability data points at the lower extremes of each dimension. To improve model accuracy, the user might consider collecting more of these data
points and retraining the model.

on the fringes might indicate a number of problems e.g.,
equivocation (w.r.t. the model), machine limitations in the
case of a physical experiment, or noise. With AReS’ Point
Prediction, users have a detailed look into the data that has
no parallel among traditional visualizations.

4.3. Region Predictability

AReS’ Region Predictability provides insight into col-
lections of data. Using regular rectangular regions, AReS

first partitions the data in a 2D space. AReS then colors
each region according to the average predictability of the
points in that region. A sample Region Predictability plot is
shown in Fig 5.

When applying PCA to a dataset, a linear combination
of the feature variables is produced. This enables unseen
data points from the same population to be mapped onto
the principal-component space ad hoc. AReS generates a
plot for each specified regressor so that the user is able to
compare predictability for each data point across regression



Figure 7. A histogram of the top ∼ 90% of performers in a Kaggle
competition for predicting concrete strength. The best-performing model
produced by our AutoML pipeline is shown as a dashed red line.

Figure 8. A histogram of the top ∼ 90% of competitors in a Kaggle
competition for predicting Paris house prices. The best-performing model
produced by our AutoML pipeline is shown as a dashed red line.

algorithms. An outcome is that the user may be able to
reason about which set of regressors will best predict new,
unlabeled data without generating any additional models.
Another outcome is that regions can be scrutinized for
potential improvements. For example, failure of a model
to make accurate predictions for a particular region may
indicate bias [15]. It is likely that data sharing a region in
the principal-component space are similar on one or more
attributes in the original space. We point out that certain
ethical questions arise [16]. If the similar feature(s) are
sensitive groups, such as race or sex, this bias will likely
cause the model to produce spurious results [17] [18] [19].

5. Case Studies

To assess AReS’ usefulness, we present two case stud-
ies. In these studies, we chose two regression datasets
that have recently been featured in a Kaggle (kaggle.com)
competition. In these competitions, users attempt to train
the best model according to a predetermined performance
metric. Goodness-of-fit for regression tasks is almost always
measured with Root Mean Squared Error (RMSE). Kaggle
provides labels for only the training partition of the dataset,
so we used only the training set in our AutoML pipeline.
This means that our performance figures were computed for
a different test set than the other competitors. This is not to
say that we are advantaged; our models are trained on less
data than those submitted to the Kaggle competition and
the observed RMSE values are therefore likely to be con-
servative estimates. CASE I. is a synthetic concrete strength
dataset generated by a deep learning model trained on the
CCS dataset [12] [20]. The dataset has 5,407 instances
and nine attributes. There were 767 submissions for this
competition, and the RMSE of the top ∼ 90% of competitors
is displayed in Figure 7. AReS’ best performing model, a
Gradient-Boosting Regressor, predicted the holdout set with
an RMSE of 12.922 and is shown with a red dotted line.
This score puts AReS among the very best competitors,
despite it requiring neither fine-tuning nor domain knowl-
edge. CASE II. is the Paris Housing Price dataset [21].
This dataset has 22,730 instances and 17 numerical columns.

AReS again determines that the best-performing regressor
is Gradient Boosting. This regressor produced an RMSE
value of 230,678.0871 and is comparable to the majority of
submissions. Of the 705 submissions, the top ∼ 90% are
visualized in the histogram in Figure 8 along with AReS’
performance. Our service performs approximately as well
as the median Kaggle competitors in this contest but with
almost no user input. We intend to include data engineering
and hyperparameter optimization in future versions of the
service, which should enable the service to perform exceed-
ingly well in this type of competition.

6. Summary and Conclusions

In this paper, we presented a data-centric machine
learning web service called “AReS” for non-experts that
automates and streamlines the ML pipeline, from model
training to model evaluation. By providing a user-friendly
interface and incorporating advanced modeling techniques,
AReS enables users who are not programmers to employ
current ML algorithms and advanced visualizations. AReS
removes roadblocks common in other AutoML systems.
Additionally, AReS provides novel data-centric analysis on
the data, which elucidates a model’s performance.

Future work includes further testing of AReS, expan-
sion to accommodate new domains, and incorporation of
advanced ML techniques, such as hyperparameter tuning, to
enhance model performance. As we refine the visualization
algorithms, the service will be able to accommodate larger
datasets and datasets with non-numeric attributes. With re-
gards to data reduction, we will enable test points to be
overlaid on the Region Predictability plot. As a result, a
user may be able to infer the potential predictability of
an unlabeled data point by observing the predictability of
its region in the principal-component space. Missing and
spurious values will also be addressed, though this problem
is among the most difficult. Lastly, in future versions of
AReS we intend to give users the ability to predict over new
data using the best-performing models from our service.

kaggle.com
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7. Supplementary Materials

This paper’s novel web service, AReS, can be ac-
cessed at https://dalkilic.luddy.indiana.edu/. A complete tu-
torial on the usage of AReS is located at https://dalkilic.
luddy.indiana.edu/walkthrough. The data and code used
throughout this paper can be found at https://github.com/
Joshua-Elms/AReS-whitepaper-supplementary-materials.
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