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Abstract

Intervention Target Estimation (ITE) is vital for both understanding and decision-
making in complex systems, yet it remains underexplored. Current ITE methods
are hampered by their inability to learn from distinct intervention instances col-
laboratively and to incorporate rich insights from labeled data, which leads to
inefficiencies such as the need for re-estimation of intervention targets with minor
data changes or alterations in causal graphs. In this paper, we propose DeepITE,
an innovative deep learning framework designed around a variational graph autoen-
coder. DeepITE can concurrently learn from both unlabeled and labeled data with
different intervention targets and causal graphs, harnessing correlated information
in a self or semi-supervised manner. The model’s inference capabilities allow for
the immediate identification of intervention targets on unseen samples and novel
causal graphs, circumventing the need for retraining. Our extensive testing con-
firms that DeepITE not only surpasses 13 baseline methods in the Recall@k metric
but also demonstrates expeditious inference times, particularly on large graphs.
Moreover, incorporating a modest fraction of labeled data (5-10%) substantially
enhances DeepITE’s performance, further solidifying its practical applicability.
Our source code is available at https://github.com/alipay/DeepITE.

1 Introduction

Causal analysis in complex systems encompasses a series of steps beginning with causal discovery [1],
which aims to delineate the causal structure, followed by the identification and estimation of causal
effects [2]. Within this framework, a critical yet often overlooked component is Intervention Target
Estimation (ITE) [3], alternatively known as Intervention Recognition [4]. ITE is the process of
pinpointing which variables in a system have been subject to intervention, particularly when such
interventions are opaque or not directly manipulable. This process not only fosters a deeper under-
standing of the causal mechanisms driving specific outcomes, which resonates with the principles of
explainable AI (XAI), but also plays a pivotal role in recognizing variables that can be strategically
altered to produce desired effects, aligning with the concept of algorithmic recourse [5].

To illustrate, consider the application of ITE in root cause analysis (RCA) within a microservices
system. These systems consist of a network of services working in concert to deliver software
functionality. When a service failure occurs, such as a system outage or performance degradation, it
becomes imperative to identify the root cause. ITE is the key that unlocks definitive insight into the
RCA process. It methodically pinpoints the specific services whose malfunctions—stemming from
network issues, hardware failures, or security breaches—lead to the anomalies in question. ITE not
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only equips operators with a clear and logical explanation for the system’s alerts, enhancing their
comprehension of the issues at hand, but it also empowers them to implement immediate and effective
countermeasures and fortify the system against future incidents. Beyond RCA in microservice
systems, ITE’s applicability extends to a multitude of domains, from unraveling the genetic factors
involved in diseases within biomedicine, to tracing the determinants of user behavior for marketing.

Unfortunately, the field of ITE has not been thoroughly explored, often resulting in intervention
targets being relegated to secondary outputs from causal discovery rather than being a dedicated field
of inquiry. Only recently, Varici et al. [3, 6] pioneered the exclusive study of learning intervention
targets in linear SCMs. In parallel, Li et al. [4] approached the problem from the perspective of RCA,
coining it intervention recognition. Finally, Yang et al. [7] extended ITE to non-linear SCMs. This
handful of methods can only identify the targets for an intervention instance3 with a large sample
size, relying on an accompanying dataset of known observational data, all within the confines of a
fixed causal graph. The drawbacks of these strategies are twofold: From the learning perspective,
they independently map data to intervention targets for each intervention instance, disregarding the
potential correlations among distinct instances. In RCA scenarios, for example, various incidents
could stem from the same underlying service problem. A collaborative learning approach, which
considers all instances collectively, could more effectively elucidate the data-intervention target
relationships. Moreover, these methods often neglect the labeled data that are often available, such as
those obtained from controlled chaos engineering exercises that identify specific services as failure
root causes. Consequently, opportunities to refine and expedite future similar analyses are lost.
From the inference standpoint, slight changes in the data or in the graph structure necessitate a
burdensome and complete re-estimation of intervention targets. In RCA contexts, this means that
despite shared causality between distinct incidents, we still require piecemeal analyses for each new
occurrence, leading to extended system downtime and delayed resolutions. Additionally, the premise
that a large volume of data pertains to a uniform set of intervention targets is restrictive. Such data
are challenging to obtain, which further complicates the assurance of these methods’ performance.

Addressing these shortcomings, we introduce DeepITE, an innovative deep-learning solution that
disentangles the learning and inference processes. In particular, we design a variational graph
autoencoder (VGAE) that can concurrently learn across diverse causal graphs and sets of
intervention targets in a self-supervised or semi-supervised mode, thus, effectively harnesses
correlated information to unravel the intricate relationship between input data and intervention
targets. Once the VGAE is trained, its inference model can instantly identify intervention
targets for new, unseen samples with different interventions and causal graphs, all without
the need to retrain or refer to observational data. Specifically, leveraging the principle that
interventions entail the removal of all incoming edges to intervention targets, our VGAE framework
is designed to estimate the probability of edge removal for each node, thereby identifying the
intervention targets. The generative model within the VGAE employs a non-linear Graph Neural
Network (GNN), an extension of linear SCMs that adheres to causal factorization and meets the
criteria for causal interventions, across causal graphs of various structures and sizes. This theoretical
foundation ensures robust ITE capabilities. The generative model accepts exogenous noise variables
u, the adjacency matrix of the observational causal graph A, a Bernoulli-distributed intervention
indicator γ characterizing edge removal probability, and outputs the distribution of endogenous
variables x. Conversely, the inference model interprets a given sample of endogenous variables x to
infer distributions of exogenous variables u and the intervention indicator γ, all of which rely on the
causal graph A. We employ graph attention networks (GAT) as the backbone due to their flexibility
and scalability. This VGAE—comprising both the generative and inference models—can be trained
in a self-supervised manner by maximizing the evidence lower bound (ELBO) or can leverage labeled
intervention targets when available for semi-supervised learning.

Our contributions can be summarized as follows:
• We propose a novel VGAE architecture tailored for ITE, termed DeepITE. It excels in collaborative

learning from varying causal structures and interventions, negating the need for retraining with
each new instance.

• We establish self-supervised and semi-supervised training approaches for DeepITE, allowing it to
autonomously discern intervention targets and enhance accuracy through the integration of labeled
data from controlled experiments.

3We define an intervention instance as one manipulation on the causal system. We can then collect a set of
data with the same intervention targets for this instance.
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• Extensive experiments show that DeepITE surpasses 13 baseline methods by a large margin on
average in terms of Recall@k with competitive inference time, especially for large graphs.

2 Related Works

In this section, we briefly review the literature on ITE. Moreover, we notice that the realm of ITE is
interconnected with causal explanations and RCA. These three concepts demonstrate a considerable
degree of overlap (cf. [8, 4, 9]), suggesting that methods from each domain can not only inform and
enhance one another but also be utilized in a complementary fashion. We therefore refer the readers
to Appendix B for further discussion on causal explanations and RCA.

The limited literature on ITE approaches bifurcates, with one camp focusing on incidental estimation
of intervention targets via causal discovery and the other dedicated solely to identifying intervention
targets within a given causal framework. The former includes methods such as UT-IGSP [10], which
seeks to recover an interventional Markov equivalence class (I-MEC) through permutation searches
but is hampered by sample inefficiency and limited scalability. Ghassami et al. [11] explore linear
structural causal models (SCMs) yet may struggle with complexity in diverse data settings. For
causal insufficient systems, Jaber et al. [12] propose Ψ-FCI for matching interventional distributions
to causal graphs and intervention target pairs, contending with exponential growth in complexity
as the number of variables increases. Mooij et al. [13] alternatively propose a method leveraging
context variables for integrating interventional datasets, but this method suffers from scalability
issues with large graphs. To overcome this problem, RCD [9] further adapts the Ψ-FCI algorithm
in [12] to the Ψ-PC algorithm to expedite the process in causally sufficient systems. The second
approach, exemplified by CITE [3] and PreDITEr [6], zeros in on ITE by contrasting precision
matrices from observational and interventional data, achieving scalability at the cost of being initially
restricted to linear Gaussian SCMs. LIT [7] explores non-linear SCMs through non-linear ICA,
still carrying quadratic complexity. Alternatively, CI-RCA [4] conducts ITE by detecting shifts in
probability distributions of a variable conditioned on a variable’s parents via hypothesis testing. Both
groups of methods share critical disadvantages: they are vulnerable to even minor changes in data or
causal graphs during both learning and inference, and they underutilize labeled data from controlled
experiments.

3 Preliminaries
This section lays the groundwork for our study by introducing SCMs and Pearl’s Causal Hierarchy.

Structural Causal Models (SCMs): Given a set of variables x = [x1, . . . , xd], SCMs present a
formal mechanism to represent causal relations among them. An SCM is composed of two primary
components: a set of structural equations and a causal graph. The structural equations take the form:

xi := fi(Pa(xi), ui), i = 1, 2, . . . ,m, (1)
where fi is a deterministic function, Pa(xi) denotes parent variables that exert direct causal influence
on xi, and ui signifies unobserved exogenous variables capturing influences not represented by other
variables in x. We typically invoke causal sufficiency, assuming the ui are jointly independent,
thereby ruling out hidden confounders. The use of the assignment symbol “:=” instead of an equality
sign underscores the asymmetry of the causal relationship. The corresponding causal graph G (see
Figure 1(a) for an example) induced by the SCM is typically a directed acyclic graph (DAG) with
vertex set x ∪ u and directed edges from each variable on the right hand side (RHS) of a structural
equation (1) to the variable on the left hand side, thus delineating the causal dependencies.

Pearl’s Causal Hierarchy (PCH): Under the SCMs framework, PCH categorizes causal inference
into a three-tiered structure reflective of the cognitive processes of "seeing" (observational), "doing"
(interventional), and "imagining" (counterfactual). The initial tier addresses observational queries
using SCMs as conventional probabilistic models to describe statistical associations.

Progressing to the second tier of PCH, SCMs distinguish themselves from standard probabilistic
models by enabling the assessment of outcomes resulting from active interventions or manipulations,
captured by the notions of do-operator and graph surgery. Here, the do-operator do(xi = xi) repre-
sents an intervention that sets the variable xi to value xi, while graph surgery alters the corresponding
causal graph by removing all incoming edges to the intervened-upon variable xi. Interventional
queries are then addressed by performing probabilistic inference in the modified graph, which often
reveals new conditional independencies due to the excision of edges. For example, the interventional
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Figure 1: Left Panel: Illustration of the do operator and the corresponding graph surgery: (a) The observation
graph G; (b) The intervention graph GI for do(x2 = x2). Right Panel (c): The DeepITE architecture has an
inference and a generative model. The inference model uses a three-branch GAT to link endogenous variables x
to posterior distributions of intervention indicators γi, exogenous variables ui, and observation noise precision ζ.
The generative model then synthesizes x given these latent variables following Eq. (7) plus observation noise ϵ.

distribution p(x3|do(x2 = x2)) for the SCM in Figure 1(b) is obtained via probabilistic inference
with regard to (w.r.t.) the intervention graph:

p(x3|do(x2 = x2)) =
∑

x1

p(x1)p(x3|x1, x2 = x2), (2)

contrasting with the conditional distribution in the original graph (i.e., Figure 1(a)):

p(x3|x2 = x2) =
∑

x1

p(x1|x2 = x2)p(x3|x1, x2 = x2). (3)

The key distinction is the marginal p(x1) in (2) versus the conditional p(x1|x2 = x2) in (3), reflecting
that the causal relationship between x1 and x2 is broken by the intervention do(x2 = x2).

Finally, there are counterfactual queries about what would or could have been, given that something
else was in fact observed. We refer the readers to [14] as this topic is beyond the scope of our paper.

4 Problem Formulation
As discussed in the introduction, intervention target estimation (a.k.a. intervention recognition) is a
pivotal component within the landscape of causal analysis, addressing the question of which nodes
within a given causal system should be subjected to intervention in order to best explain the given
interventional data. This inquiry draws upon the framework established by SCMs and operationalizes
the principles enshrined in the second tier of Pearl’s Causal Hierarchy. More formally,
Definition 1. Given a causal graph G with variables x, the observational data, and the interventional
data corresponding to a certain intervention on a subset of variables xI ⊆ x, the task of intervention
target estimation is to identify xI .

Here, we maintain the assumptions of causal sufficiency and the acyclicity of the causal graph. Note
that while the DAG structure (i.e., the adjacency matrix A) is assumed to be known, the explicit
forms of the structural equations remain unspecified. In comparison with the interventional queries
mentioned in Section 3, which presuppose knowledge of where interventions have occurred and seek
to determine their effects, ITE is the inverse process: it starts with the consequences of interventions
and works backward to identify the sources of these perturbations. Essentially, we are solving for the
origin of the observed interventional data, rather than predicting their impact.

In this paper, we innovatively solve the problem of intervention target estimation from the perspective
of graph surgery. Recognizing that the interventional data align best with the intervention graph
(see Figure 1(b)), our objective is to discover the subset of nodes xI such that, upon hypothetically
removing the incoming edges to these nodes, the modified interventional model most accurately
reflects the presented interventional data. Furthermore, We aim to create a singular model capable of
pinpointing distinct sets of intervention targets for individual samples, each associated with its unique
causal graph, while eliminating the need for observational data during inference. This represents
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a significant shift from conventional ITE methods that independently identify shared intervention
targets for each intervention instance based on both observational and interventional data within the
context of a fixed causal graph. Additionally, we seek to enhance model performance by incorporating
labeling information during the training phase, which is a step forward in refining ITE processes.

5 DeepITE
To move forward to the above objectives, we present DeepITE, a VGAE that can estimate the
probability of edge presence within the latent space. The architecture of DeepITE is showcased
in Figure 1(c). We will first introduce the generative and inference models within the VGAE.
Subsequently, we will explicate the self and semi-supervised methods to train the inference model.

5.1 Generative Model
The chief aim of the generative model is to recreate the observed variables x given the exogenous
noise variables u, the adjacency matrix A of the causal DAG, and a set of nodes I that have
been intervened upon. Notably, when I is an empty set, the model is capable of recovering the
observational distribution.

Specifically, when the structural equations are linear, they can be succinctly written as x = ATx+u.
Therefore, given u and A, we can derive x through a linear decoder:

x = (I −AT )−1u. (4)
Drawing inspiration from DAG-GNN [15], we extend this formulation to non-linear scenarios with:

x = f2
(
(I −AT )−1f1(u)

)
, (5)

where f1 and f2 are non-linear, component-wise learnable functions. In practice, these functions
are executed by MLPs, which serve as universal approximators. Assuming f2 is invertible, the
aforementioned decoder corresponds to a conglomerate of non-linear structural equations [15]:

f−1
2 (x) = AT f−1

2 (x) + f1(u). (6)
This setup implies that when f1 and f−1

2 are suitably expressive, they can transform u and x into a
space where their causal interrelations are aptly described by linear structural equations. The decoder,
as specified in Eq. (5), exhibits inductiveness, enabling generalization to new nodes, edges, or graph
schemas by only modifying the adjacency matrix A while preserving the learned functions f1 and f2.
This decoder displays a particular characteristic, ratified by the following proposition:
Proposition 1. For a GNN layer as defined in Eq. (5), and denoting An(i) as the ancestor nodes of
node i with the extension An∗(i) = An(i)∪ i, each output feature xi exclusively acquires information
from its own and all ancestor input features uAn∗(i).
Proof. See Appendix C.
Owing to this property, this decoder (5) satisfies causal factorization and captures causal intervention,
as proven below.
Proposition 2. (causal factorization) The decoder defined in Eq. (5) conforms to causal factorization
p(x|u,A) =

∏
i p(xi|uAn∗(i)), that is, each endogenous variable xi can be expressed as a function

of its exogenous variable ui and those of its causal ancestors.
Proposition 3. (causal intervention) The decoder defined in Eq. (5) captures causal interventions
do(xI = xI) by replacing the original adjacency matrix A in Eq. (5) with the one corresponding to
the post-intervention graph after graph surgery.
Proof. See Appendices D and E.
As established in Section 4, ITE resides within the second tier of PCH. Within this framework,
any model purporting to tackle the ITE challenge must adeptly manage both observational and
interventional data. The above propositions bridge this requirement, affirming DeepITE’s competency
in fulfilling the ITE task. Specifically, these propositions serve as the key to unlocking the model’s
ability to honor the causal structure inherent in the data and to emulate the effects of interventions.

In light of Proposition 3, to manipulate the intervened nodes I in the decoder (5), we introduce
a Bernoulli distributed variable γi for each node xi: γi = 0 means xi is intervened, and thus, all
incoming edges of xi is removed during the graph surgery. The variable γi is henceforth referred
to as the intervention indicator. The corresponding intervened adjacency matrix is given by AI =
(γT1)⊙A, where 1 is a column vector of all ones and ⊙ denotes Hadamard product. As a result,
the decoder, inclusive of interventions, is delineated as:

x = Dec(u,γ,A) = f2

((
I −AT

I
)−1

f1(u)
)
. (7)
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When γi = 1 for all i, there is no intervention (i.e., AI = A) and the above decoder can describe the
observational distribution.

To facilitate the reparameterization trick in VAE, we assume the exogenous variables u are standard
normal distributions: ui ∼ N (0, 1). Finally, since we do not have access to the true structural
equations, we introduce the observation noise ϵ ∼ N (0, ζ−1) to (7), so as to account for the model
uncertainty associated with the above decoder (7). Here, ζ denotes the inverse variance of the noise,
and we impose a non-informative Jeffrey’s prior on ζ, that is, p(ζ) ∝ 1/ζ.

Collectively, the overall generative model can be factorized as:

p(x,u,γ, ζ|A) = p(x|u,γ,A, ζ)p(ζ)

m∏
i=1

p(ui)p(γi), (8)

where
p(ui) = N (0, 1), p(γi) = Bern(π) ∀i,
p(ζ) ∝ 1/ζ, p(x|u,γ,A, ζ) = N

(
Dec(u,γ,A), ζ−1I

)
. (9)

Here, π denotes the probability of taking 1 in a Bernoulli distribution and I is the identity matrix.

Discussion on Hard versus Soft Interventions: Hard interventions, characterized by the removal of
incoming edges as part of graph surgery, contrast with soft interventions, which modify the causal
mechanism without complete elimination. For instance, for an intervened node xi, a soft intervention
would replace the original structural equation xi := fi(Pa(xi), ui) with an updated version xi :=
f ′
i(Pa(xi), ui), where fi ̸= f ′

i , thereby altering the generative process while maintaining the graph’s
structure. In our generative model, the intervention indicator γi is a Bernoulli variable, allowing the
learning of edge removal probability from data x. A probability of γi = 0 being one indicates a hard
intervention, whereas any other value suggests a soft intervention. This nuanced approach allows
DeepITE to offer a spectrum between hard and soft interventions based on given data.

5.2 Inference Model

The pinnacle goal of the inference model within DeepITE is to determine the probability that a node
i has undergone an intervention based on the observed data, succinctly expressed as p(γi = 1|x). To
achieve this, we aim to compute the exact posterior p(u,γ, ζ|x,A). However, the intricate nature of
this posterior necessitates approximation through a tractable inference model q(u,γ, ζ|x,A) [16, 17].
Specifically, the inference model can be factorized in a manner akin to the generative model as:

q(u,γ, ζ|x,A) = q(ζ|x,A)

m∏
i=1

q(ui|x,A)q(γi|x,A). (10)

The variational distributions on RHS are parametrized by:
q(ui|x,A) = N

(
µi(x,A), σ2

i (x,A)
)
, (11)

q(γi|x,A) = Bern
(
ωi(x,A)

)
, (12)

q(ζ|x,A) = Lognormal
(
µζ(x,A), σ2

ζ (x,A)
)
, (13)

where the Bernoulli distribution (26) can be well approximated using the Gumbel-Softmax reparam-
eterization trick [18, 19]. The parameters of the variational q distributions in (25)-(27) are derived
from a network based on Graph Attention Networks (GAT). While any inductive spatial GNN can
be used as the inference network in DeepITE, we choose GAT since it provides the flexibility and
scalability necessary for our model. This flexibility stems from GAT’s ability to dynamically weigh
the importance of different nodes, thus allowing the variational distribution given by the inference
network better approximate the exact posterior distribution. This advantage is further demonstrated
in Appendix G.6, where we replace the GAT encoder with the encoder of DAG-GNN.

The architecture features an initial dual-layer GAT for feature extraction, followed by three specialized
branches dedicated to the parameters of u, γ, and ζ. Note that the parameters of u and γ can be
regarded as node-level features, while those of ζ as graph-level features. As such, the final ζ branch
includes a pooling layer to yield the graph-level features. The complete inference network is depicted
in Figure 1(c).

It is pertinent to mention that the graph associated with the GATs is undirected, in contrast to the
directed nature of the causal graph. This design choice is motivated by the need for the variational
update of a variable to account for all elements within its Markov blanket, which includes the parents,
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children, and co-parents of the node [20]. An undirected graph facilitates the message passing process
within this Markov blanket by removing the constraints imposed by edge directionality. Moreover,
the use of GAT ensures that the resulting model is inductive, enabling its application to new nodes
within the graph and even entirely new graph structures.

Relation to DAG-GNN [15]: DAG-GNN’s objective is to infer the structure of a DAG (i.e., the zero
pattern of A) from the provided data, a process known as causal discovery. The architecture of DAG-
GNN employs a generative model expressed as x = f2((I−AT )−1f1(u)) and an inference model as
u = f4((I −AT )f3(x)), both of which are differentiable with respect to A. This differentiability is
crucial as it enables the learning of A through gradient descent. On the other hand, DeepITE enhances
the generative model by integrating an intervention indicator, which facilitates the adaptation of
the model to account for interventions via graph surgery. Furthermore, DeepITE’s inference model
seeks to closely approximate the true posterior p(u,γ, ζ|x,A). Unlike DAG-GNN, which may only
collect messages from the parents of a node, DeepITE’s model is designed to aggregate messages
from all nodes within the Markov blanket of a given node i. This comprehensive approach ensures
that DeepITE’s inference model is not as restrictive as DAG-GNN’s and is better suited for ITE tasks.

Relation to VACA [21]: VACA sets out to perform causal queries utilizing observational data
within the framework of the VGAE. It hinges on Message Passing Neural Networks (MPNNs) for
both the generative and inference models. A prerequisite for VACA to perform observational and
interventional queries is that the generative model’s number of MPNN layers must at least be δ − 1
given that δ is the graph diameter.4 This criterion ensures that the information propagated within
the graph can reach from one end to the other, thereby reflecting the global structure necessary for
accurate causal inference. DeepITE aligns with this requirement for effectively performing ITE.
However, DeepITE distinguishes itself by employing the generative model, specified in Eq. (7). It
keeps the number of GNN layers to be one regardless of graph diameter, while satisfying causal
factorization and intervention conditions (cf. Proposition 2-3). DeepITE thereby overcomes the
limitations imposed by VACA’s dependence on graph diameter, offering a substantial benefit for
collective learning on graphs with different sizes.

5.3 Self and Semi-Supervised Learning

DeepITE’s learning strategies encompass self-supervised learning, which automates the identification
of intervention targets from unlabeled data, and semi-supervised learning, which refines the model’s
performance by integrating labeled data. The training process is summarized in Algorithm 1.

Self-Supervised Learning: Given the generative and inference model, we can learn their parameters
jointly by maximizing the evidence lower bound (ELBO) of the log-likelihood of the given data x:

L = Eq[log p(x,u,γ, ζ|A)] +Hq ≤ log p(x|A), (14)
where Eq denotes expectation over the q distribution in (10) and Hq denotes the entropy of the q
distribution. The derivation of the ELBO can be found in Appendix F. Note that L can be maximized
via stochastic gradient ascent after using the reparameterization trick for normal and Bernoulli
distributions [22, 23, 19].

Semi-Supervised Learning: Information regarding intervention targets may often be available in
practice. For instance, in the case of RCA in cloud-native systems, the ground truth of intervention
targets can be derived from resolved incidents and chaos engineering exercises. This ground truth
data can be utilized to train the inference network, enabling it to more accurately identify intervention
targets. In particular, the term q(γi|x,A) is replaced by the ground truth γ∗

i when computing the
ELBO L, and an additional term is introduced to maximize the log-likelihood log q(γ∗

i |x,A). By
taking advantage of both labeled and unlabeled data, we can effectively train the inference model.

Once trained, the inference model of DeepITE becomes equipped to evaluate individual new samples
against different causal graphs, directly deducing the intervention targets and thus circumventing
the necessity of retraining for each new scenario. It can also distinguish between observational and
interventional data directly as the former equates to the absence of intervention targets. Another
significant feature of DeepITE is its independence from observational data during the testing phase;
it relies solely on the interventional data input into the inference network. This is a distinct advantage
over existing ITE methods, which consistently require observational data for ITE. In practice, we
are primarily concerned with the intervention indicators γ. Hence, during inference, we only need

4The diameter of a graph is the length of the shortest path between the most distanced endogenous nodes.
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Table 1: Recall@k of different algorithms for detecting the intervened nodes from the Synthetic dataset. Graph-m
means DAGs with m nodes.

DATASET Graph-50 Graph-100 Graph-500
METRICS Recall@1 Recall@5 Recall@1 Recall@5 Recall@1 Recall@5
UT-IGSP 0.224 ± 0.015 0.318 ± 0.019 0.079 ± 0.007 0.185 ± 0.010 0.016* ± 0.002 0.020* ± 0.004

CITE 0.098 ± 0.009 0.124 ± 0.013 0.044 ± 0.003 0.063 ± 0.006 0.007 ± 0.001 0.008 ± 0.001
PreDITEr 0.104 ± 0.009 0.122 ± 0.012 0.049 ± 0.004 0.066 ± 0.006 0.008 ± 0.001 0.008 ± 0.001

TreeExplainer 0.381 ± 0.022 0.510 ± 0.017 0.298 ± 0.016 0.448 ± 0.009 0.102 ± 0.008 0.152 ± 0.002
ASV 0.296 ± 0.021 0.390 ± 0.022 0.261 ± 0.014 0.323 ± 0.017 0.081 ± 0.003 0.140 ± 0.005

ShapleyFlow 0.552 ± 0.017 0.690 ± 0.009 0.378 ± 0.009 0.485 ± 0.007 0.124 ± 0.005 0.148 ± 0.002
PWSHAP 0.468 ± 0.014 0.610 ± 0.012 0.339 ± 0.009 0.454 ± 0.008 0.117 ± 0.003 0.195 ± 0.003
CauseInfer 0.561 ± 0.002 0.765 ± 0.003 0.554 ± 0.002 0.786 ± 0.02 0.559 ± 0.003 0.769 ± 0.004

MicroHECL 0.462 ± 0.010 0.587 ± 0.009 0.341 ± 0.004 0.400 ± 0.004 0.199 ± 0.003 0.241 ± 0.004
MicroRCA 0.647 ± 0.004 0.899 ± 0.003 0.623 ± 0.004 0.875 ± 0.004 0.436 ± 0.003 0.676 ± 0.003
CausalRCA 0.633 ± 0.004 0.894 ± 0.004 0.622 ± 0.004 0.863 ± 0.004 0.418 ± 0.004 0.630 ± 0.004

CI-RCA 0.615 ± 0.002 0.952 ± 0.001 0.631 ± 0.002 0.930 ± 0.003 0.623 ± 0.004 0.823 ± 0.003
RCD 0.495 ± 0.003 0.706 ± 0.004 0.440 ± 0.004 0.521 ± 0.005 0.325 ± 0.002 0.364 ± 0.003

DeepITE (sep) 0.723 ± 0.002 0.972 ± 0.003 0.685 ± 0.004 0.968 ± 0.002 0.642 ± 0.003 0.891 ± 0.004
DeepITE (mix) 0.718 ± 0.003 0.945 ± 0.005 0.690 ± 0.004 0.923 ± 0.003 0.627 ± 0.003 0.875 ± 0.004

to process x through the relevant branch of x, as highlighted by the red dashed box in Figure 1(c),
disregarding the other branches to optimize inference efficiency.

6 Experimental Results
In this section, we demonstrate the usefulness of DeepITE on three datasets, comprising one syn-
thetically generated dataset, which provides a controlled environment to test the robustness and
scalability of the framework, and two real-world datasets that introduce the complexity of genuine
causal systems. We position DeepITE against 13 state-of-the-art (SOTA) methods, spanning three
areas of relevance: Intervention Target Estimation (ITE), Explainable AI (XAI), and Root Cause
Analysis (RCA), due to their intertwined nature (see more discussions in Section 2 and Appendix B).

• ITE: We select 3 methods: UT-IGSP [10], which learns intervention targets as a byproduct of
causal discovery; CITE [3] and PreDITEr [6], both of which are dedicated to ITE.

• XAI: We opt for TreeExplainer [24], ASV [25], ShapleyFlow [26], and PWSHAP [27], 4 methods
based on Shapley values. TreeExplainer only considers associations, whereas ASV, ShapleyFlow,
and PWSHAP incorporate causation, accounting for the DAG structure.

• RCA: We pick 6 methods: CauseInfer [28], MicroHECL [29], MicroRCA [30], CausalRCA [31],
CI-RCA [4], and RCD [9]. The last two aim to find intervention targets in a causal graph.

To facilitate a fair comparison, all methods are provided with the same ground truth causal graph,
eschewing the need for graph construction from data for some RCA methods. More implementation
details can be found in Appendix G.1. The performance is quantified using the Recall@k metric.
Recall@k measures the proportion of true intervention targets (ITs) that are successfully captured
within the top k ranked candidates proposed by each method. This metric is widely adopted in
the literature [4, 9, 29]. When k = 1, our goal is to pinpoint the intervention targets based on
the highest-ranked candidate. We prioritize Recall@k because, in practice, false positives can be
eliminated through further analysis, while false negatives are irrecoverable as they get lost among
the numerous true negatives. All experiments report average results over 10 trials, with error bars
representing a standard deviation (±1σ) from the mean.

Synthetic Data: The synthetic data is generated following the method outlined in CI-RCA [4] and
in Appendix G.2. We assess causal graphs with nodes ranging from 50 to 500 and corresponding
edges from 100 to 5000, exhibiting different levels of complexity. In particular, DeepITE is evaluated
in two configurations: DeepITE (sep), where separate models are trained for each graph size, and
DeepITE (mix), where a single model is trained across all graph sizes and structures.

Analysis of the results in Table 1 reveals 5 key insights: (i) Traditional ITE Methods Fall Short:
Such methods underperform with larger graphs with fewer samples due to their design for small,
dense datasets (typically involving tens of nodes but with tens of thousands of samples) and lack of
cross-instance learning, treating each intervention instance in isolation. As shown in Appendix G.3,
they perform much better for small graphs with large sample size. (ii) XAI Methods Face Challenges:
TreeExplainer lacks consideration for causal relationships in graphs. ASV and Shapley Flow, although
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Table 2: Results of the Protein Signaling Data and the ICASSP-SPGC Data.

DATASET Protein Signaling ICASSP-SPGC 2022
METRICS Recall@1 Recall@1 Recall@5 Root.Acc Score
UT-IGSP 0.579 ± 0.018 - - - -

CITE 0.588 ± 0.011 - - - -
PreDITEr 0.586 ± 0.010 - - - -

TreeExplainer 0.434 ± 0.020 0.367 ± 0.013 0.687 ± 0.010 0.7401 ± 0.0153 0.3534 ± 0.0298
ASV 0.441 ± 0.017 0.449 ± 0.010 0.720 ± 0.008 0.7933 ± 0.0117 0.3820 ± 0.0230

ShapleyFlow 0.615 ± 0.021 0.677 ± 0.013 0.825 ± 0.015 0.9176 ± 0.0131 0.5312 ± 0.0252
PWSHAP 0.603 ± 0.016 0.488 ± 0.009 0.741 ± 0.010 0.8551 ± 0.0109 0.4233 ± 0.0211
CauseInfer 0.076 ± 0.002 0.278 ± 0.003 0.490 ± 0.001 0.5808 ± 0.0084 0.1139 ± 0.0180

MicroHECL 0.081 ± 0.004 0.323 ± 0.010 0.661 ± 0.011 0.7339 ± 0.0134 0.3697 ± 0.0283
MicroRCA 0.127 ± 0.003 0.246 ± 0.004 0.463 ± 0.002 0.5662 ± 0.0089 0.0721 ± 0.0204
CausalRCA 0.113 ± 0.001 0.308 ± 0.004 0.447 ± 0.003 0.5353 ± 0.0078 0.0617 ± 0.0161

CI-RCA 0.090 ± 0.001 0.559 ± 0.002 0.828 ± 0.001 0.9284 ± 0.0055 0.5650 ± 0.0105
RCD 0.214 ± 0.002 0.481 ± 0.008 0.757 ± 0.005 0.8768 ± 0.0112 0.4542 ± 0.0216

DeepITE 0.652 ± 0.002 0.881 ± 0.002 0.984 ± 0.000 0.9794 ± 0.0023 0.9085 ± 0.0040

aware of the causal structure, struggle with scalability similar to traditional ITE methods, as these
methods demonstrate optimal performance on comparatively smaller graphs (around 10-20 nodes)
(cf. [25, 26]). (iii) RCA Methods Show Promise but Have Limitations: RCA methods generally
perform better than ITE and XAI approaches, with CI-RCA aligning exactly with the ITE task.
However, these methods also face challenges in integrating multiple intervention instances effectively.
(iv) DeepITE Models Excel: Both DeepITE (sep) and DeepITE (mix) outperform all benchmarked
methods on Recall@1 and Recall@5 metrics, attributing success to a flexible model that fosters
collaborative instance learning, independent of graph characteristics, enabling precise alignment of
data with intervention targets. (v) Competitive Performance within DeepITE Models: The two
DeepITE models (sep&mix) demonstrate competitive results, indicating that the model’s inductive
strength and its adaptability to various graph structures and sizes.

Protein Signaling Dataset: The description of the dataset is presented in Appendix G.4. The results,
shown in the second column of Table 2, focus on the Recall@1 metric due to the graph’s limited size.
It is evident that DeepITE outshines competing methods, attributable to its capacity for collaborative
learning across the entire dataset and its inherent adaptability. Traditional ITE and XAI methods trail
closely behind, with their methodologies being particularly suited to smaller graphs that nevertheless
have a substantial number of samples. In contrast, RCA methods exhibit weaker performance as
techniques such as PageRank, DFS, BFS, or rank walk struggle to distinguish between nodes in such
a compact network. Unlike these approaches, DeepITE demonstrates versatility in handling both
small and large graphs, affirming its utility across a wide range of practical scenarios.

ICASSP-SPGC 2022: The details of this dataset can be found in Appendix G.4. Note that the
absence of purely observational data in this dataset precludes the application of the ITE methods
including UT-IGSP, CITE, and PreDITEr. For our evaluation, we continue to employ Recall@1 and
Recall@5 metrics and additionally consider accuracy and the root-cause score, the latter two being
an official recommendation. The root-cause score is calculated by subtracting the number of false
positives from the number of true positives and then dividing by the total number of true intervention
targets. The results of this multifaceted assessment are presented in the last four columns of Table 2.
Once more, in comparison with the SOTA methods, DeepITE stands out by a large margin of above
20% in Recall@1, underscoring its applicability to real-world RCA challenges. Notably, CI-RCA
and Shapley Flow emerge as close second-best performers, likely because both methods leverage
causal rather than just correlational information, which appears to be advantageous in this context.

6.1 Ablation Study

Due to the page limit, we only present an overview of the major findings here. More details can be
found in Appendix G.5- G.7. (i) Impact of Label Proportions: Incorporating even a modest amount
(5-10%) of labeled data significantly enhances DeepITE’s performance across various datasets,
with recall improvements ranging from 4-20%. This approach provides substantial benefits in
practical settings, unlike other baseline methods in the study that cannot utilize labeled data at all.
(ii) Replacement of Encoder and Decoder: Modifying DeepITE’s encoder to DAG-GNN’s and
its decoder to VACA’s in two ablation designs shows that DeepITE–with its flexible generative
and inference models–outperforms both modified versions and the original VACA [21] and DAG-
GNN [15]. These observations, especially under conditions of increasing graph complexity, highlight

9



10 20 50 1002005001000
Graph sizes

0.50

0.75

1.00

Re
ca

ll@
k

Recall@1
Recall@5

(a) Graph sizes

1 2 3 4 5
Interventions

0.50

0.75

1.00

Re
ca

ll@
k

Recall@k

(b) Interventions

H 3H1S 2H2S 1H3S S
Intervention setting

0.50

0.75

1.00

Re
ca

ll@
k

Recall@1
Recall@5

(c) Mixed hard&soft

25 50 200 500 1000
Sample numbers

0.50

0.75

1.00

Re
ca

ll@
k

Recall@1
Recall@5

(d) Graph samples

100 150 200 250 300
Graph sizes

0.50

0.75

1.00

Re
ca

ll@
k

Recall@1
Recall@5

(e) Mixed graphs

Figure 2: The performance of DeepITE as a function of (a) graph sizes, (b) interventions, (c) the mixture
proportion of soft and hard interventions, (d) sample size for each graph, (e) the number of mixed graphs.

DeepITE’s robustness and the limitations of DAG-GNN’s rigid design and VACA’s requirement of
minimal decoder layers in estimating ITE. (iii) Scalability: Figure 2(a-b) revealed the performance
of DeepITE as a function of the graph size and the number of interventions respectively. Our findings
indicate that while performance in terms of Recall@1 declines as the graph size increases, Recall@5
remains stable even for graphs with 1000 nodes—a size that is already considered quite large for
causal analysis. (iv) Hard&Soft Intervention: We examined DeepITE under varying ratios of hard
and soft interventions, where soft interventions were modeled by modifying the linear structural
equations of the intervention targets to quadratic forms. Figure 2(c) shows DeepITE’s adaptability
to these mixtures, confirming its effectiveness in handling both types of interventions with only
minimal performance loss. (v) Samples: Figure 2(d) illustrates the performance of DeepITE with
variations in sample size. Our results show that DeepITE exhibits robustness with performance
generally improving as the sample size increases. In contrast, traditional ITE methods [3, 6, 10]
typically require thousands of samples for a single graph and intervention set to perform well. This
resilience can be attributed to the collaborative learning framework of DeepITE and the relatively few
parameters in the GNN-based encoder and decoder. (vi) Amortization: The performance of DeepITE
as more graphs with different sizes are trained together, is detailed in Figure 2(e). Our findings
indicate a minimal gradual degradation in the performance of DeepITE (mix) as we incorporate more
graphs of varying sizes, attributed to the amortization error. Moreover, Table 1 shows that DeepITE
(mix) even outperforms DeepITE (sep) training exclusively on 100-node graphs in terms of Recall@1.
Based on this evidence, we maintain that the amortization process across graphs does not significantly
hinder the performance.

6.2 Runtime Analysis
We conducted a runtime analysis using four distinct datasets, with variable counts m ranging from 5
to 500, specifically m = [5, 10, 11, 20, 50, 100, 500]. For each value of m, we executed 10 trials on
a set of 1000 samples and reported the average runtime. To ensure a fair comparison, we focused
exclusively on the code pertinent to intervention identification. Timing commenced the moment the
algorithm received the dataset and accompanying causal graph, if applicable, and ceased immediately
upon delivery of the final results. This process ensured that our analysis exclusively measured the
performance of the algorithm’s core intervention-targeting functionality.

The runtime performance of the various methods, relative to graph size, is depicted in Appendix
Figure 3. From the analysis, we note that DeepITE’s runtime curve, represented in black, has the
gentlest slope, implying that it boasts the lowest time complexity among all the methods. Notably,
DeepITE secures the shortest runtime for graphs with more than 100 nodes. This heightened efficiency
is attributable to DeepITE’s inference process, which necessitates only a single pass through one
branch of the inference network. In contrast, UT-IGSP exhibits the highest time complexity as it
engages in an exponentially growing number of hypothesis tests to identify intervention targets. For
instance, when handling graphs with m = 500 nodes, UT-IGSP requires nearly an hour to complete
a single run.

7 Conclusion
In this paper, we presented DeepITE, a novel VGAE for ITE. By carefully design the VGAE
based on GNNs, DeepITE allows collaborative learning and amortized inference across data with
a range of intervention targets and causal graphs. The model adeptly supports both self-supervised
and semi-supervised learning modalities, effectively harnessing labeled data to refine ITE. Our
comprehensive results demonstrate that DeepITE can be seamlessly adapted to a multitude of
domains, accommodating diverse causal graph configurations while exhibiting superior performance
in terms of both Recall@k metrics and computational efficiency.
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Table 3: Notations and their meanings.

Notation SIZE Meaning
G causal graph
A m×m the asymmetric adjacency matrix of observational DAG
x m× 1 endogenous variables
u m× 1 exogenous variables

An(i) the ancestor nodes of node i

uAn∗(i) exogenous variables of the ancestor nodes of node i

do(xi = xi) do-operation
I set of the intervened nodes
AI m×m the adjacency matrix of interventional DAG
1 m× 1 a column vector of all ones
⊙ Hadamard product
q(·) variational q-distribution
p(·) variational p-distribution
N normal distribution

Bern Bernoulli distribution
Lognormal log-normal distribution

u m× 1 latent variables for normal distribution
γ m× 1 latent variables for Bernoulli distribution
ϵ 1× 1 global observation noise
ζ 1× 1 inverse variance of the noise
µi 1× 1 mean of normal distribution of node i

σ2
i 1× 1 variance of normal distribution of node i

π 1× 1 probaility of taking one in a Bernoulli distribution
µζ m× 1 mean of log-normal distribution
σ2
ζ m× 1 variance of log-normal distribution

µi(x,A) 1× 1 mean of the estimated normal distribution of node i

σ2
i (x,A) 1× 1 variance of the estimated Normal distribution of node i

ωi(x,A) 1× 1 estimated probaility of taking one in a Bernoulli distribution of node i

µζ(x,A) 1× 1 mean of the estimated log-normal distribution
σ2
ζ (x,A) 1× 1 variance of the estimated log-normal distribution

p(x,u,γ, ζ|A) the proposed gernerative model
q(u,γ, ζ|x,A) the proposed inference model

Eq expectation over the q-distribution
Hq entropy of the q-distribution
L the evidence lower bound (ELBO)

DKL

(
q||p) KL divergence between distributions q and p

Dec(u,γ,A) the proposed decoder

A Notations

See Table 3.

B More on Related Works

Causal Explanations: We also briefly review causal explanations as they are related to ITE. AI
explainability endeavors to demystify model decisions, a pursuit encompassing feature attribution and
contrastive explanations. Feature attribution methods initially focused on associations, revealing how
input features correlate with predictions [24]. Moving beyond mere correlations, recent approaches
integrate causality to enhance interpretability: CXPlain [32] employs supervised learning to discern
the causal impact of features on model predictions, though computational demands escalate with
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the need for repeated model evaluations. Generative Causal Explanations (GCE) [33] introduce
disentangled latent factors to isolate causal effects, yet ensuring these factors accurately reflect the
data distribution is complex. Asymmetric Shapley Value (ASV) [25], Shapley Flows [26], and
PWSHAP [27] further this trend by considering the causal graphs, with the former adapting Shapley
values to reflect causal structures and the latter two focusing on the causal relationships signified by
the graph’s edges and paths. On the other hand, Contrastive explanations, illustrated by Counterfactual
Explanations (CE) [34] and Causal Algorithmic Recourse (CAR) [35, 36], offer a counterfactual
narrative on how slight modifications or specific interventions could lead to different, often more
favorable outcomes. Specifically, CE suggests minimal feature changes for an alternate outcome,
teaching individuals how to achieve a different result. Their application must navigate constraints
of plausibility and actionability to avoid recommending impractical changes. CAR extends CEs
by proposing interventions grounded in causal relationships, aiming to recalibrate outcomes with
consideration of the cost and effect of actions.

These causal explanation methods intersect with ITE. They can serve as a foundation for ITE by
treating the most influential factors as potential intervention targets. Conversely, ITE can reciprocate
by informing causal explanations since it pinpoints the very intervention targets that are the roots of
observed outcomes.

Root Cause Analysis: Lastly, graph-based RCA methods warrant discussion, due to the intertwined
nature of root causes and intervention targets. These methods usually operate in two distinct
stages. Initially, the graph structure is established either via causal discovery algorithms such as
the PC algorithm [28, 37, 38, 39, 40, 41, 42, 43], Granger causality [44] and DAG-GNN [31], or
it is derived from domain-specific knowledge like topology graphs [45, 46, 29, 47, 48, 49, 30].
The second stage then leverages algorithms such as PageRank [46, 31], breadth-first or depth-
first search [28, 37, 38, 29], and random walk [50, 40, 41, 42, 43, 30] for root cause localization
within the graph. Despite their utility, the second stage tends to focus on association rather than
causation, assigning a higher correlation to the connections between a node and its parents over those
between the node and its children to consider the directionality in the causal graph. In contrast, as
highlighted in the preceding sections, CI-RCA [4] emphasizes causation, utilizing linear regression-
based hypothesis testing to pinpoint intervention targets. As an alternative, RCD [9] incorporates the
Ψ-PC algorithm in a hierarchical fashion, intertwining the learning of intervention targets with graph
structure discovery. These approaches not only improve root cause identification but also harmonize
with ITE goals, fostering a causally informed analysis in RCA. However, as noted earlier, these
methods lack collaborative learning and are fully unsupervised, necessitating complete inference for
each RCA instance from scratch and failing to utilize labeling information.

C Proof of Proposition 1

According to the Neumann power series for the matrix inverse, we can obtain:

(I −AT )−1 =

∞∑
k=0

(Ak)T , (15)

where Ak denotes the k-th power of the matrix A, which involves multiplying the matrix A by itself
k times. In the above expression, entry (i, j) in the k-th power of A can be elaborated as:

(Ak)ij =
∑

w1,...,wk−1

Ai,w1
Aw1,w2

. . .Awk−1,j

=
∑

pathk(i, j), (16)

where the sum encapsulates all paths (i, w1, w2, . . . , wk−1, j) from i to j with length k. In directed
graphs, these paths must observe edge directionality. Consequently, for DAGs, the matrix Ak

becomes a zero matrix when k surpasses the graph diameter δ, as no paths of length k exist between
any two nodes within such graphs. Substitute (15) into (5), and the GNN layer is recast as:

x = f2

( ∞∑
k=0

(Ak)T f1(u)
)
. (17)

By multiplying (Ak)T with f1(u) as in (17), node i can receive information from its ancestors that
have a path of length k connecting to i. As k goes from 0 to ∞, node i accrues information from the
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input features of its own and all its ancestors. On the other hand, paths only exist between node i and
one of its ancestors. Conversely, such paths are non-existent between node i and non-ancestral nodes;
hence, node i exclusively assimilates inputs from its ancestors, thereby concluding the proof.

D Proof of Proposition 2

In consideration of Proposition 1 and given the decoder in Eq. (5), it is evident that xi is a function
solely of uAn∗(i) for all indices i. Consequently, the probability distribution p(x|u,A) can be
factorized into:

p(x|u,A) =
∏
i

p(xi|uAn∗(i)), (18)

which logically concludes the proof.

E Proof of Proposition 3

The essence of a causal intervention lies in severing all the incoming edges to the intervened nodes.
Therefore, the decoder stipulated in Eq. (5) can faithfully represent causal interventions only if it
encompasses all possible causal pathways; otherwise, severing certain pathways would exert no
influence on the resulting intervention configuration. The decoder in Eq. (5) does indeed model all
causally relevant paths, as corroborated by Proposition 1, thereby completing the proof.

F Derivation of the ELBO

Recall that the generative model (i.e., the p distribution) can be factorized as:

p(x,u,γ, ζ|A) = p(x|u,γ,A, ζ)p(ζ)

m∏
i=1

p(ui)p(γi), (19)

where
p(ui) = N (0, 1), ∀i, (20)
p(γi) = Bern(π), ∀i, (21)
p(ζ) ∝ 1/ζ, (22)

p(x|u,γ,A, ζ) = N
(
Dec(u,γ,A), ζ−1I

)
. (23)

, and the inference model (i.e., the q distribution) can be factorized as:

q(u,γ, ζ|x,A) = q(ζ|x,A)

m∏
i=1

q(ui|x,A)q(γi|x,A), (24)

where
q(ui|x,A) = N

(
µi(x,A), σ2

i (x,A)
)
, (25)

q(γi|x,A) = Bern
(
ωi(x,A)

)
, (26)

q(ζ|x,A) = Lognormal
(
µζ(x,A), σ2

ζ (x,A)
)
. (27)

Note that the parameters of the above q distributions are explicit functions of the given sample of
the endogenous variables x and the adjacency matrix A, which is parameterized by the GAT-based
inference network. By substituting the p (19) and q distributions (24) into the ELBO (14), we can
obtain:

L =Eq

[
log p(x|u,γ,A, ζ) + log p(ζ) +

m∑
i=1

(
log p(ui) + log p(γi)

)]
+Hq,

=Eq

[
log p(x|u,γ,A, ζ) + log p(ζ)− log q(ζ|x,A)+

m∑
i=1

(
log p(ui)− log q(ui|x,A) + log p(γi)− log q(γi|x,A)

)]
,

=Eq

[
log p(x|u,γ,A, ζ)

]
−DKL

(
q(ζ|x,A)∥p(ζ)

)
−
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m∑
i=1

(
DKL

(
q(ui|x,A)∥p(ui)

)
+DKL

(
q(γi|x,A)∥p(γi)

))
, (28)

where DKL denotes the KL (Kullback-Leibler) divergence between two distributions. We now delve
into the expectation term in the above expression, which is given by:

Eq

[
log p(x|u,γ,A, ζ)

]
=

m

2
⟨log ζ⟩ − 1

2
⟨ζ⟩⟨(x−Dec(u,γ,A))T (x−Dec(u,γ,A))⟩,

=
m

2
µζ(x,A)− 1

2
exp

(
µζ(x,A) +

σ2
ζ (x,A)

2

)
·

⟨(x−Dec(u,γ,A))T (x−Dec(u,γ,A))⟩. (29)
The remaining three KL divergence terms can be written as:

DKL

(
q(ζ|x,A)∥p(ζ)

)
= − 1

2
log σ2

ζ (x,A), (30)

DKL

(
q(ui|x,A)∥p(ui)

)
=

1

2

(
µ2
i (x,A) + σ2

i (x,A)− log σ2
i (x,A)

)
, (31)

DKL

(
q(γi|x,A)∥p(γi)

)
=ωi(x,A) logit(ωi(x,A))− ωi(x,A) logit(π)

+ log(1− ωi(x,A))− log(1− π). (32)

Algorithm 1 DeepITE Semi-supervised Training Algorithm

Require: Causal graph G, adjacency matrix A, endogenous variables x{1:m}, labels of intervention targets
γ

{1:m}
true if available.

Ensure: Parameters of the inference network ϕ, parameters of the generative network θ;
1: Initialize ϕ, θ randomly;
2: repeat
3: Pass x{1:m} and A through the inference network to get the parameters for q(u|x{1:m},A),

q(γ|x{1:m},A), q(ζ|x{1:m},A);
4: Draw samples from the Normal distribution q(u|x{1:m},A);
5: Draw samples from the Bernoulli distribution q(γ|x{1:m},A) using the gumbel-softmax reparameteri-

zation trick;
6: Draw samples from the Log Normal distribution q(ζ|x{1:m},A);
7: x̂{1:m} ← Dec(u{1:m},γ{1:m}, ζ,A)

8: if γ
{1:m}
true is available then

9: Compute the negative ELBO (28) and the maximum log likelihood of γ{1:m}
true ;

10: else
11: Compute the negative ELBO (28);
12: end if
13: Update ϕ, θ via gradient descent;
14: until convergence
15: return ϕ, θ

G Experiment Details

G.1 Experiment Setup

Unless otherwise specified, in all of our experiments for DeepITE, we set the hidden dimension in
GAT and MLP to 64. For optimization, we used NAdam [52] with a learning rate 1 × 10−4. We
conducted training for 1000 epochs and select the checkpoints with the lowest training loss. The
temperature t for gumbel-softmax [23] is calculated by t = 101− 0.2e when epoch e <= 500 and
t = 0.5/(e− 500) for epoch e > 500. All the training runs on 4 NVIDIA TESLA P100 GPUs with
50GB of VRAM. All the inference runs on a MacBook Pro 16 inch with a 6-core Intel i7 CPU and
16 GB of RAM.

The key assumptions and characteristics of the comparative methods, as well as the time complexity
in the inference process, are summarized in the table 4 and table 5 To facilitate a fair comparison,
all methods (including ITE, RCA, and XAI) are provided with the same ground truth causal graph,

18



Table 4: Key assumptions and characteristics of comparing methods. Here, m and n denote the number of
nodes and edges in the DAG, p∆ is the number of intervention targets given by the precision different estimation
algorithm, and finally, T , L, and D represent the number of trees, the depth of the trees, and the number of leaf
nodes in the gradient-boosted trees.

METHOD CAUSAL GRAPH REFERENCE SET INTERVENTION CONFOUNDER AMORTIZATION GRAPH SIZE TIME COMPLEXITY
DeepITE Given No Soft&Hard No Yes < 1000 O(m+ n)

UT-IGSP Unknown Require Soft No No < 100 O(2m−1)

CITE Given Require Soft No No < 100 O (2p∆)

PreDITEr Given Require Soft No Yes < 100 O (2p∆)

LIT Unknown Require Soft No Yes < 100 O(m2)

CauseInfer Given No Hard No Yes < 1000 O(m2)

MicroHECL Given No Hard No Yes < 1000 O(m2)

MicroRCA Given No Hard No Yes < 1000 O(m2) +O(m+ n)

CausalRCA Given No Hard No Yes < 1000 O(m2)

CI-RCA Given No Hard No Yes < 1000 O(m2)

RCD Given No Hard No Yes < 1000 O(m3)

TreeExplainer Unknown No Soft No No < 100 O
(
TLD2

)
ASV Given No Soft No No < 100 O(m3)

ShapleyFlow Given No Soft No No < 100 O(m3)

PWSHAP Given No Soft Yes No < 100 O(m3)

Table 5: Time Complexity during Inference. Here, m and n denote the number of nodes and edges in the DAG,
p∆ is the number of intervention targets given by the precision different estimation algorithm, and finally, T , L,
and D represent the number of trees, the depth of the trees, and the number of leaf nodes in the gradient-boosted
trees.

METHOD TIME COMPLEXITY
UT-IGSP [10] O(2m−1)

CITE [3] O (2p∆)

PreDITEr [6] O (2p∆)

CauseInfer [28] O(m2)

MicroHECL [29] O(m2)

MicroRCA [30] O(m2) +O(m+ n)

CausalRCA [31] O(m2)

CI-RCA [4] O(m2)

RCD [9] O(m3)

TreeExplainer [51] O
(
TLD2

)
ASV [25] O(m3)

ShapleyFlow [26] O(m3)

PWSHAP [27] O(m3)

DeepITE O(m+ n)

eschewing the need for graph construction from data for some RCA methods. Within the realm of
XAI, constructing a forward predictive model is a prerequisite for backward attribution analysis—the
process used to identify the intervention targets. To facilitate this, we construct a predictive model
using gradient-boosted trees. This forward model is trained to predict whether the graph is intervened
based on the full set of node features x, in a supervised manner. During inference, we extract the
intervention targets by identifying the top k nodes that yield the highest attribution scores.

G.2 Synthetic Data Generation

The generation process begins by creating a random adjacency matrix A, which is structured to be
upper-triangular to ensure the resulting DAG is indeed acyclic. The matrix’s non-zero entries are
uniformly distributed across the range [−2,−0.5] ∪ [0.5, 2], representing the possible strengths of
causal relationships between nodes. For each node within the DAG, time series data are synthesized
according to a model that captures causal dependencies, as inspired by the linear decoder equation:
x(t) = (I −AT )−1(u(t) + βx(t− 1)), where t indicates the discrete time steps, and β denotes the
autoregressive coefficient, influencing the temporal consistency of the data.

Interventions are then introduced in the time series at time t, with the set of intervention nodes I
being randomly selected from all non-root nodes, and the size of I adhering to a Poisson distribution.
For nodes within I, we augment the corresponding exogenous noise, adhering to the three-sigma
rule for significant deviation. Each generated time series spans 1000 time steps, with interventions
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Table 6: Recall@k of different algorithms for detecting the intervened nodes from the Synthetic dataset following
the classical ITE setting.

DATASET Linear-10 Linear-20 Nonlinear-10 Nonlinear-20
METRICS Recall@1 Recall@3 Recall@1 Recall@3 Recall@1 Recall@3 Recall@1 Recall@3
UT-IGSP 0.921 ± 0.009 0.972 ± 0.005 0.917 ± 0.007 0.956 ± 0.005 0.933 ± 0.008 0.989 ± 0.004 0.927 ± 0.005 0.972 ± 0.004

CITE 0.939 ± 0.007 0.989 ± 0.003 0.933 ± 0.009 0.961 ± 0.004 0.789 ± 0.011 0.956 ± 0.006 0.733 ± 0.010 0.883 ± 0.005
PreDITEr 0.944 ± 0.006 0.989 ± 0.003 0.933 ± 0.008 0.967 ± 0.006 0.694 ± 0.005 0.861 ± 0.004 0.561 ± 0.004 0.822 ± 0.003

TreeExplainer 0.764 ± 0.015 0.897 ± 0.020 0.551 ± 0.010 0.809 ± 0.018 0.765 ± 0.015 0.909 ± 0.021 0.539 ± 0.010 0.773 ± 0.017
ASV 0.751 ± 0.014 0.821 ± 0.019 0.629 ± 0.011 0.782 ± 0.017 0.679 ± 0.014 0.737 ± 0.018 0.510 ± 0.010 0.554 ± 0.016

ShapleyFlow 0.858 ± 0.017 0.928 ± 0.022 0.817 ± 0.012 0.858 ± 0.019 0.841 ± 0.016 0.919 ± 0.023 0.811 ± 0.011 0.870 ± 0.020
PWSHAP 0.784 ± 0.016 0.892 ± 0.021 0.650 ± 0.011 0.815 ± 0.018 0.776 ± 0.014 0.895 ± 0.015 0.647 ± 0.010 0.781 ± 0.014
CauseInfer 0.869 ± 0.001 0.935 ± 0.001 0.430 ± 0.003 0.615 ± 0.003 0.720 ± 0.002 0.819 ± 0.001 0.561 ± 0.004 0.692 ± 0.003

MicroHECL 0.407 ± 0.011 0.624 ± 0.012 0.387 ± 0.014 0.485 ± 0.019 0.420 ± 0.012 0.660 ± 0.015 0.411 ± 0.017 0.536 ± 0.022
MicroRCA 0.759 ± 0.002 0.890 ± 0.001 0.730 ± 0.003 0.846 ± 0.002 0.398 ± 0.002 0.527 ± 0.002 0.175 ± 0.002 0.233 ± 0.002
CausalRCA 0.820 ± 0.003 0.885 ± 0.002 0.705 ± 0.002 0.841 ± 0.001 0.729 ± 0.003 0.805 ± 0.003 0.545 ± 0.002 0.608 ± 0.001

CI-RCA 0.865 ± 0.002 0.941 ± 0.001 0.734 ± 0.003 0.923 ± 0.003 0.821 ± 0.003 0.896 ± 0.002 0.616 ± 0.002 0.683 ± 0.002
RCD 0.803 ± 0.004 0.871 ± 0.005 0.695 ± 0.005 0.837 ± 0.007 0.713 ± 0.005 0.801 ± 0.006 0.540 ± 0.006 0.597 ± 0.006

DeepITE 0.999 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.998 ± 0.001 1.000 ± 0.000 0.999 ± 0.000 0.999 ± 0.000

occurring randomly between time steps 100 and 900. Data preceding the intervention time t are
labeled as observational, while data from t onwards are categorized as interventional. We explore
causal graphs of varying complexity, with 50, 100, and 500 nodes, and associated edge counts of 100,
500, and 5000, respectively. To ensure a comprehensive assessment, 10 unique graphs are generated
for each size, and for each graph, we create 100 distinct instances with varying intervention targets.
The dataset is partitioned with an 85:5:10 ratio for training, validation, and testing.

G.3 Synthetic Data under the Classical ITE Setting

For an equitable evaluation with existing ITE approaches, we further devise experiments on synthet-
ically generated datasets tailored to classical ITE configurations, using dataset generation scripts
from VACA [21]. Our setup included two linear and two non-linear SCMs. Initially, we generate
10,000 observational samples from each SCM. Subsequently, we perform ten distinct interventions on
randomly selected variables, mimicking the procedures followed by ITE methods. Each intervention
resulted in the creation of 1,000 samples. Throughout these interventions, we maintain the SCMs’
modularity and provid the causal graph with the data. We divide the dataset into training, validation,
and testing batches with an 85:5:10 ratio, respectively.

Table 6 reveals that DeepITE consistently surpasses competing methods in performance. Notably,
traditional ITE approaches like UT-IGSP, CITE, and PreDITEr benefit significantly from an adequate
pool of observational samples on small-scale graphs, reflecting a marked improvement in their
effectiveness. Similarly, XAI techniques—ShapleyFlow in particular—demonstrate commendable
performance, proving to be well-adapted for smaller graphs where their capabilities can be fully
leveraged. Conversely, RCA methods exhibit weaker results, a trend that may be linked to their
design inclination towards larger-scale graphs. These larger configurations are often seen in complex
environments such as microservice diagnosis, suggesting that RCA methods’ strengths are not fully
utilized in smaller or less complex scenarios highlighted in this comparison.

Furthermore, it is evident that models based on the premise of linear SCMs, such as CITE, PreDITEr,
and CI-RCA, tend to underperform in settings that demand an understanding of non-linear dynam-
ics. In contrast, DeepITE, which utilizes learnable SCMs, demonstrates impressive versatility by
effectively addressing both linear and non-linear scenarios.

G.4 Real Data Description

Protein Signaling Dataset: The well-known protein signaling dataset, which originates from
Sachs et al. [53], investigates the complex interactions within T-4 cell signaling networks. The dataset
comprises 11 nodes and 16 edges, with a collection of 1755 observational and 4091 interventional
samples derived from five different experimental environments where various drugs were used to
modulate signaling proteins. We harness an accepted ground truth network structure in [54], and the
preprocessing steps outlined in [10], to benchmark DeepITE’s performance with other models. The
dataset is partitioned with an 85:5:10 ratio for training, validation, and testing.
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Table 7: Impact of Labeled Data on DeepITE (mix) for the Synthetic Dataset. The proportion of labeled data is
shown in the brackets.

DATASET HeterITE-50 HeterITE-100 HeterITE-500
METRICS Recall@1 Recall@5 Recall@1 Recall@5 Recall@1 Recall@5

DeepITE (0%) 0.718 ± 0.004 0.945 ± 0.001 0.690 ± 0.004 0.923 ± 0.002 0.627 ± 0.004 0.875 ± 0.002
DeepITE (5%) 0.820 ± 0.002 0.986 ± 0.002 0.731 ± 0.003 0.960 ± 0.001 0.667 ± 0.003 0.922 ± 0.002

DeepITE (10%) 0.821 ± 0.002 0.991 ± 0.001 0.728 ± 0.003 0.944 ± 0.003 0.674 ± 0.003 0.925 ± 0.002
DeepITE (25%) 0.829 ± 0.002 0.995 ± 0.001 0.737 ± 0.002 0.982 ± 0.001 0.672 ± 0.004 0.954 ± 0.001
DeepITE (50%) 0.856 ± 0.002 0.998 ± 0.000 0.750 ± 0.003 0.996 ± 0.001 0.678 ± 0.003 0.952 ± 0.002
DeepITE (75%) 0.873 ± 0.001 1.000 ± 0.000 0.762 ± 0.003 0.998 ± 0.000 0.699 ± 0.004 0.966 ± 0.002

DeepITE (100%) 0.869 ± 0.002 0.999 ± 0.001 0.773 ± 0.002 0.998 ± 0.001 0.697 ± 0.002 0.966 ± 0.001

Table 8: Impact of Labeled Data on DeepITE for the two Real Datasets. The proportion of labeled data is shown
in the brackets.

DATASET Protein Signaling ICASSP-SPGC 2022
METRICS Recall@1 Recall@1 Recall@5 Root.Acc Score

DeepITE (0%) 0.652 ± 0.004 0.881 ± 0.002 0.984 ± 0.001 0.9794 ± 0.0054 0.9085 ± 0.0101
DeepITE (5%) 0.842 ± 0.002 0.906 ± 0.001 0.994 ± 0.001 0.9964 ± 0.0023 0.9524 ± 0.0040

DeepITE (10%) 0.850 ± 0.003 0.920 ± 0.001 0.994 ± 0.001 0.9964 ± 0.0000 0.9524 ± 0.0000
DeepITE (25%) 0.849 ± 0.002 0.922 ± 0.001 0.994 ± 0.000 0.9964 ± 0.0000 0.9524 ± 0.0000
DeepITE (50%) 0.868 ± 0.002 0.925 ± 0.000 0.995 ± 0.000 0.9964 ± 0.0000 0.9524 ± 0.0000
DeepITE (75%) 0.863 ± 0.002 0.924 ± 0.001 0.995 ± 0.000 0.9964 ± 0.0000 0.9524 ± 0.0000
DeepITE (100%) 0.872 ± 0.001 0.925 ± 0.000 0.995 ± 0.000 0.9964 ± 0.0000 0.9524 ± 0.0000

ICASSP-SPGC 20225: The ICASSP-SPGC 2022 dataset [55], derived from active 5G networks, is
a real-world telecommunications dataset for RCA comprising 2984 samples and 23 variables that
represent various Key Performance Indicators (KPIs). Human experts have verified the accompanying
causal graph, yet only around 45% of the data are explicitly labeled with root cause faults. Unlike the
previously mentioned dataset, where interventions are directly known from labels, the root causes
here are represented by unobserved variables outside the causal graph. However, experts provide a
mapping of each root cause to observable causal variables. During training with labeled data, we
treat these associated variables as if they had been intervened upon. Additionally, 600 extra samples
are provided for testing purposes.

G.5 Semi-Supervised Learning

In this section, we delve into the influence of labeled data on the efficacy of DeepITE, with our
findings summarized in Tables 7-8. Across all datasets under consideration, it is clear that the
incorporation of labeled data yields a substantial enhancement in DeepITE’s performance, with
improvements in Recall@1 ranging between 4% to 20%, depending on the dataset. Notably, the
most pronounced gains are observed when the initial 5% to 10% of labeled data are integrated, with
the rate of improvement tapering off beyond this point. This suggests that even a modest quantity
of labeled data can lead to significant performance boosts, a fact that bears particular relevance in
practical scenarios where acquiring a limited amount of labeled data is typically feasible and can
offer considerable benefits to DeepITE. Conversely, the other baseline methods in our study do not
possess the capability to leverage such labeling information to their advantage.

G.6 Ablation Study

The ablation study of DeepITE, in comparison to VACA and DAG-GNN, is presented in Table 9.
In Section 5.2, we have delved into the relationships between DeepITE, DAG-GNN, and VACA.
We highlighted the limitations of DAG-GNN’s inference model and VACA’s generative model and
illustrated how DeepITE overcomes these shortcomings. DAG-GNN utilizes an inference model
represented as u = f4((I −AT )f3(x)), which has constraints as it can only gather messages from a
node’s parents. On the other hand, DeepITE’s inference model is crafted to aggregate messages from
all nodes within the Markov blanket of a given node, ensuring a more flexible inference model tailored

5https://www.aiops.sribd.cn/home/statement
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Table 9: Ablation study

MMD(Obs) MMD(Int) SSE

Graph-50

VACA 3.90 ± 0.17 59.3 ± 5.3 3742.46 ± 495.35
DAG-GNN 4.47 ± 0.26 67.80 ± 7.14 4525.58 ± 539.04

DeepITE (VACA Decoder) 1.93 ± 0.38 10.78 ± 2.99 2534.70 ± 105.22
DeepITE (DAG-GNN Encoder) 2.58 ± 0.40 32.80 ± 7.89 3177.97 ± 189.61

DeepITE 0.12 ± 0.075 0.76 ± 0.051 415.66 ± 26.92

Graph-100

VACA 4.58 ± 0.26 70.89 ± 4.14 4333.90 ± 584.71
DAG-GNN 5.41 ± 0.30 89.71 ± 6.33 5410.52 ± 656.23

DeepITE (VACA Decoder) 2.14 ± 0.15 14.7 ± 1.53 2967.47 ± 151.69
DeepITE (DAG-GNN Encoder) 3.13 ± 0.29 73.92 ± 5.96 3651.14 ± 245.47

DeepITE 0.19 ± 0.073 0.96 ± 0.066 490.06 ± 37.15

Graph-500

VACA 5.36 ± 0.54 116.30 ± 2.59 6846.90 ± 795.12
DAG-GNN 7.39 ± 0.46 154.96 ± 3.63 7511.26 ± 916.93

DeepITE (VACA Decoder) 3.48 ± 0.16 31.89 ± 5.08 4391.59 ± 340.15
DeepITE (DAG-GNN Encoder) 4.61 ± 0.22 48.60 ± 8.20 5316.33 ± 454.54

DeepITE 1.08 ± 0.045 5.16 ± 0.65 731.17 ± 75.32

for ITE tasks. VACA employs a generative model with a minimum requirement of δ − 1 MPNN
layers, where δ represents the graph diameter. This limitation restricts the propagation distance
of information within the graph, hindering its performance in estimating distributions over large
graphs. DeepITE distinguishes itself by employing the generative model, specified in Eq. (7), thereby
overcomes the limitations imposed by VACA’s dependence on graph diameter.

To demonstrate the superiority of DeepITE’s generative and inference models, we devised two
ablation designs by seperately modifying DeepITE’s encoder layers to DAG-GNN’s encoder and
DeepITE’s decoder layers to VACA’s decoder. These settings were compared alongside VACA
and DAG-GNN. Based on the synthetic data in Appendix G.2, we combined the observational and
interventional data and fed them into the model along with the adjacency matrix A for observational
data, which is exactly how ITE works. Since VACA and DAG-GNN do not directly output ITE
results, we utilized Maximum Mean Discrepancy (MMD) and the standard deviation of the squared
error (SSE) between the true and estimated values for our evalutaion, providing another dimension to
gauge their effectiveness in estimating ITE. MMD was calculated separately for observational and
interventional data, even though this information was unknown to the models.

The results, as shown in Table 9, revealed DeepITE outperforming the other models, validating
the excellence of DeepITE’s generative and inference models. Due to its relatively inflexible
model design, DAG-GNN struggles to effectively reconstruct the biases associated with intervention
points. The constraint of minimal number decoder layers limits VACA’s capability in capturing
long-range dependencies and interactions within the graph structure, leading to a significant decrease
in its performance as the number of graph nodes increase. Although the ablation methods showed
suboptimal performance, the flexibility introduced by the ITE indicator γ enabled them to outperform
the origin VACA and DAG-GNN. This underscores the adaptability of our approach for ITE tasks
despite its limitations in certain scenarios.

G.7 Case Study

To address the challenges of root cause analysis in complex systems with interconnected variables, we
conducted a case study on the real-world dataset ICASSP-SPGC 2022, evaluating the performance of
DeepITE in comparison to other methods. The groundtruth causal graph is provided in [55]. Recall
that we focus on the RCA problem and we aim to identify and present the root causes of the system
to users. Note that while we have labels for the root causes in our testing data, we only possess
observations for the observable variables represented in the graph. Consequently, all methodologies
employed can only localize observable variables as intervention targets (ITs), rather than directly
identifying the root causes. For instance, RootCause 2 (a weak signal in marginal areas) can influence
feature19, feature X, and feature Y. However, RootCause 3 also affects feature X. As a result, when
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Table 10: Case study on three different samples (1758, 1760, and 1093) from the real-world dataset ICASSP-
SPGC 2022. ITE Top-k represents the k identified features. The root causes are then inferred from these k
features. The ground truths for these samples are rootcause2, rootcause3, and rootcause2&rootcause3.

SAMPLE 1758 SAMPLE 1760 SAMPLE 1093
ITE Top-1 ROOT CAUSE ITE Top-1 ROOT CAUSE ITE Top-2 ROOT CAUSE

CauseInfer FeatureY Unspecified FeatureY Unspecified Feature2&FeatureX Unspecified
MicroHECL FeatureX Unspecified FeatureY Unspecified FeatureX&Feature60 RootCause3
MicroRCA FeatureY Unspecified FeatureY Unspecified FeatureX&Feature60 RootCause3
CausalRCA FeatureY Unspecified FeatureX Unspecified FeatureY&FeatureX Unspecified

CI-RCA FeatureY Unspecified FeatureX Unspecified FeatureX&Feature60 RootCause3
RCD FeatureY Unspecified FeatureX Unspecified FeatureY&FeatureX Unspecified

TreeExplainer FeatureX Unspecified Feature1 Unspecified FeatureX&Feature1 Unspecified
ASV FeatureY Unspecified FeatureX Unspecified FeatureY&FeatureX Unspecified

ShapleyFlow FeatureY Unspecified Feature17 Unspecified FeatureY&FeatureX Unspecified
PWSHAP FeatureY Unspecified FeatureX Unspecified FeatureX&Feature2 Unspecified
DeepITE Feature19 RootCause2 Feature60 RootCause3 Feature60&Feature19 RootCause2&RootCause3
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Figure 3: Runtime Analysis.

a given method identifies either feature X as an IT, it becomes challenging to ascertain whether
RootCause 2 is indeed the true root cause.

Interestingly, DeepITE demonstrates superior performance on this dataset by effectively identifying
features exclusive to a specific root cause. We evaluated the performance of all methods on samples
1758, 1760, and 1093, and summarized the results in Table 10. For sample 1758, where the true
root cause is RootCause 2, DeepITE identifies feature19 as the IT, thus it is evident that RootCause2
should be the root cause. In contrast, other methods identify either feature X or feature Y, making it
difficult to pinpoint the true root cause. Similarly, for sample 1760, DeepITE identifies feature60 as
the IT, which is also exclusive to the true root cause, RootCause 3. On the other hand, in the case
of sample 1093, DeepITE selects both feature60 and feature19, enabling us to conclude that both
RootCause 2 and RootCause 3 are relevant root causes, a finding that aligns with the ground truth.

H Limitations

One limitation of the DeepITE framework is its applicability restricted to cases with fully observed
causal graphs, presuming the absence of confounders. Real-world scenarios may involve confounding,
where relationships between observed variables are influenced by latent variables. Addressing this
challenge—how to effectively handle confounding in the presence of unobserved factors—represents
a compelling avenue for future research. Additionally, DeepITE presupposes the availability of a
pre-specified graph structure. While causal discovery techniques can be applied to ascertain the graph
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configuration when it is not known, the joint pursuit of determining both the graph structure and
the intervention targets simultaneously offers a tantalizing challenge for future exploration. Finally,
proving the consistency and identifiability of DeepITE, and more broadly in the application of VGAEs
for ITE, remains an interesting avenue for future work. Notably, such theoretical guarantees have
been established for VGAEs in the context of causal inference (both observational and interventional)
in [56].

24



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have outline our contributions and scopes in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to Appendix H

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

25



Justification: Please refer to Appendices C-E for the proofs of Propositions 1-3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have well explained the proposed method in Section 5 with necessary
derivations in Appendix F and further summarized the algorithm in Algorithm 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

26



Answer: [Yes]

Justification: Our source code is available at https://github.com/alipay/DeepITE

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please find the implementation details in Appendices G.1-G.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments report average results over 10 trials, with error bars represent-
ing a standard deviation (±1σ) from the mean.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

27

https://github.com/alipay/DeepITE
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As mentioned in Appendix G.1, all the training runs on 4 NVIDIA TESLA
P100 GPUs with 50GB of VRAM. All the inference runs on a MacBook Pro 16 inch with a
6-core Intel i7 CPU and 16 GB of RAM.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper aims to contribute to the advancement of intervention target
estimation, a fundamental research area not specific to any application. As such, we do not
anticipate any direct societal impact resulting from our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

28

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We will refrain from releasing any data or models with a high potential for
misuse, as our research does not involve pretrained language models, image generators, or
scraped datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all relevant papers.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

29



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our source code is available at https://github.com/alipay/DeepITE

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

30

paperswithcode.com/datasets
https://github.com/alipay/DeepITE


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31


	Introduction
	Related Works
	Preliminaries
	Problem Formulation
	DeepITE
	Generative Model
	Inference Model
	Self and Semi-Supervised Learning

	Experimental Results
	Ablation Study
	Runtime Analysis

	Conclusion
	Notations
	More on Related Works
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Derivation of the ELBO
	Experiment Details
	Experiment Setup
	Synthetic Data Generation
	Synthetic Data under the Classical ITE Setting
	Real Data Description
	Semi-Supervised Learning
	Ablation Study
	Case Study

	Limitations

