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ABSTRACT

Masked auto-encoding is a popular and effective self-supervised learning ap-
proach to point cloud learning. However, most of the existing methods reconstruct
only the masked points and overlook the local geometry information, which is also
important to understand the point cloud data. In this work, we make the first at-
tempt, to the best of our knowledge, to consider the local geometry information
explicitly into the masked auto-encoding, and propose a novel Masked Surfel Pre-
diction (MaskSurf) method. Specifically, given the input point cloud masked at a
high ratio, we learn a transformer-based encoder-decoder network to estimate the
underlying masked surfels by simultaneously predicting the surfel positions (i.e.,
points) and per-surfel orientations (i.e., normals). The predictions of points and
normals are supervised by the Chamfer Distance and a newly introduced Position-
Indexed Normal Distance in a set-to-set manner. Our MaskSurf is validated on six
downstream tasks under three fine-tuning strategies. In particular, MaskSurf out-
performs its closest competitor, Point-MAE, by 1.2% on the real-world dataset
of ScanObjectNN under the OBJ-BG setting, justifying the advantages of masked
surfel prediction over masked point cloud reconstruction.

1 INTRODUCTION

While deep learning has achieved great successes on various computer vision tasks, e.g., image
classification (Krizhevsky et al., 2012; He et al., 2016), object detection (Girshick, 2015; Tian et al.,
2019), segmentation (Ronneberger et al., 2015; He et al., 2017), image restoration (Dong et al.,
2015; Zhang et al., 2017), as well as point cloud understanding (Qi et al., 2017a;b), training deep
models usually requires a large amount of labeled data with human annotations, which are expensive
in practice. To solve this issue, self-supervised learning (SSL) (Chen et al., 2020b; Devlin et al.,
2018; Yu et al., 2021) has been proposed to learn effective feature representations from unlabeled
data. Generally speaking, SSL generates supervision signals from the data themselves by adopting
various pretext tasks, such as contrastive learning (He et al., 2020; Chen et al., 2020a), masked
auto-encoding (Devlin et al., 2018; He et al., 2021; Yu et al., 2021), rotation estimation (Gidaris
et al., 2018; Poursaeed et al., 2020), jigsaw puzzles (Noroozi & Favaro, 2016) and so on (Afham
et al., 2022; Grill et al., 2020).

Among those pretext tasks, masked auto-encoding has demonstrated its effectiveness in many appli-
cations (Devlin et al., 2018; He et al., 2021; Wei et al., 2021; Tong et al., 2022; Yu et al., 2021; Pang
et al., 2022), including point cloud learning (Yu et al., 2021; Pang et al., 2022). Specifically, by
masking a portion of input data (e.g., points in point cloud processing), an auto-encoder is learned to
reconstruct the masked data from the unmasked data. In this manner, the encoder is expected to learn
semantic feature representations, which could be readily applied to various downstream tasks. The
popular masked auto-encoding based point cloud learning methods usually adopt different masking
strategies and backbones, but they all reconstruct the masked points as the pretext task (Wang et al.,
2021; Yu et al., 2021; Pang et al., 2022).

Though masked auto-encoding has achieved impressive progresses in self-supervised point cloud
learning (Wang et al., 2021; Yu et al., 2021; Pang et al., 2022), reconstructing the masked points
only may sacrifice the local geometry information of point cloud. Though local geometry could be
estimated from the point cloud data (Tatarchenko et al., 2018; Bae & Lichti, 2008; Ran et al., 2022),
existing point cloud models (Qi et al., 2017a;b; Wang et al., 2019) are not effective to learn such
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local geometry. This can be validated by the fact that enhancing the point cloud inputs with local
geometry (e.g., normal) could significantly boost the performance of point cloud models (Qi et al.,
2017b; Ran et al., 2022), demonstrating the complementarity between the point location and local
geometry in point cloud representation.

Surfel Cloud Point Cloud

PointsSurfels

Figure 1: Illustrations of the surfel cloud and point
cloud, where surfels can capture more local geome-
try information than points.

With the above consideration, we propose to
incorporate local geometry into the masked
auto-encoding explicitly for more effective
point cloud understanding. Specifically, we
make the first attempt to employ the surface
element, i.e., surfel (Pfister et al., 2000),
for self-supervised point cloud learning. The
vanilla surfel is originally introduced for 3D
rendering, and it comprises both shape (i.e.,
surfel position and orientation) and shade
(i.e., multiple levels of texture colors) data
(Pfister et al., 2000). The surface geometry
is mainly described by its shape, while the
shade information is more relevant to view
synthesis and rendering. Considering that the
goals of point cloud understanding are differ-
ent from 3D rendering, we adopt a simplified
surfel representation with only shape data of 3D position and orientation. As shown in Fig. 1,
even the simplified surfel representation can capture more local geometry information of the surface
over raw points. With surfel as the modeling element, different from those works predicting the
point cloud (Wang et al., 2021; Yu et al., 2021; Pang et al., 2022), we propose a Masked Surfel
Prediction (MaskSurf) network to predict the underlying surfel cloud from the masked point cloud.

Following Yu et al. (2021); Pang et al. (2022), we first group the point cloud into several local patches
and randomly mask a large portion of them. As illustrated in Fig. 2, instead of reconstructing the
masked point patches from unmasked point patches (Pang et al., 2022), we predict the masked
surfels (Pfister et al., 2000) by simultaneously estimating the surfel positions (i.e., points) and per-
surfel orientations (i.e., normals) in a set-to-set manner. The point estimation is supervised by the
Chamfer Distance (CD) (Fan et al., 2017), while a novel Position-Indexed Normal Distance (PIND)
is proposed for point-paired normal prediction. As analyzed in Sec. 4.3, with surfel prediction, the
learned features could capture more geometry information compared to the point only reconstruction
(Pang et al., 2022).

Given the pre-trained encoder with MaskSurf, we validate its effectiveness on six downstream tasks,
including object classification on real-world and synthetic datasets, few-shot learning, domain gen-
eralization, part segmentation and semantic segmentation. For each downstream task, we adopt
various fine-tuning strategies (He et al., 2020; 2021), including transferring features protocol, linear
classification protocol and non-linear classification protocol. Our MaskSurf outperforms its closest
competitor (Pang et al., 2022) on all downstream tasks under all strategies, justifying the advantage
of masked surfel prediction over masked point cloud reconstruction. Notably, MaskSurf achieves
91.22% accuracy on the real-world dataset of ScanObjectNN in the OBJ-BG setting, boosting Point-
MAE (Pang et al., 2022) by 1.2%.

2 RELATED WORK

2.1 SELF-SUPERVISED LEARNING FOR POINT CLOUD

SSL aims to learn efficient feature representation from unlabeled training samples using self-
generated supervision signals (He et al., 2021; 2020; Chen et al., 2020b;a; Grill et al., 2020; Devlin
et al., 2018; Yu et al., 2021; Pang et al., 2022). It is particularly important for 3D point cloud
analysis, since the collection and annotation of point cloud data are much more expensive than 2D
images. Popular SSL methods for point cloud include reconstruction (Yang et al., 2018; Gadelha
et al., 2018; Zhao et al., 2019; Wang et al., 2021; Chen et al., 2021; Han et al., 2019; Zhou et al.,
2022; Yu et al., 2021; Liu et al., 2022; Pang et al., 2022; Zhang et al., 2022; Xu et al., 2022; Fu
et al., 2022), instance contrastive feature learning (Rao et al., 2020; Sanghi, 2020), consistency fea-
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ture learning across different views (Huang et al., 2021), and other pretext tasks (Sauder & Sievers,
2019; Poursaeed et al., 2020; Afham et al., 2022). Among these methods, the masked auto-encoding
(Wang et al., 2021; Zhou et al., 2022; Yu et al., 2021; Pang et al., 2022) has been receiving more and
more attention recently.

Specifically, given an input point cloud masked at a high ratio, an encoder-decoder model is learned
to reconstruct the masked points from the unmasked ones. In this way, the encoder could learn
semantic feature representations, which can be readily applied to downstream tasks. However, the
local geometry information may be overlooked by reconstructing the masked points only, since the
local geometry is complementary to raw points for point cloud understanding (Qi et al., 2017b;
Ran et al., 2022). To address this issue, we propose to explicitly incorporate the local geometry into
the masked auto-encoding and develop a novel MaskSurf framework. In MaskSurf, we predict the
underlying masked surfels by simultaneously estimating the surfel positions and per-surfel normals,
resulting in more effective feature representations.

2.2 LOCAL GEOMETRY AND SURFEL REPRESENTATION

The importance of local geometry in point cloud understanding has been widely acknowledged in the
community (Alexa et al., 2003; Pauly et al., 2003), while normal is one of the most basic elements
to represent local geometry information. Researchers typically enhance the point cloud data with
point-wise normal for performance-boosting (Qi et al., 2017b; Ran et al., 2022). What’s more, given
points as input, point-wise normal estimation is widely adopted as a regularization method to train
the model (Tang et al., 2020; Rao et al., 2020; Xu et al., 2022).

Surfel, i.e., surface element, is originally introduced as a rendering primitive, which provides a mere
discretization of the geometry (Pfister et al., 2000). Then, surfel has been widely adopted in surface
reconstruction (Habbecke & Kobbelt, 2007; Weise et al., 2009) due to its conceptual simplicity.
The vanilla surfel comprises both shape and shade values, where the shape data describe the surface
geometry, while the shade data are more relevant to rendering (Pfister et al., 2000). In this work,
we adopt a simplified surfel representation with only shape data (i.e., 3D position and orientation)
for model learning, considering the different objectives between point cloud understanding and 3D
rendering. To our best knowledge, we are the first to apply surfel representation in self-supervised
point cloud learning.

3 MASKED SURFEL PREDICTION

The overall framework of our MaskSurf is illustrated in Fig. 2. Given masked and embedded
point patches, we learn the transformer-based encoder and decoder to predict the underlying masked
surfels by simultaneously predicting the surfel positions (i.e., points) and per-surfel orientations (i.e.,
normals). In the following subsections, we introduce the main components in detail.

3.1 TRAINING DATA PREPARATION

Considering that collecting high quality 3D samples in real world is expensive, most of the existing
SSL methods (Wang et al., 2021; Yu et al., 2021; Pang et al., 2022) sample training data from
synthetic 3D dataset (e.g., ShapeNet (Chang et al., 2015)). Following this strategy, we sample a
surfel cloud with M surfels S ∈ RM×6 from a synthetic 3D surface. We then split the surfel cloud
into surfel positions (i.e., points) X ∈ RM×3 and per-surfel orientations (i.e., normals) N ∈ RM×3.
The masked point cloud will be used as the model input, while the normals will be only used to
supervise the prediction of surfel orientations (see Sec. 3.3 for details).

We sampleN points from the point cloud X as patch centers C ∈ RN×3 via the Farthest Point Sam-
pling (FPS) method (Qi et al., 2017b). Then, for each center we introduce N irregular point patches
P ∈ RN×K×3 by selecting the K nearest points around the center via the K-Nearest Neighborhood
(KNN) method:

P = KNN(X,C). (1)

Each point patch is then normalized by subtracting the center point from the point coordinates for
better convergence. Note that the point patches P may overlap if two patch centers in C are close
to each other.
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Figure 2: The overall framework of our MaskSurf. We first sample a surfel cloud from a 3D surface
and split the surfel cloud into surfel positions (i.e., points) and per-surfel orientations (i.e., nor-
mals), which are then grouped into patches. The point patches are randomly masked and embedded.
Given embedded point patches, a transformer-based encoder-decoder network is learned to predict
the underlying masked surfels by simultaneously predicting the surfel points and per-surfel nor-
mals, which are supervised by the Chamfer Distance (CD) and a newly introduced Position-Indexed
Normal Distance (PIND), respectively.

Following Pang et al. (2022), we mask each patch separately with a large ratio of point patches,
keeping the information complete in each patch with rare patch overlap. More specifically, given
a masking ratio m ∈ (0, 1), the masked point patches and unmasked point patches are denoted as
Pmask ∈ RmN×K×3 and Pvis ∈ R(1−m)N×K×3, respectively. We then apply the same grouping
(cf. Equ. (1)) and masking strategies to the per-surfel normals N , resulting in the masked normal
patches Nmask ∈ RmN×K×3 and unmasked normal patches Nvis ∈ R(1−m)N×K×3. The masked
patch centers Cmask ∈ RmN×3 and unmasked patch centers Cvis ∈ R(1−m)N×3 are similarly
introduced for the usage of positional embedding.

The unmasked point patches Pvis are adopted as input to the following encoder model, while the
masked point patches Pmask and masked normal patches Nmask are employed as the prediction
supervision, which is detailed in the following subsections.

3.2 MODEL ARCHITECTURE

Token Embedding. Before forwarding the visible point patches Pvis to the encoder, we first embed
them via token embedding. Following Pang et al. (2022), we instantiate the token embedding with
a lightweight PointNet (Qi et al., 2017a), which is composed of multi-layer perceptrons (MLP) and
a max pooling layer. The embedded visible tokens Tvis ∈ R(1−m)N×D are then induced as:

Tvis = PointNet(Pvis). (2)

Encoder. We construct the encoder with standard Transformer blocks (Vaswani et al., 2017). Only
the visible tokens Tvis are encoded, while the masked patches are not exposed to the encoder. This
is not only computationally efficient but also avoids early leakage of the position information of
masked patches (Pang et al., 2022). Considering that the point patches are represented with nor-
malized coordinates, we add in each transformer block the path-wise Positional Embedding (PE) to
provide patch location information. Following the common practice (Yu et al., 2021; Pang et al.,
2022), we adopt a learnable MLP as the PE, i.e., PEe: R(1−m)N×3 → R(1−m)N×D, which maps
coordinates of the visible patch centers Cvis to the embedding dimension D. Finally, the encoded
visible tokens Te ∈ R(1−m)N×D are formulated as:

Te = Encoder(Tvis, PEe(Cvis)). (3)

Decoder. Similar to the encoder, we also build the decoder with standard Transformer but with fewer
blocks. The decoder takes the encoded visible tokens Te, the learnable mask tokens Tm ∈ RmN×D,
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and their PEs as inputs, and outputs the decoded mask tokens Td ∈ RmN×D:

Td = Decoder(Te,Tm, PEd(C)), (4)

where Tm is the duplication of a learnable and patch-shared mask token of D dimension, and
PEd(C) is the PE for all tokens (i.e., visible and mask tokens). As in Pang et al. (2022), we
adopt two separate PEs for encoder and decoder, respectively.

Prediction Head. Existing methods typically introduce self-supervision by reconstructing masked
points (Pang et al., 2022; Yu et al., 2021). Considering that surfels capture more local geometry
information than points, we propose to estimate the masked surfels by predicting the surfel positions
and per-surfel normals. Specifically, taking the decoded mask tokens Td as inputs, the prediction
head outputs patch-wise vectors, which are then reshaped and split into surfel position patches and
per-surfel normal patches:

P̂N = Reshape(FC(Td)), (5)

P̂ , N̂ = Split(P̂N), (6)

where P̂N ∈ RmN×K×6 is the concatenation of predicted masked surfel position patches P̂ ∈
RmN×K×3 and the per-surfel normal patches N̂ ∈ RmN×K×3, and FC(·) indicates one fully
connected (FC) layer.

3.3 LOSS FUNCTIONS

To measure the performance of masked surfel prediction, we measure the estimation of masked sur-
fel positions and per-surfel orientations in a set-to-set manner. For the convenience of expression, in
the following development we define the loss functions on one surfel position patch p ∈ RK×3 and
its corresponding normal patch n ∈ RK×3, which are sampled from Pmask and Nmask, respec-
tively; similarly, the predicted masked surfel position and normal patches are denoted as p̂ ∈ RK×3

and n̂ ∈ RK×3, respectively. The final loss is calculated by averaging over all masked patches.

Following 3D reconstruction methods (Fan et al., 2017; Pang et al., 2022), we adopt the following
Chamfer Distance (CD) loss to measure the divergence of point patches:

Lp =
1

K

K∑
k=1

min
k′∈[1,K]

‖pk − p̂k′‖22 +
1

K

K∑
k=1

min
k′∈[1,K]

‖p̂k − pk′‖22, (7)

where pk ∈ R3 and p̂k ∈ R3 are the k-th row of p and p̂, respectively. The nk and n̂k in the
following Equ. (8) are similarly defined.

How to measure the prediction performance of position-paired normal patches in a set-to-set manner
is less investigated. Here we propose the following Position-Indexed Normal Distance (PIND) loss
to address this issue:

Ln =
1

K

K∑
k=1

d
(
nk, n̂argmink′∈[1,K] ‖pk−p̂k′‖22

)
+

1

K

K∑
k=1

d
(
n̂k,nargmink′∈[1,K] ‖p̂k−pk′‖22

)
, (8)

where d(n, n̂) is the absolute cosine angle distance between two normal vectors n, n̂ ∈ R3:

d(n, n̂) = 1−
∣∣∣∣ n

‖n‖2
n̂

‖n̂‖2

∣∣∣∣ . (9)

Similar to the CD loss in Equ. (7), for each normal in one set, we find its ‘nearest neighbor’ in the
other set and sum the distances up in the PIND loss. However, there are two differences between
CD and PIND losses. Firstly, in PIND, we find the nearest neighbor of each normal according to
the distance between corresponding positions, instead of the distance between normals, because the
normal must be paired with one position to represent the surfel. Secondly, we adopt the absolute
value of the cosine distance, instead of the Euclidean distance in CD loss, because the unoriented
normal is sufficient for the surfel prediction.

The overall loss function is therefore defined as:

Lall = Lp + αLn, (10)

where α is a hyper-parameter balancing the two terms.
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4 EXPERIMENTS

Our model is pre-trained on the ShapeNet (Chang et al., 2015) dataset, and then it is validated
on various downstream tasks, including object classification on real-world and synthetic datasets,
few-shot learning, domain generalization, part segmentation and semantic segmentation. Finally,
we make in-depth analyses of the proposed components.

4.1 PRE-TRAINING ON SHAPENET

We pre-train our model on the ShapeNet (Chang et al., 2015), which includes about 51K single
clean 3D meshes shared by 55 categories. Following Yu et al. (2021); Pang et al. (2022), we split
the vanilla dataset into a training subset and a test subset, and use only the training subset for pre-
training. For each 3D mesh in the training subset, we sample p = 1, 024 surfels from the surface and
then split them as surfel positions and per-surfel normals. Data augmentations of standard random
scaling and translation are applied to the sampled points. We set the point patch size K = 32 and
divide the 1, 024 points into N = 64 point patches. We then randomly mask the point patches with
masking ratio of m = 0.6 by default. The other masking strategies are analyzed in Sec. 4.3.

We construct the encoder with 12 Transformer blocks, while the decoder is built with four Trans-
former blocks, where each Transformer block has 384 hidden dimensions and six heads. The
AdamW optimizer (Loshchilov & Hutter, 2017) is adopted. The batch size is 128 and the weight
decay is 0.05. The cosine learning rate schedule (Loshchilov & Hutter, 2016) is adopted with the
total training epochs of 300 and an initial learning rate of 0.001. In order to reconstruct the indexing
points first, we linearly increase the α from 0 to 0.01 in the training process. The predicted surfel
cloud is visualized in Fig. 3.

4.2 FINE-TUNING ON DOWNSTREAM TASKS

On downstream tasks, we initialize the encoder with the pre-trained weight parameters, while the
decoder part of MaskSurf is discarded. The following three strategies are adopted to fine-tune pre-
trained models on downstream tasks:

• Transferring features protocol, where we fine-tune all weight parameters, including the
pre-trained encoder and a randomly initialized non-linear classifier.

• Linear classification protocol, where we freeze the pre-trained encoder and only fine-tune
a randomly initialized linear classifier.

• Non-linear classification protocol, where we freeze the pre-trained encoder and only fine-
tune a randomly initialized non-linear classifier.

In transferring features and non-linear classification protocols, we construct the non-linear classifier
via three FC layers for all classification tasks following Pang et al. (2022). We adopt the standard
voting strategy (Liu et al., 2019) in the testing stage on ModelNet40 dataset under the transferring
features protocol following Pang et al. (2022), while no voting is performed on the other settings
and datasets. Note that existing methods typically report the best result across multiple runs on
the classification task; here, we advocate reporting more detailed results with standard deviation to
reflect the performance fluctuation.

We set a fair baseline by learning both the encoder and non-linear classifier from scratch, leading to
the ‘Transformer’ method. We compare our MaskSurf against existing transformer-based SSL meth-
ods (e.g., Transformer-OcCo (Yu et al., 2021), Point-BERT (Yu et al., 2021) and Point-MAE (Pang
et al., 2022)). Especially, our MaskSurf adopts the same backbone as the state-of-the-art Point-MAE,
which is the closest competitor. Additionally, the supervised methods (e.g., PointNet (Qi et al.,
2017a), PointNet++ (Qi et al., 2017a), DGCNN (Wang et al., 2019), PointMLP (Ma et al., 2022),
and PointTransformer (Zhao et al., 2021)), DGCNN-based SSL approaches (e.g., DGCNN+OcCo
(Wang et al., 2021), DGCNN+STRL (Huang et al., 2021), and DGCNN+CrossPoint (Afham et al.,
2022)), and domain adaptation methods (e.g., DANN (Ganin et al., 2016) and PointDAN (Qin et al.,
2019)) are provided for the reference. Due to the limit of space, only partial results are reported in
Tab. 1 and Tab. 2, and more comprehensive comparisons are given in the appendix.
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Table 1: Classification results on ScanObjectNN dataset.

Methods OBJ-BG OBJ-
ONLY

PB-T50-
RS

PointNet 73.3 79.2 68.0
PointNet++ 82.3 84.3 77.9
DGCNN 82.8 86.2 78.1
PointMLP – – 85.4±0.3
Transformer 79.86 80.55 77.24

Transferring features protocol
Transformer-OcCo 84.85 85.54 78.79
Point-BERT 87.43 88.12 83.07
Point-MAE 90.02 88.29 85.18
MaskSurf (Ours) 91.22 89.17 85.81

Detailed results with standard deviation
Point-MAE 89.26±0.39 88.19±0.32 84.66±0.40
MaskSurf (Ours) 90.76±0.53 88.74±0.23 85.35±0.24

Linear classification protocol
Point-MAE 81.07±0.00 82.10±0.00 71.48±0.00
MaskSurf (Ours) 82.07±0.00 83.48±0.00 72.59±0.00

Non-linear classification protocol
Point-MAE 82.56±0.22 86.29±0.08 75.64±0.12
MaskSurf (Ours) 84.45±0.21 86.45±0.08 76.48±0.09

Object Classification on Real-World
Dataset. Compared to 2D images, col-
lecting and annotating 3D objects in the
real world are much more expensive.
Considering that many synthetic 3D ob-
jects are available on the web (Chang
et al., 2015; Wu et al., 2015), there is
a massive demand to facilitate the real-
world 3D tasks using synthetic 3D data.
Therefore, we first validate our pre-
trained models on the real-world dataset
of ScanObjectNN (Uy et al., 2019),
which includes about 15K point cloud
samples shared by 15 categories. The
objects are scanned indoor scene data,
which are often cluttered with back-
ground and occluded by other objects.

We adopt three experiment variants:
OBJ-BG, OBJ-ONLY and PB-T50-RS,
which are detailed in the appendix. As
illustrated in Tab. 1, our MaskSurf sig-
nificantly boosts the vanilla Transformer
baseline with absolute improvements of 11.36%, 8.62%, and 8.57% on the settings of OBJ-BG,
OBJ-ONLY, and PB-T50-RS, respectively. Meanwhile, MaskSurf consistently outperforms its clos-
est SSL competitor Point-MAE (Pang et al., 2022), which is based on masked point cloud recon-
struction, under all the three fine-tuning protocols, justifying the advantage of our masked surfel
prediction.

Table 2: Classification results on ModelNet40 dataset.
‘ST’ indicates whether the backbone is a standard
Transformer without any special design or inductive
bias. ‘Our rep.’ means that the result is reproduced
or produced by us using the official codes. Note that
Point-MAE only reports the result under the transfer-
ring features protocol in the original paper.

Methods ST? ModelNet40 Acc. (%)
PointNet – 89.2
PointNet++ – 90.7
DGCNN – 92.9
PointTransformer N 93.7
Transformer Y 91.4

Transferring features protocol
DGCNN + OcCo – 93.0
DGCNN + STRL – 93.1
Transformer-OcCo Y 92.1
Point-BERT Y 93.2
Point-MAE Y 93.8
Point-MAE (Our rep.) Y 93.45
MaskSurf (Ours) Y 93.56

Detailed results with standard deviation.
Point-MAE (Our rep.) Y 93.06±0.18
MaskSurf (Ours) Y 93.18±0.15

Linear classification protocol
DGCNN + OcCo – 89.2
DGCNN + CrossPoint – 91.2
Point-MAE (Our rep.) Y 91.41±0.00
MaskSurf (Ours) Y 92.26±0.00

Non-linear classification protocol
Point-MAE (Our rep.) Y 92.59±0.13
MaskSurf (Ours) Y 93.44±0.03

Object Classification on Synthetic
Datasets. Besides the real-world dataset
discussed above, we also test MaskSurf
on synthetic datasets of ModelNet40
(Wu et al., 2015) and ShapeNet (Chang
et al., 2015). Compared to the real-world
ScanObjectNN dataset, these two tasks
are much easier since the input point
clouds are clean and complete, resulting
in a smaller gap to the dataset used for
pre-training. Note that the ShapeNet
dataset is also used in the pre-training
stage, as detailed in Sec. 4.1. The Mod-
elNet40 includes 12, 311 clean 3D CAD
models for 40 categories. Following the
standard split, 9843 and 2468 samples are
used for training and testing, respectively.

Results on ModelNet40 and ShapeNet
datasets are illustrated in Tab. 2 and
Tab. 3, respectively. Our MaskSurf
consistently improves over PointMAE
(Pang et al., 2022), which is based on
masked point cloud reconstruction, un-
der all the three fine-tuning protocols.
Specifically, under the transferring fea-
tures protocol, different reconstruction-
based SSL methods achieve comparable
performance, since the two datasets are
relatively easy. Under more challenging
settings (i.e., linear classification and non-
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linear classification protocols), where the pre-trained encoder is frozen, our MaskSurf shows more
significant advantages over its closest competitor Point-MAE (e.g., 0.85% on ModelNet40 and
0.69% on ShapeNet under the non-linear classification protocol). Note that such improvements
are significant since the results are getting saturated on these two tasks.

Table 3: Classification results on
the ShapeNet dataset.

Methods Accuracy (%)
Transformer 90.86±0.05

Transferring features protocol
Point-MAE 90.84±0.02
MaskSurf (Ours) 90.84±0.04

Linear classification protocol
Point-MAE 89.08±0.12
MaskSurf (Ours) 89.62±0.12
Non-linear classification protocol
Point-MAE 90.40±0.06
MaskSurf (Ours) 91.09±0.05

In addition, we have three interesting observations. Firstly,
on the challenging real-world dataset of ScanObjectNN, the
transferring features protocol is preferred, since there is a
large domain gap between the synthetic pre-training data and
the real-world testing data. The results of different meth-
ods vary on easier downstream tasks with synthetic samples.
Specifically, under the transferring features protocol, Point-
MAE achieves better results, while under the non-linear clas-
sification protocol, models pre-trained with MaskSurf are pre-
ferred. This may be because fine-tuning the pre-trained en-
coder may degrade the local geometry perception ability of
our MaskSurf. Secondly, on the ShapeNet dataset, under
the non-linear classification protocol, only our MaskSurf out-
performs the fully-supervised Transformer baseline, justify-
ing the advantages of the local geometry perception. Finally,
though the transformer backbone adopted in our MaskSurf is weaker than the DGCNN backbone
used in most SSL methods, as presented in Tab. 2, MaskSurf still achieves better results than
DGCNN-based SSL competitors on the ModelNet40 dataset, demonstrating its effectiveness.

Table 4: Cross-domain generalization perfor-
mance. ‘S’ denotes the ScanNet-10 dataset.

Methods ModelNet-10
→S

ShapeNet-10
→S

DGCNN 43.8±2.3 42.5±1.4
DANN 42.1±0.6 50.9±1.0
PointDAN 44.8±1.4 45.7±0.7
Transformer 44.43±2.38 42.62±1.45

Transferring features protocol
Point-MAE 47.16±1.51 46.67±0.03
MaskSurf (Ours) 47.20±0.95 48.26±1.80

Linear classification protocol
Point-MAE 46.73±3.01 47.88±0.58
MaskSurf (Ours) 46.90±3.12 48.69±1.19

Non-linear classification protocol
Point-MAE 40.31±0.02 40.93±0.03
MaskSurf (Ours) 46.13±0.01 47.37±0.02

Domain Generalization. Applying models
trained on synthetic domains to real-world ap-
plications has great practical value. We eval-
uate the cross-domain generalization perfor-
mance of MaskSurf on the PointDA-10 dataset
(Qin et al., 2019), whose detailed information
can be found in the appendix. Specifically, we
adopt the synthetic 3D datasets of ModelNet-
10 and ShapeNet-10 as the training set, and test
the domain generalization performance on the
real-world ScanNet-10 dataset with the model
selection of training-domain validation (Gul-
rajani & Lopez-Paz, 2020). As shown in Tab.
4, our MaskSurf consistently outperforms its
competitors, including the Transformer base-
line and Point-MAE (Pang et al., 2022).

Table 5: Few-shot classification performance on
ScanObjectNN.

5-way 10-way

10-shot 20-shot 10-shot 20-shot
Transformer 51.9±8.3 61.6±8.5 38.5±5.9 45.5±3.9

Transferring features protocol
Point-MAE 63.9±7.0 77.0±5.2 53.6±5.4 61.6±2.7
MaskSurf (Ours) 65.3±4.9 77.4±5.2 53.8±5.3 63.2±2.7

Linear classification protocol
Point-MAE 48.3±7.8 56.0±11.2 39.2±10.1 59.0±3.3
MaskSurf (Ours) 51.0±8.2 59.8±7.9 41.7±9.2 61.0±3.4

Non-linear classification protocol
Point-MAE 56.4±6.8 67.2±6.5 44.3±6.2 50.8±3.6
MaskSurf (Ours) 60.8±6.6 68.3±6.7 46.6±6.4 54.9±3.5

Few-shot Learning. We conduct the
experiments of few-shot learning on the
ScanObjectNN dataset under the “n-way,
m-shot” setting, where n is the number
of randomly sampled classes and m is the
number of samples in each class. The
n × m samples are adopted for training,
while we randomly sample 20 unseen ob-
jects from each class for testing. We re-
port the results of each setting with 10 in-
dependent experiments. Results with n =
{5, 10} and m = {10, 20} are presented
in Tab. 5. MaskSurf consistently outper-
forms its competitors under all fine-tuning
protocols. Similar results can be observed
on the ModelNet40 dataset. Please see the
appendix for details.

Segmentation. Our MaskSurf generally outperforms its closest SSL competitor (i.e., Point-MAE)
on the part segmentation task on ShapeNetPart dataset (Yi et al., 2016) and semantic segmentation
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task on Stanford 3D Indoor Scene Dataset (Armeni et al., 2016)), which are detailed in the appendix
due to the limit of space.

Summary on Downstream Tasks. Our MaskSurf demonstrates considerable advantages on more
challenging tasks (e.g., the ScanObjectNN dataset and linear classification protocol), while results
of different SSL methods are comparable on easier tasks (e.g., classification on ModelNet40 and
ShapeNet under the transferring features protocol). Moreover, the generation-based SSL methods
(e.g., Point-BERT, Point-MAE, and our MaskSurf) bring marginal improvement in segmentation
tasks (see the appendix), implying the need for segmentation-specific SSL strategies.

4.3 ANALYSES AND DISCUSSIONS

Pre-trained Encoders. We freeze
the pre-trained encoders and learn de-
coders from scratch with our proposed
surfel prediction objective (cf. Equ.
(10)). As shown in Tab. 6, MaskSurf
achieves better surfel prediction perfor-
mance (e.g., lower Lp and Ln) than
Point-MAE, which is also visualized in
Fig. 3.

Methods Lp ↓ Ln ↓
Poine-MAE 2.26 × 1e-3 0.29
MaskSurf (Ours) 2.19 × 1e-3 0.25

Table 6: Quantitive analyses of the sur-
fel prediction on the ShapeNet test sub-
set with frozen encoders. The quality of
point reconstruction and normal predic-
tion are measured by values of Lp and
Ln, respectively.

Masked Point Cloud Input

Ground Truth Point Cloud

Predicted Point Cloud & Surfel Cloud via Point-MAE Encoder

Predicted Point Cloud & Surfel Cloud via MaskSurf Encoder

Figure 3: Visualization of the predicted point cloud and
surfel cloud with frozen encoders. In surfel cloud, the
blue color means that the unoriented angular difference
between estimated surfel normal and ground truth normal
is less than 30 degrees, while the red color means that the
unoriented angular difference is larger than 30 degrees.

Masking Strategies. As illustrated in Fig. 4, random masking leads to higher accuracy over the
block masking strategy (Yu et al., 2021), and the best results are achieved when the mask ratio
m = 0.6, which is adopted as the default setting.

0.4 0.5 0.6 0.7 0.8 0.9
Values of m

84.0

84.5

85.0

Ac
c.

(%
)

Block masking
Random masking

Figure 4: Results on PB-T50-RS setting of ScanObjectNN dataset with various masking strategies.

More discussions on reconstructing masked surfels and all surfels, results with estimated surfels,
variants of normal distance, the selection of hyper-parameter α in Equ. (10), and the complexity
analysis can be found in the appendix. Source codes are attached to the supplementary materials.

5 CONCLUSION

We proposed a novel self-supervised point cloud learning method by explicitly incorporating the
local geometry information into the masked auto-encoding. Unlike popular methods that recon-
structed masked cloud points from the unmasked cloud points, we validated that predicting the
masked surfels is more effective, which was justified on six downstream tasks under various fine-
tuning strategies. Our method revealed the importance of local geometry in self-supervised point
cloud learning, which could facilitate more subsequent studies in point cloud understanding.
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A APPENDIX

Table 7: Classification results on the ScanObjectNN dataset.

Methods OBJ-BG OBJ-ONLY PB-T50-RS
PointNet (Qi et al., 2017a) 73.3 79.2 68.0
SpiderCNN (Xu et al., 2018) 77.1 79.5 73.7
PointNet++ (Qi et al., 2017b) 82.3 84.3 77.9
DGCNN (Wang et al., 2019) 82.8 86.2 78.1
PointCNN (Li et al., 2018) 86.1 85.5 78.5
BGA-DGCNN (Uy et al., 2019) – – 79.7
GBNet (Qiu et al., 2021) – – 80.5
Simple View (Goyal et al., 2021) – – 80.5±0.3
PRANet (Cheng et al., 2021) – – 81.0
PointMLP (Ma et al., 2022) – – 85.4±0.3
Transformer (Vaswani et al., 2017) 79.86 80.55 77.24

Transferring features protocol
Transformer-OcCo (Yu et al., 2021) 84.85 85.54 78.79
Point-BERT (Yu et al., 2021) 87.43 88.12 83.07
Point-MAE (Pang et al., 2022) 90.02 88.29 85.18
MaskSurf (Ours) 91.22 89.17 85.81

Detailed results with standard deviation
Point-MAE (Pang et al., 2022) 89.26±0.39 88.19±0.32 84.66±0.40
MaskSurf (Ours) 90.76±0.53 88.74±0.23 85.35±0.24

Linear classification protocol
Point-MAE (Pang et al., 2022) 81.07±0.00 82.10±0.00 71.48±0.00
MaskSurf (Ours) 82.07±0.00 83.48±0.00 72.59±0.00

Non-linear classification protocol
Point-MAE (Pang et al., 2022) 82.56±0.22 86.29±0.08 75.64±0.12
MaskSurf (Ours) 84.45±0.21 86.45±0.08 76.48±0.09
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A.1 MORE COMPREHENSIVE OBJECTION CLASSIFICATION RESULTS

The comprehensive objection classification results on the real-world dataset of ScanObjectNN and
synthetic dataset of ModelNet40 are illustrated in Tab. 7 and Tab. 8, respectively.

Table 8: Classification results on ModelNet40 dataset. ‘ST’ indicates whether the backbone is a
standard Transformer without any special design or inductive bias. ‘Our rep.’ means that the result
is reproduced or produced by us using the official codes. Note that Point-MAE (Pang et al., 2022)
only reports the result under the transferring features protocol in the original paper.

Methods ST? Accuracy (%)
PointNet (Qi et al., 2017a) – 89.2
PointNet++ (Qi et al., 2017b) – 90.7
PointCNN (Li et al., 2018) – 92.5
KPConv (Thomas et al., 2019) – 92.9
DGCNN (Wang et al., 2019) – 92.9
RS-CNN (Liu et al., 2019) – 92.9
PCT (Guo et al., 2021) N 93.2
PVT (Zhang et al., 2021) N 93.6
PointTransformer (Zhao et al., 2021) N 93.7
Transformer (Vaswani et al., 2017) Y 91.4

Transferring features protocol
DGCNN + OcCo (Wang et al., 2021) – 93.0
DGCNN + STRL (Huang et al., 2021) – 93.1
DGCNN + FoldingNet (Yang et al., 2018) – 93.1
Transformer-OcCo (Yu et al., 2021) Y 92.1
Point-BERT (Yu et al., 2021) Y 93.2
Point-MAE (Pang et al., 2022) Y 93.8
Point-MAE (Our rep.) Y 93.45
MaskSurf (Ours) Y 93.56

Detailed results with standard deviation.
Point-MAE (Our rep.) Y 93.06±0.18
MaskSurf (Ours) Y 93.18±0.15

Linear classification protocol
DGCNN + Multi-Task (Hassani & Haley, 2019) – 89.1
DGCNN + Self-Contrast (Du et al., 2021) – 89.6
DGCNN + Jigsaw (Sauder & Sievers, 2019) – 90.6
DGCNN + FoldingNet (Yang et al., 2018) – 90.1
DGCNN + Rotation (Poursaeed et al., 2020) – 90.8
DGCNN + STRL (Huang et al., 2021) – 90.9
DGCNN + OcCo (Wang et al., 2021) – 89.2
DGCNN + CrossPoint (Afham et al., 2022) – 91.2
DGCNN + IAE (Yan et al., 2022) – 92.1
Point-MAE (Our rep.) Y 91.41±0.00
MaskSurf (Ours) Y 92.26±0.00

Non-linear classification protocol
Point-MAE (Our rep.) Y 92.59±0.13
MaskSurf (Ours) Y 93.44±0.03

A.2 TASK SETTINGS ON SCANOBJECTNN DATASET

We validate our MaskSurf with three task settings (i.e., OBJ-ONLY, OBJ-BG, and PB-T50-RS) on
the ScanObjectNN dataset (Uy et al., 2019). Specifically, the samples are segmented objects in
the OBJ-ONLY setting, which is used to investigate the model robustness to deformed geometric
shape and non-uniform surface density. In the OBJ-BG setting, background points near the objects
are also included, which is used to investigate the influence of background elements. Additionally,
to simulate more challenging cases in practice, bounding box perturbation is introduced. In the
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Table 9: Few-shot classification performance on ModelNet40.

5-way 10-way
10-shot 20-shot 10-shot 20-shot

DGCNN (Wang et al., 2021) 31.6±2.8 40.8±4.6 19.9±2.1 16.9±1.5
Transformer (Vaswani et al., 2017) 87.8±5.2 93.3±4.3 84.6±5.5 89.4±6.3

Transferring features protocol
DGCNN-OcCo (Wang et al., 2021) 90.6±2.8 92.5±1.9 82.9±1.3 86.5±2.2
Transformer-OcCo (Yu et al., 2021) 94.0±3.6 95.9±2.3 89.4±5.1 92.4±4.6
Point-BERT (Yu et al., 2021) 94.6±3.1 96.3±2.7 91.0±5.4 92.7±5.1
Point-MAE (Pang et al., 2022) 96.3±2.5 97.8±1.8 92.6±4.1 95.0±3.0
MaskSurf (Ours) 96.5±2.5 98.0±1.4 93.0±4.1 95.3±3.0

Linear classification protocol
Point-MAE (Pang et al., 2022) 82.3±6.3 90.6±5.6 88.3±6.5 94.9±3.5
MaskSurf (Ours) 87.1±4.6 92.3±4.9 89.3±4.2 94.9±3.2

Non-linear classification protocol
Point-MAE (Pang et al., 2022) 93.7±3.5 97.4±1.7 90.9±5.0 94.2±4.2
MaskSurf (Ours) 95.4±2.9 97.6±1.4 90.9±4.6 94.7±3.3

PB-T50-RS setting, the bounding boxes are randomly shifted up to 50% of its size from the box
centroid, and then rotated and scaled. The PB-T50-RS setting is the most challenge one among all
three settings.

A.3 DOMAIN GENERALIZATION ON POINTDA-10 DATASET

We investigate the synthetic-to-real domain generalization performance on the PointDA-10 dataset
(Qin et al., 2019), which includes two synthetic datasets of ModelNet-10 and ShapeNet-10 and
one real-world dataset of ScanNet-10. Specifically, samples of ModelNet-10, ShapeNet-10 and
ScanNet-10 are from shared categories of ModelNet40 (Wu et al., 2015), ShapeNet (Chang et al.,
2015), and ScanNet (Dai et al., 2017), respectively.

A.4 FEW-SHOT PERFORMANCE ON MODELNET40

As illustrated in Tab. 9, our MaskSurf consistently outperforms Point-MAE, justifying the advantage
of masked surfel prediction over masked point prediction.

A.5 MORE ANALYSES AND DISCUSSIONS

Reconstructing Masked Surfels vs. Reconstructing All Surfels? Similar to observations in He
et al. (2021), better results are achieved by reconstructing masked parts only, as shown in Fig. 5.

OBJ-BG OBJ-ONLY PB-T50-RS

86

88

90

Ac
c.

(%
)

All surfels
Masked surfels only

Figure 5: Classification results on ScanObjectNN dataset with different reconstruction objectives.

Results with Estimated Surfels. To pre-train MaskSurf on a pure point cloud dataset (e.g., when
the underlying 3D surfaces are not accessible), we could estimate the surfel cloud from the point
cloud (Tatarchenko et al., 2018) and adopt the estimated surfels as the supervision. As illustrated
in Fig. 6, although estimated surfels result in lower performance than ground truth surfels, they
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Ground Truth Surfels

Figure 6: Classification results with various reconstruction targets. ‘PC’ is short for point cloud.

still lead to better performance than reconstructing point cloud only (i.e., Point-MAE), revealing the
broader applications of MaskSurf.

OBJ-BG OBJ-ONLY PB-T50-RS

86

88

90

Ac
c.

(%
)

Oriented Normal Distance
Unoriented Normal Distance

Figure 7: Classification results on ScanObjectNN dataset with various normal distance.

Variants of Normal Distance. Results with unoriented normal distance (i.e., Equ. (9)) and oriented
normal distance (i.e., Equ. (9) without absolute function) are compared in Fig. 7. Unoriented normal
distance presents clear advantage, which is adopted as the default setting.
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Figure 8: Classification results on the PB-T50-RS setting of ScanObjectNN dataset with different α
values.

Hyper-parameter α. As illustrated in Fig. 8, α = 0.01 leads to the best performance, which is
adopted as the default setting in all experiments.

Complexity Analysis. As illustrated in Tab. 10, MaskSurf introduces about 0.1% additional param-
eters and multiply-accumulates (MACs) compared to Point-MAE in the pre-training stage, while it
has the same complexity as the baseline Transformer on downstream tasks.

A.6 PART SEGMENTATION AND SEMANTIC SEGMENTATION

A.6.1 CLASSIFIER ARCHITECTURE FOR SEGMENTATION

We strictly follow Pang et al. (2022) to construct the classifier for segmentation. Specifically, given
learned features form the 4th, 8th and 12th layers of Transformer block, we concatenate the multi-
scale patch features and apply the max pooling and average pooling to them, resulting in two global
feature representations. We follow Qi et al. (2017b) to up-sample the concatenated path features to
obtain interpolated features of each point. In semantic segmentation, we concatenate the interpo-
lated point features and two global features as complete point features. While in part segmentation,
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Table 10: Illustrations of the model parameters and computational complexity. The ‘Fine-tuning’ is
reported on the downstream classification tasks.

Methods Pre-training Fine-tuning

Params MACs Params MACs
Transformer (Yu et al., 2021) – – 22.1M 2.4G
Point-MAE (Pang et al., 2022) 29.0M 2.5G +0% +0%
MaskSurf (Ours) +0.127% +0.069% +0% +0%

Table 11: Part segmentation results on the ShapeNetPart dataset. The mean IoU across all categories,
i.e., mIoUc (%), the mean IoU across all instances, i.e., mIoUI (%), and IoU (%) for each category
are reported.

Methods mIoUc mIoUI aero bag cap car chair earph. guitar knife lamp laptop motor mug pistol rocket skateb. table
PointNet 80.39 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ 81.85 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
DGCNN 82.33 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6
Transformer 83.42 85.1 82.9 85.4 87.7 78.8 90.5 80.8 91.1 87.7 85.3 95.6 73.9 94.9 83.5 61.2 74.9 80.6

Transferring features protocol
Transformer-
OcCo

83.42 85.1 83.3 85.2 88.3 79.9 90.7 74.1 91.9 87.6 84.7 95.4 75.5 94.4 84.1 63.1 75.7 80.8

Point-BERT 84.11 85.6 84.3 84.8 88.0 79.8 91.0 81.7 91.6 87.9 85.2 95.6 75.6 94.7 84.3 63.4 76.3 81.5
Point-MAE 84.19 86.1 84.3 85.0 88.3 80.5 91.3 78.5 92.1 87.4 86.1 96.1 75.2 94.6 84.7 63.5 77.1 82.4
MaskSurf (Ours) 84.36 86.1 84.7 84.6 89.1 81.1 91.4 77.8 91.8 87.7 86.1 96.5 75.9 95.2 84.9 65.6 75.4 82.1

Non-linear classification protocol
Point-MAE 83.13 84.6 83.6 82.7 86.6 78.6 90.6 77.2 91.5 86.4 85.4 96.0 73.5 94.4 83.4 64.2 75.5 79.4
MaskSurf (Ours) 83.30 85.3 82.9 82.9 87.4 79.0 90.7 72.0 91.3 86.5 85.8 95.7 74.6 94.1 83.7 62.1 76.3 81.2

where the part label is associated to the object label, the complete point features are achieved by con-
catenating interpolated point features, two global features and one additional object feature, which
are encoded with one FC layer from the object label. Finally, the point-wise prediction is obtained
by forwarding the complete point features to three FC layers.

A.6.2 EXPERIMENTS

Part Segmentation. We conduct part segmentation on the ShapeNetPart dataset (Yi et al., 2016),
which includes 16, 881 samples shared by 16 categories. As illustrated in Tab. 11, MaskSurf out-
performs the Transformer baseline, and achieves comparable results to the state-of-the-art methods
under the transferring features protocol. Note that neither Point-MAE nor our MaskSurf bring im-
provements to the Transformer baseline under the less-studied non-linear classification protocol,
demonstrating the gap between reconstruction and segmentation tasks. Similar results can be ob-
served in the following semantic segmentation task.

Table 12: Semantic segmentation results on the S3DIS Area 5.

Methods Input OA mAcc mIoU
PointNet (Qi et al., 2017a) xyz+rgb – 49.0 41.1
PointCNN (Li et al., 2018) xyz+rgb 85.9 63.9 57.3
KPConv (Thomas et al., 2019) xyz+rgb – 72.8 67.1
Transformer (Vaswani et al., 2017) xyz 86.8 68.6 60.0

Transferring features protocol
Point-MAE (Pang et al., 2022) xyz 87.4 69.4 61.0
MaskSurf (Ours) xyz 88.3 69.9 61.6

Non-linear classification protocol
Point-MAE (Pang et al., 2022) xyz 85.3 65.4 56.1
MaskSurf (Ours) xyz 86.2 66.6 56.6

Semantic Segmentation. We conduct the semantic segmentation on the Stanford 3D Indoor Scene
Dataset (S3DIS) (Armeni et al., 2016), which contains 6 large-scale indoor areas with points shared
by 13 classes. Different from most segmentation methods (Qi et al., 2017a; Li et al., 2018; Thomas
et al., 2019) that adopt both xyz and rgb colors as input, we adopt the xyz as input since the pre-
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trained model only accepts point cloud data. However, as shown in Tab. 12, MaskSurf still shows
clear improvement over the competiting methods, validating its advantages in feature representation.

Ground Truth Point-MAE MaskSurf

Figure 9: Visualization of the part segmentation results on the ShapeNetPart test set.

Ground Truth Transformer (learning from scratch)

Point-MAE MaskSurf

Figure 10: Visualization of the semantic segmentation results on the S3DIS Area5.

Visualizations Results of part segmentation and semantic segmentation are visualized in Fig. 9 and
Fig. 10, respectively.
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