
Semi-Supervised Learning and Data Augmentation for
Wearable-based Health Monitoring System in the Wild

Han Yu and Akane Sano
Department of Electrical and Computer Engineering

Rice University
Houston, TX 95128, USA

{han.yu, akane.sano}@rice.edu

Abstract

Physiological and behavioral data collected from wearable or mobile sensors
have been used to detect human health conditions. Sometimes the health-related
annotation relies on self-reported surveys during the study, thus a limited amount of
labeled data can be an obstacle in developing accurate and generalized predicting
models. On the other hand, the sensors can continuously capture signals without
labels. This work investigates leveraging unlabeled wearable sensor data for
health condition detection. We first applied data augmentation techniques to
increase the amount of training data by adding noise to the original physiological
and behavioral sensor data and improving the robustness of supervised stress
detection models. Second, to leverage the information learned from unlabeled
samples, we pre-trained the supervised model structure using an auto-encoder and
actively selected unlabeled sequences to filter noisy data. Then, we combined
data augmentation techniques with consistency regularization, which enforces the
consistency of prediction output based on augmented and original unlabeled data.
We validated these methods in sensor-based in wild stress detection tasks using 3
wearable/mobile sensor datasets collected in the wild. Our results showed that the
proposed methods improved stress classification performance by 5.3% to 13.8%,
compared to the baseline supervised learning models. In addition, our method
showed competitive performances compared to state-of-the-art semi-supervised
learning methods in the literature.

1 Introduction

Physiological and behavioral sensors have played essential roles in helping measure and improve
human health conditions. Researchers developed deep time-series learning methods for various health
applications using multimodal sensor data. For example, Swapna et al. applied convolutional neural
network (CNN) and long short-term memory network (LSTM) to diagnose the diabetes using heart
rate signal [24]; Michelli et al. designed a cascaded LSTM structure to help detection the human
sleep stages based on electroencephalogram (EEG) signals [14]. Moreover, in terms of mental health,
Umematsu et al. leveraged LSTM to forecasting the daily stress levels of college students [28].

Although researchers achieved promising accomplishments in health-related works using time-series
data, the number of annotations limits the model performance in applications. In the health-centered
datasets, ground truth labels are usually based on experts (health professionals)’ annotations or
patients’ self-reports. On the other hand, sensors can continuously collect millions of data samples
throughout the study. However, even without labels, we cannot ignore the value of information in
the collected data. By leveraging these unlabeled sequential data, semi-supervised deep learning has
been proven to contribute to applications such as cardiovascular risk detection [1] with an LSTM
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Figure 1: The overall structure of the designed semi-supervised sequence learning framework for
stress estimation. The framework contains the components of data augmentation, LSTM auto-encoder
pre-training with active unlabeled sample selection, and consistency regularization.

auto-encoder-based pre-training method originally proposed in [6]. Nevertheless, one drawback of
the approach above with wearable data can be that they use all of the unlabeled data. Considering the
distribution shifts and noisy samples in human sensing data, leveraging all the unlabeled samples
collected by sensors can be unnecessary, especially for these data collected in the wild.

Thus, in this work, we propose novel hinges for effectively learning from unlabeled samples by
designing an active sampling approach to effectively select unlabeled data based on the distributions
of the labeled samples. Besides learning representations from the unlabeled data, our framework is
also integrated with a consistency regularization with data augmentation techniques for time-series
data to help the robustness of the model. To evaluate the performances of the proposed methods, we
tested the proposed methods using three mental health-related datasets for momentary stress detection
in the wild. We observed the improvements in model performances using the proposed methods. The
evaluation results also showed competitive performances compared to the reproduced state-of-the-art
baseline methods.

2 Methods

This section introduces our proposed semi-supervised learning method for leveraging both labeled
and unlabeled sequences in stress estimation. Figure 1 shows the overall framework of the designed
approach including data augmentation (DA) on physiological and behavioral sequences, unsupervised
LSTM auto-encoder pre-training with active sampling, and consistency regularization. We used
LSTM as our backbone model to extract temporal learning representation from the input sequences,
and the detailed information on our implemented LSTM can be found in Appendix A.1. The following
of this section introduces the approaches of semi-supervised sequence learning with active sampling
and consistency regularization.

2.1 Semi-Supervised Sequence Learning

Semi-supervised sequence learning, which uses a sequence-to-sequence auto-encoder in learning
representations from unlabeled data, has been shown to improve the model performance when there
is a large amount of unlabeled training data[6]. Inspired by the previous work, we construct a
sequence-to-sequence LSTM auto-encoder (LSTM-AE). The input X of LSTM-AE is the time-series
wearable feature sequence, then the output of the decoder returned the reconstruct sequences X̂ . The
loss function is the mean square loss between the original sequence X and the reconstructed output
X̂:

LAE = ∥X − X̂∥2 (1)

After the LSTM-AE was trained, we use the parameters of the LSTM-AE encoder layers as the initial
parameters for the corresponding layers in the supervised architecture.

2.1.1 Active Unlabeled Sample Selection
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Figure 2: Latent space PCA-based low
dimension mapping visualization. The
representations of labeled samples are
highlighted in orange color. Example
visualization in the SMILE dataset with
three gaussian mixture components.

To reduce the influence of noise and unlabeled samples
with distribution shifts on the LSTM-AE pre-trained pa-
rameters of the model, we propose an active unlabeled
sample selection method. We first train an LSTM-AE with
labeled data only, then cluster all labeled samples in latent
space low-dimension representation using a Gaussian mix-
ture model (GMM). After analyzing the elbow points of
both the Akaike and Bayesian information criterion, we
fix the number of Gaussian components as K. Then, we
use the trained encoder to infer the latent representations
of all the unlabeled samples as h(xu). The negative log-
likelihood (NLL) of each unlabeled samples, which is the
probability of the observed data under the trained GMM
model, can be calculated via:

ℓ(xu) = − log

(
K∑

m=1

αmϕ(h(xu)|µm,Σm)

)
(2)

where α represents the weight mixture component, µ and
Σ are the learned mean value and co-variance of the corre-
sponding Gaussian component. Then, we select the unlabeled samples based on the calculated NLL
values. The smaller the NLL, the more similar the sample distributes as labeled data. Figure 2 shows
the reduced-dimensional visualization of LSTM-AE latent space representations, and the contour
lines indicate the negative log-likelihood levels across the whole dataset. Under this scenario, the
pre-trained model can focus on the information learned from samples with a similar distribution as
the labeled data.

2.2 Consistency Regularization (CR)

Inspired by [32], we conduct consistency training combined with the augmented data. We generate
M new augmented sequences using each labeled/unlabeled time window. If there are any differences
between the LSTM model outputs based on the original labeled data and their augmented input data,
the consistency losses will be regularized to the supervised loss function. For example, since our task
is to estimate stress status in binary classification, the supervised loss will be a cross-entropy loss. We
apply the Kullback-Leibler divergence loss as our designed consistency loss. To present the method
in a formula, the final loss function with the consistency regularization method is:

L = LCE(Xl, y)+
1

M

M∑
m=1

[α ·LKL(p(yl|Xl), p(yl|X̄m
l ))+λ ·LKL(p(yu|Xu), p(yu|X̄u

m
))] (3)

where Xl and y represent the labeled data and ground truth labels, Xu is the unlabeled sequence, X̄l

is the augmented labeled sequence, and X̄u is the augmented unlabeled sequence. yl and yu represent
the output from the model using the given input data sequence Xl and Xu, respectively. In our case
of classification, p(y|x) is the sigmoid outputs for binary classification. α and λ control the weights
of the consistency regularization. The supervised consistency regularization coefficient α was set as
1, whereas the unlabeled coefficient was set with a ramping up function w(t) to avoid noisy distortion
in the early training stage.

w(t) = c · e(min( epoch
Ewarmup

,1)−1)2 (4)
In the above equation, epoch is the on going training epoch number, and Ewarmup indicates epoch
number needed to warm-up the consistency training. Here we set c to 1 and Ewarmup to 50.

2.2.1 Data Augmentation for Wearable Sensors Data

To perform the consistency regularization, we adopt four types of data augmentation techniques
for time-series data from [27], including jittering, scaling, time warping, and magnitude warping.
Jittering (J) added tiny Gaussian noise to the original signals. For scaling (S), the original signals are
scaled by generated Gaussian random numbers (N ∼ (1, 0.05)). Time warping (TW) is a way to
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Figure 3: Examples of data augmentation on a sequence of ACC std signal

perturb the temporal characteristics of the data. The temporal locations of the samples are changed
by smoothly distorting the time intervals between samples. Magnitude warping (MW) changes the
magnitude of each sample by convoluting the data window with a smooth curve varying around
one with a standard deviation of 0.05 (N ∼ (1, 0.05)). The essence of these methods is adding a
small amount of noise to time-series data so that the trained model will be robust. Figure 3 shows an
example of different DA methods on a sequence of Electrodermal activity data. The green lines are
the original signal, and the red lines represent the data generated using four different DA methods.

3 Evaluation

We conducted experiments on 3 datasets, including the SMILE [21], the TILES [16], and the
CrossCheck [7] datasets. The detailed information on the dataset description and hyper-parameter
settings can be found in Appendix B. We conducted experiments in a participant-independent setting,
where we conducted a 5-fold cross-validation for each dataset by splitting data from 80% of the
participants as training sets and the rest as validation sets. For example, in the SMILE dataset with 45
participants, we selected data from 9 participants as a validation set for each cross-validation.

3.1 LSTM-AE Pre-Training with Active Sampling

0.532 

0.530 

0.527 

0.525 

0.522 

0.520 

8 0.510 

rl 

u.. 

0.500 

0.570 

0.565 

0.560 

0.555 

SMILE 

* 

TILES 

crosscheck 

* 

-e- Acitve Sample 

-•- Random Sample 

-e- Acitve Sample 

-•- Random Sample 

-------

-e- Acitve Sample 

-•- Random Sample 

10 1 

Negative Log-Likelihood (NLL) 

102

Figure 4: Macro f1 score performances in percent-
ages vs. negative log-likelihood as active sampling
thresholds. Top: SMILE (blue), Middle: TILES
(green), and Bottom: CrossCheck (red). Symbol
* indicates statistically significant differences ex-
isted when comparing f1 scores of active sample
and random sample methods in the figure.

To test the effectiveness of the proposed active
sampling method for semi-supervised learning,
we controlled using different volumes of unla-
beled samples to pre-train the model. We com-
pared the model performances based on sam-
ples that were selected using the active sampling
method with different NLL thresholds versus the
same volumes of randomly sampled data points.

Figure 4 shows the performances of tuning dif-
ferent thresholds in active sampling. We found
that the f1 scores of stress prediction models
with active sampling as well as random sam-
pling pre-training conditions showed an increas-
ing trend versus the growing amount of pre-
training unlabeled data. The performance of ac-
tive sampling converged with fewer pre-trained
samples relative to random sampling. For exam-
ple, with an NLL score of 10−1 - which sam-
pled 30.2%, 34.7% and 28.4% of the unlabeled
sequences from the SMILE, TILES, and Cross-
Check datasets, respectively - the performances
of using semi-supervised learning with actively
sampled data were all significantly higher than
the performances with randomly sampled data.

3.2 Semi-Supervised Learning

To evaluate the respective contributions of the proposed method, we conducted experiments of
evaluating the performances of the supervised LSTM and the proposed methods. We also compared
the performances of the random baseline, which assigns labels to test instances according to the class
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Table 1: Model Performances of 10-fold cross-validation using different methods (macro f1 score).
DA: data augmentation, LSTM-AE: LSTM auto-encoder in pretraining, CR: consistency regulariza-
tion.

SMILE TILES CrossCheck
Baseline: Random 0.46 ± 0.01 0.47 ± 0.01 0.48 ± 0.01
Baseline: LSTM 0.53 ± 0.03 0.51 ± 0.05 0.57 ± 0.04
LSTM + DA 0.56 ± 0.04 0.52 ± 0.03 0.56 ± 0.03
Π-model [13] 0.57 ± 0.02 0.53 ± 0.03 0.56 ± 0.03
VAT [15] 0.58 ± 0.04 0.56 ± 0.02 0.58 ± 0.03
ICT [29] 0.56 ± 0.02 0.55 ± 0.03 0.54 ± 0.04
MixMatch [2] 0.59 ± 0.03 0.56 ± 0.03 0.52 ± 0.05
DA + LSTM-AE 0.57 ± 0.03 0.55 ± 0.03 0.59 ± 0.02
DA + CR 0.59 ± 0.03 0.56 ± 0.04 0.57 ± 0.03
DA + LSTM-AE + CR 0.59 ± 0.02 0.58 ± 0.03 0.60 ± 0.03

probabilities in the training set [3]. We also compared our proposed method with four state-of-the-
art (SOTA) methods including Π-model [13], virtual adversarial training (VAT) [15], interpolation
consistency training (ICT) [29] and MixMatch [2]. The reproduction details can be found in Appendix
A.

Table 1 shows the model performance comparison using different semi-supervised learning methods.
The baseline LSTM method on all 3 datasets outperformed the baseline (random) on the test set
(paired t-test, p < 0.01). On the SMILE and TILES datasets, the model with DA showed statistically
significantly higher f1 scores than the baseline models (ANOVA, Tukey, P < 0.01). In contrast, we
did not observe significant improvement of applying DA on the CrossCheck dataset. CR improved
the model performances on the SMILE and TILES dataset (paired t-test, P < 0.01); whereas the
statistical test did not verify the performance improvement via CR on the CrossCheck dataset. On all
the 3 datasets, the combination of DA, LSTM-AE, and CR showed the best performance (ANOVA,
Tukey, P < 0.05). When comparing our method with SOTA methods, we observed that our method
(LSTM-AE + CR) outperformed all the reproduced SOTA methods on the TILES and CrossCheck
datasets (ANOVA, Tukey, P < 0.05). On the SMILE dataset, the reproduced MixMatch method
performed equivalently with our LSTM-AE and LSTM-AE + CR methods, and showed statistically
significant differences with the baseline and DA methods (ANOVA, Tukey, P < 0.05).

4 Conclusion

In this work, we proposed a semi-supervised learning framework - which contained components
of DA, LSTM-AE pretraining with active sampling, and CR - to help human stress estimation by
leveraging massive unlabeled physiological and behavioral data collected in wild. We evaluated our
proposed methods using 3 datasets with a small amount of labeled data but a large amount of unlabeled
data. We demonstrated that our proposed active sampling approach for LSTM-AE pretraining
outperformed the random sampling method and helped the model achieve better performances with
less unlabeled samples. Furthermore, our results showed that the combination of DA, LSTM-AE
pretraining, and CR provided the best results in f1 scores. In the future, we will continue developing
our method and apply it to a broad range of health-related applications.
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A Implemented Models

A.1 Baseline Model: Long Short-Time Memory (LSTM) network

Long short-term memory (LSTM) networks [10], as an extended type of recurrent neural network
has been used in time-series applications [19, 5]. In some previous studies, LSTM models provided
promising results in stress regression with time-series sensor data[33, 22].

Considering that people’s current stress status might be affected by previous short-term physiology or
behavior changes, we applied each participant’s previous time steps of the data to a multi-layer LSTM
for sequential learning. Moreover, we found the distributions of the training data might vary among
participants. For example, different participants might have different average heart rates, which
introduced the internal covariate shifts among samples. Thus, we also applied a batch normalization
(BN) layer[11] after LSTM so that the high-level temporal features extracted by LSTM would be
scaled and shifted into the same distribution.

A.2 Π-model [13]:

The Π-model operates two different transformation for an unlabeled input xu, to form x′
u and x′′

u
so that the model predicts y′u and y′′u. Then the model constrains the consistency of the two results.
We implemented the Π-model with two different DA approaches in section ?? randomly to form
different input data transformations for each training sample. The mean squared error was used as the
consistency loss.

A.3 VAT [15]:

This algorithm constrains the consistency of a signal and its transformation with additive noise,
the trainable adversarial perturbation r. The perturbation r is trainable, which was constrained by
coefficient ξ = 1× 10−6 to avoid gradients explosion in our implementation. We allowed 5 iterations
for each sample in a single epoch to update the parameter of r.

A.4 ICT [29]:

The ICT algorithm used the mixup method, which summed the original unlabeled data to generate the
augmented samples. In our implementation, the mix up coefficient was set as 0.2, which means we
summed up 0.8 · x1

u and 0.2 · x2
u as a new signal as x′

u. Then, the model optimized the discrepancy
between the prediction y′u and {0.8 · y1u + 0.2 · y2u}. Also, we reproduced the average teacher strategy
[25] with an updating factor of 0.999.

A.5 MixMatch [2]:

The MixMatch approach combined multiple prior techniques, such as consistency regularization,
entropy minimization and mixup DA approach, to serve as a semi-supervised learning framework.
Similarly to ICT, we also reproduced the mixup approach in the MixMatch algorithm with a mixup
coefficient of 0.2. In the steps of sharpening prediction and reducing model entropy, we set the
averaging bag size as 3 for each sample with a normalizing temperature of 0.5. The ramping up
epoch in equation (4) was set to 30 with a coefficient c of 100.

B Experimental Settings

B.1 Datasets

In this section, we describe three datasets we used to evaluate our methods. The meta information of
the used dataset can be found in table 2.

B.1.1 Dataset I: SMILE

Wearable sensor and self-report data were collected from 45 healthy participants (39 females and 6
males), in total for 390 days. The average age of participants was 24.5 years old, with a standard
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Table 2: Meta information about datasets used for evaluation

Dataset SMILE TILES CrossCheck
# of Labeled Data 2494 1229 5914

# of Classes 2 2 2
Used Modality ECG, GSR, ACC, ST ECG Smartphone

# of Participants 45 212 75

deviation of 3.0 years. Participants contributed to an average of 8.7 days of data, with a minimum of
5 days and a maximum of 9 days.

Two types of wearable sensors were used for data collection [21]. One was a wrist-worn device
(Chillband, IMEC, Belgium) designed for the measurement of skin conductance (SC), skin tempera-
ture (ST), and acceleration data (ACC). The SC was sampled at 256 Hz, ST at 1 Hz, and ACC at 32
Hz. Participants wore the sensor for the entire testing period, but could take it off during the night
and while taking a shower or during vigorous activities. The second sensor was a chest patch (Health
Patch, IMEC, Belgium) to measure ECG and ACC. It contains a sensor node designed to monitor
ECG at 256 Hz and ACC at 32 Hz continuously throughout the study period. Participants could
remove the patch while showering or before doing intense exercises.

Stress Labels: In addition to the physiological data collected by sensors, participants received
notifications on their mobile phones to report their momentary stress levels 10 times per day, spaced
out roughly 90 minutes apart for eight consecutive days. In total, 2494 stress labels were collected
across all participants (80% compliance). The stress scale ranged from 1 ("not at all") to 7 ("Extreme").
In 45% of the cases, participants reported that they were not under stress, while in only 2% of the
cases did they report that they were under extreme stress. In this work, we binarized the stress levels
by categorizing stress level 1 as a class of "non-stressed" (45%) and level 2-7 as the "stressed" class
(55%).

B.1.2 Dataset II: TILES

Tracking Individual Performance with Sensors (TILES) is a multi-modal data set for the analysis
of stress, task performance, behavior, and other factors pertaining to professionals engaged in a
high-stress workplace environment [16]. The dataset was collected from 212 participants for 10
weeks. In this work, we leveraged the ECG signals, which were not collected in a strictly continuous
manner. At 5-minute intervals, the sensor collects ECG signals for fifteen seconds at a sampling
rate of 250 Hz for the participants. We extracted features using the ECG signals and estimated the
self-reported stress levels.

Gaballah et al. leveraged TILES audio and physiological data with a bidirectional LSTM network
and inferred stress labels in a binary classification task[7]. They achieved a f1-score of 0.64. With
extracted features from ECG signals, Pimentel et al. proposed SVM based binary stress detection
models with an f1-score of 0.68 [17].

Stress Labels: Participants annotated stress levels through multiple 5-point scale questions. Fol-
lowing the stress label processing procedures in [7], We calculated the z-scores of stress levels for
each individual, considering the subjective variability and then divided them into two classes, class 0
(non-stressed, z-score below the average) and class 1 (stressed, z-score above the average). Overall,
600 stressed labels and 629 non-stressed labels were processed.

B.1.3 Dataset III: CrossCheck

We also used the dataset from the CrossCheck project [30], where smartphone data were collected in
a clinical trial from 75 patients with schizophrenia for up to a year. The collected phone data include
acceleration, light levels, sound levels, GPS, and call/SMS meta data. In addition, the participants
filled out the momentary ecological assessment (EMA) up to three times a week to assess their
symptoms.

Prior work estimated schizophrenia symptoms including depression, harm, stress, etc using machine
learning regression models and behavioral features extracted from the phone data. [30]. The best
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mean absolute error performance from the non-personalized model was 1.5 out of 0-3 scale. Similar
symptom estimation performance was also reported in [26, 31].

Stress Labels: Stress labels were collected via EMA. Participants reported their stress levels using
a 4-point scale, where "0" means no stress at all, whereas "3" means extremely stressed. The total
number of stress labels was 5914, where 49% was "0" stress label class, 28% was "1", 16% was
"2", and 7% was "3". We evaluated the proposed methods in a binary classification task on "0"
(non-stressed) versus "1, 2, 3" (stressed).

B.1.4 Features Extraction

Considering categorical event data, such as incoming/outgoing phone call and SMS, were included
in the datasets, we decided to extract hand-crafted features, not using deep learning methods such
as CNN to extract deep features from raw data. We used features extracted from the period prior
to the stress label to develop stress detection models and learn the temporal representations. In the
three datasets mentioned in section B.1, ECG (SMILE, TILES), SC (SMILE), ST (SMILE), ACC
(SMILE) and smartphone logs (CrossCheck) were used in estimating stress level. All these signals
contribute to infer human stress. For example, ECG reflects sympathetic and parasympathetic activity,
which has been proven related to stress [12, 20]. Stress has also been proven related to conductance
in human eccrine sweat glands, which can be captured by sensors as SC [8]. ST changes could
reveal the intensity of stress [9]. ACC is associated with human physical activity, which has been
shown influenced by stress level [23]. Also, previous studies have shown that smartphone usage data
contributed to stress prediction [18, 28].

We calculated statistical features from ST and ACC data, such as mean and standard deviation values
across periods. For other sensor measurement, we introduce the features extracted from ECG, SC,
and smartphone data in this section.

ECG Features: To extract features, based on the data sampling pattern of sensors in different
studies, we used 15 seconds of high-resolution ECG data every 5 minutes for the TILES dataset and
continuous ECG data for the SMILE dataset. We extracted both time and frequency domain ECG
features using a Python library [4]. Also, the outlier removal was performed using the same library
with 300 and 2000 as the low and high bound of R-R interval values, respectively. The engineered
time-domain features covered subjects’ heart rate, heart variability, etc. The frequency-domain
features contained the power spectrum information of heart activities in various frequency bands.
These features has been proven associated with human stress levels [12, 20]. The detailed list of ECG
features is available in Appendix B.1.5.

SC Features: The raw SC signal was cleaned with a Elliptic filter with a order of 4, maximum
pass-band ripple of 0.1, and minimum stop-band attenuation of 40 [21]. We computed SC magnitude,
the number of SC responses, the response duration, etc, following previous stress studies [12]. See
the detailed list of SC features in Appendix B.1.6.

Smartphone Features: We processed the CrossCheck data and extracted features using data collected
by smartphones. These features include acceleration intensity, phone application usage, call/sms
counts and duration, and the location related features from GPS. See the detailed list of smartphone
features in Appendix B.1.7.

B.1.5 ECG features

Time-domain features

• mean_nni: The mean of RR-intervals (time interval from one ECG peak to the next peak).
• sdnn : The standard deviation of the time interval between successive normal heartbeats

(i.e., the RR-intervals).
• sdsd: The standard deviation of differences between adjacent RR-intervals
• rmssd: The square root of the mean of the sum of the squares of differences between adjacent

NN-intervals. Reflects high frequency (fast or parasympathetic) influences on HRV (i.e.,
those influencing larger changes from one beat to the next).

• median_nni: Median Absolute values of the successive differences between the RR-intervals.
• nni_50: Number of interval differences of successive RR-intervals greater than 50 ms.
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• pnni_50: The proportion derived by dividing nni_50 (The number of interval differences of
successive RR-intervals greater than 50 ms) by the total number of RR-intervals.

• nni_20: Number of interval differences of successive RR-intervals greater than 20 ms.

• pnni_20: The proportion derived by dividing nni_20 (The number of interval differences of
successive RR-intervals greater than 20 ms) by the total number of RR-intervals.

• range_nni: the difference between the maximum and minimum nn_interval.

• cvsd: Coefficient of variation of successive differences equal to the rmssd divided by
mean_nni.

• cvnni: Coefficient of variation equal to the ratio of sdnn divided by mean_nni.

• mean_hr: The mean Heart Rate.

• max_hr: Max heart rate.

• min_hr: Min heart rate.

• std_hr: Standard deviation of heart rate.

Frequency-domain features:

• total_power : Total power density spectral

• vlf : variance ( = power ) in HRV in the Very low Frequency (.003 to .04 Hz by default). Re-
flect an intrinsic rhythm produced by the heart which is modulated primarily by sympathetic
activity.

• lf : variance ( = power ) in HRV in the Low Frequency (.04 to .15 Hz). Reflects a mixture of
sympathetic and parasympathetic activity, but in long-term recordings, it reflects sympathetic
activity and can be reduced by the beta-adrenergic antagonist propranolol.

• hf: variance ( = power ) in HRV in the High Frequency (.15 to .40 Hz by default). Reflects
fast changes in beat-to-beat variability due to parasympathetic (vagal) activity. Sometimes
called the respiratory band because it corresponds to HRV changes related to the respiratory
cycle and can be increased by slow, deep breathing (about 6 or 7 breaths per minute) and
decreased by anticholinergic drugs or vagal blockade.

• lf_hf_ratio : lf/hf ratio is sometimes used by some investigators as a quantitative mirror of
the sympathy/vagal balance.

• lfnu : normalized LF power.

• hfnu : normalized HF power.

B.1.6 SC Features

• skin conductance (SC) level: average SC value.

• phasic SC : signal power of the phasic SC signal (0.16-2.1 Hz).

• SC response rate : number of SC responses in window divided by the totally length of the
window (i.e. responses per second)

• SC second difference : signal power in second difference from the SC signal

• SC response : number of SC responses

• SC magnitude : the sum of the magnitudes of SC responses

• SC duration : the time duration of SC responses

• SC area : the sum of the area of SC responses in seconds

B.1.7 Smartphone Features

• accel_mean: mean value of 3-axis acceleration data.

• appall : number of APPs used.

• app[com, entertain, product, social, fit] : number of APPs in category of [communication,
entertainment, production, social, fitness & health] used
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• call_log_count_type[1,2] : number of outgoing-call (1) and incoming-call (2)
• call_log_sum_type[1,2] : total duration (in second) of outgoing-call (1) and incoming-call

(2)
• conversation_sum : total duration (in second) of conversation captured by phone microphone
• distances_sum : total distance of movement captured by GPS location data
• screen_sum : total duration (in second) of screen usage
• sms_log_count_type[1,2] : number of outgoing-sms (1) and incoming-sms (2)

B.2 Model Hyper-parameters

For hyperparameters of the baseline LSTM model, we used grid searching through cross-validation.
We adopted the following structure and parameters:

• SMILE: 3 layers of LSTM with 64 recurrent units were connected, incorporating 0.4
recurrent dropout and 0.3 dropout rates in each LSTM layer. After a BN layer, a fully-
connected layer followed with 512 hidden units with a dropout rate of 0.5. We chose Adam
as the optimizer with a learning rate of 0.0001.

• TILES & CrossCheck: 3 layers of LSTM with 32 recurrent units were connected, incor-
porating 0.3 dropout rates in each LSTM layer. After a BN layer, a fully-connected layer
followed with 256 hidden units with a dropout rate of 0.5. We chose Adam as the optimizer
with a learning rate of 0.00005.
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