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Mitigating Sample Selection Bias with Robust Domain
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ABSTRACT
Industrial multimedia recommendation systems extensively uti-
lize cascade architectures to deliver personalized content for users,
generally consisting of multiple stages like retrieval and ranking.
However, retrieval models have long suffered from Sample Selec-
tion Bias (SSB) due to the distribution discrepancy between the
exposed items used for model training and the candidates (almost
unexposed) during inference, affecting recommendation perfor-
mance. Traditional methods utilize retrieval candidates as aug-
mented training data, indiscriminately treating unexposed data
as negative samples, which leads to inaccuracies and noise. Some
efforts rely on unbiased datasets, while they are costly to collect
and insufficient for industrial models. In this paper, we propose a
debiasing framework named DAMCAR, which introduces Domain
Adaptation to mitigate SSB in Multimedia CAscade Recommenda-
tion systems. Firstly, we sample hard-to-distinguish samples from
unexposed data to serve as the target domain, optimizing data
quality and resource utilization. Secondly, adversarial domain adap-
tation is employed to generate pseudo-labels for each sample. To
enhance robustness, we utilize Exponential Moving Average (EMA)
to create a teacher model that supervises the generation of pseudo-
labels via self-distillation. Finally, we obtain a retrieval model that
maintains stable performance during inference through a hybrid
training mechanism. We conduct offline experiments on two real-
world datasets and deploy our approach in the retrieval model of a
multimedia video recommendation system for online A/B testing.
Comprehensive experimental results demonstrate the effectiveness
of DAMCAR in practical applications.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Multimedia recommendation, Debiasing, Cascade systems

1 INTRODUCTION
Multimedia recommendation is essential for many mobile Internet
platforms, aiming to accurately present multi-modal items aligned
with users’ interests [36, 40, 53, 57, 58, 62, 64]. To support the in-
creasing demand for online deployment, industrial scenarios have
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Figure 1: An illustration of the inference and training phases
in a typical multimedia cascade recommendation system.

widely adopted cascade architectures [38, 48, 54, 56]. Such architec-
tures utilize a funnel-shaped filtering strategy—from broad retrieval
to precise ranking—to efficiently deliver personalized content for
users. Figure 1 illustrates a typical multimedia cascade recommenda-
tion system comprising two stages: retrieval and ranking1. Simple
models are employed in the retrieval stage to swiftly filter out irrel-
evant items from a large candidate pool [10, 28, 49]. The ranking
stage then employs sophisticated models for precise ranking, se-
lecting the top few as winning candidates [3, 44, 45, 65, 66]. Finally,
those exposed items with user behaviors (e.g., finish playing or not)
are recorded for continuous model training [7, 19].

However, in cascade architectures, retrieval models face the chal-
lenge of Sample Selection Bias (SSB) [24, 33, 36, 61]. As illustrated
in Figure 1, this bias originates from a notable phenomenon: There
exists a significant discrepancy between the distribution of exposed
items used for model training and the distribution of retrieval can-
didates (almost unexposed) during inference. Such bias impedes
the ability of retrieval models to comprehensively learn the distri-
bution characteristics across the entire data space, affecting mod-
els’ generalization performance and failing to reflect users’ real
interests [7, 24]. In essence, SSB violates the foundational training-
inference consistency assumption [19, 48], like requiring a student
to take an exam beyond the prescribed syllabus.

To mitigate SSB, traditional methods utilize retrieval candidates
for data augmentation, indiscriminately treating unexposed data
as negative samples [7, 24, 27]. Although reducing the distribution
discrepancy, they overlook the potential positive samples within
unexposed data. Such mislabeling introduces training noise, dimin-
ishing the quality of decision-making during inference.

Another line of research attempts to collect unbiased datasets
through specific uniform strategies and then guide the models
1In fact, multimedia cascade recommendation systems also include a pre-ranking stage
to bridge retrieval and ranking [31, 32]. However, our study primarily focuses on
retrieval models, excluding the pre-ranking stage for simplicity.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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trained on exposed data by knowledge transfer [33–35, 37, 63].
However, these solutions encounter prohibitive data collection and
processing costs, making them impractical for real-world applica-
tions [36]. Furthermore, the obtained unbiased datasets may be
insufficient for industrial models with billions of parameters [19].

Given that the primary cause of SSB is the distribution incon-
sistency between training and inference data, we draw on unsu-
pervised domain adaptation techniques to tackle this issue [41, 60].
Unsupervised domain adaptation has demonstrated notable suc-
cess in fields like image recognition [4, 26] and natural language
processing [2, 5], by aligning distributions of the labeled source do-
main and the unlabeled target domain to ensure training-inference
consistency. However, when applying it to resolve SSB, researchers
face several key challenges: (i) Unsupervised domain adaptation
requires unbiased datasets as target domains for model training,
which is often difficult to achieve in practical applications [36, 56].
(ii) There is lacking effective mechanisms to guarantee the quality
of the pseudo-labels generated for target domains, while they are
critical to model performance [18, 51].

In this paper, we propose a novel debiasing framework named
DAMCAR, which introduces Domain Adaptation to mitigate SSB
in Multimedia CAscade Recommendation systems. DAMCAR con-
sists of three modules: (i) Target domain generation. We construct
a directed weighted bipartite graph from user historical behaviors
and employ a random walk algorithm to select hard-to-distinguish
samples from unexposed data to serve as the target domain. This
method not only obtains informative samples for model training but
is also resource-friendly by focusing only on a subset of unexposed
data rather than all of them. (ii) Robust pseudo-label generation.
We design a label generator that introduces an adversarial net-
work between the source domain (exposed data) and the target
domain (sampled unexposed data). This encourages the model to
learn feature representations that are indistinguishable across data
distributions, thereby generating unbiased pseudo-labels for each
sample. Additionally, to improve the model’s robustness and the
reliability of pseudo-labels, we use Exponential Moving Average
(EMA) to create a teacher model that guides the generation of
pseudo-labels via self-distillation. (iii) Hybrid training. We utilize a
hybrid training mechanism that combines both pseudo-labels and
the scores from the ranking model to obtain a retrieval model that
maintains stable performance during inference. Compared with
traditional solutions, DAMCAR provides customized samples and
corresponding labels to the retrieval model at the end of each train-
ing phase without affecting its efficiency. To summarize, we make
the following contributions in this paper:

• We propose DAMCAR, aimed at mitigating SSB by leveraging
domain adaptation to bridge the gap between training and
inference data distributions for retrieval models, which focuses
on the generation of the target domain and pseudo-labels.

• To enhance robustness and reliability, we use EMA to create a
teacher model that steers the generation of pseudo-labels for
target domain samples via a self-distillation mechanism.

• We conduct offline experiments on two datasets and implement
our approach in a multimedia video recommendation system
for online A/B testing. Experimental results demonstrate the
effectiveness of DAMCAR in real-world applications.

2 RELATEDWORKS
2.1 Multimedia Cascade Recommendation
In industrial scenarios, the online deployment of multimedia rec-
ommendation systems necessitates balancing effectiveness and effi-
ciency. While sophisticated models offer superior recommendation
performance, they tend to introduce high latency [36, 43, 57]. Con-
versely, simple models with limited capacity can efficiently handle
massive requests [28, 67]. Thus, a prevalent approach is to adopt
funnel-shaped cascade architectures [17, 25, 38, 48, 54, 56]. Simple
models are employed in the early retrieval stage to swiftly filter out
irrelevant items from a large candidate pool [10, 28, 49], while so-
phisticated models are then utilized in the ranking stage for precise
ranking [3, 44, 45, 65, 66]. Some studies explore cost-aware cas-
cading systems that incorporate computational cost to determine
model assignments for different stages [8, 54, 59]. Other solutions
optimize cascade systems through gradient transfer, stage combi-
nation, feature sharing, and item aggregation [15–17, 25]. Despite
these advancements, most existing multimedia cascade recommen-
dation systems suffer from SSB due to the distribution discrepancy
between training and inference data [48, 56], potentially impacting
model performance. In this paper, we focus on mitigating SSB by
providing customized samples and corresponding labels to retrieval
models without compromising the training efficiency.

2.2 Debiasing in Cascade Systems
Many recent efforts are devoted to mitigating SSB for improved rec-
ommendation performance [19, 27, 33, 48, 63]. (i) Some approaches
focus on the augmentation of training data. They either employ
all retrieval candidates, treating unexposed data as negative sam-
ples [7, 24] or utilize random negative sampling and hard negative
sampling to select negative samples [11, 27, 29, 48]. These methods
reduce the distribution discrepancy, but overlook the potential pos-
itive samples within unexposed data, introducing training noise.
(ii) Another line of research is to generate unbiased datasets by
employing specific uniform strategies for content delivery and col-
lecting user feedback [33, 37]. The unbiased datasets are used to
train imputation models for unexposed data [1, 6, 13, 63] or guide
the models trained on exposed data by knowledge transfer [33–
35, 37]. However, these approaches incur high costs in unbiased
dataset collection and processing that may hurt the user experience,
rendering them impractical for real-world applications [19, 36]. (iii)
Unsupervised domain adaptation is a potential research direction
for mitigating SSB [4, 26], which trains a model that performs well
on the unlabeled target domain by using labeled samples on the
source domain. For example, in [56], a scoring model is trained on
exposed data (source domain) and generates pseudo-labels for an
unbiased dataset (target domain). The retrieval model is trained
on the target domain, ensuring the training-inference consistency.
However, it requires an unbiased dataset as the target domain for
model training, which is often difficult to achieve in practical ap-
plications [19, 36]. Moreover, there is currently lacking effective
mechanisms to ensure the quality of the pseudo-labels generated for
target domains [18, 51]. Building upon existing research, we lever-
age unexposed data to generate a target domain with informative
samples and develop a robust pseudo-label generation mechanism,
aiming to mitigate SSB from two aspects of data and labels.
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Figure 2: The architecture of DAMCAR, which consists of three modules: (i) Target domain generation (left). We generate a high-
quality unexposed sample set S𝑠𝑎𝑚 from S \ S𝑒𝑥𝑝 to serve as the target domain, by constructing a directed weighted bipartite
graph and employing a random walk algorithm. (ii) Robust pseudo-label generation (middle). We generate pseudo-labels for
each sample through adversarial domain adaptation and then use EMA to create a teacher model that guides the generation via
self-distillation for enhanced robustness. (iii) Hybrid training (right). We train the retrieval model Ret(·) through a hybrid
mechanism that combines modified pseudo-labels with the scores obtained from the ranking model Rank(·).

3 PRELIMINARIES
In this section, we provide a formal definition of the problem along
with the necessary notations. For a multimedia recommendation
system, it includes a user set U = {𝑢1, . . . , 𝑢𝑁 } and an item set
I = {𝑖1, . . . , 𝑖𝑀 }, where 𝑁 represents the number of users and
𝑀 represents the number of items. We define S = U × I as the
entire sample set, encompassing all user-item pairs. In the cas-
cade architecture, the retrieval model Ret(·) initially scores the
entire sample set S and selects a subset with high scores. The
subset is then forwarded to the ranking model Rank(·) for fur-
ther processing, ultimately delivering recommendation results for
users. After collecting user interactions, an exposed sample set
S𝑒𝑥𝑝 = {(𝑢, 𝑖,𝑦, 𝑒 = 1) | 𝑢 ∈ U, 𝑖 ∈ I, 𝑦 ∈ {0, 1}} is produced:
• 𝑢: the features of a user, which include personal attributes and
historical behaviors.

• 𝑖: the features of an item, which include item attributes like ID,
texts, images, and other multi-modal information.

• 𝑦: the ground-truth label of an observed user behavior, e.g.,
finish playing (𝑦 = 1) or not (𝑦 = 0).

• 𝑒: the exposure label, where 𝑒 = 1 denotes item 𝑖 has been
exposed to user 𝑢 with corresponding behavior 𝑦.
The ranking model Rank(·) is trained on the exposed sample set

S𝑒𝑥𝑝 [19, 48, 56], which typically employs a sophisticated struc-
ture to deeply interact with user interests and item features for
precise ranking, e.g., Deep Factorization-Machine (DeepFM) [22]
and Deep & Cross Network (DCN) [55]. On the other hand, the re-
trieval model Ret(·) adopts a simple dual-tower structure to match

user features with item features, focusing on efficiently selecting
potentially user-interested items from a large candidate pool, e.g.,
Deep Structured Semantic Model (DSSM) [28]. However, in the
cascade architecture, the retrieval model Ret(·) suffers from SSB,
as highlighted in previous studies [24, 33, 36, 61]. This issue arises
from a notable phenomenon: Training Ret(·) on a limited labeled
subset S𝑒𝑥𝑝 comprising only exposed items while requiring it to
score the entire sample set S with mostly unexposed items during
inference. SSB causes the training-inference inconsistency, which
may impact the model’s recommendation performance.

4 METHOD
In this paper, we propose a debiasing framework named DAMCAR
to mitigate SSB in multimedia cascade recommendation systems,
which consists of three modules: (i) Target domain generation (§4.1),
(ii) Robust pseudo-label generation (§4.2), and (iii) Hybrid training
(§4.3). Figure 2 illustrates the architecture of DAMCAR.

4.1 Target Domain Generation
To optimize data quality and resource utilization, we collect an
unexposed sample set S𝑠𝑎𝑚 = {(𝑢, 𝑖, 𝑒 = 0) | 𝑢 ∈ U, 𝑖 ∈ I} from
S \ S𝑒𝑥𝑝 to serve as the target domain, rather than utilizing all of
them. In contrast to existing sampling methods [11, 27, 29, 48], our
focus is on selecting hard-to-distinguish samples that are difficult
for the model to judge, containing more information in enhancing
training. These unlabeled samples are equipped with pseudo-labels
in §4.2, instead of being treated indiscriminately as negative.
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Specifically, we leverage graph connectivity to identify the de-
gree to which unexposed samples are close to the model’s decision
boundary. This graph-based perspective compensates for the insuf-
ficient exposure at the individual user-item pair level by exploiting
the inherent multi-hop relationships in the network structure. It
enables the computation of connectivity between users and items,
even without direct links, which is particularly crucial for samples
that are inherently hard-to-distinguish.

We start by constructing a directed weighted bipartite graph
with the exposed sample set S𝑒𝑥𝑝 , where nodes represent users or
items and edges represent interactions. The weight 𝑣𝑢,𝑖 denotes the
degree of engagement between user 𝑢 and item 𝑖 , such as watch
time. We define P(𝑢 → 𝑖) as the transition probability from user 𝑢
to item 𝑖 , which is calculated as the ratio of the weight 𝑣𝑢,𝑖 to the
sum of weights for all items that user 𝑢 has interacted with:

P(𝑢 → 𝑖) =
𝑣𝑢,𝑖∑

𝑖′∈I(𝑢 ) 𝑣𝑢,𝑖′
, (1)

where I(𝑢) is the set of item nodes directly connected with user 𝑢.
Similarly, the transition probability from item 𝑖 to user𝑢, denoted

as P(𝑖 → 𝑢), is determined by comparing the weights 𝑣𝑢,𝑖 with the
sum of weights from all users who have engaged with item 𝑖:

P(𝑖 → 𝑢) =
𝑣𝑢,𝑖∑

𝑢′∈U(𝑖 ) 𝑣𝑢′,𝑖
, (2)

where U(𝑖) is the set of user nodes directly connected with item 𝑖 .
Now, we apply a random walk algorithm with restart mecha-

nisms to obtain hard-to-distinguish samples for each user from
S \S𝑒𝑥𝑝 . We center on user 𝑢 with a radius of 𝑅 and randomly visit
nodes along the path of 𝑢 → 𝑖 → 𝑢, according to the transition
probability P. When the next hop exceeds the radius 𝑅, the pro-
cess returns to the starting node 𝑢 for resampling, which continues
until 𝐻 visits are completed. Let T (𝑢, 𝑖) represent the number of
times each item 𝑖 is visited. We denote the set of visited exposed
items as I𝑢 = {𝑖 | (𝑢, 𝑖,𝑦, 𝑒 = 1),T (𝑢, 𝑖) ≥ 1} and the set of visited
unexposed items as I∗

𝑢 = {𝑖∗ | (𝑢, 𝑖∗, 𝑒 = 0),T (𝑢, 𝑖∗) ≥ 1}. Then,
we define hard-to-distinguish samples as follows:

{(𝑢, 𝑖∗, 𝑒 = 0) | 𝑖∗ ∈ I∗
𝑢 ,T (𝑢, 𝑖∗) ≥ 1

|I𝑢 |
∑︁
𝑖∈I𝑢

T (𝑢, 𝑖)}. (3)

That is, when the number of visits T (𝑢, 𝑖∗) for an unexposed item
𝑖∗ ∈ I∗

𝑢 is greater than or equal to the average number of visits for
exposed items {𝑖 | 𝑖 ∈ I𝑢 }, the sample (𝑢, 𝑖∗, 𝑒 = 0) will be added
to the unexposed sample set S𝑠𝑎𝑚 . |I𝑢 | represents the number of
visited exposed items for user 𝑢.

4.2 Robust Pseudo-Label Generation
Here, we define exposed samples as the source domain S𝑒𝑥𝑝 =

{(𝑢𝑠 , 𝑖𝑠 , 𝑦𝑠 , 𝑒 = 1)} and sampled unexposed samples as the target
domainS𝑠𝑎𝑚 = {(𝑢𝑡 , 𝑖𝑡 , 𝑒 = 0)} for greater clarity. We introduce ad-
versarial domain adaptation to learn exposure-independent pseudo-
labels for retrieval model training.

Initially, we employ a unified encoder E(·) to extract features
from samples in both the source and target domains, yielding their
deep representations z𝑠 and z𝑡 , respectively:

z𝑠 , z𝑡 = E(𝑢𝑠 , 𝑖𝑠 ), E(𝑢𝑡 , 𝑖𝑡 ) . (4)

Then, we feed the deep representations z𝑠 and z𝑡 into the label
generator Φ(·) to generate the pseudo-labels 𝑦𝑠 for source domain
samples and the pseudo-labels 𝑦𝑡 for target domain samples:

𝑦𝑠 , 𝑦𝑡 = Φ(𝑔(z𝑠 )),Φ(z𝑡 ), (5)

where 𝑔(·) is the linear transformation. In this stage, we optimize
the model’s generation accuracy by minimizing the binary cross-
entropy loss [12] on source domain samples:

L𝑐𝑒 = − 1
|S𝑒𝑥𝑝 |

∑︁
S𝑒𝑥𝑝

𝑦𝑠 log𝑦𝑠 + (1 − 𝑦𝑠 ) log(1 − 𝑦𝑠 ), (6)

where |S𝑒𝑥𝑝 | is the number of source domain samples.
To mitigate SSB, we aim to align the distributions of the source

and target domains, ensuring that the learned deep representa-
tions of samples are exposure-independent. For this purpose, we
incorporate a domain classifier Ψ(·) that predicts whether a sample
belongs to the source or target domain and is trained in an adver-
sarial manner. Specifically, we desire the domain classifier Ψ(·) to
make accurate predictions (minimize the training loss), and then
through Gradient Reversal Layer (GRL) [18], we compel the encoder
E(·) to best fool Ψ(·), i.e., making z𝑠 and z𝑡 indistinguishable across
data distributions as much as possible (maximize the training loss).
The process can be formulated as follows:

𝑑𝑠 , 𝑑𝑡 = Ψ(𝑔(z𝑠 )),Ψ(z𝑡 ), (7)

L𝑑𝑜𝑚 = − 1
|S𝑒𝑥𝑝 |

∑︁
S𝑒𝑥𝑝

log𝑑𝑠 − 1
|S𝑠𝑎𝑚 |

∑︁
S𝑠𝑎𝑚

log(1 − 𝑑𝑡 ), (8)

where |S𝑠𝑎𝑚 | is the number of target domain samples and L𝑑𝑜𝑚 is
the training loss of domain classifier Ψ(·). In this way, we tightly
align the representations of source domain samples and target do-
main samples, generating unbiased pseudo-labels for each sample.

However, this unsupervised domain adaptation approach cannot
guarantee the quality of the pseudo-labels generated for the target
domain. To address this issue, we incorporate a self-distillation
mechanism to supervise the learning of pseudo-labels, thereby en-
hancing model robustness and label quality. Inspired by ensemble
learning techniques [9, 30], which posit that a combination of his-
torical models yields greater performance than a single model, we
treat each batch’s update as the student model, and an ensemble of
student models across multiple batches forms the teacher model.
For updates of the teacher model’s parameters, we employ Expo-
nential Moving Average (EMA) to control the influence of the newly
updated student model on it as follows:

Θ
(𝑡 )
𝑡𝑒𝑎 = 𝛼 ∗ Θ(𝑡−1)

𝑡𝑒𝑎 + (1 − 𝛼) ∗ Θ(𝑡 )
𝑠𝑡𝑢 , (9)

where parameters of the teacher model in batch 𝑡 are updated
from the corresponding parameters of the student model, with a
smoothing parameter 𝛼 ∈ (0, 1). We can elevate the student model
to a teacher model without altering the original model structure.
Subsequently, we use the outputs 𝑦𝑡𝑡𝑒𝑎 generated by the teacher
model to supervise the learning of pseudo-labels for target domain
samples, with the training loss defined as follows:

L𝑠𝑢𝑝 = − 1
|S𝑠𝑎𝑚 |

∑︁
S𝑠𝑎𝑚

𝑦𝑡𝑡𝑒𝑎 log𝑦
𝑡 + (1 − 𝑦𝑡𝑡𝑒𝑎) log(1 − 𝑦𝑡 ). (10)

Overall, to generate robust unbiased pseudo-labels, we need to
minimize the two losses for label classification (L𝑐𝑒 and L𝑠𝑢𝑝 )
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Algorithm 1 Hybrid Training Process

Input: Training sample set S𝑇 = S𝑒𝑥𝑝 ∪S𝑠𝑎𝑚 , Ranking model
Rank(·), Encoder E(·)
Output: Retrieval model Ret(·)

1: for each epoch do
2: for each batch in S𝑇 do
3: Calculate pseudo-labels 𝑦 using Eq. (4) and (5)
4: Calculate domain labels 𝑑 using Eq. (7)
5: Update Θ𝑠𝑡𝑢 of E𝑠𝑡𝑢 (·) and Φ𝑠𝑡𝑢 (·) using Eq. (11)
6: Update Θ𝑡𝑒𝑎 of E𝑡𝑒𝑎 (·) and Φ𝑡𝑒𝑎 (·) using Eq. (9)
7: end for
8: end for
9: Modify pseudo-labels 𝑦 into 𝑦𝑚𝑝𝑙 using Eq. (12)
10: Calculate ranking scores 𝑦𝑟𝑎𝑛𝑘 using Eq. (15)
11: for each epoch do
12: for each batch in S𝑇 do
13: Calculate predictions 𝑦𝑟𝑒𝑡 using Eq. (13)
14: Update parameters of Ret(·) using Eq. (17)
15: end for
16: end for

while maximizing the loss for domain classification (L𝑑𝑜𝑚). The
total loss is defined as follows:

L𝑡𝑜𝑡𝑎𝑙 = L𝑐𝑒 + 𝜆1 ∗ L𝑠𝑢𝑝 − 𝜆2 ∗ L𝑑𝑜𝑚, (11)

where 𝜆1 and 𝜆2 are the weights of L𝑠𝑢𝑝 and L𝑑𝑜𝑚 , respectively.

4.3 Hybrid Training
In this module, we use a hybrid training mechanism to obtain the
retrieval model Ret(·), as depicted in Algorithm 1. Following the
previous steps, samples in the target domain S𝑠𝑎𝑚 are assigned
pseudo-labels 𝑦𝑡 , while samples in the source domain have both
pseudo-labels 𝑦𝑠 and ground-truth labels 𝑦𝑠 . To minimize the noise
in the retrieval model training and emphasize the importance of
positive samples, we continue to use 𝑦𝑠 = 1 as the training labels
for positive exposed samples. For other samples, we utilize pseudo-
labels as the targets. Thus, for the training sample set S𝑇 = S𝑒𝑥𝑝 ∪
S𝑠𝑎𝑚 , the modified pseudo-labels 𝑦𝑚𝑝𝑙 is defined as follows:

𝑦𝑚𝑝𝑙 =

{
1 if (𝑢𝑠 , 𝑖𝑠 , 𝑦𝑠 , 𝑒 = 1) ∈ S𝑒𝑥𝑝 & 𝑦𝑠 = 1 ,
𝑦 others.

(12)

Then, we input each training sample (𝑢, 𝑖,𝑦𝑚𝑝𝑙 ) ∈ S𝑇 into the
retrieval model Ret(·) to obtain the predictions:

𝑦𝑟𝑒𝑡 = Ret(𝑢, 𝑖) . (13)

For the retrieval model training, we measure the difference between
the predictions𝑦𝑟𝑒𝑡 and the modified pseudo-labels𝑦𝑚𝑝𝑙 as follows:

L𝑚𝑝𝑙 = − 1
|S𝑇 |

∑︁
S𝑇

𝑦𝑚𝑝𝑙 log𝑦𝑟𝑒𝑡 + (1 − 𝑦𝑚𝑝𝑙 ) log(1 − 𝑦𝑟𝑒𝑡 ), (14)

where |S𝑇 | is the number of training samples. Additionally, we
input each training sample into the pre-trained model Rank(·) to
obtain the ranking scores:

𝑦𝑟𝑎𝑛𝑘 = Rank(𝑢, 𝑖). (15)

Table 1: Statistics of datasets with multi-modal features, i.e.,
Visual (V), Acoustic (A), and Textual (T) information.

Dataset #Users #Items #Interactions Modality

WeChat 16,904 42,031 1,639,527 V, A, T
TikTok 38,883 49,842 1,502,827 V, A, T

We employ a knowledge distillation strategy to narrow the gap
between the output distributions of the retrieval model and the
ranking model [52], ensuring consistency in the cascade system:

L𝑐𝑜𝑛 =
1

|S𝑇 |
∑︁
S𝑇

(𝑦𝑟𝑎𝑛𝑘 − 𝑦𝑟𝑒𝑡 )2 . (16)

Finally, our minimization objective is defined as follows:

L𝑡𝑟𝑎𝑖𝑛 = L𝑚𝑝𝑙 + 𝜆3 ∗ L𝑐𝑜𝑛, (17)

where 𝜆3 is the weight of L𝑐𝑜𝑛 .

5 EXPERIMENTS
To deeply evaluate DAMCAR, we conduct extensive experiments
with the aim of answering the following research questions:
• RQ1: How does DAMCAR perform compared with baselines?
• RQ2: What is the role of each designed module in DAMCAR?
• RQ3: What is the impact of hyperparameters on performance?
• RQ4: Why does DAMCAR actually work in mitigating SSB?
• RQ5: How effective is DAMCAR in real-world applications?

5.1 Experimental Setup
5.1.1 Datasets. We conduct a series of experiments on two video
recommendation datasets with the required multi-modal features,
i.e., WeChat2 and TikTok3. Table 1 summarizes the statistics.
• WeChat: This dataset is collected from the short videos plat-
form of WeChat4, recording the user behaviors in two weeks.
It contains pre-trained multi-modal feature embeddings with
visual, acoustic, and textual information.

• TikTok: This dataset contains user interactions with short
videos, collected from the TikTok5 platform. The multi-modal
features are the visual, acoustic, and textual content of videos.

Following the settings of previous works [46, 47, 56], we divide
the datasets into training, validation, and test sets according to the
timestamps of user interactions in a ratio of 6:2:2. Moreover, we set
the ground-truth label to finish playing (𝑦 = 1) or not (𝑦 = 0).

5.1.2 Testbed. We build a two-stage cascade recommendation
system as the testbed for performance comparison [48, 50], consist-
ing of retrieval and ranking stages. In the retrieval stage, we utilize
Deep Structured Semantic Model (DSSM) [28] as the backbone, a
dual-tower structural model extensively applied in industrial sce-
narios. The dimensions of the user feature embedding and the item
feature embedding are both set to 128. In the ranking stage, we
employ two common CTR models, i.e., Deep Factorization-Machine

2https://algo.weixin.qq.com/2021/problem-description
3https://www.biendata.com/competition/icmechallenge2019
4https://www.wechat.com/en
5https://www.tiktok.com

https://algo.weixin.qq.com/2021/problem-description
https://www.biendata.com/competition/icmechallenge2019
https://www.wechat.com/en
https://www.tiktok.com
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Table 2: Performance comparison of different methods in a two-stage cascade recommendation system, where DSSM is used for
retrieval and DeepFM is used for ranking. The best and second-best results are marked in bold and underlined, respectively.

Stage Method WeChat TikTok

Ret.

- R@100 P@100 F@100 R@200 P@200 F@200 R@100 P@100 F@100 R@200 P@200 F@200
BC 0.0740 0.0113 0.0196 0.1375 0.0106 0.0197 0.0627 0.0063 0.0114 0.1222 0.0062 0.0118
KD 0.0785 0.0121 0.0210 0.1386 0.0110 0.0204 0.0664 0.0066 0.0120 0.1347 0.0068 0.0129
TL 0.0855 0.0125 0.0218 0.1449 0.0110 0.0204 0.0645 0.0065 0.0118 0.1409 0.0070 0.0133
AR 0.0823 0.0126 0.0219 0.1511 0.0116 0.0215 0.0664 0.0066 0.0120 0.1523 0.0074 0.0141

MUDA 0.0812 0.0126 0.0218 0.1433 0.0113 0.0209 0.0685 0.0071 0.0129 0.1540 0.0075 0.0143
DAMCAR 0.0884 0.0135 0.0234 0.1579 0.0121 0.0225 0.0775 0.0075 0.0137 0.1580 0.0077 0.0147

Rank.

- N@10 M@10 H@10 N@20 M@20 H@20 N@10 M@10 H@10 N@20 M@20 H@20
BC 0.0477 0.0284 0.0124 0.0718 0.0336 0.0130 0.0356 0.0274 0.0066 0.0477 0.0300 0.0062
KD 0.0549 0.0329 0.0142 0.0763 0.0364 0.0146 0.0402 0.0317 0.0072 0.0526 0.0341 0.0067
TL 0.0507 0.0288 0.0138 0.0652 0.0296 0.0121 0.0402 0.0298 0.0078 0.0512 0.0323 0.0066
AR 0.0562 0.0340 0.0148 0.0782 0.0386 0.0142 0.0400 0.0313 0.0073 0.0516 0.0338 0.0064

MUDA 0.0545 0.0327 0.0147 0.0746 0.0338 0.0143 0.0413 0.0323 0.0076 0.0543 0.0350 0.0068
DAMCAR 0.0657 0.0394 0.0166 0.0867 0.0441 0.0154 0.0443 0.0356 0.0089 0.0558 0.0359 0.0078

Table 3: Performance comparison of different methods in a two-stage cascade recommendation system, where DSSM is used for
retrieval and DCN is used for ranking. The best and second-best results are marked in bold and underlined, respectively.

Stage Method WeChat TikTok

Ret.

- R@100 P@100 F@100 R@200 P@200 F@200 R@100 P@100 F@100 R@200 P@200 F@200
BC 0.0740 0.0113 0.0196 0.1375 0.0106 0.0197 0.0627 0.0063 0.0114 0.1222 0.0062 0.0118
KD 0.0825 0.0127 0.0220 0.1467 0.0114 0.0212 0.0655 0.0065 0.0118 0.1284 0.0065 0.0124
TL 0.0793 0.0124 0.0214 0.1458 0.0114 0.0211 0.0670 0.0066 0.0120 0.1415 0.0070 0.0133
AR 0.0821 0.0124 0.0215 0.1526 0.0117 0.0217 0.0709 0.0069 0.0126 0.1445 0.0071 0.0135

MUDA 0.0834 0.0132 0.0228 0.1458 0.0118 0.0218 0.0704 0.0072 0.0131 0.1566 0.0075 0.0143
DAMCAR 0.0917 0.0135 0.0235 0.1620 0.0124 0.0230 0.0768 0.0076 0.0138 0.1579 0.0078 0.0149

Rank.

- N@10 M@10 H@10 N@20 M@20 H@20 N@10 M@10 H@10 N@20 M@20 H@20
BC 0.0494 0.0294 0.0129 0.0732 0.0335 0.0137 0.0374 0.0303 0.0064 0.0474 0.0319 0.0057
KD 0.0606 0.0389 0.0150 0.0761 0.0386 0.0137 0.0388 0.0315 0.0066 0.0510 0.0329 0.0066
TL 0.0577 0.0358 0.0145 0.0733 0.0370 0.0133 0.0375 0.0289 0.0069 0.0509 0.0310 0.0068
AR 0.0596 0.0382 0.0149 0.0790 0.0399 0.0146 0.0429 0.0333 0.0079 0.0544 0.0343 0.0071

MUDA 0.0639 0.0411 0.0162 0.0729 0.0346 0.0139 0.0406 0.0307 0.0078 0.0511 0.0318 0.0068
DAMCAR 0.0706 0.0455 0.0177 0.0824 0.0408 0.0154 0.0465 0.0374 0.0092 0.0574 0.0371 0.0080

(DeepFM) [22] and Deep & Cross Network (DCN) [55], respectively,
achieving precise ranking by deeply capturing feature interactions.

5.1.3 Baselines. Referring to [48, 56], we compare DAMCAR
with five baselines: (i) Binary Classification (BC) is considered
as the base method for comparison, training the retrieval model
on exposed data, which does not account for SSB. (ii) Knowledge
Distillation (KD) uses the ranking model’s predictions as the
ground-truth labels for retrieval model training [48]. (iii) Trans-
fer Learning (TL) utilizes unexposed data with the pseudo-labels
generated by the ranking model to fine-tune the item’s embedding
tower and keep the user tower unchanged [42]. (iv) Adversarial
Regularization (AR) trains a domain classifier from the inter-
mediate output of the retrieval model and uses loss’s negative as
regularization [21]. (v)Modified Unsupervised Domain Adapta-
tion (MUDA) uses unexposed data with the pseudo-labels derived
by transforming the ranking model’s predictions into binary classes
for retrieval model training [56].

5.1.4 Evaluation Metrics. In the retrieval stage, we adopt three
widely used metrics, i.e., Recall (R@K), Precision (P@K), and F1@K
(F@K), which measure the quality of relevant candidates returned
by the retrieval model. In the ranking stage, Normalized Discounted
Cumulative Gain (N@K), Mean Average Precision (M@K), and
Hit Ratio (H@K) are utilized to assess the ranking performance.
Detailed calculations for these metrics can be found in [39]. To
simulate different recommendation scenarios, we set K to 100/200
for retrieval and 10/20 for ranking, respectively.

5.1.5 Implement Details. For all methods, we use AdaGrad opti-
mizer [14] with an initial learning rate of 1𝑒−2. The batch size is 512
for training and 128 for testing. In DAMCAR, we set 𝑅 = 25 and 𝐻
= 50 on WeChat, while 𝑅 = 30 and 𝐻 = 60 on TikTok, for the target
domain generation. The encoder E(·) consists of a three-layer MLP
with hidden dimensions of 300, 200, and 100, while the linear trans-
formation 𝑔(·) utilizes a two-layer MLP with hidden dimensions of
128 and 100, both using ReLU [20] as the activation function. For
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Table 4: Loss weights tuned in the experiments.

Variable Value Range Description

𝜆1 {5𝑒−1, 6𝑒−1, 7𝑒−1, 8𝑒−1, 9𝑒−1} Weight of L𝑠𝑢𝑝

𝜆2 {1𝑒−1, 2𝑒−1, 3𝑒−1, 4𝑒−1, 5𝑒−1} Weight of L𝑑𝑜𝑚

𝜆3 {1𝑒−1, 2𝑒−1, 3𝑒−1, 4𝑒−1, 5𝑒−1} Weight of L𝑐𝑜𝑛

the label generator Φ(·) and the domain classifier Ψ(·), we use a
single-layer MLP with the Sigmoid [23] activation function. We use
GRL [18] to reverse gradients for matching the update direction.
The smoothing parameter 𝛼 is set to 0.99. Furthermore, we use grid
search to find the best weights of the three different losses. The
value ranges are shown in Table 4.

5.2 Performance Comparison (RQ1)
Table 2 and Table 3 present the results of DAMCAR and baselines
in two different cascade recommendation systems, respectively. In
Table 2, DSSM is employed in the retrieval stage, while DeepFM is
used in the ranking stage. To evaluate the generalization capability
of our approach, Table 3 maintains the same retrieval model but
substitutes the ranking model with DCN.

From the experimental results, we have the following observa-
tions: (i) Compared with the base method BC, DAMCAR gains
significant improvements in both retrieval and ranking metrics.
That is, it correctly retrieves a sufficiently large number of candi-
dates and precisely ranks them to be delivered to users, implying
that mitigating SSB can effectively enhance recommendation per-
formance. (ii) DAMCAR outperforms all debiasing baselines on
two datasets and under different settings of K. We attribute the
performance gain to three factors. Firstly, DAMCAR collects a high-
quality subset from unexposed data as the target domain, for data
augmentation. Compared with existing sampling methods, our tar-
get domain samples contain richer information in enhancing the
retrieval model training. Secondly, DAMCAR employs an effective
mechanism to generate robust pseudo-labels, in contrast to rely-
ing solely on the ranking model’s predictions, e.g., TL and MUDA.
The performance improvement of AR over BC further supports
the necessity of adversarial learning. Thirdly, the results of KD
show that ensuring consistency in the cascade system benefits the
final recommendation performance, and DAMCAR takes this as
one of the training objectives through a hybrid mechanism. (iii) De-
spite employing different ranking models, DAMCAR enhances the
overall recommendation performance under both configurations.
This improvement indicates that enhanced retrieval performance
positively impacts the ranking model’s ability.

5.3 Ablation Study (RQ2)
In this part, we conduct the ablation study to explore the contribu-
tion of each designed module in DAMCAR. We compare DAMCAR
with three variants: (i) w/o TDG, where target domain generation is
replaced by randomly sampling the same number of samples from
unexposed data; (ii) w/o EMA, i.e., without using EMA to create a
teacher model that guides the generation of pseudo-labels for target
domain samples; and (iii) w/o MPL, which only uses the generated
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Figure 3: Results of the ablation study onWeChat andTikTok,
using DSSM and DeepFM as the backbone models.

pseudo-labels without modifying them by ground-truth labels. Fig-
ure 3 shows their final ranking performance on two datasets, using
DSSM and DeepFM as the backbone models.

These results illustrate two facts: (i) All designed modules are
important to DAMCAR. The ranking performance will deteriorate if
any module is removed. For example, in Figure 3(a) and Figure 3(b),
each variant has worse performance in terms of N@10, M@10,
and H@10 on WeChat and TikTok, respectively. (ii) Among the
three modules, target domain generation has the greatest impact
on performance, because generating a high-quality target domain
is an important basis for generating pseudo-labels and performing
hybrid training. Compared with random sampling, which often fails
to select samples close to the decision boundary, our method se-
lects samples that significantly enhance the model’s discriminative
ability. In addition, incorporating an EMA-based supervision mech-
anism and enhancing the model’s perception of positive exposed
samples through MPL can further improve the performance.

5.4 Hyperparameters Analysis (RQ3)
In Figure 4, we investigate the impact of several key hyperparame-
ters on performance for DAMCAR.

5.4.1 Effects of 𝑅 and 𝐻 . We first evaluate the ranking quality
of DAMCAR under different values of the radius 𝑅 and the number
of visits 𝐻 , i.e., two crucial settings for target domain generation.
From the results, we can find that the metrics first rise and then fall,
with the optimal settings of 𝑅 = 25 and 𝐻 = 50 on WeChat, while 𝑅
= 30 and 𝐻 = 60 on TikTok. We attribute the variation of settings
to differences in dataset sparsity. For the hyperparameters 𝑅 and 𝐻 ,
they determine the search range and number of the random walk
algorithm. Excessively large values may gather samples far from the
model’s decision boundary, while overly small values fail to collect
adequate informative samples, both of which hinder the generation
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Figure 4: Performance comparison under different hyperpa-
rameter settings on WeChat and TikTok.
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Figure 5: Visualization of predictions for the unexposed sam-
ples. BC tends to regard them as negative, while DAMCAR
mines potential positive samples.

of a high-quality target domain, leaving the hard-to-distinguish
unexposed samples without correct attention.

5.4.2 Effects of 𝛼 . Additionally, we investigate DAMCAR’s per-
formance under different values of the smoothing parameter 𝛼 . 𝛼
is used to control the update rate of the teacher model created by
EMA. Results indicate that 𝛼 = 0.99 yields superior performance.
Larger values may impede effective model updates, while smaller
values compromise model robustness.

5.5 Visualization and Further Analysis (RQ4)
To further verify why DAMCAR works in mitigating SSB, we show
the prediction distribution of the retrieval model. In Figure 5, we
train the retrieval model on WeChat and TikTok using both DAM-
CAR and BC, then showcase the predictions for target domain
samples. We can find that BC tends to recognize unexposed data as
negative samples, leading to inconsistency between training and
inference. In contrast, DAMCAR effectively uncovers potential pos-
itive samples (i.e., unexposed positive samples) and delivers them to

Table 5: Average improvement of DAMCAR in online A/B
testing. We deploy our approach in the retrieval model of a
multimedia video recommendation system.

Metric Confidence Interval Improvement

Watch Time [0.03%, 0.25%] +0.14%
Like [0.06%, 0.84%] +0.45%

Follow [0.12%, 0.41%] +0.27%
Share [0.14%, 0.49%] +0.31%

Vertical Category [0.07%, 1.04%] +0.55%

users. DACMAR rectifies the distribution discrepancy between the
training and inference data, thus achieving unbiased personalized
recommendations. Unlike indiscriminate labeling of unexposed
samples as negative, DAMCAR harnesses sufficient information in
unexposed data to enhance the retrieval model training.

5.6 Results of the Online Deployment (RQ5)
To validate the effectiveness of our approach in real-world applica-
tions, we deploy it on the cascade recommendation system for an
online multimedia video platform and conduct A/B testing. Since
each module of DAMCAR is implemented independently, it does
not affect the training efficiency of the retrieval model. Specifically,
we generate the target domain from historical data and train a sep-
arate DNN model to produce corresponding pseudo-labels. These
offline-generated data and corresponding labels are then utilized to
enhance the retrieval model for mitigating SSB.

We provide metrics in three dimensions to comprehensively eval-
uate the performance of DAMCAR: (i) Engagement: Measure user
engagement with the platform. We use Watch Time as a metric to
quantify the total time spent by users. (ii) Interaction: Measure user
satisfaction with the recommended results. We employ three com-
mon metrics, i.e., Like (clicking the like button), Follow (following
the video creator), and Share (sharing the video with others). (iii)
Diversity: Measure the variety of content consumed by users. We
use Vertical Categories to signify the diversity of presented content,
representing the number of unique video categories shown to all
users. The results of online A/B testing are shown in Table 5, demon-
strating the effectiveness of our approach in industrial scenarios
for an improved user experience.

6 CONCLUSION
In this paper, we introduce a debiasing framework named DAM-
CAR, as a comprehensive solution to mitigate Sample Selection Bias
(SSB) in multimedia cascade recommendation systems. We start by
sampling a target domain from unexposed data and use adversarial
domain adaptation to generate unbiased pseudo-labels for target
domain samples, narrowing the gap between training and inference
data distributions. To further enhance the robustness of models and
the reliability of pseudo-labels, we employ Exponential Moving Av-
erage (EMA) to create a teacher model, supervising the learning of
pseudo-labels through a self-distillation mechanism. Experiments
conducted on two real-world datasets and the online deployment
of an industrial multimedia cascade recommendation system prove
the practical benefits of DAMCAR, significantly improving recom-
mendation effectiveness without sacrificing efficiency.
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