
PropertyDAG: Multi-objective Bayesian optimization
of partially ordered, mixed-variable properties for

biological sequence design

Ji Won Park1, Samuel Stanton1, Saeed Saremi1, Andrew Watkins1, Henri Dwyer1, Vladimir
Gligorijević1, Richard Bonneau1, Stephen Ra1, and Kyunghyun Cho1,2,3,4

1Prescient Design, Genentech
2Department of Computer Science, Courant Institute of Mathematical Sciences, New York University

3Center for Data Science, New York University
4CIFAR Fellow

park.ji_won@gene.com

Abstract

Bayesian optimization offers a sample-efficient framework for navigating the
exploration-exploitation trade-off in the vast design space of biological sequences.
Whereas it is possible to optimize the various properties of interest jointly using a
multi-objective acquisition function, such as the expected hypervolume improve-
ment (EHVI), this approach does not account for objectives with a hierarchical
dependency structure. We consider a common use case where some regions of the
Pareto frontier are prioritized over others according to a specified partial ordering
in the objectives. For instance, when designing antibodies, we maximize the
binding affinity to a target antigen only if it can be expressed in live cell culture—
modeling the experimental dependency in which affinity can only be measured for
antibodies that can be expressed and thus produced in viable quantities. In general,
we may want to confer a partial ordering to the properties such that each prop-
erty is optimized conditioned on its parent properties satisfying some feasibility
condition. To this end, we present PropertyDAG, a framework that operates on
top of the traditional multi-objective BO to impose a desired partial ordering on
the objectives, e.g. expression → affinity. We demonstrate its performance over
multiple simulated active learning iterations on a penicillin production task, toy
numerical problem, and a real-world antibody design task.

1 Introduction

Designing biological sequences entails searching over vast combinatorial design spaces. Recently,
deep sequence generation models trained on large datasets of known, functional sequences have
shown promise in generating physically and chemically plausible designs [e.g. 1–3]. Whereas these
models accelerate the design process, limited resources place a cap on how many designs we can
characterize in vitro for assessing their suitability. Only once a design is validated in vitro and
undergoes multiple rounds of optimization can it proceed down the drug development pipeline to
preclinical development and clinical trials, where its performance is tested in vivo.

Because the wet lab cannot provide feedback on all of the candidate designs, we take an iterative,
data-driven approach to select the the most informative subset to submit to the wet lab. Many drug
design applications call for such an active learning approach, as the initial datasets available to
train predictive models on our desired properties of interest tends to be small or nonexistent. The

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

measurements returned by the lab in each iteration is appended to our training set and we update our
models using the augmented dataset for the next iteration.

The wet lab’s measurement process can be viewed as a black-box function that is expensive to
evaluate. In the context of identifying designs maximizing this function, Bayesian optimization (BO)
emerges as a promising, sample-efficient framework that trades off exploration (evaluating highly
uncertain designs) and exploitation (evaluating designs believed to carry the best properties) in a
principled manner [4]. It relies on a probabilistic surrogate model that infers the posterior distribution
over the objectives and an acquisition function that assigns an expected utility value to each candidate.
BO has been successfully applied to a variety of protein engineering applications [5–7].

In particular, we cast our problem as multi-objective BO, where multiple objectives are jointly
optimized. Our objectives originate from the molecular properties evaluated during in vitro validation.
This validation process involves producing the design, confirming its pharmacology, and evaluating
whether it is active against a given drug target of interest. If found to be potent, the design is
then assayed for developability attributes—physicochemical properties that characterize the safety,
delivery, and manufacturability [8].

The experimental process of in vitro validation signifies a hierarchy among the objectives. Consider
the property “expression” in the context of antibody design, for instance. A designed antibody
candidate must first be expressed in live cell culture. If the level of expression does not meet a
fixed threshold, the lab cannot produce it and it cannot be assayed for potency and developability
downstream. Supposing now that a design did express in viable amounts, if it does not bind to a target
antigen with sufficient “affinity” (and is thus not potent), then the design fails as an antibody and there
is little practical incentive in assaying it for developability (such as specificity and thermostability)—
even if it is possible to do so. The dependency between properties, whether experimental or biological
in origin, motivates us prioritize some objectives before others when selecting the subset of designs
to submit to the wet lab. Our primary goal is to identify “joint positive” designs, designs that meet the
chosen thresholds in all the parent objectives (expressing binders) according to the specified partial
ordering and also perform well in the leaf-level objectives (high specificity, thermostability).

To this end, we propose PropertyDAG, a simple framework that operates on top of the traditional
multi-objective BO to impose a desired partial ordering on the objectives, e.g. expression → affinity
→ { specificity, thermostability}. Our framework modifies the posterior inference procedure within
standard BO in two ways. First, we treat the objectives as mixed-variable—in particular, each
objective is modeled as a mixture of zeros and a wide dispersion of real-valued, non-zero values.
The surrogate model consists of a binary classifier and a regressor, which infer the zero mode and
the non-zero mode, respectively. We show that this modeling choice is well-suited for biological
properties, which tend to carry excess zero, or null, values and fat tails [9]. Second, before samples
from the posterior distribution inferred by the surrogate model enter the acquisition function, we
transform the samples such that they conform to the specified partial ordering of properties. We
run multi-objective BO with PropertyDAG over multiple simulated active learning iterations to a
penicillin production task, a toy numerical problem, and a real-world antibody design task. In all
three tasks, PropertyDAG-BO identifies significantly more joint positives compared to standard BO.
After the final iteration, the surrogate models trained under Property-BO also output more accurate
predictions on the joint positives in a held-out test set than do the standard BO equivalents.

2 Background

Bayesian optimization (BO) is a popular technique for sample-efficient black-box optimization [see
10, 11, for a review]. Suppose our objective f : X → R is a black-box function of the design space
X that is expensive to evaluate. Our goal is to efficiently identify a design x⋆ ∈ X maximizing1 f .
BO leverages two tools, a probabilistic surrogate model and a utility function, to trade off exploration
(evaluating highly uncertain designs) and exploitation (evaluating designs believed to maximize f) in
a principled manner.

For each iteration t ∈ N, we have a dataset Dt = {(x(1), y(1)), · · · , (x(Nt), y(Nt))} ∈ Dt, where
each y(n) is a noisy observation of f . First, the probabilistic model f̂ : X → R infers the posterior

1For simplicity, we define the task as maximization in this paper without loss of generality. For minimizing
f , we can negate f , for instance.

2

distribution p(f̂ |Dt), quantifying the plausibility of surrogate objectives f̂ ∈ F . Next, we introduce
a utility function u : X ×F ×Dt :→ R. The acquisition function a(x) is simply the expected utility
of x w.r.t. our beliefs about f ,

a(x) =

∫
u(x, f̂ ,Dt)p(f̂ |Dt)df̂ . (1)

For example, we obtain the expected improvement (EI) acquisition function if we take uEI(x, f̂ ,D) =

[f̂(x)−max(x′,y′)∈D y′]+, where [·]+ = max(·, 0) [12, 4]. Generally the integral is approximated
by Monte Carlo (MC) with posterior samples f̂ (j) ∼ p(f̂ |Dt). We select a maximizer of a as the
new design, measure its properties, and append the observation to the dataset. The surrogate is then
retrained on the augmented dataset and the procedure repeats.

Multi-objective optimization When there are multiple objectives of interest, a single best design
may not exist. Suppose there are K objectives, f : X → RK . The goal of multi-objective
optimization (MOO) is to identify the set of Pareto-optimal solutions such that improving one
objective within the set leads to worsening another. We say that x dominates x′, or f(x) ≻ f(x′), if
fk(x) ≥ fk(x

′) for all k ∈ {1, . . . ,K} and fk(x) > fk(x
′) for some k. The set of non-dominated

solutions X ∗ is defined in terms of the Pareto frontier (PF) P∗,

X ⋆ = {x : f(x) ∈ P⋆}, where P⋆ = {f(x) : x ∈ X , ∄ x′ ∈ X s.t. f(x′) ≻ f(x)}. (2)

MOO algorithms typically aim to identify a finite approximation to X ⋆, which may be infinite, within
a reasonable number of iterations. One way to measure the quality of an approximate PF P is to
compute the hypervolume HV(P|rref) of the polytope bounded by P ∪{rref}, where rref ∈ RK is a
user-specified reference point. We obtain the expected hypervolume improvement (EHVI) acquisition
function if we take

uEHVI(x, f̂ ,D) = HVI(P ′,P|rref) = [HV(P ′|rref)−HV(P|rref)]+, (3)

where P ′ = P ∪ {f̂(x)} [13, 14].

Noisy observations In the noiseless setting, the observed baseline PF is the true baseline PF, i.e.
Pt = {y : y ∈ Yt, ∄ y′ ∈ Yt s.t. y′ ≻ y} where Yt := {y(n)}Nt

n=1. This does not, however,
hold in many practical applications, where measurements carry noise. For instance, given a zero-
mean Gaussian measurement process with noise covariance Σ, the feedback for a design x is y ∼
N (f(x),Σ), not f(x) itself. The noisy expected hypervolume improvement (NEHVI) acquisition
function marginalizes over the surrogate posterior at the previously observed points Xt = {x(n)}Nt

n=1,

uNEHVI(x, f̂ ,D) = HVI(P̂ ′
t, P̂t|rref), (4)

where P̂t = {f̂(x) : x ∈ Xt, ∄ x′ ∈ Xt s.t. f̂(x′) ≻ f̂(x)} and P̂ ′ = P̂ ∪ {f̂(x)} [15].

3 Related Work

Existing work on multi-objective BO does not account for objectives with a hierarchical dependency
structure [16–19, 15]. We refer to [20] for a formulation of single-objective BO with a hierarchy in
how the objective is computed. A body of work focuses on constrained optimization, which optimizes
a black-box function subject to a set of black-box constraints being satisfied [21–26]. For dealing
with mixed-variable objectives, [27] propose reparameterizing the discrete random variables in terms
of continuous parameters. Our approach here is to model them explicitly using the zero-inflated
formalism.

4 Method

Overview Figure 1 illustrates our proposed PropertyDAG-BO framework alongside standard BO.
The candidate generation step is identical in both cases; we first sample a large pool of design
candidates from a proposal distribution, often implemented as a generative model. The difference lies

3

in the next step, in which the designs are scored by probabilistic surrogate models. In PropertyDAG-
BO, we must first specify a partial ordering of our objectives (Section 4.1). We then assign a
zero-inflated generative model for each objective (Section 4.2) such that a probabilistic classifier
models its “zero” mode and a probabilistic regressor models the remaining continuous-valued “non-
zero” mode. The raw posterior samples from the surrogates then undergo a “resampling” step
(Section 4.3) that enforces the specified PropertyDAG. Finally, the modified posterior samples enter
the multi-objective acquisition function, which scores the design candidates just as in standard BO.

Generative model Design
candidate

Probabilistic
surrogate models

Posterior
samples

PropertyDAG
resampling

Multi-objective
acquisition function

Intermediate
posterior samples

Zero-inflated probabilistic
surrogate models

Binary classifiers Regressors

1. Generate the candidate pool 3. Select the subset2. Characterize candidates (posterior inference)

Figure 1: Comparison of a traditional multi-objective BO pipeline (dashed black arrows) with the
proposed pipeline enabled by PropertyDAG (solid magenta arrows).

4.1 Defining a PropertyDAG

Many drug design applications motivate us to prescribe some hierarchy among our objective properties
of interest. The partial ordering may arise from an experimental dependency, e.g. a design candidate
must pass a certain threshold in one property for its other properties to be measured. In the context of
antibody design, a design candidate is a sequence of amino acids representing an antibody that must
first be expressed in cell culture. If the level of expression does not exceed some threshold in mass
per volume, the lab cannot produce it in viable amounts and it cannot be assayed for other properties,
such as binding affinity to a target antigen. Our PropertyDAG may then take the form: expression →
affinity. Experimental dependencies like this creates an asymmetry among the objectives; it reduces
the information content of designs that do not express much more than that of designs that do not
bind, because non-expressing designs cannot provide binding measurements.

Alternatively, the partial ordering may encode our preference for the types of designs we want to
obtain. We may prioritize a property, for instance, so that we reject designs that performs poorly
in this property, no matter how well they perform in all the others. If a designed antibody does
not bind to the target antigen, it has failed in its primary function, so we have little interest in its
developability properties, such as specificity to the target antigen and thermostability, even though,
unlike for non-expressers, they often remain measurable. We then impose the following PropertyDAG:
expression → affinity → { specificity, thermostability }.

A PropertyDAG can be expressed as ordered sets of properties: {y0,0, . . . , y0,M0
} →

{y1,0, . . . , y1,M1
} → · · · → {yL,0, . . . , yL,ML

}, where yl,m is the property at level l ∈ {0, . . . , L−
1} of the hierarchy and m ∈ {0, . . . ,Ml − 1} is its index among the Ml sibling properties at the
same level l. Figure 2 shows an example of a PropertyDAG with three properties and two levels.

4.2 Zero-inflated modeling

Biological properties tend to carry excess zeros, or null values. Their zero-inflated nature motivates us
to employ statistical models that account for large incidences of zeros [28]. The zero-inflated negative
binomial (ZINB) distribution has been applied to model discrete counts in single-cell RNA-seq data
[29]. For each objective yk, our zero-inflated model assigns a binary random variable bk ∈ {0, 1} to
generate the zeros and rk ∈ R to generate the remaining dispersion of continuous non-zero values.

4

Figure 2: Example of a PropertyDAG, with three proper-
ties and two levels of hierarchy. Each property is denoted
yl,m, where l indexes the level and m indexes sibling
properties at the same level. Magenta arrows refer to the
dependencies imposed by PropertyDAG. Black arrows
make it explicit that each yl,m is modeled as zero-inflated,
where bl,m governs the zero events and rl,m governs the
continuous non-zero events.

Assume f is non-negative (equivalently, that it is bounded from below). Given a training dataset Dt

available at time t, we decompose p(f̂k | Dt) as follows:

p(f̂k(x) = c | Dt) =

{
p(bk = 0 | x,Dt) if c = 0,

p(bk = 1 | x,Dt) p(rk = c | x,Dt, θr) else,
(5)

where p(rk | x,Dt, θr) is a regressor parameterized by θr trained to predict fk given bk = 1. For
simplicity we have assumed p(rk = 0|x,Dt, θr) = 0. Since Gaussian processes (GPs) are often used
as surrogates for BO [see, e.g. 30, for a review on GPs] and common GP assumptions fail for sparse,
multi-modal data, separating out the non-zero mode of the data can improve posterior inference.

To accommodate objective hierarchy, each p(bk | x,Dt) decomposes further as

p(bk | x,Dt) =

{
0 if ∃j ∈ pred(k) s.t. bj = 0,

p(bk | x,Dt, θb) else,
(6)

where p(bk | x,Dt, θb) is a classifier parameterized by θb trained to predict 1{fk(x) > 0} and
pred(k) are the predecessors, or ancestral nodes, in the PropertyDAG corresponding to property k.

0

50

100

HV
I

0 10 20 30 40 50
Objective 0

0

10

20

30

40

50

Ob
jec

tiv
e 1

0

200

400

600
800
1000
1200

HVI

(a) Default

0

50

100

HV
I

0 10 20 30 40 50
Objective 0

0

10

20

30

40

50

Ob
jec

tiv
e 1

0

200

400

600
800
1000
1200

HVI

(b) PropertyDAG resampling

Figure 3: Effect of resampling the surrogate posteriors on the acquisition function. Suppose the
magenta dashed lines represent our threshold for Objective 0 such that we want to acquire candidates
that maximize Objective 1 and exceed this threshold in Objective 0. Bottom: Given our baseline
points (black dots), the colors of the grid indicate HVI (Equation 3) computed from a posterior sample
at each location in the objective space, in the (a) default and (b) PropertyDAG settings. Consider six
samples (white triangles) from the posterior (white contour). PropertyDAG transforms the posterior
samples below the threshold in Objective 0 such that their HVI contribution is zero. Top: The HVI
corresponding to each sample before (a) and after (b) the resampling.

5

This general framework, presented in terms of a zero-inflated, continuous-valued objective (a mixture
of a delta function at zero and a continuous distribution), applies to binary-valued objectives and
continuous-valued objectives without zero inflation, which can be viewed as specific cases taking
p(rk|x,Dt, θr) = p(rk) = N (0, σ2) with very small σ and p(bk = 1 | x,Dt, θb) = 1, respectively.

4.3 Resampling

Using a simple resampling trick, we modify the posterior samples from the surrogate models to
enforce the parent-child relationships specified in PropertyDAG. As before, consider a property yk
and refer to its predecessors, or ancestral nodes, as pred(k). Suppose we have drawn single a posterior
sample and obtained βk′ ∼ p(bk′ |x) ∈ {0, 1} and ρk′ ∼ p(rk′ |x) ∈ R for each k′ ∈ {1, . . . ,K}.
Without any modification, Equation 5 would yield the following sample γk of yk:

γk =

{
0 if bk = 0

ρk if bk = 1.
(7)

Instead, we begin at the top level and proceed down the levels of PropertyDAG to impose depen-
dencies between bk and its predecessor properties {bk′}k′∈pred(k). If yk is a top-level property, then
pred(k) = ∅ and β̂k = βk. Otherwise, yk has parent properties and we have

β̂k =

{
0 if ∃j ∈ pred(k) s.t. bj = 0

βk else.
(8)

We can then use the modified binary samples {β̂k}Kk=1 to obtain our effective sample γ̂k of yk:

γ̂k =

{
0 if βk = 0 or ∃j ∈ pred(k) s.t. bj = 0

ρk else.
(9)

Let γ := [γ1, . . . , γK] ∈ RK and γ̂ := [γ̂1, . . . , γ̂K] ∈ RK and denote the transformation at the
sample level described in Equations 8 and 9 as h : RK → RK such that h(γ) = γ̂.

We repeat this resampling procedure to other posterior samples. The transformed samples are then
used to evaluate NEHVI (Equation 4) via MC integration. More precisely, suppose we draw S
posterior samples in parallel for a design candidate x∗ (reflecting both aleatoric and epistemic uncer-
tainties) and the previously observed designs Xt = {x(n)}Nt

n=1 (reflecting the aleatoric uncertainty)
and denote each draw as γ∗

s and Gs := {γ(n)
s }Nt

n=1, respectively, for s = 1, . . . , S. Then the MC
approximation of NEHVI can be efficiently evaluated as:

γ̂∗
s = h(γ∗

s), γ̂
(n)
s = h(γ(n)

s) ∀s = 1, . . . , S, ∀n = 1, . . . , Nt

αNEHVI (x
∗) ≈ 1

S

S∑
s=1

HVI
(
P∗[s]
t ,P [s]

t |rref
)
, (10)

where P [s]
t = {γs : γs ∈ Gs, ∄ γ′

s ∈ Gs s.t. γ′
s ≻ γs} and P∗[s]

t = P [s]
t ∪ {γ̂∗

s}.

Figures 3a and 3b illustrate the effect of the PropertyDAG resampling on each posterior sample’s
HVI contribution to EHVI.

5 Experiments

We perform simulated active learning experiments on two synthetic tasks and a real-world antibody
design task. We use NEHVI (Equation 4) as our acquisition function and evaluate it via MC integration
(Equation 10). In each experiment, we test three types of acquisitions: (1) batched, multi-objective
BO with PropertyDAG (“qNEHVI-DAG”), (2) without PropertyDAG (“qNEHVI”), and (3) random.
Our main metric is the number of acquired “joint positive” designs, designs that exceed the chosen
thresholds in all objectives according to the specified PropertyDAG. We refer to the batch size as q.

6

5.1 Penicillin production dataset

This task is based on the penicillin production simulator [31]. We defined the goal as minimizing
the CO2 byproduct emission while ensuring that the fermentation time is below a set threshold and
the yield exceeds a set threshold (K = 3,X = R7). We negated the latter two objectives to define
a maximization problem and assume the PropertyDAG: {y0,0} → {y1,0} → {y2,0}, where y0,0 =
Yield (“Objective 0”), y1,0 = Negative fermentation time (“Objective 1”), and y2,0 = Negative CO2

byproduct (“Objective 2”). Zero-mean Gaussian noise was added to the input, following [19]. We fit
an exact GP to model rk and an approximate GP with the variational evidence lower bound (ELBO)
to model bk, separately for each Objective k. We drew 512 posterior samples to evaluate qNEHVI.

We executed 10 rounds of simulated active learning by initializing the surrogates with 8 training
points and selecting q = 4 out of 80 randomly-sampled pool of candidate points in iteration. The
three acquisition modes (qNEHVI-DAG, qNEHVI, and Random) were subject to the same initial
training points and candidate pool each round. The entire experiment was repeated 5 times. Figure 4a
shows that qNEHVI-DAG identifies significantly more joint positives than do qNEHVI and Random
over active learning iterations.

0 1 2 3 4 5 6 7 8 9 10
Iterations

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
r o

f j
oi

nt
 p

os
iti

ve
s f

ou
nd

Random
qNEHVI
qNEHVI-DAG

(a) Penicillin production

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Iterations

0

5

10

15

20

25

30

35

Nu
m

be
r o

f j
oi

nt
 p

os
iti

ve
s f

ou
nd

Random
qNEHVI
qNEHVI-DAG

(b) Branin-Currin toy problem
Figure 4: Number of joint positives over simulated active learning iterations. Error bands are standard
deviations over (a) five and (b) ten trials.

5.2 Branin-Currin toy problem

This task is based on an analytic Branin-Currin test function from [19] with X = R2 and K = 2. We
reformulated this task to simulate the antibody design task (Section 5.3) in a controlled environment.
We defined the PropertyDAG, {y0,0} → {y1,0}, where y0,0 = Dimension 0 (“Objective 0”) and
y1,0 = Dimension 1 (“Objective 1”). Objective 0 was transformed into binary values using a set
threshold. Objective 1 was zero-inflated and real-valued. Posterior inference was performed following
the same procedure described in Section 5.1.

We executed 20 rounds of simulated active learning by initializing the surrogates with 6 training
points and selecting q = 4 out of 40 randomly-sampled pool of candidate points in iteration. The
entire experiment was repeated 10 times. Figure 4b shows that qNEHVI-DAG identifies significantly
more joint positives than do qNEHVI and Random over active learning iterations. Figure 5 compares
the qNEHVI-DAG, qNEHVI, and Random selections for Objective 1, for the final selections stacked
across the 10 repeated trials. Overall, qNEHVI-DAG identifies more examples to the right of
the threshold (black dashed lines) than do qNEHVI and Random, and the improvement is more
pronounced for the identification of joint positives (middle panel).

5.3 Antibody design

The antibody design task is derived from real-world dataset of antibody sequences and their measured
in vitro properties, affinity and expression. As in the toy problem (Section 5.2), we defined the
PropertyDAG, {y0,0} → {y1,0}, where y0,0 = Expression (“Objective 0”) and y1,0 = Affinity

7

0 2 4 6 8 10 12 14
10 2

10 1

De
ns

ity

All examples
Selected: qNEHVI
Selected: qNEHVI-DAG

Candidates
Class threshold

0 2 4 6 8 10 12 14
10 2

10 1

De
ns

ity
Only examples with objective 0 = positive

0 2 4 6 8 10 12 14
10 2

10 1

De
ns

ity

Only examples with objective 0 = negative

Figure 5: Distribution of final selected candidates in the Branin-Currin problem. We stack the
selections over 10 repeated trials. Top: all selections. Middle: selections for which Objective 0 = 1.
Bottom: selections for which Objective 0 = 0.

(“Objective 1”). Objective 0 was binary-valued, i.e. expressing or not. Objective 1 was zero-inflated
and real-valued. We executed 3 iterations of simulated active learning and repeated the entire
procedure 5 times. To simulate active learning, we split the entire dataset of 4,023 variable-length
protein sequences, designed as antibodies for an anonymized target antigen A, into 5 groups of sizes
1230, 736, 746, 711, and 600. The first group served as the initial training set for the surrogates,
the following three groups as the “candidate pools” from which we selected 200 candidates in each
iteration, and the last served as a held-out test set. As shown in Figure 6a, qNEHVI-DAG once
again outperforms qNEHVI and Random in the number of joint positives. The log posterior density
evaluated at the affinity measurements for the joint positives (expressing binders) in the test set is
also highest for qNEHVI-DAG, which indicates that the surrogate models from qNEHVI-DAG had
the most accurate beliefs about the joint positives after the final iteration.

0 1 2 3
Iterations

200

250

300

350

400

450

500

550

Nu
m

be
r o

f j
oi

nt
 p

os
iti

ve
s f

ou
nd

Random
qNEHVI
qNEHVI-DAG

(a) Joint positives identified

1000 800 600 400 200 0
Test log p

100

101

102

Co
un

t

qNEHVI-DAG
qNEHVI
Random

(b) Log posterior density for joint positives

Figure 6: (a) Number of joint positives (expressing binders) for the antibody design problem. Error
bands are standard deviations over three data splits for qNEHVI-DAG and qNEHVI and additionally
over five repeated trials for each data split for Random. (b) Log posterior density on affinity evaluated
at the lab affinity measurements (log p) for the test set, averaged over five data splits.

6 Conclusion

Our proposed method, PropertyDAG, sits on top of the existing multi-objective BO framework to
make it amenable to a common scenario in drug design, where a hierarchical structure, or partial
ordering, exists among the objectives. It modifies the surrogate posteriors so that each objective
is modeled as zero-inflated (a mixture of excess zeros and a continuous distribution) and parent
properties in PropertyDAG are prioritized before the children. Empirical evaluations shows that
PropertyDAG-BO can identify significantly more designs that are jointly positive (i.e. exceeding a
chosen threshold in all properties) than does standard BO. By encapsulating our experimental and
biological priors on the relationship between molecular properties, our method promises to accelerate
computational drug discovery.

8

References
[1] Surojit Biswas, Grigory Khimulya, Ethan C Alley, Kevin M Esvelt, and George M Church. Low-n protein

engineering with data-efficient deep learning. Nature methods, 18(4):389–396, 2021.

[2] Payel Das, Tom Sercu, Kahini Wadhawan, Inkit Padhi, Sebastian Gehrmann, Flaviu Cipcigan, Vijil
Chenthamarakshan, Hendrik Strobelt, Cicero Dos Santos, Pin-Yu Chen, et al. Accelerated antimicrobial
discovery via deep generative models and molecular dynamics simulations. Nature Biomedical Engineering,
5(6):613–623, 2021.

[3] Vladimir Gligorijevic, Daniel Berenberg, Stephen Ra, Andrew Watkins, Simon Kelow, Kyunghyun Cho,
and Richard Bonneau. Function-guided protein design by deep manifold sampling. bioRxiv, 2021.

[4] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

[5] Edward O Pyzer-Knapp. Bayesian optimization for accelerated drug discovery. IBM Journal of Research
and Development, 62(6):2–1, 2018.

[6] Hugo Bellamy, Abbi Abdel Rehim, Oghenejokpeme I Orhobor, and Ross King. Batched bayesian
optimization for drug design in noisy environments. Journal of Chemical Information and Modeling, 2022.

[7] Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton Greenside, and
Andrew Gordon Wilson. Accelerating bayesian optimization for biological sequence design with denoising
autoencoders. arXiv preprint arXiv:2203.12742, 2022.

[8] Alexander Jarasch, Hans Koll, Joerg T Regula, Martin Bader, Apollon Papadimitriou, and Hubert Ket-
tenberger. Developability assessment during the selection of novel therapeutic antibodies. Journal of
pharmaceutical sciences, 104(6):1885–1898, 2015.

[9] Tushar Jain, Tingwan Sun, Stéphanie Durand, Amy Hall, Nga Rewa Houston, Juergen H Nett, Beth
Sharkey, Beata Bobrowicz, Isabelle Caffry, Yao Yu, et al. Biophysical properties of the clinical-stage
antibody landscape. Proceedings of the National Academy of Sciences, 114(5):944–949, 2017.

[10] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the human
out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2015.

[11] Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

[12] Jonas Močkus. On bayesian methods for seeking the extremum. In Optimization techniques IFIP technical
conference, pages 400–404. Springer, 1975.

[13] Michael Emmerich. Single-and multi-objective evolutionary design optimization assisted by gaussian
random field metamodels. PhD thesis, Dortmund, Univ., Diss., 2005, 2005.

[14] Michael TM Emmerich, André H Deutz, and Jan Willem Klinkenberg. Hypervolume-based expected
improvement: Monotonicity properties and exact computation. In 2011 IEEE Congress of Evolutionary
Computation (CEC), pages 2147–2154. IEEE, 2011.

[15] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Parallel bayesian optimization of multiple noisy
objectives with expected hypervolume improvement. Advances in Neural Information Processing Systems,
34:2187–2200, 2021.

[16] Michael A Gelbart, Jasper Snoek, and Ryan P Adams. Bayesian optimization with unknown constraints.
arXiv preprint arXiv:1403.5607, 2014.

[17] Takashi Wada and Hideitsu Hino. Bayesian optimization for multi-objective optimization and multi-point
search. arXiv preprint arXiv:1905.02370, 2019.

[18] Kaifeng Yang, Pramudita Satria Palar, Michael Emmerich, Koji Shimoyama, and Thomas Bäck. A
multi-point mechanism of expected hypervolume improvement for parallel multi-objective bayesian global
optimization. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 656–663,
2019.

[19] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable expected hypervolume improve-
ment for parallel multi-objective bayesian optimization. Advances in Neural Information Processing
Systems, 33:9851–9864, 2020.

[20] Raul Astudillo and Peter Frazier. Bayesian optimization of function networks. Advances in Neural
Information Processing Systems, 34:14463–14475, 2021.

9

[21] Jian Wu and Peter Frazier. The parallel knowledge gradient method for batch bayesian optimization.
Advances in neural information processing systems, 29, 2016.

[22] Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger, and John P Cunningham.
Bayesian optimization with inequality constraints. In ICML, volume 2014, pages 937–945, 2014.

[23] José Miguel Hernández-Lobato, Michael A Gelbart, Ryan P Adams, Matthew W Hoffman, and Zoubin
Ghahramani. A general framework for constrained bayesian optimization using information-based search.
2016.

[24] David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro. Kriging is well-suited to parallelize
optimization. In Computational intelligence in expensive optimization problems, pages 131–162. Springer,
2010.

[25] Benjamin Letham, Brian Karrer, Guilherme Ottoni, and Eytan Bakshy. Constrained bayesian optimization
with noisy experiments. Bayesian Analysis, 14(2):495–519, 2019.

[26] Gustavo Malkomes, Bolong Cheng, Eric H Lee, and Mike Mccourt. Beyond the pareto efficient frontier:
Constraint active search for multiobjective experimental design. In International Conference on Machine
Learning, pages 7423–7434. PMLR, 2021.

[27] Samuel Daulton, Xingchen Wan, David Eriksson, Maximilian Balandat, Michael A Osborne, and Eytan
Bakshy. Bayesian optimization over discrete and mixed spaces via probabilistic reparameterization. In
ICML2022 Workshop on Adaptive Experimental Design and Active Learning in the Real World, 2022.

[28] Julia Eggers. On statistical methods for zero-inflated models, 2015.

[29] Dominic Grün, Lennart Kester, and Alexander Van Oudenaarden. Validation of noise models for single-cell
transcriptomics. Nature methods, 11(6):637–640, 2014.

[30] CE Rasmussen and CKI Williams. Gaussian processes for machine learning (adaptive computation and
machine learning), 2005.

[31] Qiaohao Liang and Lipeng Lai. Scalable bayesian optimization accelerates process optimization of
penicillin production. In NeurIPS 2021 AI for Science Workshop, 2021.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

10

(b) Did you include complete proofs of all theoretical results? [N/A]
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No] We will release
the material after the work is accepted by a peer-reviewed journal for publication.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

A Appendix

A.1 Additional results for the penicillin production task

Figure 7 compares the qNEHVI and qNEHVI-DAG selections for every pair of objectives, for the final
(after Iteration 10) selections stacked across the 5 repeated trials. For every objective, qNEHVI-DAG
identifies more examples to the right of the threshold (black dashed lines) than do qNEHVI and
Random.

11

Figure 7: Pairwise visualization of ground-truth objectives for the penicillin production task. We pool
the selections over five trials. Black dashed lines are the thresholds we impose.

12

	Introduction
	Background
	Related Work
	Method
	Defining a PropertyDAG
	Zero-inflated modeling
	Resampling

	Experiments
	Penicillin production dataset
	Branin-Currin toy problem
	Antibody design

	Conclusion
	Appendix
	Additional results for the penicillin production task

