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ABSTRACT

Label distribution learning (LDL) is a novel learning paradigm that emulates label
polysemy by assigning label distributions over the label space. However, recent
LDL work seems to exhibit a notable contradiction: 1) some existing LDL meth-
ods employ auxiliary tasks to enhance performance, which narrows their focus to
specific domains, thereby lacking generalization capability; 2) conversely, LDL
methods without auxiliary tasks rely on losses tailored solely to label distributions
of the primary task, lacking additional supervised information to guide the learning
process. In this paper, we propose S-LDL, a novel and minimalist solution that
partitions the label distribution of the primary task into subtask label distributions,
i.e., a form of pseudo-supervised information, to reconcile the above contradiction.
S-LDL encompasses two key aspects: 1) an algorithm capable of generating sub-
tasks without any extra knowledge, with subtasks deemed valid and reconstructable
via our analysis; and 2) a plug-and-play framework seamlessly compatible with
existing LDL methods, and even adaptable to derivative tasks of LDL. Experiments
demonstrate that S-LDL is effective and efficient. To the best of our knowledge,
this represents the first endeavor to address LDL via subtasks. The code will soon
be available on GitHub to facilitate reproducible research.

1 INTRODUCTION

Multi-label learning (MLL) (Zhang and Zhou, 2013) handles label polysemy in a binary manner,
whereas label distribution learning (LDL) (Geng, 2016) offers a more nuanced perspective by
answering: “How much does each label y describe the instance x?”. This is accomplished through
the concept of a label distribution d, which is a form of probability simplex that assigns a real value
(i.e., description degree dyx) to each label of each instance. This form introduces a quantitative manner
to address label polysemy and extends LDL’s practical applications to a wider range, e.g., counting
(or grading) (Geng et al., 2013; Wu et al., 2019), sentiment analysis (Chen et al., 2020; Le et al.,
2023), segmentation (Gao et al., 2017; Li et al., 2023b), etc. Concurrently, more and more derivative
tasks of LDL (González et al., 2021b; Lu and Jia, 2022; Wang, Jing and Geng, Xin, 2019; Xu and
Zhou, 2017; Xu et al., 2019) are emerging to offer assistance in various real-world dilemmas.

However, LDL encounters a spectrum of challenges: 1) label distributions are bound by two con-
straints, non-negativity (i.e., dyx ≥ 0) and sum-to-one (i.e.,

∑
y∈Y d

y
x = 1), and are often formed

from mixture distributions, posing significant hurdles for fitting, particularly when employing a
maximum entropy model (Shen et al., 2017); 2) label distribution matrices are usually obtained
via crowdsourcing, which is time-consuming and labor-intensive, so one often copes with scarce
and low-quality datasets (Wang et al., 2023). These two key issues stand as formidable barriers to
performance improvement in LDL.

With the widespread use of multi-task learning, some LDL work tries to compensate for performance
from the perspective of auxiliary tasks, which are learned concurrently alongside the primary task,
thereby refining its representations and ultimately boosting performance. Unfortunately, though these
methods can exploit additional supervised information, they 1) do not address the first key issue
mentioned above; and 2) require extra knowledge (e.g., facial characteristics (Chen et al., 2020),
pathology criteria (Wu et al., 2019), emotion wheel theory in psychology (Yang et al., 2017a), etc.)
or similar domain-specific data (Zhao et al., 2023b), limiting their generalization capability to those
corresponding specific domains. Conversely, LDL methods that do not take advantage of auxiliary
tasks, despite their efforts in loss function engineering and network structure design, they 1) do not
address the second key issue mentioned above; and 2) focus solely on one aspect of label correlations
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(e.g., correlation of local instances (Jia et al., 2019), ranking relation (Jia et al., 2023), suboptimal
label (Wang, Jing and Geng, Xin, 2019), etc.), each with its own set of limitations.

The generalizability across various domains appears to conflict with the ability to exploit additional
data, so benefiting from both simultaneously seems elusive. However, we can still see the light
from some MLL methods, which partition the label space and apply operations on these subspaces
(Tsoumakas et al., 2008; 2010). These methods construct subtasks without involving extra knowl-
edge and exhibit applicability across various domains. Intuitively, in the context of LDL, reliable
supervised information can be generated from these subtasks, which can eventually be aggregated
and reconstructed to the information of the primary task via ensemble strategies. Although existing
label distribution ensemble practices demonstrate promising performance (González et al., 2021a;
Shen et al., 2017), they focus only on the supervised information of the primary task.

In this paper, we introduce S-LDL, a novel and minimalist label distribution learning algorithm that
constructs and exploits subtasks, to reconcile the contradiction between the generalizability across
various domains and the ability to exploit additional data. Serving as auxiliary tasks, subtasks 1)
provide different views of the primary task distribution, rendering the mixture of distributions more
traceable (i.e., the key issue one); 2) furnish additional supervised data to mitigate the scarcity and
ambiguity inherent in LDL datasets (i.e., the key issue two); 3) require no extra knowledge from
specific domains; and 4) emphasize various label correlations via partitioning of the label space.

The main contributions of this paper are outlined below: 1) we propose S-LDL, which is considered
the first endeavor to address LDL via subtasks; 2) our analysis shows the validity and reconstructability
of these subtasks; 3) we present a plug-and-play framework seamlessly compatible with existing LDL
methods, and adaptable to derivative tasks of LDL; and 4) the code will be available on GitHub soon,
facilitating reproducible research endeavors.

2 RELATED WORK

LDL Our work is mainly related to LDL. Initially employed to tackle age estimation (Geng et al.,
2013), LDL has evolved into a novel machine learning paradigm (Geng, 2016), which is supported
by theoretical underpinnings (Wang and Geng, 2019) and features various derivative tasks (González
et al., 2021b; Lu and Jia, 2022; Wang, Jing and Geng, Xin, 2019; Xu and Zhou, 2017; Xu et al., 2019).
Most methods focus on improving performance via loss function engineering (Jia et al., 2019; 2023;
Ren et al., 2019; Wen et al., 2023) or efficient model structures (González et al., 2021a; Jin et al.,
2024; Shen et al., 2017; Yang et al., 2017b), while some work is dedicated to practical application
scenarios (Gao et al., 2017; Li et al., 2023a; Shirani et al., 2019; Wu et al., 2019). However, the
scarcity of label distribution datasets and the complexity of the label distribution itself make it difficult
to further improve performance, at which point one may think of leveraging auxiliary tasks.

LDL with auxiliary tasks While there are LDL methods that leverage auxiliary tasks to enhance
performance, they often rely on knowledge from disparate domains, extending beyond the scope of
the LDL task. For example, LDL-ALSG (Chen et al., 2020) designs auxiliary tasks dedicated to facial
emotion recognition, necessitating the use of external tools to extract facial points and action units
from human faces. Wu et al. (2019) exploit the Hayashi criterion, a rule for counting and grading in
acne lesions, which results in their method being only applicable in a small branch of the dermatology
field. Yang et al. (2017a) employ a multi-task framework for image emotion classification, designing
constraints inspired by Mikel’s wheel, a psychological emotion model, which also suffers from
similar limitations. As LDL methods of transfer learning, GLDL (Zhao et al., 2023b) utilizes data
from one or more source domains, which is not easy to obtain in practical applications. The need for
specific extra knowledge significantly narrows the application scenarios of these methods.

MLL with partitioning of the label space For reference, there exist MLL methods based on
partitioning of the label space, which can construct multi-label subtasks without involving additional
knowledge and can be widely used in various domains. The most classic related work is that of
HOMER (Tsoumakas et al., 2008) and RAkEL (Tsoumakas et al., 2010), the former forms a hierarchy
of label subspaces while the latter randomly selects label subspaces. Many subsequent papers have
been inspired by them (Prabhu et al., 2018; Read et al., 2013; Wang et al., 2021). Read et al. (2014)
present a general framework of label subspaces and provide some theoretical justification for it. Since
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Table 1: Key notation and terminology in this paper
Symbol Description Example
Y = {yj}Lj=1 Label space (L labels) Y = {HA, SA, SU, AN, DI, FE}1

Y◦ Subtask label spaces {· · · , Y(t) = {HA, SA, SU, FE}, · · · }
d
yj
xi Description degree of xi about yj dy0xi

= 0.4, i.e., HA describes xi by 0.4
di = (d

yj
xi)

L
j=1 Label distribution of xi di = (0.4, 0.05, 0.3, 0.1, 0.1, 0.05)

D = (di)
N
i=1 = (d•j)

L
j=1 Distribution matrix (N samples) (· · · , di, · · · )

d
(t)
i = (d

(t)yj
xi )

|Y(t)|
j=1 Subtask label distribution d

(t)
i = (0.5, 0.0625, 0.375, 0.0625)

D◦ Subtask distribution matrices {· · · , D(t), · · · }
M = (mt)

T
t=1 = (Mtj) Mask matrix (T anticipated tasks) (· · · , mt = (1, 1, 1, 0, 0, 1), · · · )

label distribution contains rich knowledge, we can follow the patterns of these methods to construct
label distribution subtasks.

LDL with ensemble strategy It is imperative to aggregate the output of subtasks. Fortunately,
ensemble-based LDL methods have demonstrated promising performance. For instance, LDLFs
(Shen et al., 2017) learns different label distributions on the leaf nodes of differentiable decision
trees and learns weights that aggregate these label distributions. DF-LDL (González et al., 2021a)
aggregates the label distribution of output of multiple base models by simple averaging, while Zhai
et al. (2018) focus on aggregating the results of various neural networks via a combining learner.
However, 1) the above methods are not suitable for incomplete label spaces (i.e., subtask label
spaces); and 2) none of them involve the partitioning of the label space, therefore no extra supervised
information of label distributions is constructed.

Drawing from the analysis of the aforementioned related work, we introduce S-LDL, which leverages
pseudo-supervised information from subtasks to eliminate reliance on additional knowledge from
disparate domains, and facilitates the creation of a novel knowledge dimension in a generic framework.

3 SUBTASK CONSTRUCTION

3.1 PRELIMINARY

Notation Vectors are denoted by lowercase bold letters, e.g., v, and the corresponding regular letter
with subscript i, i.e., vi, indicates its i-th element. Matrices are denoted by uppercase bold letters,
e.g., A. The row vector ai indicates its i-th row and the column vector a•j indicates its j-th column.
Aij is the element in i-th row and j-th column of A. The superscript (t) indicates that a symbol
corresponds to the t-th subtask. Table 1 outlines the key notation in this paper.

Problem definition Let x ∈ RP denote the feature of the instance and d ∈ ∆L−1 denote the label
distribution, where ∆k−1 ≜ {v ∈ Rk |1vT = 1, v ≥ 0} is the (k − 1)-dimensional probability
simplex. The goal of LDL is to find a mapping ζ : x 7→ d. In this paper, we partition the label
space Y corresponding to d to obtain the subtask label space set Y◦, then accordingly generate
pseudo-supervised information, i.e., subtask distribution matrix set D◦, to guide the learning of ζ.

Technical challenges Our first challenge arises from the exponential growth in partitions as the
number of labels increases (Tsoumakas et al., 2010). When generating T tasks from a label space
with L labels, the number of unique partitions is given by (2L−L−2)!/(T !(2L−L−2−T )!). This makes it
impractical to calculate metric for each case to select subtasks. We tackle this challenge in a mask
matrix learning manner. The second challenge lies in discerning reasonable partitions. Since the
label distribution matrix is usually imbalanced in average description degree (Zhao et al., 2023a),
some partitions exhibit unreasonable local ignorance. As a result, the corresponding spaces struggle
to handle the majority of instances, because 1) theoretically, there is no objective standard for the
degree of negative correlation; and 2) empirically, weakly or negatively correlated information is

1HA, SA, SU, AN, DI, FE, and NE represent the seven common emotions in sentiment analysis datasets, namely
happiness, sadness, surprise, anger, disgust, fear, and neutral, respectively.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

7 labels: over 1014 partitions
when T = 10.
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Figure 1: (a) is sourced from the emotion6 (Yang et al., 2017b) dataset, which has only 7 labels, but
the number of potential partitions is huge. (b) exemplifies a subtask label space {FE, AN, DI}, which
is challenging to describe (a). (c)’s two subtask label spaces encompass all descriptive information,
meaning no new knowledge is generated about (a). This example vividly illustrates the limitations
that may result from local ignorance and lack of diversity in subtask label spaces.

easily overlooked by human annotators in crowdsourced datasets. To mitigate this, we incorporate the
description degree as a metric for the reliability of supervised information in guiding the generation
of subtask masks. The third challenge is avoiding analogous pseudo-supervised information, i.e., to
generate label distributions containing new knowledge (González et al., 2021b). This necessitates
fostering richness and diversity in both subtask label spaces and distributions. To achieve this
objective, we 1) minimize pairwise similarity among subtask masks; and 2) normalize each subtask
label distribution to yield brand new insights distinct from the label distribution of the primary task.
Fig. 1 portraits an illustrative example of these challenges.

3.2 LEARNING SUBTASK MASKS

Let M ∈ {0, 1}T×L denote the subtask mask matrix, where T represents the number of anticipated
tasks. To ensure that the subtask label spaces contain as reliable information as possible, the learning
of the subtask mask matrix can be converted into this problem: argmaxM ∥DM⊤∥F.

Obviously, a senseless solution is mt = 1 where t = 1, · · · , T , i.e., all pseudo-supervised infor-
mation is equivalent to the primary task information. Therefore, solving the above problem alone
is inappropriate. To address this, we consider pairwise similarity among subtask masks. We also
employ exponential tricks to convert maximization into minimization. Finally, M is calculated as

M∗ = argmin
M

 1

NT

T∑
t=1

N∑
i=1

exp (−dim
⊤
t ) +

2λ

(T (T − 1))

∑
i, j, i̸=j

mim
⊤
j

∥mi∥ ∥mj∥

 ,

s.t.Mtj ∈ {0, 1}; t = 1, · · · , T ; j = 1, · · · , L,

(1)

where λ is a trade-off parameter. Eq. (1) is slightly more complicated than conventional integer
programming. For convenience, we solve it using the stochastic gradient descent (SGD) method, with
its constraint enforced via sigmoid (a conversion threshold is set, where outputs greater than it are set
to 1, while those below are set to 0). Refer to Section 4.1 for an analysis of the validity of Eq. (1).

3.3 GENERATING SUBTASK DISTRIBUTIONS

We slice the label distribution matrix according to the subtask label space. To generate diversified
subtask label distributions, we perform normalization on each subtask distribution with

[NSUM(v)]j =
vj∑|v|
i=1 vi

. (2)

2Despite the discrete label space, in the field of LDL, the label distribution is intentionally plotted as a curve,
to distinguish it from the logical labels.
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Algorithm 1 Subtask construction
Input: Input matrix D, trade-off parameter λ, anticipated number of subtasks T .
Output: Subtask distribution matrices D◦ (with corresponding subtask label spaces Y◦).
1: Initialization: Y◦ = {∅}, D◦ = {∅};
2: Calculate M using SGD; ▷ (Eq. (1))
3: for t = 1 to T do
4: Y(t) ← {yj} if Mtj = 1;
5: if |Y(t)| = L or |Y(t)| ≤ 1 then
6: continue; /* Ignore invalid subtask masks. */
7: end if
8: /* The clip(x, a, b) function limits x to be within [a, b]. */
9: D(t) ← clip(d•j , ε, 1) if yj ∈ Y(t); /* ε is a very small positive number. */

10: for i = 1 to N do
11: Normalization: d(t)

i ← NSUM(d
(t)
i ); ▷ (Eq. (2))

12: end for
13: Y◦ = Y(t) ∪ Y◦, D◦ = D(t) ∪ D◦;
14: end for

Algorithm 2 S-LDL (shallow regime)
Input: Feature matrix X , label distribution matrix D, testing instance x′.
Output: Predicted label distribution d′ for instance x′.
1: Initialize parameter of each estimator;
2: D◦ ← SC(D);
3: for t = 1 to |D◦| do
4: Fit an estimator f (t) on dataset {X, D(t)};
5: d(t)′ ← f (t)(x′);
6: end for
7: Concatenate X and all of the D(t)s to get Z, where t = 1, · · · , |D◦|;
8: Fit an estimator f on dataset {Z, D};
9: Concatenate x′ and all of the d(t)′s to get z′, where t = 1, · · · , |D◦|;

10: d′ ← f(z′);

The rationale for utilizing NSUM as the normalization function can be found in Section 4.2. The
overall subtask construction process, denoted by SC, is illustrated in Alg. 1. Then, one can naturally
come up with an adaptive LDL pipeline based on the shallow regime, as depicted in Alg. 2.

4 ANALYSIS ABOUT SUBTASK CONSTRUCTION

In this section, we analyze the subtask construction algorithm SC by studying the following questions:

• Q1: Are the subtask spaces provided by Eq. (1) valid for performance improvement? Can one
configure λ and T in Eq. (1) without any prior knowledge?

• Q2: Are the subtask label distributions provided by Eq. (2) reconstructable? Can one replace Eq.
(2) with other normalization functions?

• Q3: What is the overall time complexity of SC? Is it practical for large-scale datasets?

The validity, reconstructability, and complexity analysis are conducted for Q1, Q2, and Q3, respec-
tively.

4.1 VALIDITY ANALYSIS

Eq. (1) manages the intricate task of selecting subtask spaces via λ and T . On the one hand, we strive
to explain that it is useful for performance improvement to suppress local ignorance and increase
diversity of each subtask label space simultaneously. On the other hand, we seek to determine the
appropriate λ and T without any prior knowledge. To this end, we design the following two metrics.

Definition 1 (Information rate). We call it informative if Mtj = 1 where t = 1, · · · , T and
j = 1, · · · , L. Let I be the summation of information; we define the information rate as I/(TL).

5
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Figure 2: Visualized results of the validity analysis. Results of (a) are the average of experiments on
all datasets (introduced in the appendix), while results of (b) and (c) are on the emotion6 dataset.
The blue lines in (b) and (c) represent performance without auxiliary tasks.

Definition 2 (Mask valid rate). Let δ(·, ·) be the Kronecker delta function. For all t = 1, · · · , T , the
following are considered counting of invalid masks: 1) δ(mt, 1), or 2) δ(|mt|!, 1), or, 3) excluding
masks in cases 1) and 2), for any remaining mask index i, δ(mi, mj), where j = 1, · · · , i.3 Let S
be the summation of all invalid subtasks; we define the mask valid rate as 1− S/T .

While it is unknown which metric is more important, we intuitively claim that higher values for both
metrics are likely to lead to better performance. First, we calculate the average of these two metrics
for all datasets with varying λ, results of which are shown in Fig. 2(a). The grey area depicts the
average of the two metrics, implying that the appropriate value of λ may be greater than 0.1.

It is important to highlight that Alg. 2 relies on naive concatenation operations and is not tied to
representation learning. Consequently, any performance improvement over the base estimator is
solely attributed to the effects of the subtask label distributions. Therefore, we employ Alg. 2 as the
“scaffolding” for our analysis. With λ varying and T fixed at 10, we conduct ten-fold experiments
repeated 10 times on the emotion6 dataset using Alg. 2. Here, f (t)s and f are implemented by a
representative LDL method, LDSVR (Geng and Hou, 2015). We record the average Spearman’s
coefficient (the higher the better). The results, which are shown in Fig. 2(b), support our claim. The
panels from left to right display examples of subtask label spaces when the λ is 0.01, 0.05, 0.2, 1,
and 10, respectively. When λ is suitable, label spaces are diverse and do not have excessive local
ignorance; as λ decreases, label spaces tend to be homogeneous, and invalid masks account for the
majority; as λ increases, the local ignorance of each label space becomes significant.

Besides, we also study the parameter sensitivity of T with λ fixed at 0.2. Results are shown in Fig.
2(c), illustrating that having a plethora of auxiliary tasks are detrimental to performance, which may
be due to overfitting.

The validity analysis demonstrates that simultaneously avoiding local ignorance and homogeneity
can lead to more efficient subtask label spaces, thereby improving performance. Without any prior
knowledge, λ and T are recommended to be set to 0.2 and 10, respectively. Since the validity of Eq.
(1) is ensured, one may wonder about the rationality and necessity of Eq. (2).

4.2 RECONSTRUCTABILITY ANALYSIS

We strive to choose a normalization function so that subtask label distributions retain more information,
even efficacious enough to reconstruct the label distribution of the primary task. Theorem 1 illustrates
that Eq. (2) is the only possibility.
Theorem 1. Let each subtask label space form a connected graph with its each label as a node.
Then merge these graphs according to their respective labels to form G. If and only if NSUM is
used for normalization, the primary label distribution can be reconstructed from these subtask label
distributions, when the following conditions are satisfied: 1) G is connected; 2) G covers all labels in
the label space, and 3) corresponding description degrees of all cut vertices of G are not zero.

3These three cases correspond to 1) masks that are exactly the same as the primary task; 2) masks that fail to
form label distributions; and 3) duplicate masks among the remaining masks, respectively.
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Proof. We solely discuss the extreme case where two subtask label spaces overlap with just one label.
Further specialized cases can be deduced by the reader via induction. With a little bit of symbol abuse,
let the general normalization function be defined as N (v) ≜ p(v)/q(v). Assume that there is a label
distribution d = (d1, · · · , dL) and its corresponding label space is Y = {y1, · · · , yL}. The two
decompositions of Y are Ya = {y1, · · · , yk} and Yb = {yk, · · · , yL}, respectively. It is obvious
that Ya ∪ Yb = Y and Ya ∩ Yb = {yk}. Let the subspace label distribution corresponding to these
two decompositions be a = (a1, · · · , ak) and b = (bk, · · · , bL). According to our assumptions,
dk ̸= 0. Then, for any integer j ∈ [1, k], we have

aj
ak

=
[N (d)]j
[N (d)]k

=
[p(d)]j
[q(d)]j

[q(d)]k
[p(d)]k

. (3)

Typically, for most normalization functions, q(·) is a normalizing constant, i.e., [q(d)]j = [q(d)]k.
Thus Eq. (3) can be rewritten into aj [p(d)]k = ak[p(d)]j . Plug it into

∑k
j=1 aj = 1, and do the

same for b as well, and get

ak
∑k

j=1[p(d)]j

[p(d)]k
= 1,

bk
∑L

j=k[p(d)]j

[p(d)]k
= 1. (4)

Add these two equations together, we have

[p(d)]k +

L∑
j=1

[p(d)]j =
[p(d)]k
ak

+
[p(d)]k
bk

. (5)

Eq. (5) implies that
∑L

j=1[p(d)]j must be given, and [p(d)]k is related to dk, and only dk. To

make it possible, the only thing we can exploit is the sum-to-one constraint of d, i.e.,
∑L

j=1 dj = 1.

Therefore [p(v)]j = vj . Since
∑|v|

i [N (v)]i = 1, we have q(v) =
∑|v|

i vi, i.e., the finally deduced
normalization function is Eq. (2). In this case, for any integer j ∈ [1, L], we have

dj =


ajbk

ak + bk − akbk
, j = 1, · · · , k

akbj
ak + bk − akbk

, j = k + 1, · · · , L
, (6)

which illustrates that the original label distribution d can be reconstructed by subtask label distribu-
tions a and b. This is possible thanks to the use of NSUM.

( )  ( )  
( ) 

Subtask Loss
Primary Task Loss

Identity

Subtask Construction Primary Task Matrix

Subtask Matrices

D
 (2)
D

 (1)
D

R

RX

Figure 3: The overview of S-LDL (deep regime).
White, red and gray highlight our proposed, exist-
ing methods, and loss functions, respectively.

Theorem 1 also states that it is not appropriate
to replace Eq. (2) with the min-max or softmax
function because doing so destroys the recon-
struction information.

4.3 COMPLEXITY ANALYSIS

The overall time cost of SC is primarily influ-
enced by the calculation of M and the normal-
ization process. The time complexity of com-
puting and updating M are O(L(TN + T 2))
and O(LT ), respectively. The time complexity
of the normalization process is O(LTN). The
overall time complexity of each iteration of SC is O(L(TN + T 2)), which is linear with respect to
the number of instances and labels. Therefore, it is clear that SC can be applied to large-scale datasets.

5 S -LDL OF THE DEEP REGIME

The aforementioned analysis has exposed the problems of the shallow regime: 1) shallow methods as
base estimators have low potential in themselves; 2) there is a training gap between the primary task
and subtasks, i.e., no representation learning is involved. Therefore, it is necessary to introduce our
proposed S-LDL of the deep regime, the overview of which is illustrated in Fig. 3. We illustrate our
framework by introducing the learnable parts one by one.
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Table 2: Modifications of different task adaptations
Type Subtask construction ℓPRI ℓSUB

Vanilla LDL (D(1), · · · )← SC(D) ℓ(D, D̃) ∈ LLDL ℓSUB(D
(1), · · · ; D̃(1), · · · )

LDL4C (D(1), · · · )← SC(D) ℓ(D, D̄, D̃) ∈ LLDL4C ℓSUB(D
(1), · · · ; D̃(1), · · · )

IncomLDL (D
(1)
Ω , · · · )← SC(RΩ(D)) ℓ(RΩ(D), RΩ(D̃)) ∈ LIncomLDL ℓSUB(D

(1)
Ω , · · · ; RΩ(D̃(1)), · · · )

LE (L(1), · · · )← SC(L) ℓ(L, D̃) ∈ LLE ℓSUB(L
(1), · · · ; D̃(1), · · · )

• φ(·) is guided by subtasks to learn a powerful representation, i.e., R = φ (X).

• ψ(·) is responsible for predicting subtask label distributions, i.e., (D̃(1), · · · ) = ψ(R). To ensure
the precise prediction of subtask label distributions for reconstruction, we employ the mean absolute
error function for subtask learning. The loss is weighted by the summation of the description
degrees corresponding to the primary tasks, allowing more reliable label spaces to receive more
attention. The subtask learning loss has the following form:

ℓSUB

(
D◦; D̃◦

)
=

1

N |Y◦|
∑
Y(t)∈Y◦

N∑
i=1

 ∑
yk∈Y(t)

dyk
xi

 |Y(t)|∑
j=1

∣∣∣d(t)yj
xi − d̃

(t)yj
xi

∣∣∣. (7)

• ω(·) can be any existing method that can be expressed as a network structure theoretically. Since
the concatenation of the representation and subtask label distributions, we have Z = (R, ψ(R))

and D̃ = ω(Z). In the case of the primary task being vanilla LDL, the primary task loss ℓPRI can
be

ℓKL

(
D, D̃

)
=

1

N

N∑
i=1

L∑
j=1

d
yj
xi ln

d
yj
xi

d̃
yj
xi

, ℓKL ∈ LLDL. (8)

Note that ℓPRI changes as the primary task changes. Finally, we can learn the model parameters Θ by
Θ∗ = argmin

Θ
(ℓPRI + αℓSUB), (9)

where α is a trade-off parameter. Compared with the shallow regime, S-LDL of the deep regime
has the following advantages: 1) There is no two-stage training gap, which makes the representation
contain insights from both the primary task and the subtasks; 2) the framework not only serves LDL,
but can also be directly applied to derivative tasks of LDL, e.g., LDL for classification (LDL4C)
(Wang, Jing and Geng, Xin, 2019), incomplete LDL (IncomLDL) (Xu and Zhou, 2017), label
enhancement (LE) (Xu et al., 2019). The modifications involved are shown in Table 2, where LX
indicates the set of losses for adaptable methods in the task of type “X”. Special mathematical
procedures of LDL4C and IncomLDL are defined as[

D̄(t)
]
ij
≜

{
1, if yj = argmaxȳ∈Y(t) dȳxi

0, otherwise
, [RΩ (D)]ij ≜

{
[D]ij , if (i, yj) ∈ Ω

0, otherwise
, (10)

respectively, where [·]ij represents the element in i-th row of the matrix corresponding to label yj ,
and Ω represents observed elements sampled uniformly at random from D in IncomLDL. Such
modifications are rational since: 1) targets of LDL4C and IncomLDL, i.e., D̄ and RΩ(D), are
essentially different forms of degradation of the label distribution matrix; and 2) the target of LE is a
logical label matrix L, the same as the target of MLL, which is actually a special case of LDL.

6 EXPERIMENTS

In this section, we evaluate S-LDL of the deep regime. Due to page limitations, datasets, comparison
methods, and their parameter settings are introduced in the appendix.

Metrics For LDL, we use the same metrics suggested by Jia et al. (2023). Due to page limitations,
we only present results on Cheby. ↓ (Chebyshev distance), Clark ↓ (Clark distance), Cosine ↑
(cosine similarity), and Spear. ↑ (Spearman’s coefficient) in the main paper, where ↓ (↑) indicates
“the lower (higher) the better”. Note that these metrics are not as intuitive as accuracy or error rate, i.e.,
small changes can mean large performance differences. For LDL4C, objective of which is different
from LDL, we use 0/1 loss ↓ (zero one loss) and Err. prob. ↓ (error probability) as metrics (Wang,
Jing and Geng, Xin, 2019).

8
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Table 3: Experimental results of LDL on JAFFE and Yeast_diau formatted as (mean± std(rank))

Algorithms
JAFFE (Lyons et al., 1998)

Algorithms
Yeast_diau (Geng, 2016)

Clark ↓ Cosine ↑ Cheby. ↓ Spear. ↑
LDSVR (Geng and Hou, 2015) .3280 ±.027 (6) .9549±.010 (7) CPNN (Geng et al., 2013) .0385 ±.001 (9) .2962 ±.034 (10)

AA-kNN (Geng, 2016) .3483 ±.032 (8) .9497 ±.010 (9) AA-kNN .0385 ±.001 (9) .3674 ±.029 (9)

LDLFs (Shen et al., 2017) .3637 ±.032 (10) .9494±.009 (10) LDLFs .0371 ±.001 (8) .4088 ±.021 (8)

DF-BFGS (González et al., 2021a) .3062 ±.025 (3) .9633±.007 (2) DF-BFGS .0368 ±.001 (5) .4161 ±.027 (5)

KLD (Geng, 2016) • .3608 ±.031 (9) .9538 ±.008 (8) LRR • .0370 ±.001 (7) .4154 ±.023 (6)

S-KLD .3007 ±.032 (2) .9625 ±.009 (3) S-LRR .0366 ±.001 (1) .4198 ±.023 (2)

SCL (Jia et al., 2019) • .3358 ±.024 (7) .9592 ±.006 (6) QFD2 (Wen et al., 2023) • .0369 ±.001 (6) .4118 ±.025 (7)

S-SCL .3184 ±.025 (4) .9604 ±.008 (5) S-QFD2 .0366 ±.001 (1) .4203 ±.021 (1)

LRR (Jia et al., 2023) • .3230 ±.027 (5) .9616 ±.008 (4) CJS (Wen et al., 2023) .0367 ±.001 (4) .4164 ±.025 (4)

S-LRR .2934 ±.028 (1) .9635 ±.008 (1) S-CJS .0366 ±.001 (1) .4198 ±.024 (2)

Table 4: Experimental results of LDL4C on sBU_3DFE and Flickr formatted as (mean±std(rank))

Algorithms
sBU_3DFE (Geng, 2016)

Algorithms
Flickr (Yang et al., 2017b)

0/1 loss ↓ Err. prob. ↓ 0/1 loss ↓ Err. prob. ↓
LDL4C (Wang, Jing and Geng, Xin, 2019) .5578±.028 (6) .7671 ±.007 (5) LDL4C .8971 ±.008 (6) .8884±.004 (6)

S-LDL4C .5526±.025 (5) .7686±.006 (6) S-LDL4C .8705 ±.138 (5) .8702 ±.100 (5)

HR (Wang and Geng, 2021a) • .5167 ±.027 (3) .7596±.006 (2) HR • .4513 ±.015 (4) .5823 ±.007 (4)

S-HR .5069 ±.025 (2) .7598 ±.006 (3) S-HR .4219 ±.015 (1) .5639 ±.007 (1)

LDLM (Wang and Geng, 2021b) • .5258 ±.034 (4) .7619 ±.009 (4) LDLM • .4384 ±.014 (3) .5740 ±.007 (3)

S-LDLM .4809 ±.024 (1) .7524 ±.005 (1) S-LDLM .4321 ±.016 (2) .5667 ±.007 (2)
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-.06

-.02

+.02

+.06
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S-KLD w/o `SUB

.5 1.0 5.0

Figure 4: Visualized results of the ablation study
and the parameter sensitivity analysis, which is on
the Natural_Scene (Geng, 2016) dataset.

Results and discussion We apply S-LDL to
existing methods to demonstrate performance
improvements. For each dataset we conduct
ten-fold experiments repeated 10 times, and the
average performance is recorded. Tables 3 to 4
show representative results and the remainder
are in the appendix, where • (◦) indicates that
more than half of the metrics support that “S-X”
is statistically superior (inferior) to the corre-
sponding methods “X” (pairwise t-test at 0.05
significance level); there is no significant if nei-
ther • nor ◦ is shown. LRR focuses on the label
ranking relationship, which is also emphasized
by each subtask. We believe this is why S-LDL
and LRR fit so well. Note that our method has
the least improvement in SCL, which may be
attributed to its reliance on shallow regime methods in the prediction phase. It is also worth noting
that the improvement in vanilla KLD is considerable, which just illustrates the limitations of loss
function engineering that considers label correlation one-sidedly. QFD2 and CJS are tailored for
ordinary LDL, and may have better results than LRR on this regard. Powered by S-LDL, these
methods can all achieve better level. For LDL4C, S-LDL significantly improves both HR and LDLM.
However, it can be observed that S-LDL4C is unstable on the Flickr dataset, which is not surprising
since LDL4C itself fails on it. We believe this is caused by the combined effect of the sparsity of the
dataset and the information entropy operation involved in LDL4C.

Parameter sensitivity We check the sensitivity of the trade-off parameter α on the LDL task with
the Natural_Scene dataset by varying the parameter in {0.01, 0.05, 0.1, 0.5, 1, 5}. Results are
shown in Fig. 4. Spearman’s coefficient of S-LDL first increases and then decreases as α varies,
demonstrating a desirable bell-shaped curve. This justifies our motivation of jointly learning the
primary task and subtasks, as a good trade-off between them can enhance the performance.

Ablation study Here we are interested in the importance of each part of S-LDL, thus an ablation
study is performed with S-KLD: 1) we replace NSUM in SC with the min-max function to examine the
importance of the subtask distribution reconstruction, and this model is denoted as S-KLD (min-max);
2) we remove the identity mapping in Fig. 3 to examine the importance of the prediction via subtask
representation, and this model is denoted as S-KLD w/o id.; 3) we train without the term of ℓSUB (i.e.,
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setting α = 0) to examine the importance of subtask learning, and this model is denoted as S-KLD
w/o ℓSUB. Results are also shown in Fig. 4, which confirms that each part of S-LDL contributes as
long as there is a good trade-off.

7 LIMITATIONS AND CONCLUSION

Limitations First, S-LDL of the shallow regime is proposed out of intuition, and in Section 5, we
have discussed its limitations, which are addressed via the designing of S-LDL of the deep regime.
Second, when the label space is large, especially when labels are continuous and result in unimodal
label distributions (e.g., age estimation), our proposed cannot be rationally applied. Fortunately, one
possible workaround is to use a binning tricks for preprocessing, and then construct subtasks.

Conclusion We propose S-LDL, a subtask learning framework nested into LDL. S-LDL is generic:
it generates pseudo-supervised information via subtask construction without any extra knowledge;
S-LDL is minimalist: it can be attached to existing methods and handle derivative tasks; S-LDL
is efficient: it captures a wide variety of label correlations. The analysis shows the validity and
reconstructability of subtasks, and experiments show the superiority of our framework.
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A APPENDIX: DETAILS OF EXPERIMENTS

Here we try our best to provide as much information as possible for reproducible research.

A.1 METRICS

For LDL, IncomLDL, and LE, we use the same metrics suggested by Geng (2016), which are
Cheby. ↓ (Chebyshev distance), Clark ↓ (Clark distance), Can. ↓ (Canberra distance), KLD ↓
(Kullback-Leibler divergence), Cosine ↑ (cosine similarity), and Int. ↑ (intersection similarity),
respectively. Here ↓ (↑) indicates “the lower (higher) the better”. For LDL and IncomLDL, we
additionally use two ranking metrics: Spear. ↑ (Spearman’s coefficient) and Ken. ↑ (Kendall’s
coefficient) (Jia et al., 2023). Note that these metrics are not as intuitive as accuracy or error rate, i.e.,
small changes can mean large performance differences. For LDL4C, objective of which is different
from LDL, we use 0/1 loss ↓ (zero one loss) and Err. prob. ↓ (error probability) as metrics (Wang,
Jing and Geng, Xin, 2019). Let the real distribution be denoted by u = {uj}Lj=1, and the predicted
distribution be denoted by v = {vj}Lj=1, then the above metrics can be summarized in Table 5, where
ρ(·) and δ(·, ·) are the ranking function and the Kronecker delta function, respectively.
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Table 5: Summary of the metrics
Name Formula Name Formula

Cheby. ↓ Dis1(u, v) = maxj |uj − vj | Cosine ↑ Sim1(u, v) =
∑L

j=1 ujvj√∑L
j=1 u2

j

√∑L
j=1 v2

j

Clark ↓ Dis2(u, v) =
√∑L

j=1

(uj−vj)
2

(uj+vj)
2 Int. ↑ Sim2(u, v) =

∑L
j=1 min (uj , vj)

Can. ↓ Dis3(u, v) =
∑L

j=1

|uj−vj |
uj+vj

Spear. ↑ Rnk1(u, v) = 1− 6
∑L

j=1(ρ(uj)−ρ(vj))
2

L(L2−1)

KLD ↓ Dis4(u, v) =
∑L

j=1 uj ln
uj

vj
Ken. ↑ Rnk2(u, v) =

2
∑

j<k sgn(uj−uk)sgn(vj−vk)

L(L−1)

0/1
loss ↓

C1(u, v) = δ(argmax(u),
argmax(v))

Err.
prob. ↓ C2(u, v) = 1− uargmax(v)

A.2 DATASETS

We adopt several widely used label distribution datasets, including: JAFFE (Lyons et al., 1998);4

fbp5500 (Liang et al., 2018);5 sBU_3DFE, Movie, Natural_Scene, Yeast_heat, Yeast_diau,
Yeast_cold, and Yeast_dtt provided by Geng (2016);6 emotion6, Twitter, and Flickr pro-
vided by Yang et al. (2017b).7 The information of these datasets are summarized in Table 6.

A.3 COMPARISON METHODS Table 6: Summary of datasets

Dataset # Instances N # Features P # Labels L
JAFFE 213 243 6
sBU_3DFE 2500 243 6
Movie 7755 1869 5
Nature_Scene 2000 294 9
fbp5500 5500 512 5
Yeast_heat 2465 24 6
Yeast_diau 2465 24 7
Yeast_cold 2465 24 4
Yeast_dtt 2465 24 4
emotion6 1980 168 7
Twitter 10045 168 8
Flickr 11150 168 8

On the one hand, we apply our pro-
posed S-LDL to existing methods to
demonstrate performance improve-
ments in the LDL task (denoted
by the “S-” prefix). These meth-
ods are BFGS-LLD (KLD) (Geng,
2016), SCL (Jia et al., 2019), LRR
(Jia et al., 2023), QFD2 (Wen et al.,
2023), and CJS (Wen et al., 2023)
(the losses of these methods consti-
tute the set LLDL). On the other
hand, we compare S-LDL with
methods that have specialized struc-
ture, which our proposed cannot di-
rectly adapt to. These methods are
CPNN (Geng et al., 2013), LDSVR (Geng and Hou, 2015), AA-kNN (Geng, 2016), LDLFs (Shen
et al., 2017), and DF-LDL (denoted by DF-BFGS since we use BFGS-LLDs as base estimators)
(González et al., 2021a). Moreover, we apply our proposed to derivative tasks of LDL (i.e., LDL4C,
IncomLDL, and LE) and the comparison methods involved are LDL4C (Wang, Jing and Geng, Xin,
2019), HR (Wang and Geng, 2021a), LDLM (Wang and Geng, 2021b), IncomLDL (Xu and Zhou,
2017), LP (Xu et al., 2019), GLLE (Xu et al., 2019), LEVI (Xu et al., 2023), and LIBLE (Zheng
et al., 2023).

A.4 PARAMETER SETTINGS AND EXPERIMENTAL ENVIRONMENT

The parameter settings of the proposed S-LDL and comparison algorithms are summarized in Table
7. Note that DF-LDL is parameter-free, and we use BFGS-LLDs as its base estimators, parameter
settings of which are the same as BFGS-LLD as the comparison algorithm. We use Adam (Kingma
and Ba, 2015) for the optimization of S-LDL. For all methods of the deep regime, the learning rate is
chosen among {1, 2, 5} × 10{−4,−3,−2}, and the selection of the number of epochs is nested into

4https://zenodo.org/records/3451524
5https://github.com/HCIILAB/SCUT-FBP5500-Database-Release
6https://palm.seu.edu.cn/xgeng/LDL/download.htm
7https://cv.nankai.edu.cn/projects
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Table 7: Summary of algorithms and parameter settings
Algorithms Parameter Value (Range)
AA-kNN k: # Neighbors 5

LDLFs
# Estimators (trees) 5
Depth 6
Latent units (leaves) 64

BFGS-LLD
ε: Convergence criterion 10−6

Max iteration 600

SCL
m: # Clusters 5
λ1, λ2, λ3: Trade-off 10−3, 10−3, 0.1

LRR
λ: Trade-off (ranking loss) 10{−5,−4,−3,−2,−1}

β: Trade-off (regularization) 10{−3,−2,−1, 0, 1, 2}

LDL4C
C1, C2: Balance coefficients 10−2, 10−6

ρ: Margin 10−2

HR
λ1, λ2, λ3: Trade-off 10−2, 10−6

ρ: Margin 10−2

LDLM
λ1, λ2, λ3: Trade-off 10−6, 10{−3,−2,−1}, 10{−3,−2,−1}

ρ: Margin 10−2

IncomLDL
ε: Convergence criterion 10−6

γ: Factor of Lipschitz constant 2
λ: Trade-off 1

LP α: Balance coefficient 0.5

GLLE
λ1, λ2: Trade-off 10−2, 10−4

σ: Width parameter for similarity calculation 10
LEVI λ: Trade-off 1
LIBLE α, β: Trade-off 10{−3,−2,−1, 0, 1, 2}

S-LDL α, λ, T 0.1, 0.2, 10

a ten-fold cross validation. All the results are obtained on a Linux workstation with Intel Core i9
(3.70GHz), NVIDIA GeForce RTX 3090 (24GB), and 32GB memory.

A.5 FULL EXPERIMENTAL RESULTS

Here we provide complete results of all conducted experiments. Tables 8 to 19 are results on the LDL
task with different datasets. For IncomLDL, we follow the incomplete settings (Xu and Zhou, 2017)
and vary the observed rate ω% from 20% to 40%. Tables 20 to 21 are results on the IncomLDL task.
Tables 22 to 23 are on the LDL4C task. For LE, we follow the settings of the recovery experiment
(Xu et al., 2019). Tables 24 to 25 show results on the LE task.

Table 8: Experimental results of LDL on the JAFFE dataset formatted as (mean± std)
Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑

LDSVR .0959±.013 .3280±.027 .6778±.058 .0476±.011 .9549±.010 .8838±.012 .5175±.102 .4508±.086

AA-kNN .0978±.012 .3483±.032 .7164±.066 .0527±.011 .9497±.010 .8766±.012 .4111±.083 .3514±.070

LDLFs .0940±.010 .3637±.032 .7355±.066 .0550±.009 .9494±.009 .8766±.011 .4364±.108 .3749±.093

DF-BFGS .0827±.009 .3062±.025 .6239±.052 .0388±.007 .9633±.007 .8944±.010 .5244±.087 .4493±.077

KLD • .0925±.010 .3608±.031 .7363±.064 .0508±.009 .9538±.008 .8777±.011 .4572±.097 .3873±.084

S-KLD .0818±.011 .3007±.032 .6132±.067 .0395±.010 .9625±.009 .8960±.012 .5461±.105 .4769±.096

SCL • .0873±.008 .3358±.024 .6874±.051 .0439±.006 .9592±.006 .8851±.009 .4744±.092 .4020±.080

S-SCL .0854±.010 .3184±.025 .6526±.053 .0420±.008 .9604±.008 .8896±.010 .5110±.095 .4388±.084

LRR • .0853±.010 .3230±.027 .6560±.055 .0412±.008 .9616±.008 .8906±.010 .5117±.094 .4420±.084

S-LRR .0804±.009 .2934±.028 .5989±.059 .0383±.009 .9635±.008 .8981±.011 .5448±.092 .4819±.084
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Table 9: Experimental results of LDL on the sBU_3DFE dataset formatted as (mean± std)
Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑

LDSVR .1250±.005 .3710±.010 .8009±.021 .0720±.004 .9298±.004 .8559±.004 .3524±.031 .3011±.026

AA-kNN .1272±.004 .4001±.009 .8281±.020 .0801±.004 .9217±.004 .8488±.004 .2053±.030 .1767±.026

LDLFs .1016±.003 .3262±.008 .6841±.017 .0504±.003 .9499±.003 .8776±.003 .4212±.023 .3620±.019

DF-BFGS .1146±.004 .3616±.008 .7627±.019 .0618±.003 .9388±.003 .8626±.004 .3026±.031 .2621±.026

KLD • .1147±.004 .3697±.008 .7804±.019 .0624±.003 .9387±.003 .8604±.003 .3021±.026 .2643±.022

S-KLD .1014±.004 .3203±.009 .6736±.018 .0514±.003 .9487±.003 .8789±.004 .4334±.025 .3729±.022

SCL • .1145±.004 .3648±.008 .7748±.018 .0605±.003 .9404±.003 .8614±.003 .3091±.026 .2701±.021

S-SCL .1041±.004 .3301±.009 .6936±.019 .0535±.003 .9468±.003 .8754±.004 .3956±.030 .3381±.027

LRR • .1067±.003 .3476±.008 .7320±.017 .0543±.003 .9465±.003 .8695±.003 .3626±.026 .3123±.022

S-LRR .0996±.004 .3157±.008 .6610±.017 .0499±.003 .9502±.003 .8812±.003 .4455±.026 .3837±.023

Table 10: Experimental results of LDL on the Yeast_heat dataset formatted as (mean± std)
Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑

CPNN .0419±.001 .1818±.005 .3633±.009 .0125±.001 .9881±.001 .9404±.001 .1507±.034 .1221±.028

AA-kNN .0441±.001 .1913±.005 .3840±.010 .0140±.001 .9867±.001 .9370±.002 .1678±.031 .1384±.026

LDLFs .0420±.001 .1818±.005 .3627±.009 .0125±.001 .9881±.001 .9405±.001 .1731±.032 .1409±.026

DF-BFGS .0420±.001 .1816±.005 .3624±.009 .0125±.001 .9881±.001 .9405±.001 .1964±.034 .1624±.028

LRR • .0423±.001 .1828±.005 .3644±.009 .0126±.001 .9880±.001 .9402±.001 .1655±.033 .1351±.028

S-LRR .0417±.001 .1806±.005 .3609±.009 .0124±.001 .9882±.001 .9408±.001 .1882±.034 .1548±.028

QFD2 • .0423±.001 .1827±.005 .3644±.009 .0126±.001 .9880±.001 .9402±.001 .1677±.032 .1351±.027

S-QFD2 .0417±.001 .1808±.005 .3611±.009 .0124±.001 .9882±.001 .9408±.001 .1880±.032 .1544±.027

CJS • .0423±.001 .1827±.005 .3643±.009 .0126±.001 .9880±.001 .9402±.001 .1632±.032 .1329±.027

S-CJS .0417±.001 .1804±.005 .3603±.009 .0124±.001 .9882±.001 .9409±.001 .1940±.030 .1589±.025

Table 11: Experimental results of LDL on the Yeast_diau dataset formatted as (mean± std)
Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑

CPNN .0385±.001 .2069±.006 .4439±.012 .0138±.001 .9872±.001 .9383±.002 .2962±.034 .2427±.027

AA-kNN .0385±.001 .2085±.006 .4487±.014 .0145±.001 .9867±.001 .9377±.002 .3674±.029 .2976±.024

LDLFs .0371±.001 .2014±.006 .4324±.012 .0132±.001 .9879±.001 .9401±.002 .4088±.021 .3254±.018

DF-BFGS .0368±.001 .1999±.006 .4294±.013 .0131±.001 .9879±.001 .9405±.002 .4161±.027 .3404±.022

LRR • .0370±.001 .2007±.006 .4307±.012 .0131±.001 .9879±.001 .9403±.002 .4154±.023 .3343±.020

S-LRR .0366±.001 .1983±.006 .4257±.012 .0129±.001 .9881±.001 .9410±.002 .4198±.023 .3389±.019

QFD2 • .0369±.001 .2000±.006 .4296±.012 .0131±.001 .9879±.001 .9404±.002 .4118±.025 .3326±.021

S-QFD2 .0366±.001 .1985±.006 .4261±.012 .0129±.001 .9881±.001 .9409±.002 .4203±.021 .3387±.018

CJS .0367±.001 .1989±.006 .4272±.012 .0130±.001 .9880±.001 .9408±.002 .4164±.025 .3366±.021

S-CJS .0366±.001 .1984±.006 .4260±.012 .0130±.001 .9881±.001 .9409±.002 .4198±.024 .3392±.019

Table 12: Experimental results of LDL on the Yeast_cold dataset formatted as (mean± std)
Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑

CPNN .0510±.002 .1392±.005 .2396±.008 .0121±.001 .9886±.001 .9410±.002 .2651±.036 .2263±.032

AA-kNN .0542±.002 .1476±.005 .2549±.008 .0135±.001 .9872±.001 .9371±.002 .2189±.035 .1866±.031

LDLFs .0511±.002 .1396±.005 .2404±.009 .0122±.001 .9885±.001 .9408±.002 .2482±.038 .2112±.033

DF-BFGS .0514±.002 .1404±.005 .2424±.008 .0123±.001 .9885±.001 .9403±.002 .2581±.036 .2190±.030

LRR .0511±.002 .1395±.005 .2402±.009 .0122±.001 .9886±.001 .9408±.002 .2490±.035 .2111±.030

S-LRR .0510±.002 .1391±.005 .2395±.009 .0121±.001 .9886±.001 .9410±.002 .2618±.037 .2238±.032

QFD2 .0513±.002 .1401±.005 .2413±.009 .0123±.001 .9885±.001 .9405±.002 .2534±.037 .2158±.032

S-QFD2 .0510±.002 .1391±.005 .2396±.008 .0121±.001 .9886±.001 .9410±.002 .2571±.039 .2197±.033

CJS .0513±.002 .1401±.005 .2412±.008 .0123±.001 .9884±.001 .9406±.002 .2535±.038 .2152±.032

S-CJS .0510±.002 .1392±.005 .2396±.009 .0121±.001 .9886±.001 .9410±.002 .2621±.037 .2241±.031
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Table 13: Experimental results of LDL on the Yeast_dtt dataset formatted as (mean± std)
Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑

CPNN .0361±.001 .0984±.004 .1690±.006 .0063±.001 .9941±.000 .9583±.001 .1735±.035 .1494±.030

AA-kNN .0386±.001 .1047±.004 .1797±.006 .0071±.001 .9933±.000 .9556±.001 .1591±.033 .1399±.030

LDLFs .0360±.001 .0981±.004 .1689±.006 .0063±.001 .9941±.000 .9583±.001 .1986±.038 .1727±.034

DF-BFGS .0365±.001 .0995±.004 .1712±.006 .0064±.001 .9939±.000 .9578±.001 .1804±.033 .1592±.030

LRR .0360±.001 .0982±.004 .1690±.006 .0063±.001 .9941±.000 .9583±.001 .2016±.037 .1738±.032

S-LRR .0359±.001 .0977±.004 .1680±.006 .0062±.001 .9941±.000 .9585±.001 .2068±.035 .1811±.031

QFD2 .0362±.001 .0986±.004 .1696±.006 .0063±.001 .9940±.000 .9582±.001 .1917±.035 .1665±.031

S-QFD2 .0359±.001 .0977±.004 .1681±.006 .0062±.001 .9941±.000 .9585±.001 .2086±.036 .1822±.032

CJS .0361±.001 .0984±.004 .1692±.006 .0063±.001 .9941±.000 .9582±.001 .1975±.040 .1722±.035

S-CJS .0359±.001 .0978±.004 .1682±.006 .0062±.001 .9941±.000 .9585±.001 .2080±.035 .1804±.031

Table 14: Experimental results of LDL on the emotion6 dataset formatted as (mean± std)
Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑

LDSVR .3152±.010 1.8217±.020 4.1452±.064 1.0744±.081 .6906±.015 .5773±.012 .3915±.030 .3235±.025

AA-kNN .3288±.011 1.7116±.026 3.8757±.076 .9512±.115 .6632±.013 .5564±.010 .2920±.027 .2401±.022

LDLFs .3120±.010 1.6625±.026 3.7330±.075 .5871±.024 .7143±.011 .5802±.010 .3631±.029 .3025±.024

DF-BFGS .3026±.010 1.6765±.025 3.7675±.071 .5805±.026 .7206±.013 .5909±.010 .3940±.027 .3256±.022

KLD • .3037±.010 1.6774±.025 3.7729±.074 .5863±.027 .7191±.013 .5897±.011 .3959±.028 .3259±.023

S-KLD .3024±.010 1.6548±.026 3.6984±.075 .5631±.024 .7282±.012 .5926±.010 .4063±.027 .3361±.023

SCL • .3020±.010 1.6750±.025 3.7642±.073 .5803±.027 .7219±.013 .5917±.011 .4003±.028 .3299±.023

S-SCL .3018±.010 1.6554±.026 3.6993±.076 .5631±.025 .7281±.012 .5936±.010 .4089±.027 .3383±.023

LRR • .3030±.010 1.6736±.025 3.7601±.073 .5804±.026 .7212±.013 .5899±.010 .3941±.027 .3243±.023

S-LRR .3028±.009 1.6524±.026 3.6923±.074 .5607±.023 .7299±.011 .5923±.010 .4078±.027 .3373±.022

Table 15: Experimental results of LDL on the Twitter dataset formatted as (mean± std)
Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑

LDSVR .4236±.008 2.6722±.002 7.3015±.009 5.0018±.115 .7627±.008 .5761±.008 .5237±.008 .4246±.007

AA-kNN .3172±.004 2.0142±.012 4.5597±.043 3.1429±.148 .7926±.006 .6024±.005 .5014±.009 .4432±.008

LDLFs .4035±.014 2.5461±.010 6.8269±.040 1.6884±.115 .6756±.018 .5318±.013 .4164±.013 .3349±.010

DF-BFGS .2982±.004 2.4025±.005 6.2416±.020 .6304±.012 .8250±.006 .6220±.004 .5467±.008 .4454±.007

KLD ◦ .2966±.004 2.4059±.005 6.2558±.020 .6307±.013 .8243±.006 .6249±.005 .5470±.008 .4456±.007

S-KLD .2995±.005 2.4112±.005 6.2883±.020 .6491±.013 .8203±.006 .6205±.005 .5384±.009 .4385±.008

SCL • .2977±.004 2.4028±.005 6.2435±.021 .6262±.013 .8256±.006 .6233±.005 .5488±.008 .4471±.007

S-SCL .2940±.005 2.4059±.006 6.2589±.023 .6203±.013 .8268±.006 .6281±.006 .5518±.008 .4497±.007

LRR • .2984±.004 2.4046±.005 6.2525±.019 .6351±.012 .8232±.006 .6220±.004 .5443±.008 .4636±.007

S-LRR .2937±.004 2.4056±.005 6.2589±.019 .6189±.013 .8271±.006 .6283±.005 .5519±.008 .4498±.007

Table 16: Experimental results of LDL on the Flickr dataset formatted as (mean± std)
Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑

LDSVR .5174±.006 2.6364±.002 7.2094±.011 5.0366±.086 .6636±.008 .4683±.006 .4622±.009 .3811±.008

AA-kNN .3286±.005 2.0685±.009 4.9363±.033 2.2172±.107 .7200±.006 .5582±.005 .4265±.009 .3465±.007

LDLFs .4051±.011 2.4012±.012 6.3262±.050 1.4274±.077 .6073±.015 .4822±.011 .3478±.014 .2847±.012

DF-BFGS .3007±.005 2.1995±.007 5.4900±.025 .6309±.011 .7801±.005 .5979±.004 .5102±.009 .4226±.008

KLD ◦ .3015±.005 2.2008±.007 5.4969±.025 .6348±.012 .7787±.005 .5973±.004 .5113±.009 .4234±.008

S-KLD .3052±.005 2.2044±.007 5.5222±.026 .6485±.012 .7720±.005 .5926±.004 .5030±.009 .4166±.008

SCL • .3280±.013 2.2986±.024 5.9247±.099 .8301±.055 .7268±.018 .5713±.015 .4566±.024 .3748±.022

S-SCL .2929±.005 2.2045±.007 5.5289±.028 .6113±.012 .7862±.005 .6070±.005 .5265±.008 .4373±.007

LRR • .3057±.005 2.1969±.007 5.4763±.025 .6431±.012 .7752±.006 .5929±.004 .5047±.009 .4229±.008

S-LRR .2938±.005 2.2013±.006 5.5138±.023 .6105±.012 .7864±.005 .6058±.005 .5261±.009 .4369±.008
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Table 17: Experimental results of LDL on the Natural_Scene dataset formatted as (mean± std)
Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑

LDSVR .4899±.016 2.0831±.025 5.7724±.092 2.0862±.085 .5740±.017 .4430±.015 .4997±.015 .3695±.012

AA-kNN .3113±.014 1.9066±.034 4.5413±.110 1.0874±.082 .7113±.015 .5636±.013 .4921±.021 .3518±.016

LDLFs .2808±.034 2.4329±.024 6.6027±.108 .6464±.118 .7679±.046 .5839±.043 .5406±.058 .4072±.045

DF-BFGS .3074±.013 2.4126±.017 6.5896±.072 .7603±.033 .7381±.013 .5568±.011 .5110±.017 .3837±.013

KLD • .3201±.013 2.4242±.017 6.6560±.070 .8285±.044 .7172±.015 .5485±.011 .4958±.016 .3715±.012

S-KLD .2743±.013 2.3866±.020 6.4733±.077 .6608±.039 .7751±.014 .6133±.012 .5592±.017 .4221±.014

SCL • .3379±.014 2.4800±.018 6.8659±.076 .8867±.035 .7014±.014 .4801±.014 .4109±.018 .3025±.013

S-SCL .2733±.013 2.3734±.018 6.4376±.072 .6703±.043 .7744±.015 .6156±.013 .5573±.018 .4207±.014

LRR • .3138±.013 2.4469±.018 6.7118±.074 .7703±.032 .7363±.013 .5456±.011 .5056±.016 .3782±.012

S-LRR .2740±.018 2.3461±.023 6.3467±.087 .6867±.070 .7715±.021 .6199±.017 .5595±.023 .4228±.018

Table 18: Experimental results of LDL on the Movie dataset formatted as (mean± std)
Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑

CPNN .1337±.003 .5639±.010 1.0746±.020 .1191±.005 .9194±.003 .8164±.004 .6610±.013 .7080±.002

AA-kNN .1223±.002 .5451±.009 1.0445±.018 .1129±.004 .9254±.003 .8250±.003 .6557±.011 .5710±.010

LDLFs .1172±.003 .5233±.013 1.0134±.026 .1086±.006 .9305±.003 .8324±.004 .6929±.013 .6051±.012

DF-BFGS .1210±.002 .5282±.009 1.0158±.019 .1084±.005 .9289±.003 .8301±.003 .6848±.012 .5963±.012

LRR • .1135±.002 .5101±.009 .9770±.018 .0957±.004 .9369±.002 .8385±.003 .7119±.011 .6203±.011

S-LRR .1125±.002 .5086±.009 .9717±.018 .0945±.004 .9376±.002 .8398±.003 .7126±.011 .6227±.011

QFD2 • .1159±.002 .5200±.009 .9920±.018 .0975±.004 .9355±.002 .8357±.003 .7075±.011 .6158±.011

S-QFD2 .1123±.002 .5073±.009 .9700±.018 .0945±.004 .9376±.002 .8401±.003 .7125±.011 .6224±.011

CJS • .1153±.002 .5127±.009 .9845±.019 .0984±.004 .9352±.002 .8368±.003 .7103±.012 .6178±.011

S-CJS .1123±.002 .5072±.009 .9699±.018 .0945±.004 .9376±.002 .8401±.003 .7125±.011 .6223±.011

Table 19: Experimental results of LDL on the fbp5500 dataset formatted as (mean± std)
Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑

CPNN .1864±.005 1.3367±.009 2.3604±.020 .1664±.005 .9281±.004 .7958±.005 .8688±.005 .7831±.007

AA-kNN .1515±.004 1.0443±.015 1.7295±.031 .1846±.016 .9419±.004 .8317±.005 .8865±.006 .8123±.008

LDLFs .1307±.003 1.2787±.010 2.1703±.024 .1002±.005 .9575±.003 .8552±.004 .9060±.005 .8352±.007

DF-BFGS .1341±.003 1.2889±.010 2.1982±.023 .1050±.005 .9551±.003 .8523±.004 .9047±.005 .8337±.007

LRR .1312±.003 1.2767±.010 2.1655±.024 .1004±.004 .9575±.002 .8547±.003 .9059±.004 .8350±.006

S-LRR .1302±.003 1.2796±.010 2.1717±.024 .0997±.005 .9576±.002 .8558±.003 .9063±.004 .8425±.006

QFD2 • .1380±.003 1.2803±.010 2.1858±.024 .1084±.005 .9535±.003 .8476±.004 .9021±.004 .8297±.006

S-QFD2 .1321±.004 1.2811±.010 2.1779±.024 .1027±.006 .9561±.003 .8537±.004 .9044±.005 .8330±.007

CJS • .1343±.003 1.3057±.010 2.2374±.024 .1084±.005 .9544±.003 .8527±.004 .9044±.004 .8334±.006

S-CJS .1302±.003 1.2802±.010 2.1731±.024 .0997±.005 .9575±.002 .8559±.003 .9066±.004 .8429±.007

Table 20: Experimental results of IncomLDL on the JAFFE dataset formatted as (mean± std)

Algorithms
ω = 20%

Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
IncomLDL • .0898±.010 .3304±.024 .6742±.049 .0425±.007 .9598±.007 .8861±.009 .4742±.094 .4017±.082

S-IncomLDL .0863±.013 .3179±.036 .6525±.077 .0433±.012 .9590±.011 .8893±.014 .5034±.114 .4401±.100

Algorithms
ω = 40%

Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
IncomLDL • .0946±.010 .3454±.026 .7073±.053 .0465±.007 .9558±.007 .8801±.010 .4231±.086 .3534±.074

S-IncomLDL .0868±.013 .3211±.038 .6568±.081 .0439±.014 .9585±.012 .8886±.015 .5075±.115 .4434±.098
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Table 21: Experimental results of IncomLDL on the SBU_3DFE dataset formatted as (mean± std)

Algorithms
ω = 20%

Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
IncomLDL • .1088±.003 .3586±.008 .7586±.017 .0574±.003 .9439±.003 .8655±.003 .3171±.027 .2746±.023

S-IncomLDL .1014±.004 .3208±.009 .6727±.019 .0516±.003 .9485±.003 .8790±.004 .4255±.026 .3679±.023

Algorithms
ω = 40%

Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑ Spear. ↑ Ken. ↑
IncomLDL • .1104±.003 .3621±.008 .7673±.017 .0586±.003 .9426±.003 .8638±.003 .3003±.024 .2595±.020

S-IncomLDL .1016±.004 .3213±.009 .6748±.019 .0516±.003 .9485±.003 .8786±.004 .4232±.025 .3659±.022

Table 22: Experimental results of LDL4C on JAFFE and Twitter formatted as (mean± std)

Algorithms
JAFFE

Algorithms
Twitter

0/1 loss ↓ Err. prob. ↓ 0/1 loss ↓ Err. prob. ↓
LDL4C • .4973 ±.108 .7665 ±.020 LDL4C .9081 ±.009 .8846 ±.005

S-LDL4C .4453 ±.102 .7600 ±.019 S-LDL4C .8714 ±.207 .8729 ±.156

LDL-HR .4786 ±.097 .7676 ±.020 LDL-HR • .3656 ±.017 .4928 ±.011

S-HR .4653 ±.105 .7655 ±.019 S-HR .2753 ±.013 .4250 ±.008

LDLM .4787 ±.109 .7687 ±.021 LDLM • .2814 ±.013 .4291 ±.008

S-LDLM .4737 ±.097 .7689 ±.019 S-LDLM .2753 ±.014 .4250 ±.008

Table 23: Experimental results of LDL4C on sBU_3DFE and Flickr formatted as (mean± std)

Algorithms
sBU_3DFE

Algorithms
Flickr

0/1 loss ↓ Err. prob. ↓ 0/1 loss ↓ Err. prob. ↓
LDL4C .5578 ±.028 .7671 ±.007 LDL4C .8971 ±.008 .8884 ±.004

S-LDL4C .5526 ±.025 .7686 ±.006 S-LDL4C .8705 ±.138 .8702 ±.100

LDL-HR • .5167 ±.027 .7596 ±.006 LDL-HR • .4513 ±.015 .5823 ±.007

S-HR .5069 ±.025 .7598 ±.006 S-HR .4219 ±.015 .5639 ±.007

LDLM • .5258 ±.034 .7619 ±.009 LDLM • .4384 ±.014 .5740 ±.007

S-LDLM .4809 ±.024 .7524 ±.005 S-LDLM .4321 ±.016 .5667 ±.007

Table 24: Experimental results of LE on the JAFFE dataset formatted as (mean± std)
Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑

LP .0812 ±.001 .3446 ±.002 .7125 ±.005 .0424 ±.001 .9618 ±.001 .8808 ±.001

GLLE .0821 ±.002 .3196 ±.013 .6518 ±.028 .0386 ±.003 .9638 ±.002 .8901 ±.004

LEVI .0787 ±.003 .3316 ±.013 .6864 ±.028 .0391 ±.003 .9649 ±.002 .8860 ±.004

LIBLE • .0813 ±.006 .3106 ±.020 .6358 ±.044 .0370 ±.005 .9652 ±.005 .8929 ±.008

S-LIBLE .0770 ±.003 .2942 ±.007 .5997 ±.016 .0332 ±.002 .9685 ±.002 .8987 ±.003

Table 25: Experimental results of LE on the Yeast_heat dataset formatted as (mean± std)
Algorithms Cheby. ↓ Clark ↓ Can. ↓ KLD ↓ Cosine ↑ Int. ↑

LP .0421 ±.000 .2148 ±.000 .4711 ±.001 .0153 ±.000 .9860 ±.000 .9235 ±.000

GLLE .0481 ±.001 .2114 ±.005 .4282 ±.011 .0168 ±.001 .9842 ±.001 .9298 ±.002

LEVI .0494 ±.007 .2125 ±.027 .4307 ±.056 .0169 ±.004 .9838 ±.004 .9289 ±.009

LIBLE • .0453 ±.000 .1973 ±.001 .3982 ±.003 .0148 ±.000 .9859 ±.000 .9346 ±.000

S-LIBLE .0445 ±.000 .1901 ±.002 .3790 ±.005 .0137 ±.000 .9869 ±.000 .9376 ±.001
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