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Abstract
Responsibly deploying artificial intelligence (AI) /
machine learning (ML) systems in high-stakes set-
tings arguably requires not only proof of system
reliability, but also continual, post-deployment
monitoring to quickly detect and address any un-
safe behavior. Methods for nonparametric se-
quential testing—especially conformal test mar-
tingales (CTMs) and anytime-valid inference—
offer promising tools for this monitoring task.
However, existing approaches are restricted to
monitoring limited hypothesis classes or “alarm
criteria” (e.g., detecting data shifts that violate cer-
tain exchangeability or IID assumptions), do not
allow for online adaptation in response to shifts,
and/or cannot diagnose the cause of degradation
or alarm. In this paper, we address these limita-
tions by proposing a weighted generalization of
conformal test martingales (WCTMs), which lay
a theoretical foundation for online monitoring for
any unexpected changepoints in the data distribu-
tion while controlling false-alarms. For practical
applications, we propose specific WCTM algo-
rithms that adapt online to mild covariate shifts
(in the marginal input distribution), quickly detect
harmful shifts, and diagnose those harmful shifts
as concept shifts (in the conditional label distribu-
tion) or extreme (out-of-support) covariate shifts
that cannot be easily adapted to. On real-world
datasets, we demonstrate improved performance
relative to state-of-the-art baselines.

1. Introduction
As AI/ML systems become integral to real-world applica-
tions, ensuring their safety and utility under evolving con-
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ditions is essential for responsible deployment. However,
even meticulously trained models with apparent reliability
guarantees can fail abruptly when shifts in the data distri-
bution or operational environment violate the underlying
conditions they were designed for (Amodei et al., 2016).
That is, unforeseen deployment conditions can make it im-
possible to guarantee reliability for all situations in advance.
Consequently, there is growing recognition for the need to
continuously monitor deployed AI systems for determining
when model updates are required to mitigate downstream
harm (Vovk et al., 2021; Podkopaev and Ramdas, 2021b;
Feng et al., 2022; 2025). In this work, we moreover argue
that such monitoring methods should ideally perform at least
three key functions: (1) maintain end-user reliability and
minimize unnecessary alarms by adapting online to mild
or benign data shifts; (2) rapidly detect more extreme or
harmful shifts that necessitate updates; and (3) identify the
root-cause of degradation to inform appropriate recovery.

For example, consider a healthcare use case where the goal
is to predict the risk of sepsis, a life-threatening infection,
Y from electronic health record inputs X (e.g., vital signs,
lab tests, medical history, demographics) using an AI/ML
system (e.g., Adams et al. (2022)). Various clinical data
shifts pose challenges to monitoring in practice (Finlayson
et al., 2021). Figure 1 illustrates hypothetical synthetic-data
shifts that can be interpreted through this sepsis example,
where for simplicity X only represents a patient’s age. An
example of a benign shift is a mild shift in patient demo-
graphics primarily toward young adults; Figure 1a shows a
corresponding covariate shift in the marginal X distribution.
Such a mild shift to a younger population would be benign,
as younger individuals are well-represented in the training
data and also tend to have lower, less variable (easier to
predict) sepsis risk—so, there is no need for an alarm. On
the other hand, harmful shift examples include if the AI tool
were deployed with a much older population than observed
in the training data (e.g., Figure 1b) or if a new microbial
strain were to arise that was especially severe in children
(e.g., Figure 1c). In any such harmful shift case, swift de-
tection and root-cause analysis is essential to initiate and
inform retraining, to ultimately minimize harm.

Recent advances in anytime-valid inference (Ramdas et al.,
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Figure 1. Each column represents a data shift scenario: the top row is a simulated shift example and the bottom row shows WATCH’s
response, averaged over 20 random seeds. WATCH raises an alarm to retrain the AI/ML once the WCTM (blue) exceeds its alarm threshold;
meanwhile, an X-CTM (gray)—a standard CTM that only depends on inputs X , and thus only detects covariate shifts—dynamically
initiates the WCTM’s adaptation phase and aids in root-cause analysis. In (a), the X-CTM starts the WCTM’s adaptation phase, which
allows the WCTM to avoid raising an unnecessary alarm. In (b), the extreme covariate shift causes the WCTM to raise an alarm, indicating
that the covariate shift is too severe to be adapted to. In (c), the illustrated concept shift causes WATCH to raise an alarm, but without the
X-CTM detecting a shift in covariates X—this allows WATCH to diagnose the root-cause of the alarm as a concept shift in Y | X .

2023) and especially conformal test martingales (CTMs)
(Volkhonskiy et al., 2017; Vovk, 2021) offer promising tools
for AI monitoring with sequential, nonparametric guaran-
tees. However, existing CTM monitoring methods (e.g.,
Vovk et al. (2021)) all rely on some form of exchangeability
(e.g., IID) assumption in their null hypotheses—informally,
meaning that the data distribution is the same across time or
data batches—and as a result, standard CTMs can raise un-
necessary alarms even when a shift is mild or benign (e.g.,
Figure 1a). Meanwhile, existing comparable monitoring
methods for directly tracking the risk of a deployed AI (e.g.,
Podkopaev and Ramdas (2021b)) tend to be less efficient
than CTMs regarding their computational complexity, data
usage, and/or speed in detecting harmful shifts (Sec. 4.3).

Our paper’s contributions can be summarized as follows:

• Our main theoretical contribution is to propose
weighted-conformal test martingales (WCTMs), con-
structed from sequences of online weighted-conformal
p-values, which generalize their standard conformal
precursors. WCTMs lay a theoretical foundation for
sequential and continual testing of a broad class of null
hypotheses beyond exchangeability, such as shifts that
one aims to model and adapt to.

• For practical applications, we propose WATCH:
Weighted Adaptive Testing for Changepoint
Hypotheses, a framework for AI monitoring using
WCTMs. WATCH continuously adapts to mild or
benign distribution shifts (e.g., Figure 1a) to maintain

end-user safety and utility (and avoid unnecessary
alarms), while quickly detecting harmful shifts (e.g.,
Figure 1b & c) and enabling root-cause analysis.

2. Background
Notation: Assume an initial dataset Z1:n := {Zi}ni=1,
where each datapoint is a feature-label pair, Zi :=
(Xi, Yi) ∈ X × Y = Z . For simplicity, further assume
that an AI/ML model µ̂ is pretrained on a separate dataset.1

After deploying the AI/ML model, the test points are ob-
served sequentially at each time t = 1, ..., T (batch data
can be given random ordering), though for simpler expo-
sition, we initially focus on t = 1. We abbreviate indices
[m] := {1, ...,m}. Random variables are denoted with cap-
ital letters (e.g., Zi) and observed values with lowercase
(e.g., zi). For Z := Z1:(n+t), we let FZ denote the joint
distribution function, fZ the joint density function. For a
set of distributions FZ, we write Z1, Z2, ... ∼ FZ to mean
the sequence has some unknown distribution FZ ∈ FZ.

2.1. Conformal Prediction and Conformal p-Values

Standard conformal prediction (CP) (Vovk et al., 2022) is
an approach to predictive inference: the task of converting
a black-box AI/ML prediction, µ̂(Xn+1), into a predictive

1This corresponds to a split conformal setting (Papadopoulos,
2008), but our theory also extends to full conformal (Vovk et al.,
2022), which avoids splitting data at a heavy computational cost.
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confidence interval/set, Ĉ[n],α(Xn+1), that should contain
the true label with a user-specified rate, 1− α ∈ (0, 1) (e.g.,
90%). This objective is called valid (marginal) coverage:2

P
{
Yn+1 ∈ Ĉ[n],α(Xn+1)

}
≥ 1− α. (1)

Constructing the CP set, Ĉ[n],α(Xn+1), requires a labeled
calibration dataset,3 Z1:n, and a “nonconformity”score func-
tion, Ŝ : X × Y → R, which generally uses the prefit
ML predictor to quantify how “strange” a point (x, y) is
relative to the training data. A common example is the
absolute-value residual score, Ŝ(x, y) = |y − µ̂(x)|.

Though not always framed as such, the CP set Ĉ[n],α(Xn+1)
can be computed via a conformal p-value, which places
the “strangeness” of the test point’s score in context of the
calibration-data scores. That is, with vi := Ŝ(xi, yi) for
all i ∈ [n + 1], Vovk et al. (2022) defines the conformal
p-value for test point Zn+1 relative to calibration data Z1:n

as the fraction of the n+ 1 scores, v1:(n+1), that are at least
as large as vn+1, with ties broken uniformly at random:

pn+1 :=
|{i : vi > vn+1}|+ un+1|{i : vi = vn+1}|

n+ 1
, (2)

where Un+1
iid∼ Unif[0, 1]; that is, un+1 is obtained from

an independent standard uniform distribution.4 The CP set
Ĉ[n],α(Xn+1) can then be understood as the subset of labels
y ∈ Y that would not result in too “extreme” of a test-point
p-value, pn+1(Xn+1, y) (this is explicit notation for pn+1

to emphasize its dependence on the candidate label y):

Ĉ[n],α(Xn+1) :=
{
y ∈ Y : pn+1(Xn+1, y) > α

}
. (3)

2.2. Exchangeability Underlies Standard CP Validity

For the standard CP set in Eq. (3), the coverage guaran-
tee in Eq. (1) holds assuming that the calibration data
Z1:n and test point Zn+1 are all exchangeable—intuitively,
this means that the data distribution is invariant over time
(e.g., independent and identically distributed or “IID” data).
Formally, exchangeability means that the joint distribu-
tion, FZ , is invariant to reorderings or permutations σ:
that is, FZ(zσ(1), ..., zσ(n+1)) = FZ(z1, ..., zn+1) for all
z1, ..., zn+1 ∈ Z and all σ : [n + 1] → [n + 1]. With Fex

Z

denoting the set of exchangeable joint distributions, we can
write the assumption of exchangeability as a (composite and
nonparametric) null hypothesis:

Hex
0 : Z1, Z2, ..., Zn+1 ∼ Fex

Z . (4)

2Here, marginal means on average over the draw of calibration
and test data; see, e.g., Foygel Barber et al. (2021) for more details.

3For t > 1, the calibration data might be kept fixed (i.e., Z1:n),
or it may include past test points (i.e., Z1:(n+t−1)); for now, we
focus on t = 1 to avoid this distinction and simplify exposition.

4Conservative conformal p-values set un+1 := 1; the random
variable Pn+1 corresponding to pn+1 is called a p-variable, but we
will often refer to both as p-values for more common terminology.

Standard conformal p-values (Eq. (2)) are valid or “bona-
fide” p-values, in the usual statistical testing sense, for the
exchangeablity null hypothesis (Vovk et al., 2022). That is,
assumingHex

0 , then Pn+1
iid∼ Unif[0, 1] (Vovk, 2021) and

PHex
0
(Pn+1 ≤ α) ≤ α ∀ α ∈ (0, 1). (5)

Thus, observing an extreme value of pn+1 is evidence
againstHex

0 (Eq. (4)), or evidence for a distribution shift.

2.3. Standard Conformal Test Martingales: Testing
Exchangeability Online via Betting

Standard conformal test martingales (CTMs) (Volkhonskiy
et al., 2017; Vovk, 2021; Vovk et al., 2021) continually ag-
gregate information from a sequence of conformal p-values
(Eq. (2)) to perform online testing of the exchangeability
null,Hex

0 . They can be constructed on top of any standard
CP method, and thus on top of any conformalized AI/ML
model, and used to monitor for deviations fromHex

0 . We will
describe CTMs from a game-theoretic “testing-by-betting”
interpretation (Shafer and Vovk, 2019; Shafer, 2021).

Under Hex
0 , a stochastic process M0,M1, ...,Mt, ... is a

CTM if it is a nonnegative martingale—i.e., Mt ≥ 0 for
all t and EHex

0
[Mt | M0, ...,Mt−1] = Mt−1—constructed

from a corresponding sequence of conformal p-values
p1, ..., pt, ... via an appropriately defined “betting process.”
That is, in the game-theoretic interpretation, a bettor has
initial wealth M0, and at each time t = 0, 1, ..., she may
use wealth Mt to bet on the value of pt+1 to be observed
next; once pt+1 is revealed, she receives her reward and/or
pays her losses, resulting in a new total wealth Mt+1. The
bettor bets against the null hypothesis Hex

0 : if Hex
0 is true,

then Pt
iid∼ Unif[0, 1] and she cannot expect to outperform

random guessing; so, if the bettor grows her wealth by a
large factor Mt/M0 > 1, this is evidence that the bettor
“knows” an alternative hypothesis more accurate thanHex

0

(Vovk, 2021). Mt/M0 can be taken as an “anytime-valid”
evidence against Hex

0 —i.e., Mt/M0 is also an “e-process”
forHex

0 (Vovk and Wang, 2021; Ramdas et al., 2023).

More formally, define a betting function as a function h :

[0, 1] → [0,∞] that integrates to one, i.e.,
∫ 1

0
h(u)du = 1.

We follow Vovk (2021) and assume the betting function

hϵ(p) := 1 + ϵ(p− 0.5), (6)

where ϵ ∈ E := {−1, 0, 1} (E is selected somewhat arbi-
trarily). The intuition is that ϵ < 0 corresponds to betting
on smaller p-values, ϵ > 0 corresponds to betting on larger
p-values, and ϵ = 0 represents not betting. A CTM can be
constructed by selecting a betting strategy hϵt at each time
t that may depend only on the past p-value observations
p1, ..., pt−1; this paper uses the “composite jumper martin-
gale” strategy described in Vovk et al. (2022). Then, a con-
formal (test) martingale Mt : [0, 1]

∗ → [0,∞], t = 0, 1, ...,

3
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can be constructed by accumulating the “wealth” attained
by the previous bets on the conformal p-values, p1, p2, ...,

Mt :=

∫ ( t∏
i=1

hϵi(pi)
)
ν
(
d(ϵ0, ϵ1, ...)

)
, ∀ t, (7)

where ν is the composite jumper Markov chain described
by Vovk et al. (2022) to determine how the “wealth” values
are spread across the betting space E at each timepoint.

A standard CTM (Eq. (7)) can be used to test the exchange-
ability nullHex

0 (Eq. (4)) online either by using Mt/M0 as
an anytime-valid evidence metric, or by raising an alarm
when Mt/M0 exceeds some user-defined threshold c. That
is, by Ville’s inequality for martingales (Ville, 1939), CTMs
achieve anytime-valid control over the false alarm rate (i.e.,
over the probability of an alarm despiteHex

0 being true),

PHex
0

(
∃ t : Mt/M0 ≥ c

)
≤ 1/c, (8)

which is sometimes referred to as strong validity due to its
control over ever raising a false alarm (Vovk, 2021).

2.4. Weighted Conformal Prediction for Adapting to
Distribution Shifts

Whereas Standard CP computes valid predictive confidence
sets assuming exchangeable data, weighted conformal pre-
diction (WCP) (e.g., Tibshirani et al. (2019); Podkopaev
and Ramdas (2021a); Barber et al. (2023); Prinster et al.
(2024); Barber and Tibshirani (2025)) generalizes standard
CP to attain valid coverage (Eq. (1)) even under various
distribution shifts. WCP methods are thus an approach to
adapting to distribution shift, that is by computing CP sets
on a reweighted version of the empirical calibration set’s
scores, which in effect can modulate the size of the predic-
tion sets to maintain coverage.

As we will see in the next section, WCP methods are asso-
ciated with weighted-conformal p-values, a special-case of
which was introduced in Jin and Candès (2023) for standard
covariate shifts, based on Tibshirani et al. (2019). Concur-
rently with our paper, Barber and Tibshirani (2025) also
leverage weighted-conformal p-values to unify various the-
ories of conformal prediction. However, there are several
key differences: regarding motivation, that work discusses
connections to (one-shot) hypothesis testing as a means of
framing conformal prediction, while in our paper (sequen-
tial) hypothesis testing is the primary focus; the conformal
p-values in that paper are deterministic and attain conserva-
tive validity, whereas we incorporate randomness to achieve
exact validity; lastly, whereas that paper focuses on a batch-
data setting where all the data are observed simultaneously,
we focus on an online monitoring setting where each p-value
is determined only by the current and past data, and we im-
portantly present new theory for when a sequence of WCP

p-values can be distributed uniformly and independently,
which is important for monitoring with WCTMs.

3. Theory and Methods: Weighted-
Conformal p-Values and Test Martingales
Our main theory and method contribution is to introduce
weighted-conformal test martingales (WCTMs), constructed
from a generalized version of weighted-conformal p-values,
which expand the scope of their standard conformal analogs.
WCTMs enable more customizable and informative alarm
criteria than standard CTMs, and our specific variants enable
adaptation to mild shifts, while in response to severe shifts
they raise alarms and enable root-cause analysis.

3.1. Generalized Weighted-Conformal p-Values

In this section we present a general version of weighted-
conformal p-values.5 Sequences of these generalized
weighted-conformal p-values will lay a theoretical foun-
dation for online testing of a broad range of null hypotheses
beyond exchangeability. To begin, observe that standard
conformal p-values (Eq. (2)) can be equivalently written as

pn+1 =

n+1∑
i=1

1

n+ 1

[
1{vi > vn+1}+ un+11{vi = vn+1}

]
,

where the purpose of this notation is to isolate where
the comparison of vn+1 to each i-th score is given uni-
form weight 1

n+1 . For some arbitrary weight vector w̃ =

(w̃1, ..., w̃n+1) ∈ [0, 1]n+1 where
∑n+1

i=1 w̃i = 1, it is then
straightforward to define weighted-conformal p-values as

pw̃n+1 =

n+1∑
i=1

w̃i

[
1{vi > vn+1}+ un+11{vi = vn+1}

]
.

(9)

Note that existing (split or full) weighted CP methods (e.g.,
Tibshirani et al. (2019); Podkopaev and Ramdas (2021a);
Prinster et al. (2024) and certain methods in Barber et al.
(2023)) can be also be defined by weighted-conformal p-
values by plugging pw̃n+1(Xn+1, y) in for pn+1(Xn+1, y) in
Eq. (3), where w̃ is an appropriately chosen weight vector.6

To understand the meaning of the weights w̃ for our hy-
pothesis testing purpose, we draw from the general view
of weighted CP described in Prinster et al. (2024), which
expounded analysis from Tibshirani et al. (2019): For setup,
let Ez denote the event {Z1, ..., Zn+1} = {z1, ..., zn+1},
meaning that the empirical distribution of the datapoints has

5Here, “weighted” refers to weights on the score distribution
prior to computing a p-value, not to weighting the p-value itself.

6Conservatively valid weighted CP methods would need to
further set un+1 = 1 in Eq. (9) to reduce appropriately.
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been observed, but we do not know whether Zi = zi, and so
on. Then, the oracle weights w̃o would be given by entries

w̃o
i = P{Vn+1 = vi | Ez} (10)

=

∑
σ:σ(n+1)=i f(zσ(1), ..., zσ(n+1))∑

σ f(zσ(1), ..., zσ(n+1))
,

where f is the joint probability density function (PDF) and
σ is a permutation of [n+ 1]. In words, the oracle weight
w̃o

i we would ideally use for w̃i is the probability that the
test score Vn+1 took on the value vi, conditioned on the em-
pirical distribution Ez . For further exposition, see Prinster
et al. (2024). While for arbitrary f , computing Eq. (10) is
intractable due to requiring knowledge of f and the factorial
complexity, we next turn to how simplifying or approximat-
ing w̃o can be useful in practical hypothesis testing.

3.2. Expanded Hypothesis Testing with
Weighted-Conformal p-Values

We now look at how the weighted-conformal p-values in-
troduced in Eq. (9) can be used to sequentially test a va-
riety of nonparametric null hypotheses beyond exchange-
ability. Let us begin by using H0(f̂) to denote any set of
assumptions on f used to estimate Eq. (10), and hereon
let w̃ := w̃(H0(f̂)) denote the weight vector computed
with this approximation. For example, if we assume ex-
changeability as our null hypothesis (H0(f̂) = H(ex)

0 ), then
f(zσ(1), ..., zσ(n+1)) = f(z1, ..., zn+1) and Eq. (10) re-
duces to w̃i = 1

n+1 , which recovers standard conformal
p-values. More generally, H0(f̂) may denote some other
set of invariance assumptions on f or density-ratio estimates
(see Section 3.3 and Appendix C for a worked example for
our primary testing objective). Then, P w̃

n+1 is a valid and
exact p-value for the null hypothesisH0(f̂):

PH0(f̂)

{
P w̃
n+1 ≤ α

}
= α. (11)

Moreover, when a sequence of weighted-conformal p-values
is computed online, then they are not only distributed uni-
formly, but also independently, at each timestep. We next
state this formally.

Theorem 3.1. (Independence and exact validity, forH0(f̂),
of online WCP p-values.) For any T ∈ N, let H0(f̂)
denote the set of all assumptions on the joint PDF, f ,
and approximations used to estimate w̃o (Eq. (10)). Let
w̃ := w̃(H0(f̂)) be the corresponding estimated weights
and α1, ..., αT ∈ (0, 1)T some user-defined significance
levels. If H0(f̂) holds for the true f , then P w̃

1 , P w̃
2 , ... are

IID uniform on [0,1]:

PH0(f̂)

{
P w̃
1 ≤ α1, ..., P

w̃
T ≤ αT

}
= α1 · · ·αT . (12)

Proof Sketch: We defer a full proof to Appendix B. The
proof builds on those for standard CTMs in Vovk (2002) and
Vovk et al. (2003), which leverage the idea of “reversing
time,” while drawing on ideas from Tibshirani et al. (2019)
and Prinster et al. (2024). We imagine that the sequence
of data observations (z1, ..., zT ) is generated in two steps:
first, the unordered bag of data observations, {z1, ..., zT },
is generated from some probability distribution; then—here
generalizing Vovk (2002) and Vovk et al. (2003) by weight-
ing permutations according to their likelihood—from all
possible permutations σ of the values {z1, ..., zT }, each
possible sequence (zσ(1), ..., zσ(T )) is chosen with proba-
bility proportional to f(zσ(1), ..., zσ(T )), where f := fZ
is the probability-density function7 for the distribution FZ .
Roughly (ignoring borderline effects), the second step en-
sures that, conditionally on knowing {z1, ..., zT } (and there-
fore unconditionally), that P w̃o

T has a standard uniform
distribution; when ZT = zσ(T ) is observed, this settles
the value of P w̃o

T = pw̃
o

σ(T ), and conditionally on knowing
{z1, ..., zT } and ZT = zσ(T ) (and therefore, after relabeling
indices, on knowing {z1, ..., zT−1}), that P w̃o

T−1 also has a
standard uniform distribution, and so on.

3.3. Main Practical Testing Objective: Testing for
{Concept Shift or Unanticipated Covariate Shift}

We now provide a worked example for how weighted-
conformal p-values can be used to test a common assump-
tion in the robust ML literature: namely, the covariate
shift (Shimodaira, 2000; Sugiyama et al., 2007) assump-
tion, where the marginal input distribution FX may shift
to some other distribution GX at test time, but the condi-
tional label distribution FY |X is assumed to remain invari-
ant. Under covariate shift, the oracle weights w̃o

i in Eq. (10)
are proportional to density-ratio weights gX(Xi)/fX(Xi)
(Tibshirani et al., 2019). A common goal is to adapt to
covariate shift by learning an approximate density-ratio
function ŵ(x) ≈ gX(x)/fX(x) for reweighting the data
(e.g., Sugiyama et al. (2007); Tibshirani et al. (2019); Yang
et al. (2024); Zhang et al. (2024)).

However, whereas reliability results in the ML robustness
literature often relies on the density-ratio estimator being
reasonably accurate, i.e., ŵ(x) ≈ gX(x)/fX(x), there is
little work on testing for whether this reliability criterion is
achieved in practice. Let G(ŵ)

X denote the set of distribu-
tions for X with density-ratio function ŵ(x). Then, we aim
to test the following joint null hypothesis:

H(cs)
0 :=

{
(Xi, Yi)

iid∼ FY|X × FX, i ∈ [n+ tad − 1]

(Xn+t, Yn+t)
iid∼ FY|X ×G

(ŵ)
X , t ≥ tad,

(13)

7More generally, the Radon–Nikodym derivative.
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Figure 2. Tabular data results for the benign covariate shift setting to evaluate the adaptation ability of proposed WCTM methods (blue);
all values are averaged over 200 random seeds. Training and calibration sets were sampled uniformly at random (with 1/3 of the total data
used for training and calibration each), while post-changepoint test-set datapoints were bias-sampled from the remaining holdout data
with probability proportional to exp(λ · h(x)). The shift-magnitude scalar λ for each dataset was set as λmep = 5.0 , λsup = 2.5, and
λbik = 5.0. The function h was selected to simuluate realistic shifts as described in the main text. Error regions represent standard errors
for coverage, martingale paths, ans Shiryaev-Roberts paths, and interquartile range for interval widths. Whereas standard CTMs (orange)
raise unnecessary alarms with their anytime-valid and scheduled monitoring criteria, WCTMs avoid doing so by adapting online to the
shift. That is, WCTMs maintain target coverage, adapt by increasing interval sharpness, and avoid unneeded alarms.

which can be roughly read as assuming that Y | X is in-
variant and that ŵ(x) = gX(x)/fX(x). Thus, observing an
extreme value of pw̃n+1 would convey evidence againstH(cs)

0 ,
meaning that there has been a concept shift in Y | X or that
the density-ratio adaptation ŵ(x) is inaccurate.

3.4. Weighted-Conformal Test Martingales for
Continual Monitoring

With Theorem 3.1 at hand, weighted-conformal test mar-
tingales (WCTMs) can be constructed from a sequence of
weighted-conformal p-values to enable continual, anytime-
valid monitoring of a customizeable null hypothesisH0(f̂).
Just as in the construction of standard CTMs (Section 2.3),
WCTMs require a betting function h (we assume the betting
function in Eq. (6)) and a strategy ν for placing bets ϵt
at each time t that can only depend on past p-value obser-
vations (we use the composite jumper strategy from Vovk
et al. (2022)). Then, a WCTM is constructed by feeding
a sequence of weighted-conformal p-values pw̃1 , ..., p

w̃
t , ...

into Eq. (7) (i.e., by setting pi := pw̃i in Eq. (7)). Due to
the P w̃

t being distributed IID uniformly on [0,1] (Theorem

3.1), the stochastic process M̃0, M̃1, ..., M̃t is a nonnegative
test martingale forH0(f̂), and by Ville’s inequality (Ville,
1939) it achieves the anytime-valid control over false alarms
in the following theorem (proof in Appendix B).

Proposition 3.2. (WCTM anytime-valid false-alarm con-
trol) Let M̃0, M̃1, ..., M̃t, ... be a WCTM constructed
from the sequence of weighted-conformal p-values
pw̃1 , p

w̃
2 , ..., p

w̃
t , .... Then, assumingH0(f̂),

PH0(f̂)

(
∃ t : M̃t/M̃0 ≥ c

)
≤ 1/c. (14)

3.5. Scheduled or Multistage WCTM-Based Monitoring

The anytime-valid guarantee in Eq. (14) controls the proba-
bility of raise a false alarm at any time in an infinite sequence
of observations, but this can be overly strong, especially
when one has a set time horizon in mind for monitoring.
For such “scheduled” or “multistage” monitoring, we im-
prove the efficiency (speed in detecting true shifts) by fol-
lowing Vovk et al. (2021); Vovk (2021) and augmenting
WCTMs with standard changepoint detection metrics such
as CUSUM (Page, 1954) and Shiryaev-Roberts (Roberts,
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1966; Shiryaev, 1963) while achieving a weaker form of
validity. Consider the Shiryaev-Roberts procedure applied
to WCTMs M̃t, whose k-th stage alarm time is

τk := min
{
t > τk−1 :

t−1∑
i= τk−1

M̃t

M̃i

≥ c
}
, k ∈ N. (15)

This Shiryaev-Roberts procedure based on standard CTMs
controls the average run length (ARL) underH0(f̂), where
the procedure is expected to be reset after c timesteps.

Proposition 3.3. (WCTM-based Shiryaev-Roberts ARL con-
trol) Let τ1 denote the Shiryaev-Roberts stopping time (Eq.
(15)) based on a WCTM M̃0, M̃1, ..., M̃t, ... constructed for
the null hypothesisH0(f̂). Then, assumingH0(f̂),

EH0(f̂)

[
τ1
]
≥ c. (16)

3.6. WCTM Implementation in WATCH: Dynamic
Online Adaptation and Root-Cause Analysis

All our implementations and experiments in this paper focus
on WCTMs that continuously adapt to mild covariate shifts
(e.g., Fig 1a) while raising alarms in response to either
extreme covariate shifts (e.g., Fig 1b) or concept shifts in
Y |X (e.g., Fig 1c). These goals correspond to monitoring
theH(cs)

0 null hypothesis given in Eq. (13). Our adaptation
procedure performs online density ratio estimation with an
online probabilistic classifier (e.g., a multilayer perceptron
or logistic regression model similar to in Zhang et al. (2024))
to update the estimation of ŵ(t)(x) at each timestep t.

Online Adaptation with Dynamic Initialization For the
initial adaptation stage, a key question is when to begin the
adaptation procedure, or when to begin estimating ŵ(t)(x).
Our methods make this determination automatically and
dynamically by running a secondary standard CTM that
is restricted to only monitoring for changepoints in the
marginal X distribution via a nearest-neighbor nonconfor-
mity score (Vovk et al., 2021). At deployment, the main
WCTM method is initially a standard CTM (with uniform
weights); then, once the secondary “X-CTM” method ex-
ceeds a pre-determined adaptation threshold (see gray paths
in Fig 1) at some time tad, this triggers the adaptation of
the main WCTM monitoring method (blue paths in Fig 1)
and corresponding weighted CP intervals. For efficiency
purposes, after the adaptation time tad, the CP calibration
set [n+ tad] is treated as fixed (no longer adding test points
to it online), meaning the weighted-conformal p-values are
computed summing only over [n+ tad − 1] ∪ {n+ t},

pw̃n+t =
∑

i∈[n+tad−1]∪{n+t}

w̃
(t)
i

[
1{vi > vn+t}
+un+t1{vi = vn+t}

]
,

(17)

where here w̃
(t)
i ∝ ŵ(t(Xi).

Root-Cause Analysis with Parallelized WCTM and X-
CTM The parallel implementation of both the primary
WCTM and the secondary X-CTM method furthermore
enables root-cause analysis, that is to determine whether
performance degradation was due to a harmful covariate
shift (e.g., Fig 1b) or a fundamental concept shift (e.g.,
Fig 1c). That is, if both the WCTM and the X-CTM have
detected changepoints, then a harmful shift can be diagnosed
as an extreme covariate shift (e.g., Fig 1b); on the other hand,
if the X-CTM does not detect a changepoint, this suggests
that no covariate shift is present, and the WCTM alarm was
instead due to a concept shift in Y |X (Figure 1).

4. Experiments
We conduct a comprehensive empirical analysis of the
WATCH framework on real-world datasets with various
distribution shifts. Our results show that WATCH adapts
effectively to benign shifts (Section 4.1) and triggers alarms
only when it fails to adapt (Section 4.2), while also quickly
detecting harmful shifts with little delay (Section 4.3). De-
tails on the datasets, models, and additional results, can
be found in Appendix D. Code to reproduce all experi-
ments is available at the following repository: https:
//github.com/aaronhan223/watch.

Baselines We compare the proposed WCTM methods that
constitute WATCH against standard CTMs (Vovk et al.,
2021) in all experiments. To evaluate detection speed on true
harmful shifts (sec 4.3), we also compare against methods
for directly performing sequential hypothesis testing and
changepoint detection on the set-prediction miscoverage
risk, as proposed by Podkopaev and Ramdas (2021b).

In all experiments and for all baselines, the underlying ML
predictor being monitored was a neural network. On the tab-
ular data, we used the scikit-learn (Pedregosa et al., 2011)
MLPRegressor (with L-BFGS solver and logistic activa-
tion); for the image data, we used a 3-layer MLP with ReLU
activations on the MNIST datasets and a ResNet-32 (He
et al., 2016) on CIFAR-10 datasets. For weight estimation,
we use a 3-layer MLP with ReLU activations to distinguish
between source and target distributions.

4.1. WCTMs Adapt to Mild and Benign Shifts to Avoid
Unnecessary Alarms

WCTMs Adapt to Benign Covariate Shifts Figure 2 com-
pares the average performance (across 200 random seeds)
of WCTMs to standard CTMs across 3000 sequentially-
observed test datapoints, where the true changepoint shift is
induced after the 500th test point. From the conformal cov-
erage plots in the first column, it is clear that all the shifts are
benign in that coverage for the corresponding (standard or
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(d)
Figure 3. Example martingale trajectories of WCTM and CTM on CIFAR-10-C with increasing levels of corruption. WCTM adapts more
finely to varying severity and only triggers alarms when necessary, whereas CTM shows limited adaptability. All plots are averaged from
5 random experiments.

Table 1. ADD and wall-clock runtime in minutes computed over 100 seeds. Anytime-valid monitoring methods are WCTMs (proposed),
CTMs (Vovk, 2021), and sequential testing from Podkopaev and Ramdas (2021b) (PR-ST); multistage monitoring methods are Shiryaev-
Roberts (SR) procedure applied to WCTMs (proposed), SR applied to CTMs (Vovk, 2021), changepoint detection on the miscoverage
risk from Podkopaev and Ramdas (2021b) in both online (PR-CD-online) and minibatched (PR-CD-50) variants. The best ADD are
highlighted in bold font and the best run time results are underlined; results corresponding to our method are in blue.

Anytime-Valid Monitoring Criteria Scheduled, Multistage Monitoring Criteria
(W)CTM PR-ST SR via (W)CTM PR-CD-online PR-CD-50

CP Method ADD Time ADD Time ADD Time ADD Time ADD Time

Superconduct Weighted 176.33 4.92E-03 985.35 0.24 149.68 7.95E-03 224.27 2.28 441.5 5.31E-03
Standard 173.85 4.86E-03 887.26 0.18 149.43 7.88E-03 217.47 2.07 438.5 5.34E-03

Bike Sharing Weighted 182.59 4.09E-03 685.29 0.08 145.09 6.25E-03 162.71 0.79 2841 0.95
Standard 183.01 4.21E-03 686.61 0.08 146.50 6.33E-03 163.53 0.78 2149 0.48

MEPS Weighted 120.74 3.97E-03 513.79 0.07 103.79 5.19E-03 107.05 0.56 196.5 1.70E-03
Standard 120.59 3.95E-03 479.51 0.06 103.59 5.17E-03 107.98 0.56 191.5 1.68E-03

weighted) CP methods—a metric of prediction safety—does
not degrade below the target level (0.9) after the change-
point. In fact, for the baseline method (orange), coverage
increases, which could be considered a “beneficial” shift;
nonetheless, the standard CTM raises unnecessary alarms
across all datasets, for both its anytime-valid (fourth column)
and scheduled (fifth column) monitoring criteria. In contrast,
the proposed WCTM (blue) avoids these unnecessary alarms
across all datasets and both monitoring criteria. That is, the
WCTM adapts to the benign covariate shift by decreasing
its interval widths (second column)—indicating more in-
formative predictions—while maintaining target coverage.
The relatively uniform distribution of the postchangepoint
weighted p-values (third column, blue) is empirical evidence
validating Theorem 3.1; meanwhile, the martingale (fourth
column) and Shiryaev-Roberts (fifth column) WCTM paths
avoiding alarms supports Theorems 3.2 and 3.3 respectively.

4.2. From Mild to Extreme Covariate Shifts: WCTMs
Raise Alarms if Unable to Adapt

We demonstrate such a property of WCTM using image cor-
ruption experiments. The models were trained on original
clean data and then evaluated on corrupted variants. To en-
able greater flexibility in controlling the level of distribution
shift, we combine clean and corrupted samples using self-
defined mixture ratios when defining the source and target

distributions. Figure 3 illustrates the behavior of WCTM
in comparison to CTM on CIFAR-10 under varying levels
of brightness corruption. When the target distribution is
completely clean (a), neither method triggers a false alarm,
but the martingale paths of WCTM are more stable. We then
introduce level-1 brightness corruption while retaining over
50% clean samples (b), creating a very mild, benign shift.
In this scenario, CTM quickly raises an unnecessary alarm,
whereas WCTM successfully avoids it. Next, we increase
the corruption to level-3 and reduce the clean-sample ratio
to 40% (c). Although WCTM reacts to this shift, it still does
not trigger an alarm. Finally, at corruption level-5, with the
clean-sample ratio reduced to 30% (d), WCTM does raise
the alarm. Throughout these changes, the baseline CTM
shows little variation, while our method displays strong
adaptivity to different degrees of distribution shift.

We conduct a quantitative evaluation of monitoring perfor-
mance on the image corruption experiments. Our evaluation
metrics include the average detection delay (ADD), follow-
ing Podkopaev and Ramdas (2021b), the average number
of unnecessary alarms and missed alarms. First, WCTM
exhibits shorter detection delays compared to CTM. Given
that CTM often doesn’t trigger alarms in the face of severe
corruption, which significantly increases its overall ADD.
Additionally, as the corruption level intensifies, WCTM de-
tects shifts more quickly, whereas CTM’s detection speed
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Table 2. WCTM achieves a lower Average Detection Delay (ADD),
especially under severe image corruptions, and also exhibits fewer
false alarms and missed alarms. Results are averaged over 10
random seeds and all corruption types.

MNIST-C CIFAR10-C L1 CIFAR10-C L3 CIFAR10-C L5

ADD WCTM 156.4 188.0 163.6 129.7
CTM 285.3 176.5 175.2 170.3

Unnecessary Alarm WCTM 7.3 12.2 – –
CTM 25.4 34.3 – –

Missed Alarm WCTM 2.9 6.6 3.8 0.9
CTM 2.4 5.9 4.6 1.2

shows minimal change—consistent with our earlier visual-
izations. To evaluate unnecessary alarms, we again create a
mild, benign shift in the target distribution by mixing clean
samples into MNIST and level-1 CIFAR-10 corruption data,
while treating higher-level corruptions as harmful. We find
that WCTM’s unnecessary alarm rate is roughly one-third
that of CTM. Moreover, WCTM also exhibits fewer missed
alarms, especially under more severe corruptions. These
findings highlight the flexibility of our framework, which
not only avoids unnecessary alarms but also better detects
harmful shifts.

4.3. WCTMs Detect Harmful Concept Shifts Faster
than Sequentially Tracking Loss Metrics

Because concept shifts fundamentally change the Y |X rela-
tionship, they are generally harmful, and monitoring meth-
ods should detect them as quickly as possible. Our ex-
periments compare the average detection delay (ADD) of
WCTM methods relative to comparable CTM methods, as
well as against methods for sequentially tracking the loss
metrics directly with comparable false-alarm control. That
is, the sequential testing procedures proposed in Podkopaev
and Ramdas (2021b) (PR-ST) have anytime-valid control
comparable to (W)CTMs, while the changepoint detection
procedure in Podkopaev and Ramdas (2021b) (PR-CD)
has average-run-length control comparable to running the
Shiryaev-Roberts procedure 15 on top of (W)CTMs. Both
PR-ST and PR-CD methods can be used to monitor the
miscoverage risks of either weighted CP or standard CP
methods, though they are less data efficient (requiring an
extra holdout set for computing concentration inequalities).
We compared to the betting-based -process in Podkopaev
and Ramdas (2021b) (with ϵtol = 0) because those meth-
ods were reported to perform the best and are more com-
parable to (W)CTMs, which are also betting-based. We
compared WCTMs to sequential testing variant with stan-
dardized anytime-false alarm rate of 0.01; for SR-WCTMs
we compared vs changepoint detection variant with common
average-run-length (under the null) of 20,000.

Table 1 reports the average detection delay (ADD) results
for monitoring methods grouped by false-alarm control type,

with proposed methods in blue. Among the anytime-valid
monitoring methods, WCTMs and CTMs achieve compa-
rably fast ADD; however, relative to comparable PR-ST
methods, (W)CTMs are over three times faster. Mean-
while, among the stagewise monitoring methods, WCTM
and CTM-based SR procedures are comparable, but with
significantly faster ADD than PR-CD run either online or in
minibatches. PR-CD-online has lower ADD than in mini-
batches, but its wall-clock runtime is far slower—this is
due to the method’s O(t2) time complexity, whereas the
proposed WCTM and SR-WCTM methods are O(t).

5. Summary and Future Directions
In this paper we introduced the novel methods of weighted-
conformal test martingales (WCTMs), which are con-
structed from sequences of weighted-conformal p-values,
and we demonstrated how WCTMs enable continual moni-
toring of deployed AI/ML models. The proposed approach,
WATCH, achieves three main goals: (1) adaptation to be-
nign shifts to avoid unnecessary alarms and improve the
utility of CP prediction sets for end-users; (2) fast detection
of harmful shifts; and (3) root-cause analysis to identify
the cause of any performance degradation. Our empirical
results show that WATCH’s adaptation reduces unneces-
sary alarms relative to standard CTMs (Vovk et al., 2021)
while still detecting harmful shifts faster than comparable
(betting-based) methods that directly track the risk (i.e.,
from Podkopaev and Ramdas (2021b)). WATCH is further
able to perform root-cause analysis to diagnose whether a
harmful shift causing degradation was an extreme covari-
ate shift (e.g., out-of-support shift in X) or a fundamental
concept shift (in Y | X).

Our contribution opens up several promising directions for
future work. Future theory directions include developing
specific WCTM algorithms for testing other nonparamet-
ric null hypotheses, exploring connections to conditional
permutation tests (e.g., Berrett et al. (2020)), analyzing
WCTMs’ efficiency with respect to certain alternative hy-
potheses, and finer-grained root-cause analysis. For appli-
cations, implementations of WATCH to monitor the risks
of AI systems in real practical settings such as healthcare,
as well as extensions to monitor generative models and AI
agents, would be valuable.

Impact Statement
This paper presents research aimed at propelling advance-
ments in the broad domain of machine learning. The im-
plications of our findings are wide-ranging, with potential
high-stake applications in sectors including healthcare, au-
tonomous driving, and e-commerce. Based on our current
understanding, this research does not warrant an ethics re-
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view, and a detailed discussion of the potential societal
impacts is not required at the current stage.
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Appendix for
“WATCH: Adaptive Monitoring for AI Deployments

via Weighted-Conformal Martingales”

A. Related Works
This work is motivated by developing methods for monitoring AI/ML deployments that perform three key functions: (1)
online adaptation to mild or benign data shifts; (2) rapid detection of extreme or harmful shifts that necessitate updates;
and (3) identifying the root-cause of degradation to inform appropriate recovery. Although these monitoring goals could
be viewed from many perspectives, in discussing related work we primarily focus on methods in anytime-valid inference,
sequential testing of nonparametric null hypotheses, and especially conformal test martingales, which most closely related
to our own.

Sequential testing for changepoints in the data distribution: Sequential hypothesis testing to detect changes in the data
distribution is an old and widely-studied problem, dating at least to Wald’s sequential probability ratio test (Wald, 1945).
However, classic sequential changepoint detection methods often required a prespecified stopping time and were primarily
designed for testing simple, often parametrically-specified null hypotheses—for an overview of classic parametric methods,
we defer to a relevant textbook Tartakovsky et al. (2014) and review articles (Veeravalli and Banerjee, 2014; Xie et al., 2021).
In contrast, our weighted-conformal test martingale (WCTM) methods belong to a more recent literature called sequential
anytime-valid inference (SAVI), which allow for arbitrary stopping times, and specifically our work is situated in the recent
SAVI literature on testing composite and nonparametric null hypotheses. We refer readers to Ramdas et al. (2023) for a
recent review of the SAVI literature, as well as to the textbook by Shafer and Vovk (2019) on the closely related topic of
testing-by-betting.

Standard conformal test martingales: Within the SAVI literature, our work is most closely related to conformal test
martingales (CTMs), which are martingales constructed from a sequence of standard conformal p-values for continually
testing the assumption that the data are exchangeability or independent and identically distributed (IID). Our WCTM
methods generalize standard CTMs for testing a broader range of null hypotheses, including those where one wishes to
accommodate or adapt to certain anticipated changes in the data distribution (e.g., adapting to mild covariate shifts). Standard
CTMs were initially introduced by Vovk et al. (2003), while drawing on theory for the calibration of online conformal
prediction methods developed in Vovk (2002). Since then, various works have further developed standard CTMs, such as by
introducing new betting and score functions for more efficient changepoint detection, ensembling CTMs, and demonstrating
their performance on real-world applications (Ho, 2005; Fedorova et al., 2012; Volkhonskiy et al., 2017; Ho et al., 2019;
Vovk et al., 2021; Vovk, 2021; Eliades and Papadopoulos, 2022; 2023). CTMs are also discussed in textbooks on conformal
prediction (Vovk et al., 2005; Angelopoulos et al., 2024). The online form of conformal prediction that CTMs are based on
is one form of online compression model, as defined and discussed in Vovk (2003); Vovk et al. (2005); Vovk (2023).

In particular, Volkhonskiy et al. (2017) developed inductive CTMs (i.e., CTMs based on inductive or split conformal
(Papadopoulos et al., 2002; Papadopoulos, 2008)) with score and betting functions specifically taylored to fast changepoint
detection; Vovk et al. (2021) proposed an approach to using standard CTMs to monitor for when a deployed AI/ML system
should be retrained; and Vovk (2021) provided a comprehensive and detailed review of CTMs as methods for testing
the IID or exchangeability assumptions. Bar et al. (2024) implement methods based on CTMs for test time-adaptation
of a classifier’s point prediction and Hindy et al. (2024) leverage multiple CTMs over different feature spaces to aid in
diagnostic runtime monitoring. Several works have developed or used CTMs for testing for concept shift (i.e., shift in
Y | X) (Ho, 2005; Eliades and Papadopoulos, 2022; 2023; Vovk, 2020), but all of these have focused on a classification
setting with a limited number of classes (e.g., to implement label-conditional CTMs, or using standard CTMs that lack
ability to disambiguate between covariate and concept shifts). In contrast, our specific WCTMs implemented in this paper
are able to test for concept shift in both regression and classification settings while also being able to disambiguate between
concept shifts and extreme covariate shifts with the aid of an additional X-CTM.

Confidence sequences, e-processes, and other multiple-hypothesis testing methods: Our work also relates more broadly
to other SAVI and testing-by-betting methods outside of CTMs such as confidence sequences and e-processes—we refer to
the review paper of Ramdas et al. (2023) for full exposition of these topics. In particular, in the main paper we empirically
compared our WCTM methods against the betting-based sequential testing and changepoint detection methods in Podkopaev
and Ramdas (2021b) (the theory for which was developed in Waudby-Smith and Ramdas (2024)) because this paper is the
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closest to ours in its motivation of monitoring deployed AI/ML deployments among (non-CTM) SAVI papers. As we note
in the main paper, for monitoring the risk of a set-valued (e.g., conformalized) AI/ML predictor, our WCTM methods are
generally more data-efficient (not requiring separate datasets for conformalization and testing, as Podkopaev and Ramdas
(2021b) does); our WCTM-based Shiryaev-Roberts procedure is more computationally efficient than the compareable
changepoint detection method in Podkopaev and Ramdas (2021b) (i.e., O(t) versus O(t2)); and, empirically we found
that our methods often detect harmful concept shifts faster than comparable methods in Podkopaev and Ramdas (2021b).
More recently, I Amoukou et al. (2024) built on Podkopaev and Ramdas (2021b) by developing similar methods for when
ground-truth labels do not become available and need to be estimated.

A key target of the SAVI literature on testing composite or nonparametric null hypotheses has been developing new
approaches for testing the IID or exchangeability assumptions. Other than CTMs, the other main nontrivial approach
to sequentially testing exchangeability was developed in Ramdas et al. (2022) based on the ideas of universal inference
(Wasserman et al., 2020); more recently, other approaches have emerged based on pairwise betting (Saha and Ramdas, 2024)
and sequential Monte Carlo testing (Fischer and Ramdas, 2025), the latter of which can be viewed as a special case of CTMs
(Vovk, 2021) streamlined for a particular alternative hypothesis. Otherwise, there are various and proliferating other methods
for sequential nonparametric changepoint detection (e.g., Shin et al. (2022); Shekhar and Ramdas (2023a;b;c); Podkopaev
and Ramdas (2023)). SAVI and testing-by betting methods are also being leveraged for a wide variety of applications
including interpretability (Teneggi and Sulam, 2024), conditional independence testing (Shaer et al., 2023), applications in
finance (Shafer and Vovk, 2019), and more.

Testing-by-betting, which is fundamental to SAVI (Ramdas et al., 2023), can be understood as one approach to multiple
hypothesis testing that is especially advantageous in sequential settings. Other related works that leverage conformal
prediction for hypothesis testing while accounting for multiple-testing corrections, but in batch settings, include Bates et al.
(2023); Bashari et al. (2023); Vovk and Wang (2023); Gauthier et al. (2025); Lee and Ren (2025).

Weighted conformal prediction and adapting to distribution shifts: Weighted conformal prediction (e.g., Tibshirani et al.
(2019); Podkopaev and Ramdas (2021a); Xu and Xie (2021); Fannjiang et al. (2022); Prinster et al. (2022; 2023); Stanton
et al. (2023); Barber et al. (2023); Farinhas et al. (2023); Nair and Janson (2023); Yang et al. (2024); Feldman and Romano
(2024); Barber and Tibshirani (2025)) is broadly an approach to proactively adapting the validity of conformal predictive sets
to distribution shift by reweighting nonconformity scores using either knowledge or estimates of the distribution shift. Any
weighted CP prediction set is associated with a weighted-conformal p-values, as described in the main paper; accordingly, a
WCTM can be constructed on top of any weighted CP method deployed on a sequence of data observations to continually
monitor the assumptions or approximations underlying that WCP method’s implementation. There are of course many
other approaches to adapting to distribution shifts at test time; for example, one work that is similar to ours with regard to
this motivation, but that does not fall under weighted CP, is Bar et al. (2024), which leverages standard CTMs to guide the
test-time adaptation of a classifier’s point prediction by entropy matching.

B. Proof of Theorems
B.1. Proof for Theorem 3.1 (Weighted Conformal p-value Validity)

The proof can be viewed as a generalization of the proofs for Theorem 1 in Vovk et al. (2003) and Theorem 2 in Vovk (2002),
while drawing on analysis from Tibshirani et al. (2019) and exposition and discussion from Prinster et al. (2024). The key
difference relative to Vovk (2002) and Vovk et al. (2003) is that, whereas those papers use the assumption of exchangeability
to place equal weight on every permutation of the data observations, here we avoid this assumption by first proving a general
result for an arbitrary (potentially non-exchangeable) joint distribution. We then describe how this implies that the validity
of more specific and tractable methods is premised on the assumptions or approximations used for practical implementation.

The basic idea for the proof begins with setup from Vovk (2002), for “reversing time.” In particular, we imagine that the
sequence of data observations (z1, ..., zT ) is generated in two steps: first, the unordered bag or multiset of data observations,
{z1, ..., zT }, is generated from some probability distribution (that is, the image of FZ under the mapping (z1, z2, ...) →
{z1, ..., zT }); then—here generalizing Vovk (2002) and Vovk et al. (2003) by weighting permutations according to their
likelihood—from all possible permutations σ of the values {z1, ..., zT }, each possible sequence (zσ(1), ..., zσ(T )) is chosen
with probability proportional to f(zσ(1), ..., zσ(T )), where f := fZ is the probability-density function8 for the distribution
FZ . Roughly (ignoring borderline effects), the second step ensures that, conditionally on knowing {z1, ..., zT } (and therefore

8More generally, the Radon–Nikodym derivative.
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unconditionally), that P w̃o

T has a standard uniform distribution; when ZT = zσ(T ) is observed, this settles the value of
P w̃o

T = pw̃
o

σ(T ), and conditionally on knowing {z1, ..., zT } and ZT = zσ(T ) (and therefore, after relabeling indices, on
knowing {z1, ..., zT−1}), that P w̃o

T−1 also has a standard uniform distribution, and so on.

Lemma B.1. For any trial t and any confidence level α ∈ (0, 1),

P{P w̃o

t ≤ α | E(t)
z } = α. (18)

Proof of Lemma B.1. We begin by conditioning on the event {Z1, ..., Zt} = {z1, ..., zt}, which we denote as E(t)
z , and we

consider drawing any particular ordering or permutation σ of the data values with probability according to f , that is with
probability proportional to f(zσ(1), ..., zσ(t)).

Note that for any i ∈ [t], if a permutation is drawn such that σ(t) = i, this means that Zt = zσ(t) = zi; moreover, because
the score function Ŝ is bijective, this further implies that Vt = vσ(t) = vi. Thus, given the bag of data E

(t)
z , recall that for

each i ∈ [t], the probability of drawing such a permutation is given by the “oracle weights”

w̃o
i := P{Vt = vi | E(t)

z } = P{Zt = zi | E(t)
z } =

∑
σ:σ(t)=i f(zσ(1), ..., zσ(t))∑

σ f(zσ(1), ..., zσ(t))
, (19)

which we assume to be well-defined, which will generally be the case in practice, where at least f(z1, ..., zT ) > 0 for the
true (identity permutation) ordering of the data observations (z1, ..., zT ).

This implies that the distribution of Vt | E(t)
z , the conditional distribution of the test-point score given the bag of data values

E
(t)
z , is given by

Vt | E(t)
z ∼

t∑
i=1

w̃o
i · δvi .

For any i ∈ [t], define a conservative WCP p-value, pw̃
o+

i , and an anticonservative WCP p-value, pw̃
o−

i , as

pw̃
o+

i :=

t∑
j=1

w̃o
j · 1{vj ≥ vi}

pw̃
o−

i :=

t∑
j=1

w̃o
j · 1{vj > vi}.

It is worth noting that pw̃
o+

t is a valid p-value for f : P{P w̃o+
t ≤ α | E(t)

z } ≤ α =⇒ P{P w̃o+
t ≤ α} ≤ α. However, the

lemma claims exact validity for pw̃
o

t conditional on E
(t)
z , which we will now proceed to show.

Observe that for all i ∈ [t], pw̃
o−

i < pw̃
o+

i and

pw̃
o+

i − pw̃
o−

i =

t∑
j=1

w̃o
j · 1{vj = vi}.

Moreover, observe that as in the proof for Lemma 1 in Vovk (2002), the semi-closed intervals [pw̃
o−

i , pw̃
o+

i ) either coincide
or are disjoint, and ∪ti=1[p

w̃o−
i , pw̃

o+
i ) = [0, 1).

Similarly as in the proof for Lemma 1 in Vovk (2002), for an α ∈ (0, 1), let us partition the indices as follows, where we say
that an index i is

• “strange” if pw̃
o+

i ≤ α,

• “ordinary” if pw̃
o−

i > α,

• and “borderline” if pw̃
o−

i ≤ α < pw̃
o+

i .
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Let i′ denote the index of any borderline example, and denote pw̃
o+ := pw̃

o+
i′ and pw̃

o− := pw̃
o−

i′ . Then, the probability
(conditional on E

(t)
z , drawing each permutation σ with probabilities according to f ) that the last index σ(t) is strange

is pw̃
o−; the probability that σ(t) is ordinary is 1 − pw̃

o+; and, the probability that σ(t) is borderline is pw̃
o+ − pw̃

o−.
Moreover, observe that if σ(t) is strange, then pw̃

o

σ(t) ≤ α (by definition) and if σ(t) is borderline then the event that pw̃
o

σ(t) ≤ α

is determined by the independent uniform ut, and thus the probability of this event is α−pw̃o−

pw̃o+−pw̃o− . That is,

P{P w̃o

t ≤ α | E(t)
z } = P{P w̃o

t ≤ α | E(t)
z , σ(t) is strange} · P{σ(t) is strange | E(t)

z }
+ P{P w̃o

t ≤ α | E(t)
z , σ(t) is ordinary} · P{σ(t) is ordinary | E(t)

z }
+ P{P w̃o

t ≤ α | E(t)
z , σ(t) is borderline} · P{σ(t) is borderline | E(t)

z }

= pw̃
o− + 0 + (pw̃

o+ − pw̃
o−) · α− pw̃

o−

pw̃o+ − pw̃o−

= α.

With Lemma 1 in hand, we can now proceed with the proof for the main theorem. Temporarily fix a positive integer
T ; following the strategy of Vovk et al. (2003), we will first prove by induction that for any t = 1, ..., T and any
α1, ..., αt ∈ [0, 1]t, that

P{P w̃o

t ≤ αt, ..., P
w̃o

1 ≤ α1 | E(t)
z } = αt · · ·α1. (20)

For t = 1, Eq. (20) immediately follows from Lemma 1. For t > 1, by the law of total probability over σ(t) (i.e., over the
last index value after drawing a permutation σ from E

(t)
z ), the fundamental bridge between probability and expectation, and

properties of the indicator function, we have

P{P w̃o

t ≤ αt, ..., P
w̃o

1 ≤ α1 | E(t)
z }

=

t∑
σ(t)=1

P{P w̃o

t ≤ αt, ..., P
w̃o

1 ≤ α1 | E(t)
z , Zt = zσ(t)} · P{Zt = zσ(t) | E(t)

z }

=

t∑
σ(t)=1

E
[
1{P w̃o

t ≤ αt, ..., P
w̃o

1 ≤ α1} | E(t)
z , Zt = zσ(t)

]
· P{Zt = zσ(t) | E(t)

z }

=

t∑
σ(t)=1

E
[
1{P w̃o

t ≤ αt} · 1{P w̃o

t−1 ≤ αt−1, ..., P
w̃o

1 ≤ α1} | E(t)
z , Zt = zσ(t)

]
· P{Zt = zσ(t) | E(t)

z }

Next, observe that conditioning on E
(t)
z and Zt = zσ(t) in the expectation term settles the value of 1{P w̃o

t ≤ αt} to be
1{pw̃o

σ(t) ≤ αt}; that is, noting that the score function Ŝ is bijective, {E(t)
z , Zt = zσ(t)} =⇒ {E(t)

z , Vt = vσ(t)} =⇒
P w̃o

t = pw̃
o

σ(t). So, 1{P w̃o

t ≤ αt} = 1{pw̃o

σ(t) ≤ αt} can be pulled out from the expectation to obtain

P{P w̃o

t ≤ αt, ..., P
w̃o

1 ≤ α1 | E(t)
z }

=

t∑
σ(t)=1

1{pw̃
o

σ(t) ≤ αt} · E
[
1{P w̃o

t−1 ≤ αt−1, ..., P
w̃o

1 ≤ α1} | E(t)
z , Zt = zσ(t)

]
· P{Zt = zσ(t) | E(t)

z }.

Now, observe that conditioning on E
(t)
z and Zt = zσ(t) implies that {Z1, ..., Zt−1} = {z1, ..., zt}\{zσ(t)}. That is,

observing the bag of t data values (i.e., observing E
(t)
z ) and the value taken on by the t-th random variable (Zt = zσ(t))

implies that each of Z1, ..., Zt−1 takes a value in {z1, ..., zt}\{zσ(t)}.
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Without loss of generality, we can relabel the indices on the data values as {z1, ..., zt−1} ← {z1, ..., zt}\{zσ(t)}, and so
we denote this event {Z1, ..., Zt−1} = {z1, ..., zt−1} as E(t−1)

z . The WCP p-variable P w̃o

t−1 is determined by drawing a
sequence zσ(1), ..., zσ(t−1) (i.e., determined by a permutation σ : [t−1]→ [t−1]) from the bag of data values {z1, ..., zt−1}
with probability proportional to fZ1,...,Zt−1(zσ(1), ..., zσ(t−1)) and then applying the the nonconformity score function S,
and so E

(t−1)
z is a “sufficient statistic” for P w̃o

t−1 (for a known fZ1,...,Zt−1 ). In other words, we can substitute the conditioning
on the event E(t)

Z and Zt = zσ(t) with conditioning on E
(t−1)
Z :

P{P w̃o

t ≤ αt, ..., P
w̃o

1 ≤ α1 | E(t)
z }

=

t∑
σ(t)=1

1{pw̃
o

σ(t) ≤ αt} · P{P w̃o

t−1 ≤ αt−1, ..., P
w̃o

1 ≤ α1 | E(t−1)
z } · P{Zt = zσ(t) | E(t)

z }.

Using the inductive assumption and Lemma B.1, this becomes

P{P w̃o

t ≤ αt, ..., P
w̃o

1 ≤ α1 | E(t)
z } =

t∑
σ(t)=1

1{pw̃
o

σ(t) ≤ αt} · αt−1 · · ·α1 · P{Zt = zσ(t) | E(t)
z }

= P
{
P w̃o

t ≤ αt | E(t)
z

}
· αt−1 · · ·α1

= αt · · ·α1,

which proves Eq. (20). Note that Eq. (20) is a conditional result for any t = 1, ..., T ; marginalizing over the event E(t)
z and

taking t = T implies

P{P w̃o

T ≤ αT , ..., P
w̃o

1 ≤ α1} = αT · · ·α1. (21)

We have proven that P w̃o

1 , P w̃o

2 , ..., P w̃o

T
iid∼ Unif[0, 1]T ; this implies the analogous result for the infinite sequence, that is,

P w̃o

1 , P w̃o

2 , ...
iid∼ Unif[0, 1]∞ (Shiryaev, 2016; Vovk et al., 2003).

Note that Eq. (21) holds in theory for an arbitrary joint PDF f , but it is an abstract statement because it relies on the
oracle weights in Eq. (19), which are intractable due to requiring knowledge of f and factorial complexity. Thus, if the
oracle weights in Eq. (19) are simplified using some assumptions or approximations on f (e.g., conditional independence
or invariance assumptions, density-ratio estimations) that we denote byH0(f̂), and denoting the resulting approximated
weights as w̃, then the P w̃

t are IID uniformly distributed, assumingH0(f̂):

PH0(f̂)

{
P w̃
T ≤ αT , ..., P

w̃
1 ≤ α1

}
= αT · · ·α1. (22)

Eq. (22) implies that P w̃
1 , P w̃

2 , ..., P w̃
T | H0(f̂)

iid∼ Unif[0, 1]T . Similarly as before, this result for a fixed number of points

T implies the corresponding result for infinite sequences (Shiryaev, 2016; Vovk et al., 2003), that is, P w̃
1 , P w̃

2 , ... | H0(f̂)
iid∼

Unif[0, 1]∞.

B.2. Proofs for Proposition 3.2 (WCTM Anytime False-Alarm Control) and Proposition 3.3 (Average-Run-Length
Control for WCTM-based Shiryaev-Roberts Procedure)

The proofs for Proposition 3.2 and Proposition 3.3 follow from Theorem 3.1 and Vovk (2021)’s results for standard conformal
test martingales. By Theorem 3.1, weighted conformal p-values have IID uniform distribution on [0,1] premised on some
assumptionsH0(f̂). Thus, a sequence of weighted conformal p-values is a sequence of IID random variables drawn from
Unif[0,1], assuming that the null hypothesisH0(f̂) is true. Because the construction of a weighted conformal test martingale
(e.g., Eq. (7)) is only allowed to depend on the data via the sequence of weighted conformal p-values, we can draw from
Vovk (2021)’s results that construct betting martingales that only assume a sequence of IID uniform [0,1] random variables.
That is, by construction, weighted conformal test martingales are a betting martingale (Vovk, 2021) whose validity is
premised on the assumptions H0(f̂) (used to compute the weights). Then, Proposition 3.2 follows by Ville’s inequality
(Ville, 1939) and Proposition 3.3 follows from Proposition 4.2 in Vovk (2021).
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C. Deriving Specific WCTM Algorithms for Main Practical Testing Objective: Testing for
{Concept Shift or Unanticipated Covariate Shift}

In this section we describe the derivation for the specific WCTM algorithms implemented in this paper for our primary
testing objective, of detecting either concept shift (in Y | X) or unanticipated covariate shift (extreme shift in X). Because a
WCTM is constructed on top of a corresponding weighted CP method by a betting process on the associated sequence of
weighted CP p-values, this will initially parallel the procedure described in Prinster et al. (2024) for deriving weighted CP
methods. The resulting weighted CP method (that the WCTM algorthims are built on top of) will be similar to that used in
Tibshirani et al. (2019), except whereas that paper focuses on CP for a shift between two batches of data, we focus on an
online monitoring setting where a shift may occur at an unknown post-deployment time and density-ratio weights may be
estimated online.

Step 1: List assumptions/null hypothesis of interest

We begin by restating the null hypothesis (i.e., the nonparametric assumptions on what aspects of the data distribution
are expected to stay invariant versus change) that is of primary practical interest in this paper. That is, as in Eq. (13) in
the main paper, our null hypothesisH(cs)

0 assumes that the conditional label distribution Y | X remains invariant and that
the marginal X distribution can shift, but that at some post-deployment time tad (the time at which to begin adaptation to
covariate shift), the covariates X shift in distribution in a manner described by the (estimated) density-ratio function ŵ(x).
That is, we want to sequentially test the null hypothesis

H(cs)
0 :=

{
(Xi, Yi)

iid∼ FY|X × FX, i ∈ [n+ tad − 1]

(Xn+t, Yn+t)
iid∼ FY|X ×G

(ŵ)
X , t ≥ tad,

(23)

where boldface is used to denote a set of distributions, and in particular G(ŵ)
X denotes the set of distributions for X with

density-ratio function ŵ(x) (with respect to the true but unknown source covariate distribution FX ∈ FX):

G
(ŵ)
X :=

{
GX : dGX(x)/dFX(x) = ŵ(x) if dFX(x) > 0

}
.

The density-ratio function ŵ(x) can be estimated with offline data and/or continually updated as each test point is observed.

Step 2: Factorize joint density using null hypothesis assumptions

We now use our null hypothesis assumptions H(cs)
0 to factorize the joint probability density function. See Prinster et al.

(2024)’s Appendix B.1 for a more detailed derivation for a more general setting.

f(z1, ..., zn+t) = fX(x1) · · · fX(xn+tad−1) · gX(xn+tad) · · · gX(xn+t) ·
n+t∏
j=1

[
fY |X(yj |xj)

]

=

n+tad−1∏
j=1

[
fX(xj)

]
·

n+t∏
j=n+tad

[
gX(xj)

]
·
n+t∏
j=1

[
fY |X(yj |xj)

]
,

multiplying by 1 =
∏n+t

j=n+tad
fX(xj)∏n+t

j=n+tad
fX(xj)

, we have

f(z1, ..., zn+t) =

n+t∏
j=1

[
fX(xj)

]
·

n+t∏
j=n+tad

[
gX(xj)

fX(xj)

]
·
n+t∏
j=1

[
fY |X(yj |xj)

]
,

and approximating the density-ratio function gX(xj)
fX(xj)

with our estimate ŵ(xj), this becomes
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f(z1, ..., zn+t) =

n+t∏
j=n+tad

ŵ(xj) ·
n+t∏
j=1

[
fY |X(yj |xj) · fX(xj)

]

=

n+t∏
j=n+tad

ŵ(xj)︸ ︷︷ ︸
Time-dependent factors

·
n+t∏
j=1

fZ(zj)︸ ︷︷ ︸
Time-invariant factor

. (24)

Step 3: Compute or estimate weights and weighted-conformal p-values

Recalling the definition of the CP weights from the main paper (Eq. (10)) and plugging in the factorization from Eq. (24):

P{Zn+t = zi | E(t)
z } =

∑
σ:σ(n+t)=i f(zσ(1), ..., zσ(n+t))∑

σ f(zσ(1), ..., zσ(n+t))

=

∑
σ:σ(n+t)=i

∏n+t
j=n+tad

ŵ(xσ(j)) ·
∏n+t

j=1 fZ(zσ(j))∑
σ

∏n+t
j=n+tad

ŵ(xσ(j)) ·
∏n+t

j=1 fZ(zσ(j))

=

∑
σ:σ(n+t)=i

∏n+t
j=n+tad

ŵ(xσ(j))∑
σ

∏n+t
j=n+tad

ŵ(xσ(j))
, (25)

where the last line follows because the factor
∏n+t

j=1 fZ(zσ(j)) is invariant to permutations and thus cancels in the ratio.

However, the computational complexity for computing Eq. (25) is still n + t choose tad (i.e., requiring (n+t)!
tad!(n+t−tad)!

computations), so to enable tractability, we focus only on permutations of the test point with points assumed to be from the
source distribution (prior to the adaptation beginning); that is, we the sums to permutations σ′ : [n+ t]→ [n+ t] such that
σ′(j) = j for all j ∈ {n+ tad, ..., n+ t− 1}:

P{Zn+t = zi | E(t)
z } =

∑
σ′:σ′(n+t)=i ŵ(xσ′(n+t))∑

σ′ ŵ(xσ′(n+t))

=
ŵ(xi)∑

i∈[n+tad−1]∪{n+t} ŵ(xi)
=: w̃

(t)
i . (26)

Letting w̃
(t)
i denote Eq. (26), then the corresponding weighted-conformal p-value is

pw̃n+t =
∑

i∈[n+tad−1]∪{n+t}

w̃
(t)
i

[
1{vi > vn+t}+ un+t1{vi = vn+t}

]
. (27)

Due to the modification made in Eq. (26), Theorem 3.1 only directly applies for the covariate shift null hypothesis (i.e.,
for testing H0(f̂) = H(cs)

0 as in Eq. (23)) when t = tad. This is due to that, when a weighted-conformal p-value is not
computed fully online,9 the proof-by-induction approach in Section B.1 may not apply; in other words, for two test points
n+ t and n+ t′, their p-values pw̃n+t and pw̃n+t′ may not be statistically independent due to their common dependency on
the calibration data [n+ tad − 1] in Eq. (27). This gap can be resolved to enable testing of Eq. (23) if the calibration data
[n+ tad − 1] are resampled for each test point. Alternatively, we can modify Eq. (23) to also assume that we have enough
initial source data (i.e., n is large enough) so that the calibration scores’ empirical CDF is equal to the true source score

9That is, not computed relative to all the full observed data sequence with indices [n+ t], but only relative to a strict subset of [n+ t];
for example, Eq. (27) computes the p-value relative to the data with indices [n+ tad − 1] ∪ {n+ t}, where tad < t.
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distribution, that is, F̂ [n+tad−1]
V = FV , which is of course true in the limit n→∞. Accordingly, the p-value in Eq. (27) is

effectively testing the modified null hypothesis ofH(cs)
0 and F̂

[n+tad−1]
V = FV :

H(cs)
0 ∧ (F̂

[n+tad−1]
V = FV ) =


(Xi, Yi)

iid∼ FY|X × FX, i ∈ [n+ tad − 1]

(Xn+t, Yn+t)
iid∼ FY|X ×G

(ŵ)
X , t ≥ tad

F̂
[n+tad−1]
V = FV .

(28)

In practice, Eq. (28) can roughly be thought of as also testing whether the weighted CP calibration set is “large enough” for CP
coverage to hold precisely conditional on the calibration data. That is, letting Zcal denote the event that {Z1, ..., Zn+tad−1} =
{z1, ..., zn+tad−1}, taking Eq. (28) as given would imply that, for all α ∈ (0, 1),

P{P w̃
n+t ≤ α | Zcal} = α ⇐⇒ P

{
Yn+t ∈ Ĉ[n+tad−1],α(Xn+t) | Zcal

}
= 1− α, (29)

where P w̃
n+t is the random variable taking values in Eq. (23) and the probability is only over the draw of the test point Zn+t.

In other words, Eq. (28) =⇒ Eq. (29), so via the contrapositive, violations of calibration-set-conditional coverage (Eq.
(29)) would imply violations ofH(cs)

0 ∧ (F̂
[n+tad−1]
V = FV ) (Eq. (28)).

Step 4: Construct WCTM by a betting process on the weighted-conformal p-values

Lastly, the practical WCTM algorithms implemented in this paper are constructed on top of a sequence of weighted-
conformal p-values pw̃n+1, p

w̃
n+2, ..., p

w̃
n+t, ..., as defined in Eq. (27). The resulting WCTM thus achieves the anytime-valid

false alarm guarantee in Proposition 3.2 for the null hypothesisH0(f̂) = H(cs)
0 ∧ (F̂

[n+tad−1]
V = FV ), as defined in Eq. (28)

(and analogously for the scheduled, Shiryaev-Roberts monitoring procedure based on WCTMs).

D. Experiment Details
D.1. Datasets

The evaluation datasets include both real-world tabular and image datasets. The tabular datasets are for regression tasks
(where conformal methods used the absolute value residual nonconformity score Ŝ(x, y) = |y − µ̂(x)|), and the datasest
span various sizes and dimensionalities: the Medical Expenditure Panel Survey (MEPS) dataset (33005 samples, 107
features) (Cohen et al., 2009), the UCI Superconductivity dataset (21263 samples, 81 features) (Hamidieh, 2018), and the
UCI bike sharing dataset (17379 samples, 12 features) (Fanaee-T, 2013). The image datasets were for classification tasks
(where conformal methods used the one-minus-softmax score Ŝ(x, y) = 1− p̂(yi | xi)) were the MNIST-corruption (Mu
and Gilmer, 2019) (60000 clean samples, 10000 corrupted samples) and CIFAR-10-corruption (Hendrycks and Dietterich,
2019) (50000 clean samples, 10000 corrupted samples), which are standard benchmarks for assessing distribution shifts.

D.2. Simulating Shifts in Tabular Data

To evaluate the online adaptation performance of our proposed WCTMs on the tabular, regression-task datasets, we simulated
mild or benign covariate shifts by exponentially tilting (i.e., up-sampling) the test samples from the full dataset based on
selected covariates. On the MEPS healthcare dataset, h was selected to simulate a demographic shift towards younger,
higher-educated patients (expected to be a benign shift due to youth tending to correlate with fewer, less variable health
issues). On the bike-sharing dataset, h simulated a shift in weather patterns to colder, windier days; meanwhile, a more
complex shift was simulated on the superconductivity dataset by sampling proportional to the projection onto the first
principal component representation of the training data. Harmful concept shifts in tabular data were simulated by biasing
the label values as a function of selected input covariates for each dataset.
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E. Additional Experimental Results
E.1. Root-Cause Analysis with WCTMs0.0 0.2 0.4 0.6 0.8 1.0
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Figure 4. Results for root-cause analysis with a WCTM (blue) and a secondary X-CTM (gray) on the MEPS dataset, averaged over 100
random seeds. Each plot corresponds to a shift setting that is analogous to those in the bottom row in Figure 1. The left plot corresponds
to a benign covariate shift setting (same setting as in Figure 2, and WATCH diagnoses it as such with the X-CTM achieving a large
value while the WCTM adapts to the shift, avoiding an alarm. The middle plot corresponds to an extreme covariate shift setting, and
WATCH diagnoses it by the X-CTM identifying covariate shift and the WCTM raising an alarm due to potential harm. Lastly, the right
plot corresponds to a harmful concept shift, and WATCH identifies it as such by the WCTM raising an alarm, but with the X-CTM
maintaining lower values, suggesting that no covariate shift has occured.

E.2. What Makes a Covariate Shift Mild, Moderate, or Extreme?

While the distinction between mild, moderate, and extreme covariate shifts can be gradual, problem-specific, and sometimes
user-driven, these disctinctions are not arbitrary, and WCTMs arguably even provide an approach to such delineation with
statistical guarantees. Intuitively, benign shifts can be considered those where the “safety” of the CP coverage is maintained
nontrivially (i.e., without the prediction set covering the whole label space). This intuition corresponds to the WCTMs’ null
hypothesis (and, harmful shifts violate it), as follows:

• Benign: The betting martingale’s null hypothesis is that the WCP p-values are IID Unif[0, 1] (Appendix B.2); this
null implies that coverage is satisfied (exactly) for all α ∈ (0, 1) (ie, the martingale’s null =⇒ intuitive definition of
“benign” regarding coverage validity).

• Harmful: (Contrapositive of the above.) If coverage is not satisfied (exactly) for some α ∈ (0, 1), then the pw̃t
are not IID Unif[0, 1] (ie, violation of coverage validity =⇒ violation of martingale’s null, thus possibility for
detection). Larger violations are easier to detect, and thus more likely to quickly raise an alarm. Note that this can
be due to under-coverage (safety violation) or over-coverage (uninformative prediction sets); we further penalize
trivial overcoverage—i.e., when Ĉ(Xn+t) = Y—by using anticonservative WCP p-values whenever this occurs. (See
pseudocode in Appendix F.)

• Medium: A shift may initially be “harmful” as described above, due to density-ratio estimator having insufficient data,
but later become “benign” once enough data has been collected.

Figure 5 provides an ablation study illustrating synthetic data example of WATCH performance for different magnitudes
of covariate shift (in the input X distribution). Each row corresponds to a specific magnitude of covariate shift and
illustrates WATCH’s response regarding coverage (prediction safety), interval widths (prediction informativeness), and
WCTMs (monitoring criteria for alarms). The post-changepoint test points are sampled from the full source distribution
with probabilities proportional to exp(|x− 18| ∗ λ); larger values of λ thus correspond to more severe covariate shift toward
extreme (and particularly toward large) values of the input X . Experiments are averaged over 20 seeds.

E.3. Ablation Experiments for Density-Ratio Weight Estimation

Another factor determining whether a covariate shift can be considered benign or harmful to deployment is whether
a deployed density-ratio estimator is well-specified and thus able to approximate the shift. Figure 6 provides selected
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Figure 5. Ablation study illustrating synthetic data example of WATCH performance for different magnitudes of covariate shift (in the
input X distribution).

synthetic-data example where logistic regression is a misspecified probabilistic classifier for distinguishing between pre- and
post-changepoint data, but where a neural network (MLP) is able to accurately discriminate between the same pre- and
post-changepoint data. That is, in this example the pre- and post-changepoint data are not linearly separable in the input X
domain, so logistic regression is not able to reliably discriminate, and thereby it is unable to reliably estimate density-ratio
weights via probabilistic classification. The result is that the changepoint causes a large increase in coverage, despite some
adaptation (decreasing interval widths); the estimator’s misspecification thus causes WCTMs to raise an alarm, indicating
that the covariate shift cannot be adapted to by the estimator. In contrast, the MLP estimator is able to appropriately adapt
by maintaing target coverage, improving interval sharpness, and avoiding unnecessary alarms.

E.4. Ablation Experiments for Betting Function

The primary role of the betting function in (W)CTMs and testing-by-betting more broadly is for quickly rejecting the null
hypothesis (i.e., raising an alarm) when it is violated. Figure 7 provides ablation experiment on the betting function used
for X-CTMs and WCTMs, on three settings of the synthetic-data example. The ”Composite” Jumper betting function is
the betting function used in all other experiments, and it is an average of Simple Jumper betting functions over “jumping
parameters” J ∈ [0.0001, 0.001, 0.01, 0.1, 1]; here, we set the Simple Jumper baseline to have J = 0.01. See Vovk et al.
(2021) for pseudocode and exposition of the Simple Jumper algorithm. J = 1 means conservatively spreading bets across
all options to avoid cumulative losses, while smaller J encourages “doubling down” on bets that were previously successful.
The CTMs with Composite betting are thus lower bounded at Mt = 0.2, whereas those with Simple betting continually
decrease, resulting in slightly delayed detection speed relative to Composite.
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Figure 6. Ablation study on density-ratio estimator for synthetic data.

Figure 7. Ablation study on betting function.

E.5. WCTM Quickly Reacts to Harmful Shifts

For the image-data experiments, Figure 8 provides additional example results on harmful shifts with different corruption
types.

E.6. Further Details of Image Classification Experiments

We provide further discussions on the image classification experiments from Section 4.2. Figure 9 demonstrates the coverage
rates and set sizes of different corruption levels as discussed in the main paper. Details of model architectures and training
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(b) contrast
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(c) defocus blur
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(d) elastic transform
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(e) fog
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(g) gaussian blur
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(h) gaussian noise
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(i) glass blur
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(j) impulse noise
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(k) jpeg compression
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(l) motion blur

Figure 8. Results on CIFAR-10 with various corruption types, all at the highest severity level. WCTM reacts more quickly than the
standard CTM under these conditions. Moreover, with several types of corruption, the standard CTM does not raise any alarms at all.
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(b) Minor Benign Corruption
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(c) Benign Corruption
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(d) Extreme Corruption

Figure 9. The results supplement Figure 3 in the main paper. They demonstrate the coverage rate and prediction set size under four
different corruption scenarios. In the multi-class classification setting, we adopt metrics different from those used in the regression
experiments and follow Romano et al. (2020) to measure the prediction set size and coverage rate (defined as the proportion of true classes
in the specified range, NOT conformal coverage) as principled risk metrics for distinguishing benign from harmful shifts. We increased
the size of the validation set and the number of samples visualized to yield more robust performance and provide a clearer view of the
trajectory; the results are averaged over a window size of 200, while all other configurations remain unchanged from the original setting.
As discussed in the paper, we mixed test samples (target corrupted) with validation samples (source clean) to improve the estimation
of weights for CTMs. So under corrupted scenarios, the “starting points” before the change points for WCTM and CTM differ, as the
mixture allows the validation set to contain corrupted data; however, this difference is not clearly reflected in the martingale paths. Overall,
the models initially exhibit relatively high classification performance under the clean setting, while CTM rapidly declines to a lower
performance level under all corruption conditions. Although WCTM adapts to changes in benign scenarios, it eventually demonstrates
severe metric changes under extreme shifts as well, which corresponds to the results in Figure 3.

configurations can be found in Table 3 - Table 6.
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Table 3. MNISTDiscriminator Model Details
Component Details
Model Name MNISTDiscriminator
Purpose Binary classifier to distinguish between source (uncorrupted) and target (cor-

rupted) MNIST data
Architecture Type Convolutional Neural Network (CNN) with 2 conv blocks + FC layers
Input Shape (Batch size, 1, 28, 28) - Grayscale MNIST images
Output Shape (Batch size, 2) - Binary classification logits
Total Parameters ≈1.3M parameters
Layers First Conv Block: Conv2d(1→32, 3×3) → BatchNorm → ReLU →

MaxPool(2×2)→ Dropout
Second Conv Block: Conv2d(32→64, 3×3) → BatchNorm → ReLU →
MaxPool(2×2)→ Dropout
Fully Connected: Linear(64×7×7→128) → BatchNorm → ReLU →
Dropout
Output: Linear(128→2)

Regularization Dropout (rate=0.3), BatchNormalization
Calibration Method Temperature scaling (initial temp=1.5)
Activation Functions ReLU
Loss Function Cross-entropy (implicit in the code)
Training Epochs 30
Batch Size 64
Learning Rate 0.001
Optimizer Adam
Special Features Temperature scaling parameter for improved probability calibration
Usage Context Used for estimating likelihood ratios in weighted conformal prediction

F. Algorithms
Only limited algorithm pseudocode is provided at this time; more comprehensive pseudocode will be included in a final
version of this paper.
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Table 4. CIFAR10 Discriminator Model Details
Component Details
Model Name CIFAR10Discriminator
Purpose Binary classifier to distinguish between source (uncorrupted) and target (cor-

rupted) CIFAR-10 data
Architecture Type Convolutional Neural Network (CNN) with 3 conv blocks + FC layers
Input Shape (Batch size, 3, 32, 32) - RGB CIFAR-10 images
Output Shape (Batch size, 2) - Binary classification logits
Total Parameters ≈4.8M parameters
Layers First Conv Block: Conv2d(3→64, 3×3) → BatchNorm → ReLU →

MaxPool(2×2)→ Dropout
Second Conv Block: Conv2d(64→128, 3×3) → BatchNorm → ReLU →
MaxPool(2×2)→ Dropout
Third Conv Block: Conv2d(128→256, 3×3) → BatchNorm → ReLU →
MaxPool(2×2)→ Dropout
First FC Layer: Linear(256×4×4→512) → BatchNorm → ReLU →
Dropout
Second FC Layer: Linear(512→128)→ BatchNorm→ ReLU→ Dropout
Output: Linear(128→2)

Regularization Dropout (rate=0.3), BatchNormalization at each layer
Calibration Method Temperature scaling (initial temp=1.5)
Activation Functions ReLU throughout the network
Loss Function Cross-entropy
Training Epochs 30
Batch Size 64
Learning Rate 0.001
Optimizer Adam
Special Features Temperature scaling parameter for improved probability calibration
Usage Context Used for estimating likelihood ratios in weighted conformal prediction

Algorithm 1 Calculate weighted conformal prediction set for covariate shift (Tibshirani et al., 2019).
Input: Calibration data Z1:n := {(Xi, Yi)}ni=1; Test point input Xn+1; Score function ŝ : (X × Y)∗ → (R+)∗;
Density-ratio weight function ŵ : X ∗ → [0, 1]∗; Significance level (target miscoverage) α.

Output: Conformal prediction set Ĉn,α(Xn+1) ⊆ Y .

Calculate n nonconformity scores and n+ 1 density-ratio weights:
v1, ..., vn = ŝ(Z1, ..., Zn)
w̃1, ..., w̃n+1 = ŵ(X1, ..., Xn+1)

Calculate 1 − α quantile over weighted score distribution (with conservative ad-
justment vn+1 =∞, as Yn+1 is unknown):
q1−α = Q̂1−α

(∑n
i=1 w̃i · δvi + w̃n+1 · δ∞

)
{Note: w̃n+1 ≥ α =⇒ q1−α =∞.}

Calculate weighted conformal prediction set:
Ĉn,α(Xn+1) =

{
y ∈ Y : ŝ(Xn+1, y) ≤ q1−α

}
{Note: q1−α =∞ =⇒ Ĉn,α(Xn+1) = Y.}

Return: Ĉn,α(Xn+1)
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Table 5. RegularizedMNISTModel Details
Component Details
Model Name RegularizedMNISTModel
Purpose Classification model for MNIST digits (0-9) with robustness to corrupted images
Architecture Type Convolutional Neural Network (CNN) with 3 conv blocks + FC layers
Input Shape (Batch size, 1, 28, 28) - Grayscale MNIST images
Output Shape (Batch size, 10) - Logits for 10-class digit classification
Total Parameters ≈600K parameters
Layers First Conv Block: Conv2d(1→32, 3×3) → BatchNorm → ReLU →

MaxPool(2×2)→ Dropout
Second Conv Block: Conv2d(32→64, 3×3) → BatchNorm → ReLU →
MaxPool(2×2)→ Dropout
Third Conv Block: Conv2d(64→128, 3×3) → BatchNorm → ReLU →
MaxPool(2×2)→ Dropout
Fully Connected: Linear(128×3×3→256) → BatchNorm → ReLU →
Dropout
Output: Linear(256→10)

Regularization Dropout (rate=0.3), BatchNormalization at each layer
Activation Functions ReLU throughout the network
Loss Function Cross-entropy
Training Epochs 30
Batch Size 64
Learning Rate 0.001
Optimizer Adam
Special Features Extensive regularization for robustness to corrupted images
Usage Context Primary classification model for MNIST digits in conformal prediction frame-

work

Algorithm 2 Calculate weighted conformal p-value that penalizes noninformativeness.
Input: Calibration scores V1:n := {V1, ..., Vn}ni=1; Test point score Vn+1; Weight vector w̃ := (w̃1, ..., w̃n+1); Signifi-
cance level (target miscoverage) α.
Output: Weighted conformal p-value pw̃n+1.
if w̃n+1 < α then

Calculate exact weighted conformal p-value (Eq. (9)):

Sample un+1
iid∼ Unif[0, 1]

pw̃n+1 =
∑n+1

i=1 w̃i

[
1{vi > vn+1}+ un+11{vi = vn+1}

]
.

else
{Note: This "else" condition implies the corresponding CP set for the test
point was noninformative, i.e., Ĉn,α(Xn+1) = Y; thus, penalize noninformative-
ness by using derandomized, anticonservative p-value, equivalent to setting
un+1 = 0. These will cause WCTM to raise an alarm more quickly, as they inten-
tionally break IID uniformity based on the magnitude of w̃n+1.}
pw̃n+1 =

∑n+1
i=1 w̃i

[
1{vi > vn+1}

]
.

end if
Return: pw̃n+1
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Table 6. ResNet20 Model Details (Standard Format)
Component Details
Model Name ResNet20
Purpose Classification model for CIFAR-10 images
Architecture Type Residual Network (ResNet v1) with basic blocks
Input Shape (Batch size, 3, 32, 32) - RGB CIFAR-10 images
Output Shape (Batch size, 10) - Logits for 10-class CIFAR-10 classification
Total Parameters ≈270K parameters
Depth 20 layers (1 initial conv + 18 layers in blocks + 1 final linear)
Block Structure BasicBlock: Conv→BN→ReLU→Conv→BN + shortcut connection, fol-

lowed by ReLU
Network Architecture Initial Layer: Conv2d(3→16, 3×3)→ BatchNorm→ ReLU

Stage 1: 3 BasicBlocks (16 channels, stride=1)
Stage 2: 3 BasicBlocks (32 channels, stride=2)
Stage 3: 3 BasicBlocks (64 channels, stride=2)
Output: Global AvgPool→ Linear(64→10)

Regularization BatchNormalization in each block
Activation Functions ReLU
Weight Initialization Kaiming normal for convolutional layers, constant for batch normalization
Loss Function Cross-entropy
Training Epochs 30
Batch Size 64
Learning Rate 0.001
Optimizer Adam
Special Features Skip connections (residual learning) for better gradient flow
Usage Context Primary classification model for CIFAR-10 in conformal prediction framework

Algorithm 3 WCTMs for (1) adapting to mild shifts in X , (2) detecting harmful shifts, and (3) root-cause analysis.
Input: Calibration data Z1:n := {(Xi, Yi)}ni=1; Test data stream (Xn+1, Yn+1), ..., (Xn+T , Yn+T ); WCTM score
function ŝZ : X × Y → R; X-CTM score function ŝX : X → R; WCTM Alarm threshold calarm; X-CTM adaptation
threshold cadapt; density-ratio estimator ŵ : X → (0, 1).
M

(x)
0 = 1 {Initialize X-CTM}

M
(w)
0 = 1 {Initialize WCTM}

For each time t: X-CTM M
(x)
t monitors X & WCTM M

(w)
t monitors for harmful shifts.

for t = 1 to T do
if xi > xi+1 then

Calculate X-CTM
noChange = false

end if
end for
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