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ABSTRACT

Subsampling significantly reduces the number of measurements, thereby stream-
lining data processing and transfer overhead, and shortening acquisition time
across diverse real-world applications. The recently introduced Active Deep Prob-
abilistic Subsampling (A-DPS) approach jointly optimizes both the subsampling
pattern and the downstream task model, enabling instance- and subject-specific
sampling trajectories and effective adaptation to new data at inference time. How-
ever, this approach does not fully leverage valuable dataset priors and relies on
top-1 sampling, which can impede the optimization process. Herein, we enhance
A-DPS by integrating a deterministic (fixed) prior-informed sampling pattern de-
rived from the training dataset, along with group-based sampling via top-k sam-
pling, to achieve more robust optimization—a method we call Prior-aware and
context-guided Group-based Active DPS (PGA-DPS). We also provide a theoret-
ical analysis supporting improved optimization via group sampling, and validate
this with empirical results. We evaluated PGA-DPS on three tasks: classification,
image reconstruction, and segmentation, using the MNIST, CIFAR-10, fastMRI
knee, and hyperspectral AeroRIT datasets, respectively. In every case, PGA-DPS
outperformed A-DPS, DPS, and all other sampling methods. Our code is available
athttps://github.com/B9Kang/PGADPS.

1 INTRODUCTION

Modern technologies generate massive datasets that can require lengthy acquisition time and hinder
real-time onboard processing. Many real-world applications, including Magnetic Resonance Imag-
ing (MRI) (Ye, 2019), computed tomography (CT) imaging (Chen et al., 2008), ultrasound imaging
(Huijben et al., 2020b), digital micromirror device (Baraniuk, 2007), seismic surveying (Herrmann
et al., 2012), and hyperspectral imaging (Sun & Du, 2019), highlight the importance of reducing
imaging data volume. Therefore, strategic sampling not only reduces data volume and preserves
essential information for efficient transfer and processing but also accelerates acquisition, a critical
factor in medical imaging.

Compressed sensing (CS) was developed as a subsampling strategy to overcome the Nyquist-
Shannon limits on the sampling rates required for perfect signal reconstruction (Donoho, 2006;
Eldar & Kutyniok, 2012). CS has been widely adopted across various applications and has demon-
strated significant impact (Lustig et al., 2007; Baraniuk & Steeghs, 2007; Yu & Wang, 2009; Martin
et al.,, 2014; Lorintiu et al., 2015; Han et al., 2016). Although CS exploits the inherent signal struc-
tures, such as sparsity, it does not take into account the information relevant to the downstream task
during the sampling process. Bridging the gap between modality- and task-specific knowledge and
the sampling process has proven challenging.

Recently, subsampling techniques customized for specific data distributions and downstream tasks
have been proposed with advances in deep learning, offering learned yet fixed sampling patterns
(Huijben et al., 2020a; Weiss et al., 2020; Shen et al., 2020; Sherry et al., 2020; Zhang et al., 2020;
Aggarwal & Jacob, 2020; Mou et al., 2021; Yang et al., 2025). These approaches optimize a sam-
pling pattern based on the average data distribution in the training set, which may not provide op-
timal results for individual instances. To address this limitation, active sampling was introduced,
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where new points are adaptively selected based on previously acquired samples, iterating until the
required target number of samples is obtained (Zhang et al., 2019; Jin et al., 2019; Bakker et al.,
2020; Pineda et al., 2020; Van Gorp et al., 2021; Tian et al., 2025). Active sampling produces a
sampling trajectory that adapts to each test instance and incorporates newly acquired data dynam-
ically. This is particularly valuable in medical imaging, where each patient’s unique physiological
condition demands individualized acquisition trajectories.

Although active subsampling provides instance-specific sampling patterns and enables effective
adaptation to new data, boosting downstream task performance, its sampling strategy still has room
for improvement. Through iterative top-1 sampling guided by previously selected samples, active
sampling leverages inter-sample relationships to optimize the sampling model and minimizes re-
dundant information. However, it fails to fully exploit the rich prior knowledge embedded in the
training dataset. Moreover, relying on top-1 sampling leads to sub-optimal optimization (Huijben
et al., 2020a).

In this work, we enhance Active Deep Probabilistic Subsampling (A-DPS) architecture by incor-
porating deterministic (fixed) subsampling based on prior knowledge of the training data with
group sampling to achieve more robust optimization (Fig. 1). We call this approach Prior-aware
and context-guided Group-based Active Deep Probabilistic Subsampling (PGA-DPS). We demon-
strate that PGA-DPS exploits training-data priors via deterministic sampling and reinforces this with
instance-adaptive group sampling, resulting in a smoother loss landscape and more stable optimiza-
tion. We evaluated PGA-DPS on the MNIST dataset (LeCun et al., 1998), the CIFAR-10 dataset
(Krizhevsky et al., 2009), the fastMRI knee dataset (Zbontar et al., 2018), and the hyperspectral
AeroRIT dataset (Rangnekar et al., 2020). Across classification, image reconstruction, and segmen-
tation tasks, PGA-DPS outperforms all other state-of-the-art sampling methods.

2 RELATED WORK

Recent works have proposed learning-based subsampling techniques tailored to data types and
downstream tasks. In the field of MRI, Learning-based Optimization of the Under-sampling Pat-
tErn (LOUPE) was developed to simultaneously optimize the subsampling pattern and reconstruct
the image, addressing two core challenges of compressed sensing (Bahadir et al., 2020). LOUPE
learns the sampling mask by relaxing the non-differentiable threshold operation, which is similar to
the Gumbel-softmax trick used in Deep Probabilistic Subsampling (DPS) (Huijben et al., 2020a).
The target sampling ratio is enforced by an L1 sparsity penalty on sampling mask within the loss
function. Additionally, a stochastic greedy algorithm has been applied in MRI to obtain the sampling
pattern that minimizes the reconstruction loss (Sanchez et al., 2020). However, greedy algorithm-
based methods require pre-trained reconstruction capable of handling any subsampling pattern to
thoroughly evaluate the loss.

In hyperspectral imaging (HSI), band selection techniques are widely used to identify a small in-
formative subset of spectral bands and reduce spectral redundancy. Self-Representation Learning
with Sparse 1D-Operational Autoencoder (SRL-SOA) employs a sparse autoencoder model to learn
a sparse representation using a Taylor-series expansion of non-linear transformation (Ahishali et al.,
2022). However, this does not incorporate the downstream task model for band selection. Greedy
Spectral Selection (GSS) adopts a greedy algorithm: it first performs filter-based interband redun-
dancy analysis, then trains a Convolutional Neural Network (CNN) to assess classification perfor-
mance of the chosen bands (Morales et al., 2021). On the other hand, CNN based on Bandwise-
independent convolution and Hard thresholding (BHCNN) jointly optimizes band selection and the
classification by applying a hard threshold mask via a straight-through estimator (Feng et al., 2020).
Although this allows joint optimization, gradients for non-selected bands are ignored, which can
hinder the discovery of other informative bands during training. Furthermore, the aforementioned
task-aware band selection methods are designed for classification, which may not provide optimal
spectral bands for segmentation tasks.

An active sampling strategy for MRI k-space acquisition uses an adversarial neural network to dis-
tinguish between sampled and unsampled lines in the Fourier space (Zhang et al., 2019). The ad-
varsarial network identifies the k-space line that appears most realistically fake and selects it for
acquisition; this process repeats until the desired number of lines is obtained. However, this ap-
proach processes k-space data directly, which limits its applicability to MR image undersampling.
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Figure 1: (A) A schematic overview of the proposed Prior-aware and Group-based Active DPS
(PGA-DPS) applied to classification task on the MNIST dataset. PGA-DPS uses learned prior logits
(¢1), for a fixed sampling mask and then acquires new samples in grouped, active iterations. Here,
Ps and As stand for portions of prior and active sampling respectively. For example, DPS picks 31
samples in one step, A-DPS over 31 iterations, and PGA-DPS in just 3 iterations. (B) An example
of an MRI reconstruction task. (C) An example of an HSI segmentation task.

Reinforcement learning (RL) has also been explored for active acquisition, applying greedy and
modified e-greedy policies to actively acquire optimal sampling masks (Pineda et al., 2020; Bakker
et al., 2020). However, RL-based techniques require a pretrained reconstruction network that can
handle a variety of sampling patterns. To address this issue, Active DPS (A-DPS) jointly optimizes
both the sampling mask and the associated reconstruction network (Van Gorp et al., 2021). Building
on A-DPS, the proposed Prior-aware and Group-based Active DPS (PGA-DPS) improves optimiza-
tion robustness and fully leverages prior knowledge embedded in the training data.

3 METHOD

3.1 TASK-ADAPTIVE SUBSAMPLING FRAMEWORK

We aim to find an optimal subsampling strategy A C {0, l}N on a given input signal z € R" for a
specific task ¢, such that the performance of the task is maintained using fewer input samples.

N
Ig}ngt—t(H,A)H subject to ;Ai =M, whereA; €A (D
t(0,A) = fg.a(Ax) )

where f is a task model that predicts the task ¢ from the input signal z,  is parameters of the model,
and M is the target number of subsamples. The proportion of selected samples can be represented
by the sampling ratio r = 100 x M/N%. In general, neural networks are widely adopted for
task models, such as classification, segmentation, reconstruction, detection, and more; however,
backpropagation from the loss function is hindered by the non-differentiable nature of sampling.
This issue was alleviated using the Gumbel-Softmax reparameterization trick introduced in Deep
Probabilistic Subsampling (DPS).

3.2 DPS: DEEP PROBABILISTIC SUBSAMPLING

DPS proposed an end-to-end deep learning framework that jointly optimizes both the subsampling
strategy and the downstream task model (Huijben et al., 2020b). During training, DPS learns un-
normalized logits ¢, which are used to generate a subsampling mask probability P (A|¢) from a

categorical distribution with N classes: A ~ Categorical (Zm, ie{l,...,N }> The
j OXPLPi
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Figure 2: An illustration of active sampling strategy for A-DPS and PGA-DPS, whereas a fixed
(deterministic) masking pattern is used for DPS.

Gumbel-max trick enables efficient sampling from a categorical distribution (Gumbel, 1954; Mad-
dison et al., 2014):

1 if¢ € argmax Gy,
A; = :
{ 0 otherwise ©)
G@ =G; + ¢; NGumbel((bZ), i€ {1,,N} @)

where ¢ € R¥ is an unnormalized logit vector composed of ¢; and G is a vector of i.i.d noise
samples, G;, drawn from a Gumbel distribution ~ Gumbel(0,1). However, since the arg max
function is non-differentiable and thus unsuitable for backpropagation, DPS employs the Gumbel-
Softmax trick by relaxing the max operation into a differentiable softmax function as follows (Jang
et al., 2017; Maddison et al., 2017):

VoA = Vysoftmaz, (Gg) (5)

where 7 is a temperature parameter that controls the degree of relaxation, enabling gradients to be
distributed across multi-dimensional logits when 7 > 0 during training. In addition, as the temper-
ature decreases 7 — 0, softmax, can anneal into a categorical distribution. Although tuning the
relaxation with 7 is crucial for managing the bias-variance trade-off of the gradient estimator (Tucker
et al., 2017), the DPS architecture has been shown to perform effectively with a fixed temperature
during training (7 = 2).

In addition, the Gumbel-max trick can be extended to the Gumbel top-k trick to efficiently select the
k most probable samples, rather than just the single highest-probability one (Kool et al., 2019; Ptz
& Roth, 2018).
A = arg top (¢ + G) (6)
k

DPS introduces two variants for selecting k£ samples: DPS-top-1, which sequentially samples from
k independent categorical distributions—each with its own trainable logits—and DPS-top-£, which
selects all k samples simultaneously using a single shared logit for greater parameter efficiency.
Although DPS-top-1 is more expressive, the DPS-top-k approach showed improved performance.

Similarly, Active Deep Probabilistic Subsampling (A-DPS) introduces an active sampling that uses
contextual information from previously selected samples to guide subsequent selection, allowing
adaptation to new data (Van Gorp et al., 2021). In A-DPS, samples are chosen iteratively by applying
DPS-top-1 at every step.

Aj:argtop{wj_1+¢j+Gj}, i=12,....K 7
1

=g ), t'=fo(A ') (8)

where j denotes the iteration; w’ C {—oo, O}N is a cumulative mask that assigns minus infinity
to previously selected elements, ensuring they are excluded after re-normalization; ¢ € RY and
G7 € RN are ¢ and G for j* sample, respectively; g’ is a sampling network in jth iteration that
encodes the current task context based on the samples selected so far; and fp is a differentiable
model that generates the current task prediction. The context is built using an analysis-by-synthesis
approach, where the task (synthesis) module guides the sampling (analysis). In A-DPS, losses are
accumulated over all iterations, and the network is updated in a semi-greedy manner.
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3.3 PGA-DPS: PRIOR-AWARE AND GROUP-BASED ACTIVE DPS

PGA-DPS initiates with a deterministic subsampling pattern and then iteratively acquires additional
samples through active sampling (Fig. 2). The deterministic pattern drawn from the training data’s
prior is followed by active sampling that exploits each new input’s contextual information, thereby
combining global data prior with input specific context.

Moreover, PGA-DPS uses DPS-top-k to select samples in groups for active sampling, rather than
DPS-top-1 in A-DPS, enabling it to achieve a smaller effective Lipschitz constant. We analyze group
sampling enabled by DPS-top-£ in terms of the loss, which captures the Lipschitzness of the loss
and reflects the smoothness of the optimization landscape. The proof is available in Appendix A.

Theorem 1. (The effect of group sampling on the Lipschitzness of the loss). Let fi1, fa, ..., fr be
task models, where each function f; has a corresponding Lipschitz constants L; for j = 1,2,... k.
In DPS-top-1, k task functions are required for each input sample xy, whereas DPS-top-k defines
a single task function fi over group of k samples. The Lipschitzness of the loss function for each
DPS-top-1 and DPS-top-k is as follows:

k
|1Lossopsiop1 (@)|* = [ f(2*) = f@)I* < ] L et —aall®s f = felfea(oo (fi(@)) o))
r=1

| Lossorsaopi (@) = 1 fe@®) = fu(@)|® = [ fu(@”) = fulwr, @z, .., 2| < Ly a* —

Here, z* € RY is the fully sampled input signal (unsampled signal = 0), x € R is the sampled
input signal, and x, is the v*" sample. If the Lipschitz constant of task model at each iteration
L; >1,
k
2 2
Li < [[ Lr = sup, [|Losspps.iopr(x)]|* < sup, |[Losspps.op-1 ()]

r=1

Neural networks typically have Lipschitz constants much greater than one, except in the trivial
near-identity case (Malherbe & Vayatis, 2017; Bartlett et al., 2018; Latorre et al., 2020; Shi et al.,
2022). Because our task of classification, image reconstruction (from k-space to image), and seg-
mentation, are far from identity mappings, DPS-top-k exhibits a smaller effective Lipschitz constant
than DPS-top-1, whose effective constant is the product of multiple Lipschitz constants. Moreover,
the same analysis can apply to the Lipschitz constants of gradient loss ||V Loss||. Consequently,
PGA-DPS creates smoother latent space, resulting in more stable and efficient optimization (Vir-
maux & Scaman, 2018; Berkenkamp et al., 2017; Liu et al., 2022; Gouk et al., 2021; Santurkar
et al., 2018). This theoretical analysis aligns with previous experimental results that Top-k sampling
outperformed Top-1 sampling in DPS (Huijben et al., 2020a).

4 EXPERIMENTS

4.1 MNIST CLASSIFICATION
4.1.1 EXPERIMENT SETUP

We evaluated the classification performance under pixel subsampling using the MNIST dataset (Le-
Cun et al., 1998). The 70,000 grayscale images of 28 x 28 pixels, representing handwritten digits
from 0 and 9, were split into train, validation, and test sets with a ratio of 5:1:1, respectively. We
compare the proposed PGA-DPS method with DPS and A-DPS across various sampling ratios, rang-
ing from 1% to 8% with the increment of 1%. Furthermore, we also report the reference performance
obtained using all samples (100%).

4.1.2 TASK MODEL

A multi layer perceptron (MLP) with 5 layers is used for the classification network fy(-). The
MNIST images are flattened and masked according to the subsampling pattern before being fed into
the network. The sampling network g*(-) of an LSTM (Long Short-Term Memory) followed by a
two-layer MLP, which encodes the current task context and generates the corresponding sampling
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mask. Both the classification network and sampling network are simultaneously trained using a
categorical cross-entropy loss. In addition, the trainable logits of size 784 (¢1) are included in
the network for DPS and PGA-DPS to provide a deterministic sampling pattern. Detailed model
architecture and training settings are provided in the Appendix B.1.

In PGA-DPS, the proportions of prior (deterministic) sampling and active sampling are fixed to 60
and 20 %. Here, the Ps and As denote the proportions of prior and active sampling, respectively.
(Ps, As)=(60, 20) implies that 60% of the target samples are selected by prior sampling, and the
remaining samples (40%) are acquired over two active group sampling iterations of 20% each.

4.1.3 RESULTS

The classification accuracy on test set is shown in Table 1. PGA-DPS outperforms both DPS and
A-DPS across all sampling ratios, with the largest gain at the low sampling ratios. The active
sampling method leverages previously selected samples for adapting its sampling pattern, which is
particularly effective under extreme subsampling conditions. A-DPS showed strong performance
when sampling ratio () is below 4%, whereas DPS works better when more samples are available.
This likely arises because A-DPS trains a separate classifier for each sampled pixel, inflating its
Lipschitz constant (as discussed in Theorem 1).

Table 1: The classification accuracy on the MNIST test set (10,000 samples) for various subsampling
ratios (7). Each sampling strategy was repeated across six independent runs.
Sampling ratio: r (%)
Sampling Model 1 2 3 4 5 6 7 8 100
DPS 63.5 83.6 915 952 964 971 973 97.6 982
A-DPS 646 852 922 953 96.1 96.6 97.1 972 -
PGA-DPS 68.8 869 939 958 96.7 972 975 977 -

4.2 CIFAR-10 CLASSIFICATION
4.2.1 EXPERIMENT SETUP

We evaluated pixel-level subsampling for classification using the CIFAR-10 dataset (Krizhevsky
et al., 2009), which contains 60,000 color images of size 32 x 32 across 10 classes. Of these, 50,000
images were used for training and validation, and 10,000 for testing. The training split was further
divided into training and validation set at a 9:1 ratio. We compared the proposed PGA-DPS, DPS
and A-DPS methods across sampling ratios ranging from 2% to 20% in increments of 2%. The
reference performance using all samples (100 %) is also reported.

4.2.2 TASK MODEL

For the classification model fy(+), we employed a four-layer convolutional neural network (CNN)
followed by three MLP layers. The CIFAR-10 images are first masked according to the subsampling
pattern and then fed into the network. We employed the same sampling network architecture and the
same cross-entropy loss function as in the MNIST classification experiments. The detailed model
architecture and training settings are provided in the Appendix B.2. In PGA-DPS, the proportions
of prior sampling and active sampling are fixed to 10 % and 20 %, respectively.

Table 2: The classification accuracy on the CIFAR-10 test set (10,000 samples) for various subsam-
pling ratios (). Each sampling strategy was repeated across six independent runs.

Sampling ratio (%)
Sampling Model 2 4 6 8 10 12 14 16 18 20 100
DPS 38,6 445 434 441 46.1 465 492 505 521 543 963
A-DPS 529 61.0 658 674 704 696 707 69.5 700 68.3 -

PGA-DPS 543 632 686 708 747 781 786 79.8 813 827 -
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4.2.3 RESULTS

Table 2 shows that the proposed PGA-DPS outperforms both DPS and A-DPS across all sampling
ratios. Because CIFAR-10 classification is substantially more challenging than MNIST, the perfor-
mance gains are larger across the entire range. Unlike the MNIST classification task, A-DPS exhibits
consistently strong performance relative to DPS for all ratios. This behavior is likely attributable to
the lower Lipschitz constant of CNNs compared to MLPs used in the MNIST experiments (Shi et al.,
2022), which makes the optimization landscape easier to navigate. However, beyond a certain num-
ber of samples (r = 14 %), the classification accuracy of A-DPS decreased, likely due to an inflated
Lipschitz constant, similar to what was observed in the MNIST classification task.

4.3 MRI RECONSTRUCTION
4.3.1 EXPERIMENT SETUP

To evaluate the performance of k-space subsampling, we tested on the single-coil knee RAW ac-
quisitions from the fastMRI dataset (Zbontar et al., 2018). A total of 13,000 images, excluding the
outer slices, were split into an 8:2:3 ratio for train, validation, and test, respectively. All slices were
cropped to central 208 x 208 pixels and normalized to [0, 1]. Vertical Cartesian binary masks (IM)
were used for all sampling models, where one column line corresponds to acquiring one phase-
encoding line. We simulated the partially acquired k-space by applying the Cartesian binary mask
to a fully sampled k-space:

Y = |[F'MFX| 9)

where F, F~! are the forward and inverse Fourier transforms, respectively; Y € RV*V is the
image from subsampled k-space; X € RN*¥ is the ground truth image from fully sampled k-
the magnitude operation. Following the previous study’s setup (Van Gorp
etal.,, 2021), we take the magnitude of complex-valued Y to simplify the image reconstruction.

4.3.2 TASK MODEL

For the reconstruction task fy(-), a deep unfolded proximal gradient method is employed to recon-

struct the original image X from the partially acquired measurement Y (Mardani et al., 2018), by
unrolling iterations of the proximal gradient algorithm into a feed-forward neural network:

X1 = p, (Xk —aV|Y - f*MfXD (10)

where P, denotes the proximal neural network incorporating the image prior regularizer (3)), and «
is the step size. The sampling network g*(-) consists of a 3-layer CNN, followed by global average
pooling, an LSTM, and a single MLP, in sequence. In this way, the current reconstruction result
is encoded into the LSTM to generate logits (¢), which are used to select the subsequent (active)
sample. The reconstruction model and training details are provided in the Appendix B.3.

We compare PGA-DPS to other sampling methods, namely, low-pass, variable density sampling
(VDS) (Lustig et al., 2007), greedy mask selection (Sanchez et al., 2020), LOUPE (Bahadir et al.,

2020), DPS, and A- DPS In the loss-pass method, lines nearest to the DC (k-space orlgln) compo-
nents are selected; in VDS, sampling density decays with distance from the k-space origin, concen-
trating the samples centrally and tapering off toward the periphery. In the greedy mask strategy, the
mask pattern is optimized using a stochastic greedy algorithm (Sanchez et al., 2020), implemented
via the NESTA solver (Becker et al., 2011). Afterwards, the corresponding proximal gradient net-
work was trained using the fixed optimal mask obtained from the greedy algorithm (Greedy Prox.).

4.3.3 RESULTS

To assess the influence of the sampling hyperparameters (Ps, As), we conducted an ablation study
using their various combinations. Table 3 demonstrates the MR reconstruction performance on the
hold-out test set, evaluated using three metrics: normalized mean square error (NMSE), peak signal-
to-noise ratio (PSNR), and structural similarity index (SSIM). Reconstruction performance shows
an overall increasing trend with higher As (i.e., larger k in top-k sampling), across various levels of
prior sampling (Ps), even without the use of prior-aware deterministic sampling, which is equivalent
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to A-DPS with group sampling. This trend is consistent with the theoretical explanation proposed in
Theorem 1. However, the improvement plateaus beyond an As of 15-20% , or even declines slightly,
presumably due to the reduced rate of active sampling. While PGA-DPS shows slight performance
variation across (Ps, As) configurations, it outperforms A-DPS in most cases.

We found the (30%, 30%) configuration of (Ps, As) to be the optimal and fixed it for further MRI
reconstruction analysis. Furthermore, this optimal configuration generalizes well across different
sampling ratios of k-space lines M = 15, 20, 30, and 35 (Table 8 in the Appendix). The performance
gain is particularly notable in the low-measurement regime, where the number of k-space lines is
small, further demonstrating the robustness of our method under limited data conditions.

Table 3: Average results over 10 runs on the hold-out test set of size 208 x 208 pixels for an
acceleration factor of 8 (M = 26, r = 12.5%), using PGA-DPS across various Ps and As.
As=5% 10% 15% 20% 30% 40%
NMSE 0.0398 0.0393 0.0389 0.0373 0.0376 0.0387
Ps=0%  PSNR 254 254 25.5 25.7 25.6 25.5
SSIM 0.576 0.581 0.584 0598  0.591 0.585
NMSE  0.0388  0.0393 0.0378 0.0370 0.0359 0.0359
Ps=30% PSNR 25.5 25.4 25.6 25.8 259 25.9
SSIM 0.588 0.585 0597 0.618 0.621  0.619
NMSE  0.0387  0.0377 0.0372 0.0364 0.0366 0.0367
Ps=50% PSNR 25.6 25.6 25.7 259 25.8 25.8
SSIM 0.592 0.598 0.603 0615 0.610 0.611
NMSE 0.0370  0.0377 0.0368 0.0375 0.0371 —
Ps=70% PSNR 25.7 25.7 25.8 25.7 25.7 —
SSIM 0.596 0.600 0.606  0.601 0.600 —

As shown in Table 4, the proposed PGA-DPS significantly outperforms all other sampling strategies
across all evaluation metrics. The example reconstruction from masks generated by PGA-DPS,
A-DPS, DPS, and other sampling methods are shown in the Appendix (Fig. 3).

Since DPS optimizes its mask to perform well on average, it heavily concentrates on DC (low-
frequency) lines, that capture overall structure of the input data (Fig. 2). In contrast, PGA-DPS and
A-DPS select more samples farther from the DC region, capturing richer structural details. Note
that A-DPS always begins at the center line, whereas PGA-DPS starts with a mix of central and
peripheral lines, achieving a more balanced representation of frequency components.

4.4 MRI RECONSTRUCTION WITH ACTIVE BASELINES
4.4.1 EXPERIMENT SETUP

To further validate the effectiveness of our method, we conducted an additional comparison
against reinforcement learning (RL)-based sampling strategies: Evaluator Policy (Zhang et al.,
2019) and Data-Specific Double Deep Q-Networks (DS-DDQN) (Pineda et al., 2020). To en-
sure compatibility with the publicly available DS-DDQN checkpoints, we applied the same pre-
processing procedures used in their original work. In addition, the trained checkpoints were used for
DPS (DPS_16lines_Oseed_Pineda) and A-DPS (ADPS_16lines_Oseed_Pineda). We adopt the train-
validation-test split protocol from (Van Gorp et al., 2021), yielding 34,742 training, 1,785 validation,
and 1,851 testing images. Each input corresponds to a k-space volume of size 368x640. For eval-
uation, reconstruction scores are computed over the central 320x320 region, excluding peripheral
background areas. PGA-DPS was trained for 5 epochs with a batch size of 1, following the training
scheme provided in A-DPS (Van Gorp et al., 2021). The Ps and As ratios were both set to 30%.

4.4.2 RESULTS

Table 5 presents the MR reconstruction results on the hold-out test set with an acceleration factor of
8. We adopt the Scenario-30L setting, in which 30 Auto-Calibration Signal (ACS) lines are fixed,
and the remaining 16 target samples are selected. PGA-DPS outperforms all other sampling methods
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Table 4: Average results over 10 runs on the hold-out test set of size 208x208 pixels for an acceler-
ation factor of 8 (M = 26,r = 12.5%) compared to other sampling methods.

Sampling Model
Lowpass VDS  Greedy Prox. LOUPE DPS  A-DPS PGA-DPS
NMSE  0.0462  0.0471 0.0425 0.0465 0.0408 0.0398 0.0359
PSNR 24.5 24.5 25.0 25.1 25.3 254 259
SSIM 0.511 0.533 0.536 0.574 0.571 0.576 0.621

under this setting. Notably, the overall PSNR and SSIM achieved in this experiment is substantially
higher than that reported in our previous MRI study using a smaller matrix size (208x208), reflecting
the benefits of using higher-resolution k-space data with abundant ACS lines.

Table 5: Results on the hold-out test set of size 368 x 640 pixels for an acceleration factor of 8
(M = 46, r = 12.5%, ACS = 30) compared to RL approaches.

Sampling Method NMSE PSNR SSIM
Evaluator policy (Zhang et al., 2019)  0.0398  28.8  0.610
DS-DDQN (Pineda et al., 2020) 0.0370 29.2  0.623
DPS (Huijben et al., 2020a) 0.0360  30.1  0.650
A-DPS (Van Gorp et al., 2021) 0.0342  30.2 0.654
PGA-DPS (Proposed) 0.0331 30.5 0.668

4.5 HYPERSPECTRAL IMAGE (HSI) SEGMENTATION
4.5.1 EXPERIMENT SETUP

To analyze the generalizability of PGA-DPS, we evaluated its performance on hyperspectral band
selection for segmentation. We used the AeroRIT dataset (Rangnekar et al., 2020), which consists
of aerial images with hyperspectral bands from 400 to 900 nm in 10 nm increments, resulting in a
total of 51 spectral bands. Following the original study’s split, 1920 x 3968 image was divided into
the left 1920 x 1728 for training, the next 1920 x 512 for validation, and the final 1920 x 1728 for
testing. We extracted 64 x 64 patches with 50% overlap from the training set and non-overlapping
patches for validation and test sets. The segmentation labels include five classes : (1) roads, (2)
buildings, (3) vegetation, (4) cars, and (5) water.

4.5.2 TASK MODEL

For the segmentation network fy(-), we use a residual U-Net consisting of 6 ResNet blocks following
the pix2pix design (Isola et al., 2017; Zhu et al., 2017): this architecture is referred to as Res-U-net
in the AeroRIT study (Rangnekar et al., 2020). The sampling network g*(-) consists of a 4-layer
CNN, with each layer followed by Batch normalization and ReLU activation. The output of the
CNN is aggregated into a feature vector via global average pooling, which is then fed to an LSTM
and a single-layer MLP to generate logits.

The categorical cross-entropy loss is computed for 5 classes and the model with the highest mean in-
tersection over union (mIOU) on the validation set is selected for further evaluation. Detailed model
architecture and training settings are provided in the Appendix B.4. In PGA-DPS, the proportions
of prior (deterministic) sampling (Ps) and active sampling (As) were 80% and 20%, respectively.

Three different DPS methods (DPS, A-DPS, and PGA-DPS) are implemented and compare to the
conventional methods including uniform sampling, SRL-SOA (Self-Representation Learning with
Sparse 1D-Operational Autoencoder) (Ahishali et al., 2022), and GSS (Greedy Spectral Selection)
(Morales et al., 2021). In the uniform strategy, equidistant spectral bands are selected. In SRL-SOA,
the polynomial order of the Taylor series expansion used to estimate the original signal using the
autoencoder is set to 3. In the GSS approach, classification is performed on the center pixel of a 5
x 5 patch. For comparison, we also implemented the reference method *All-bands’, which does not
use band selection and utilizes all 51 hyperspectral images.
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4.5.3 RESULTS

Table 6 shows segmentation performance using three metrics: MPCA (mean per-class accuracy),
mIOU (mean Intersection over Union), and mDICE (mean Sgrensen—Dice coefficient). PGA-DPS
outperformed all other methods, achieving performance comparable to that of using all 51 bands,
while enabling over 10-fold acceleration. A-DPS produces less reliable segmentation maps, likely
because the complexity of the segmentation makes joint optimization of the sampling strategy and
multiple task models difficult. To preserve optimization stability, PGA-DPS limits active sampling
at 20%. Example segmentation maps from subsampled bands selected by All-bands, PGA-DPS,
A-DPS, DPS, and other band selection methods are shown in the Appendix (Fig. 4).

Table 6: Average segmentation results over 10 runs on the hold-out AeroRIT test set (3,127 patch
samples) for band selection (using 5 bands, i.e. r ~ 9.8%), compared to other approaches.

Band Selection Model
All bands (Ref) Uniform SRL-SOA  GSS DPS A-DPS PGA-DPS
MPCA (1) 88.36 80.59 83.68 77.91 85.75 65.55 86.37
mlIOU (1) 0.7037 0.5992 0.6160 0.6220 0.6703 0.5181 0.6752
mDICE (1) 0.8063 0.6937 0.7476 0.7144 0.7732 0.6158 0.7803

5 CONCLUSION

We developed a scalable, stable active subsampling technique, called Prior-aware and Group-based
Active DPS (PGA-DPS), that integrates context-guided group sampling and deterministic (fixed)
subsampling based on training-data prior. PGA-DPS not only provides a theoretical analysis for
the stable optimization of group sampling, enabled by DPS-top-k rather than DPS-top-1, but also
shows consistent and improved performance compared to conventional A-DPS. We demonstrated
the effectiveness of PGA-DPS across three diverse tasks—classification, image reconstruction, and
segmentation—using the MNIST, CIFAR-10, fastMRI knee, and AeroRIT datasets, outperforming
all other sampling methods. Since top-k sampling and prior-aware deterministic sampling can be
easily applied to various sampling tasks, PGA-DPS may serve as a powerful tool for improving
performance in real-world applications where acquisition cost and inference efficiency are critical,
such as CT, ultrasound, and radar systems.

6 LIMITATION & FUTURE WORK

Although PGA-DPS excels at generating subsampling strategies for diverse tasks, one possible lim-
itation lies in selecting the hyperparameters associated with the proportion of fixed and active sub-
sampling, denoted as Ps and As, respectively. The optimal sampling portion differs depending on
the downstream task, task model, and sampling ratio. We observed that an active sampling ratio
(As) range of 20-30% provides the best trade-off between the benefit of top-k sampling and the total
budget allocated to active sampling, which narrows the search space for optimal configurations.

To determine an appropriate prior-sampling ratio (Ps), we recommend using the performance dis-
crepancy between DPS and A-DPS as an empirical indicator of the underlying Lipschitz character-
istics of the task. Specifically, if DPS consistently outperforms A-DPS under a given configuration,
this suggests that the optimization landscape exhibits a larger effective Lipschitz constant—implying
that a higher Ps would be beneficial. Conversely, if A-DPS achieves superior performance, the land-
scape is likely smoother, in which case a smaller Ps is preferable.

While optimal hyperparameter (Ps, As) ranges are suggested, automatically tuning them (Bergstra
etal., 2011; Feurer & Hutter, 2019; Bischl et al., 2023) could enhance the robustness of the proposed
method. Future research may explore joint optimization of the active sampling hyperparameters (Ps,
As), the subsampling trajectory, and the downstream task model.

We demonstrate that using a fixed temperature yields robust results (Appendix D); however, tuning
or annealing the temperature could further enhance DPS-based methods. A more comprehensive
investigation of temperature scheduling therefore represents a promising avenue for future work.

10
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APPENDIX

A PROOF

In this Appendix, we prove the Theorem 1 in Method. We provide a proof for the effect of DPS-top-1
sampling on the Lipschitzness of the loss.

Theorem 1. Let fi, fo, ..., fi be task models at j*" iteration, where each function f; has a cor-
responding Lipschitz constants L; for j = 1,2,...,k. The In DPS-top-1, k task functions are
required for each input sample z, whereas DPS-top-k defines a single task function fj over group
of k samples. Lipschitzness of the loss function for each DPS-top-1 is as follows:

k
|Lossppsaop-1 ()]|* = [ £(z*) = f@)|* < [] Lr 2" = 21>, £ = fulfomr(-. (Fi(z1))...))

| Lossors op (@) = [1fx(@*) = fe(@)|® = [ fula”) = fulwr,ma, .. a0)|> < Ly o™ — )
Here, z* € RY is the fully sampled input signal, z € R is the sampled input signal (unsampled
signal = 0), and x,. is the 7" sample. If the Lipschitz constant of task model at each iteration L; > 1,
k
Ly < [[ Lr = sup, ||Losspps-op-k (2)[|* < sup,, |[Losspps.iop-1 ()|

r=1

2

Proof. The Lipschitzness of the loss function for DPS-top-1 at first iteration is
1f (%) = fr(@)l* < Ly ||l2* = 21
The Lipschitzness of the loss function for DPS-top-1 at j*" iteration is
1£@}) = @) < L || — 5]

= Lj || fi-1(2}) = fi-a(zim)|”

S Lj X Lj,1 Hl’;fl — .’Ej,1||2

By the principle of mathematical induction,
k
[Lossppsiop-1(2)|* = [ £(2%) = fr(zi)|” < [ Lr 2" = 21 ))?
r=1

The Lipschitz constant is H’:Zl L, for Losspps.top-1 (z). On the other hand, the Lipschitzness of the
loss function for DPS-top-k is

1Zossops.opr ()| * = [l fx (") = fr(@)||* < Ly 2" — z|*

The Lipschitz constant of the loss function for DPS-top-k is simply L. Therefore, if the Lipschitz
constant of task model at each iteration L; > 1,

k
Ly <[] Lr = sup, [Losspesopk(2)[|* < sup, |[Losspps.op1 (2)]”

r=1

B MODEL ARCHITECTURE AND TRAINING DETAILS

We adopt the same architectures and training strategies used in A-DPS for MNIST classification and
MRI reconstruction tasks (Van Gorp et al., 2021). All experiments are run on a single NVIDIA RTX
3090 GPU.
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B.1 MNIST CLASSIFICATION

The classification network fy(-) consists of 5-layer MLP with 784, 256, 128, 128, and 10 nodes,
respectively. Each layer was followed by a leaky ReLLU activation with a negative slope of 0.2 and
the last layer followed by softmax activation that output probabilities of class. A dropout rate of
30% is also applied to the first three layers.

The sampling network g(-) consists of an LSTM (Long Short-Term Memory) with one hidden layer
of size 128, followed by two MLPs with 256 and 784 nodes, respectively. A leaky ReLU activation
with a negative slope of 0.2 and a dropout rate of 30% are applied after the first MLP.

The categorical cross-entropy loss was minimized using the Adam optimizer (Kingma & Ba, 2014)
with the learning rate of 2 x 10~% (B; = 0.9, B2 = 0.999, and € = 10~7). In addition, the trainable
logits, of size 784 (nn.Parameters()), are also updated with a learning rate of 2 x 103 for DPS and
PGA-DPS. The optimization was run for 100 epochs with a batch size of 256.

B.2 CIFAR-10 CLASSIFICATION

The classification network fy(-) consists of four convolutional layers with channel sizes of 32, 64,
and 128, respectively, and a kernel size of 3 x 3. Each layer is followed by batch normalization,
a ReLU activation function, and a 2 x 2 max pooling operation. The resulting 128-channel fea-
ture map is then flatten and fed into an MLP composed of Linear(2048,256)-ReLLU-Dropout(0.5)-
Linear(256,128)-ReLu-Linear(128,10).

The sampling network g(+) consists of an LSTM (Long Short-Term Memory) with one hidden layer
of size 128, followed by two MLPs with 256 and 1024 nodes, respectively. A leaky ReLLU activation
with a negative slope of 0.2 and a dropout rate of 30% are applied after the first MLP.

The categorical cross-entropy loss was minimized using the Adam optimizer with the learning rate
of 2 x 10~*. In addition, the trainable logits, of size 1024 (nn.Parameters()), are also updated with
a learning rate of 2 x 10~ for DPS and PGA-DPS. The optimization was run for 50 epochs with a
batch size of 128.

B.3 MRI RECONSTRUCTION

The proximal neural network Py, consists of four convolutional layers with channel size of 16,16,16,
and 1, respectively, and a kernel size of 3 x 3. Each layer is followed by a ReLLU activation function
except for the final layer. For the image prior regularizer (¢/), a single 3 x 3 convolutional layer is
used. The proximal gradient method is unrolled for three iterations (k=3).

The adversarial loss (Ledig et al., 2017), combined with a mean square error (MSE), is used to
reconstruct visually plausible MR images, by training a discriminator network that distinguishes
the real and reconstructed images. In addition, the discriminator feature loss between the real and
reconstructed images was employed.

The sampling network gk (+) consists of a sequence of layers: Conv2d(1,16), ReLU, Conv2d(16,32),
ReLu, Conv2d(32,64), ReLU, Average Pooling, Flatten, LSTM(64), and a single-layer
MLP(64,208). All convolutional layers have a kernel size of 3 x 3. The last MLP converts the
output of the LSTM (encoded context) to the logits of size 208.

The discriminator network is consists of a sequence of layers: Conv2d(1,64), LeakyReLU(0.2),
Conv2d(64,64), LeakyReLU(0.2), Conv2d(64,64), LeakyReLU(0.2), Average Pooling,
Dropout(0.4), a single-layer MLP (64,1), and Sigmoid. All convolutional layers have a ker-
nel size of 3 x 3 and a stride of 2.

The total loss is computed as a weighted sum of three losses: mean squared error (MSE), adversarial
loss, and the discriminator feature loss, with respective weights of 1, 5 x 106, and 1077,

The network is updated using the Adam optimizer (Kingma & Ba, 2014) with the learning rate of
2 x 107% (By = 0.9, B = 0.999, and € = le — 7). In addition, the trainable logits, of size 208
(nn.Parameters()), are also updated with a learning rate of 2 x 10~ for DPS and PGA-DPS. The
optimization was run for 10 epochs with a batch size of 2.
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B.4 HYPERSPECTRAL IMAGE SEGMENTATION

For the segmentation network fy(-), we use a residual U-Net consisting of 6 ResNet blocks, as pro-
posed in the pix2pix (Isola et al., 2017; Zhu et al., 2017). The input channel is set to 51, correspond-
ing to the total number of hyperspectral bands, and the output channel is set to 6, corresponding to
the number of classes including the undefined class. The number of the filters in the last convolution
layer is set to 64, and tow downsampling operations are applied.

The sampling network g’C (1) consists of a sequence of layers: Conv2d(6,32), BN, ReLU,
Conv2d(32,64), BN, ReLu, Conv2d(64,128), BN, ReLU, Conv2d(128,256), BN, ReLU, Average
Pooling, Flatten, LSTM(256), and a single-layer MLP(256,51), where BN denotes bach normaliza-
tion. All convolutional layers have a kernel size of 3 x 3. The last MLP converts the output of the
LSTM (encoded context) to the logits of size 51.

In PGA-DPS, the proportions of prior (deterministic) sampling (/V) and active sampling (M) were
80% and 20%, respectively, resulting in two group sampling iterations.

The network is updated using the Adam optimizer (Kingma & Ba, 2014) with the learning rate of
1074 (B = 0.9, B2 = 0.999, and € = le — 7), while the learning rate of 2 x 10~* is used for
DPS and GSS. In addition, the trainable logits, of size 51 (nn.Parameters()), are also updated with a
learning rate of 1 for DPS and PGA-DPS. The optimization was run for 60 epochs with a batch size
of 100.

C RESULTS

C.1 MNIST CLASSIFICATION

We evaluated multiple Ps values under an As of 20% and multiple As values under a Ps of 60%.
Table 7 shows that PA-DPS outperforms the baselines in almost all configurations, although the
optimal configuration shifts slightly across sampling ratios.

Table 7: The classification accuracy on the MNIST test set (10,000 samples) for various subsampling
ratios (r) using various configurations of PGA-DPS (Ps,As). Each sampling strategy was repeated
across six independent runs.

Sampling ratio: r (%)

Sampling Model 1 2 3 4 5 6 7 8 100

DPS 63.5 83.6 915 952 964 971 973 97.6 98.2
A-DPS 646 852 922 953 96.1 966 971 972 -
PGA-DPS (80,20) 69.1 86.0 939 958 96.8 973 97.6 979 -
PGA-DPS (60,20) 68.8 869 939 958 96.7 972 975 97.7 -
PGA-DPS (40,20) 67.8 86.8 93.6 959 96.7 973 974 976 -
PGA-DPS (20,20) 66.8 859 932 956 964 970 972 975 -
PGA-DPS (60,5) 68.8 87.1 93.7 958 965 970 972 97.6 -
PGA-DPS (60,10) 68.8 87.1 93.8 957 96.7 972 974 97.7 -
PGA-DPS (60,15) 688 87.6 942 958 966 972 975 97.7 -
PGA-DPS (60,25) 68.8 87.0 938 958 96.7 972 975 97.7 -
PGA-DPS (60,30) 683 87.0 939 957 967 972 975 977 -

C.2 MRI RECONSTRUCTION

Figure 3 shows example reconstruction from masks generated by PGA-DPS, A-DPS, DPS, and
other sampling methods. Notably, PGA-DPS selects samples farthest from the DC, capturing fine-
grained details. PGA-DPS exhibits the farthest average mask distance from the DC (11.8), versas
10.2 (A-DPS), 8.8 (DPS), 10.8 (LOUPE), 8.1 (Greedy Prox.), and 11.3 (VDS). Despite prioritizing
high-frequency components, PGA-DPS also samples adequately near DC, demonstrating its superior
reconstruction performance with higher SSIM values.
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Figure 3: Three examples of subsampling masks (r = 12.5%) and the corresponding reconstructed
MR images obtained from PGA-DPS, A-DPS, and DPS. Results are compared against reference
images reconstructed from fully sampled k-space data.

To evaluate the robustness and general applicability of the proposed method, we tested whether the
selected optimal configuration of (Ps, As) = (30%, 30%), identified from analysis with k-space lines
M = 26, generalizes well across different sampling ratios by conducting experiments with varying
values of M, i.e., k-space lines M = 15, 20, 30, and 35, corresponding to acceleration rates r = 7.2%,
9.6%, 14.4%, and 16.8%, respectively. As shown in Table 8, PGA-DPS outperforms DPS and A-
DPS across various numbers of k-space lines, with a particularly large margin when the number of
k-space lines is small.

Table 8: Average results over 5 runs on the hold-out test set of size 208 x 208 pixels for various
acceleration factors (r = M /N, N = 208), compared to the DPS and A-DPS methods.

Method Metric M=15 20 30 35
NMSE 0.0517 0.0448 0.0354 0.0325
DPS PSNR 23.9 24.7 26.0 26.5

SSIM 0476 0528  0.623  0.660

NMSE 0.0571 0.0497 0.0360 0.0333
A-DPS PSNR 233 24.2 25.9 26.4
SSIM 0444 0513 0613  0.647
NMSE 0.0472 0.0402 0.0325 0.0304
PSNR 24.4 253 26.4 26.9
SSIM 0.505 0.568 0.657 0.690

PGA-DPS
(30%, 30%)

C.3 HYPERSPECTRAL IMAGE SEGMENTATION

Figure 4 shows example segmentation maps from subsampled bands selected by All-bands, PGA-
DPS, A-DPS, DPS, and other band selection methods.

D ABLATION STUDY ON TEMPERATURE IN DPS ARCHITECTURE

We fixed the temperature to 2 during training for DPS, A-DPS, and PGA-DPS. However, tuning the
relaxation parameter is critical for balancing the bias-variance trade-off of the gradient estimator and
may lead to further improvements.

To assess this, we conducted additional MR reconstruction experiments using various fixed tem-
perature values. As shown in Table 9, the reconstruction performance was largely insensitive to
temperature values. Nonetheless, a fixed temperature of 5 yielded the best overall results, suggest-
ing that temperature optimization could provide marginal additional improvements.
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Figure 4: Two example segmentation maps estimated using 5 bands selected from PGA-DPS, A-
DPS, DPS, and other band selection methods (r =~ 9.8%). Results are compared against reference
segmentation map estimated using all 51 spectral bands.

Table 9: Average results over 5 runs on the hold-out test set (208 x 208 pixels) for an acceleration
factor of 8 (M =26, r = 12.5%), evaluated across various fixed temperatures using PGA-DPS.

7=0.5 1.0 2.0 3.0 5.0 10.0
NMSE 0.0354 0.0354 0.0350 0.0355 0.0349 0.0353

PSNR  26.00 26.00 26.05 2597 26.08 26.02
SSIM  0.620  0.624  0.625 0.619  0.627  0.625

We also evaluated temperature annealing, defined as, 7 = max(2.0, T x e~ 7™), where n denotes the
training epoch. As shown in Table 10, different annealing schedules produced noticeably different
performance. Consequently, using a fixed temperature provides sufficiently robust and stable results
in our setting, consistent with what has been found to work well in practice (Huijben et al., 2020a;
Van Gorp et al., 2021). Nevertheless, a more comprehensive investigation of temperature annealing
within DPS remains a promising direction for future work.

Table 10: Average results over 5 runs on the hold-out test set (208 x 208 pixels) for an acceleration
factor of 8 (M = 26, r = 12.5%), evaluated across various temperature annealing strategies (7 =
max(2.0,T x e~ ™)) using PGA-DPS.

v=0.1 0.2 0.3 0.4 0.5

NMSE 0.0378 0.0362 0.0381 0.0364 0.0367
T=5 PSNR 25.7 25.9 25.6 25.9 25.8
SSIM 0582  0.606 0584  0.604 0.599

NMSE 0.0389 0.0353 0.0379 0.0361 0.0378
T=10 PSNR 25.6 26.00 25.68 259 25.7
SSIM  0.581 0.621 0586  0.607  0.585
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