
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

HILBERT: RECURSIVELY BUILDING FORMAL PROOFS WITH
INFORMAL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) demonstrate impressive mathematical reasoning abilities,
but their solutions frequently contain errors that cannot be automatically verified. Formal
theorem proving systems such as Lean 4 offer automated verification with complete accu-
racy, motivating recent efforts to build specialized prover LLMs that generate verifiable
proofs in formal languages. However, a significant gap remains: current prover LLMs solve
substantially fewer problems than general-purpose LLMs operating in natural language. We
introduce HILBERT, an agentic framework that bridges this gap by combining the comple-
mentary strengths of informal reasoning and formal verification. Our system orchestrates
four components: an informal LLM that excels at mathematical reasoning, a specialized
prover LLM optimized for Lean 4 tactics, a formal verifier, and a semantic theorem re-
triever. Given a problem that the prover is unable to solve, HILBERT employs recursive
decomposition to split the problem into subgoals that it solves with the prover or reasoner
LLM. It leverages verifier feedback to refine incorrect proofs as necessary. Experimental
results demonstrate that HILBERT substantially outperforms existing approaches on key
benchmarks, achieving 99.2% on miniF2F, 6.6% points above the best publicly available
method. HILBERT achieves the best known result on PutnamBench. It solves 462/660
problems (70.0%), outperforming proprietary approaches like SeedProver (50.4%) and
achieving a 422% improvement over the best publicly available baseline. Thus, HILBERT
effectively narrows the gap between informal reasoning and formal proof generation.

1 INTRODUCTION

General-purpose Large Language Models (LLMs) have achieved dramatic improvements in mathematical
understanding. Reasoning LLMs like GPT-5 and Gemini 2.5 Pro attain near-perfect performance on high-
school olympiad exams such as AIME and can solve a significant proportion of competitive undergraduate-
level problems from the Putnam exam (Dekoninck et al., 2025). These systems also show promise on
research-level benchmarks like FrontierMath (Glazer et al., 2024; OpenAI, 2025).

However, several fundamental limitations severely constrain their practical utility. These systems frequently
hallucinate, producing confident-sounding but ultimately incorrect solutions. Even when the final answers
are correct, the underlying reasoning often contains serious flaws: "proving" by example, logical fallacies,
unjustified assumptions, and calculation errors (Petrov et al., 2025; Guo et al., 2025; Mahdavi et al., 2025;
Balunović et al., 2025). Manual verification of generated proofs is time-consuming, difficult, and error-prone.
Although recent advances show LLM-based verifiers can approach human-level performance (Guo et al.,
2025; Dekoninck et al., 2025), they remain fallible due to hallucinations and silent failures (Mahdavi et al.,
2025; Petrov et al., 2025).

Formal theorem proving systems such as Lean 4 (Moura & Ullrich, 2021) offer a promising solution
by enabling automated proof verification with complete accuracy, guaranteeing to prove or disprove the

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

Figure 1: The HILBERT algorithm. Given a target theorem, HILBERT attempts formal proof generation with
the prover. Upon failure, it decomposes the problem into subgoals and tries to solve them with the prover,
followed by the reasoner (shallow solve). If both strategies fail, it resorts to recursive decomposition until all
subgoals are resolved.

correctness of proofs in formal languages. This capability has spurred the development of purpose-built
prover LLMs (Polu & Sutskever, 2020), with substantial research focused on developing specialized models
for generating formal Lean 4 proofs (Yang et al., 2023; Xin et al., 2024a;b; 2025; Ren et al., 2025; Dong
& Ma, 2025; Wang et al., 2025). The best open prover models achieve over 90% pass rate on miniF2F
(Zheng et al., 2021) and solve 86 of 657 problems on the challenging PutnamBench (Tsoukalas et al., 2024).
Proprietary systems such as AlphaProof (AlphaProof & AlphaGeometry, 2024) and SeedProver (Chen et al.,
2025) demonstrate this paradigm’s potential, achieving a silver-medal performance on problems from the
International Mathematical Olympiad (IMO).

Despite this progress, a significant performance gap remains between specialized prover LLMs and general-
purpose reasoning LLMs. For example, Dekoninck et al. (2025) found through human verification that
reasoning LLMs can solve approximately 83% of PutnamBench problems informally, while the best publicly
available prover LLMs achieve only 13% with formal proofs. General-purpose LLMs excel at informal
mathematical reasoning and understand formal language syntax well enough to write effective proof sketches
and short proofs (Ren et al., 2025; Liang et al., 2025). However, they struggle with full formal program
synthesis, achieving only 49.1% pass rate (with 16384 attempts) on miniF2F (Zhou et al., 2025b). Conversely,
specialized prover LLMs excel at producing syntactically correct formal proofs for standalone theorems, but
are brittle at language-intensive tasks like leveraging existing theorems or error correction (Liang et al., 2025).

To address this gap, several works have explored incorporating informal reasoning from general-purpose
LLMs to augment formal theorem-proving capabilities. Early approaches like DSP (Jiang et al., 2022) and
LEGO-Prover (Wang et al., 2023) used general-purpose LLMs to propose proof sketches, with automated
theorem provers (ATPs) filling formal components, but were limited by heuristics-based ATP capabilities.
DSP+ (Cao et al., 2025) extended this approach using modern prover LLMs for intermediate steps. However,
these methods struggle with complex subgoals due to shallow, single-layer decomposition. They break
down the original problem but cannot further decompose subgoals that remain too difficult to solve directly.
Recent agentic frameworks including COPRA (Thakur et al., 2024), Prover-Agent (Baba et al., 2025), and
ProofCompass (Wischermann et al., 2025) iteratively construct proofs using informal reasoning with feedback
from the formal verifier. Although these methods show promise, their performance still significantly lags
behind general-purpose reasoning LLMs.

We introduce HILBERT, an agentic framework that bridges informal reasoning with formal verification (Figure
1). It orchestrates four key components: a general-purpose reasoning LLM, a prover LLM, a verifier, and
a semantic theorem retriever. Given a mathematical problem, HILBERT first retrieves relevant theorems
from Mathlib (mathlib Community, 2020) and generates a detailed informal proof using the reasoner. It
then creates a Lean 4 proof sketch decomposing the problem into manageable subgoals. For each subgoal,
HILBERT employs a two-stage approach: attempting formal proof generation with the prover, then falling
back to the reasoner augmented with retrieved theorems. When both stages fail, the system recursively
decomposes problematic subgoals into smaller problems. At every stage, HILBERT leverages the reasoner’s

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

superior in-context learning capabilities to interpret compilation errors, suggest corrections, and guide proof
refinement. We summarize our main contributions below.

• We design HILBERT, a multi-turn agentic framework that systematically combines informal mathematical
reasoning with formal proof verification, closing the performance gap between these two paradigms.

• We conduct comprehensive experiments on MiniF2F and PutnamBench, achieving state-of-the-art per-
formance on both benchmarks. HILBERT reaches 99.2% pass rate on miniF2F (6.6 points above the best
public method) and solves 462/660 PutnamBench problems (70.0%), outperforming proprietary systems
like SeedProver (50.4%) and achieving over 4× improvement versus the best open-source baseline.

• Through extensive ablation studies, we validate the effectiveness of our key technical contributions:
the recursive decomposition procedure for breaking down complex proofs and the retrieval-augmented
generation mechanism for enhanced reasoning capabilities.

2 RELATED WORK

Automated Theorem Provers (ATPs) are computational systems designed to automatically discover proofs
of mathematical theorems. Traditional approaches have primarily relied on symbolic reasoning methods
(Robinson, 1965; McCune, 2003; Schulz, 2002) and integration tools like Sledgehammer that connect ATPs
with interactive proof assistants (Blanchette et al., 2013; Czajka & Kaliszyk, 2018). Recently, LLMs have
emerged as a promising new tool for automated theorem proving (Polu & Sutskever, 2020; Yang et al., 2024).

Prover LLMs. The general principle is to train specialized prover LLMs on large datasets of formal proofs,
most prominently for the Lean (Moura & Ullrich, 2021) theorem prover. Some prominent models include
GPT-f (Polu & Sutskever, 2020), ReProver (Yang et al., 2023), DeepSeek Prover family of models (Xin et al.,
2024a;b; Ren et al., 2025), ABEL (Gloeckle et al., 2024), Goedel Prover V1 and V2 (Lin et al., 2025a;b),
BFS Prover (Xin et al., 2025), STP-Prover (Dong & Ma, 2025) and Kimina Prover (Wang et al., 2025).
These models are trained by curating a substantial corpus of formal proofs and performing some combination
of supervised finetuning and reinforcement learning. Several approaches have enhanced these models by
incorporating subgoal decomposition into the training process (Zhao et al., 2023; 2024; Ren et al., 2025), while
POETRY (Wang et al., 2024) and ProD-RL (Dong et al., 2024) employ recursive problem decomposition.
Proprietary prover LLMs like AlphaProof (AlphaProof & AlphaGeometry, 2024) and SeedProver (Chen
et al., 2025) have pushed the frontier further, achieving a silver-medal performance on problems from the
International Mathematics Olympiad (IMO). Still, significant performance gaps remain between specialized
prover models and general-purpose LLMs in mathematical reasoning capabilities (Dekoninck et al., 2025).

Using Informal LLMs for Formal Theorem Proving. Several previous works have attempted to incorporate
informal reasoning from general-purpose LLMs to improve formal reasoning abilities. DSP (Jiang et al., 2022)
used the Codex LLM to propose proof sketches in Isabelle, with intermediate steps filled in by Sledgehammer.
LEGO-Prover (Wang et al., 2023) extended this framework to handle a growing skill library of intermediate
theorems for retrieval-augmented proving. Liang et al. (2025) argue that general purpose reasoning LLMs are
more effective at decomposing problems into simpler subgoals compared to prover LLMs. Our work extends
upon this observation by using informal reasoners to recursively build proof sketches to break the problem
down into simpler sub-problems that can be handled by a prover or reasoning LLM.

Several works have also proposed using an informal LLM in an agentic framework for automated theorem
proving. COPRA (Thakur et al., 2024) queries an informal LLM to construct proofs tactic by tactic,
incorporating execution feedback, search history, and retrieved lemmas into subsequent prompts. Prover-
Agent (Baba et al., 2025) uses a small informal reasoning model to produce proof steps and lemmas, which
are autoformalized and solved using a prover LLM. Feedback from Lean is used to iteratively refine incorrect
proofs. ProofCompass (Wischermann et al., 2025) enhances prover LLMs by adding informal proof steps as

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

comments in the input. When proof attempts fail, it analyzes these failures to extract intermediate lemmas
that enable effective problem decomposition. DeltaProver (Zhou et al., 2025b) introduces a custom Domain-
Specific Language to perform subgoal decomposition, and iteratively repair the generated proof using verifier
feedback. Notably, it only uses an informal LLM and does not rely on prover LLMs. In contrast, our work
demonstrates that prover LLMs become highly effective tools when orchestrated in an appropriately designed
multi-agent framework.

3 HILBERT SYSTEM

In this section, we detail HILBERT, a multi-agent system that bridges informal mathematical reasoning and
formal verification by orchestrating general-purpose reasoning LLMs with specialized prover LLMs. Our
approach uses recursive subgoal decomposition to break complex theorems into simpler subgoals that can be
proven and combined, achieving performance exceeding either approach in isolation.

3.1 COMPONENTS

Before we describe the inference algorithm, we first describe the components that HILBERT orchestrates.

Reasoner. A general-purpose reasoning LLM to write informal proofs, proof sketches in Lean, and in certain
instances, a formal proof. In our work, we use Google Gemini 2.5 Flash and Pro (Comanici et al., 2025) due
to their superior mathematical reasoning capabilities (Zhou et al., 2025b; Dekoninck et al., 2025).

Prover. A specialized prover LLM to write formal proofs given a formal theorem statement. In our work, we
use DeepSeek-V2-7B (Ren et al., 2025) and Goedel-Prover-V2 32B (Lin et al., 2025b).

Verifier. A formal language verifier to check the correctness of the theorem statements and proofs. We use
the Kimina Lean Server (Santos et al., 2025) with Lean v4.15.0 and Mathlib v4.15.0.

Retriever. A semantic search engine to retrieve relevant theorems from Mathlib (mathlib Community,
2020) built using sentence transformers (all-mpnet-base-v2 (Song et al., 2020)) and FAISS (Douze
et al., 2024) indexing. The system computes cosine similarity between query embeddings and pre-computed
embeddings of informal theorem descriptions from the mathlib_informal (Gao et al., 2024) dataset,
providing a simple yet effective alternative to custom retrieval models (Gao et al., 2024; Lu et al., 2025).

3.2 ALGORITHM

Given a formal statement in Lean 4, we first attempt direct proof using the Prover. It generates Kinitial proof = 4
candidate proofs, which we verify using the Verifier. If any proof is valid, we return it immediately. When
direct proof attempts fail, we use the Reasoner to decompose the problem into simpler subproblems and
assemble them into a valid proof strategy. Figure 2 provides an overview of this stage.

3.2.1 SUBGOAL DECOMPOSITION

Step 1 (Theorem Retrieval). Given the formal statement, we prompt the Reasoner to produce s = 5 search
queries to look for theorems that might help simplify the proof strategy. For each search query, we use the
Retriever to retrieve the top m = 5 most semantically similar theorems and tactics from Mathlib. We again
query the Reasoner to select only the relevant theorems from the fetched search results.

Step 2 (Formal Proof Sketch Generation). We prompt the Reasoner to produce a detailed informal proof
using the retrieved theorems. With this proof supplied in-context, we ask the Reasoner to generate a Lean 4
proof sketch that decomposes the problem into simpler subproblems represented as have statements. All
subgoals are initially filled with sorry, a placeholder keyword that Lean can temporarily treat as a proof of

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

Figure 2: Subgoal Decomposition: Given a theorem statement, HILBERT: (1) retrieves relevant theorems
from Mathlib using semantic search, (2) generates a formal proof sketch with subgoals marked as have
statements with sorry placeholders, (3) extracts these subgoals as independent theorem statements, and (4)
assembles the proof by replacing sorry placeholders with calls to the subgoal theorems. Verifiers ensure
correctness at each stage. The error correction loops are indicated by dotted lines.

the subgoal. We verify that the proof sketch is valid using the Verifier and leverage its feedback to correct any
errors. We generate a maximum of Ksketch attempts = 4 sketch attempts for each input theorem.

Step 3 (Subgoal Extraction). The Reasoner extracts subgoals from the proof sketch, converting them into
independent theorem statements with relevant context from the original problem and preceding subgoals.
As before, we use sorry for the proof. We verify completeness by counting have statements in the proof
sketch and ensuring that all of them are extracted. In case any of them are missing, we prompt the Reasoner to
extract the missing subgoals. Each extracted theorem undergoes syntax verification using the Verifier. When
errors occur, we provide error messages in-context to the Reasoner for correction. This approach proves
more reliable than parsing source code directly or extracting subgoals from Lean 4’s proof state data structure
(InfoTree) (Liang et al., 2025).

Step 4 (Proof Assembly from Subgoals). We provide the Reasoner with the extracted subgoal theorem
statements (which contain sorry placeholders) and validated proof sketch. The Reasoner produces an
assembled proof for the target theorem by replacing each sorry placeholder in the proof sketch with calls to
the corresponding subgoal theorem. We then verify both the subgoal theorem statements and the assembled
proof together using the Verifier to ensure the overall structure is sound. We check for errors using the Verifer
and correct them through iterative feedback with the Reasoner. This guarantees that after all subgoals are
proven, we will have a complete proof of the given theorem.

3.2.2 SUBGOAL VERIFICATION

At this stage, we have a valid theorem proof structure and a list of subgoals that, if proven, complete the
original proof. However, the mathematical correctness and provability of these subgoals remain unverified.
For each subgoal, we execute the following verification and proof process:

Step 1 (Prover Attempts). We first attempt to prove each subgoal directly using the Prover, generating
Kformal proof = 4 candidate proofs and verifying them with the Verifier. If any generated proof is valid, we
accept it and proceed to the next subgoal.

Step 2 (Correctness Verification). For subgoals that cannot be directly proven, we prompt the Reasoner
to evaluate whether the subgoal is mathematically correct and whether the formal statement is formulated

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

correctly and provable. If the Reasoner identifies the subgoal as mathematically incorrect, unprovable, or
poorly formulated, we flag it for correction and return to refine the original proof sketch, repeating all steps
from Section 3.2.1 onwards with the identified issues incorporated as feedback. Apart from mathematical
errors, some common failure modes detected by the Reasoner at this stage include missing hypotheses or
conditions in the subgoal theorem statement, and atypical behavior due to the Lean type system, such as
truncation of natural numbers1.

We prioritize direct Prover attempts over Reasoner verification because the Prover models are computationally
cheaper, and a valid proof automatically confirms mathematical correctness. Empirically, we observe that a
significant proportion of generated subgoals can be successfully proven by the Prover. Step 1 ensures that we
save on the computational costs of the expensive Reasoner model for verification on the successful subgoals.

Step 3 (Shallow Solve). After Step 1 fails and Step 2 confirms subgoal correctness, we employ a Reasoner
model for a "shallow solve" approach that writes short proofs for subgoals the Prover could not directly solve.
We retrieve relevant theorems from the Mathlib library and ask the Reasoner to write a formal proof for
the subgoal. The Reasoner iteratively refines proofs based on Verifier feedback for up to Kproof correction = 6
passes. When compilation errors indicate missing or incorrect theorem references, we retrieve additional
relevant theorems. To preserve computational resources, we terminate this step if an incorrect proof exceeds
the length threshold Kmax shallow solve length = 30 lines, as excessively long proofs indicate the need for further
decomposition. This entire shallow solve process repeats for up to Kinformal passes = 6 attempts until we obtain
a successful proof or exhaust all attempts.

Step 4 (Recursive Decomposition and Proof Assembly). If subgoals remain unproven after Steps 1-3, we
recursively apply the subgoal decomposition process (Section 3.2.1) to break them down further. Each subgoal
is subdivided until it is either successfully proven or we reach the maximum recursion depth D. Should all
subgoals become proven, we proceed to create a complete proof for the given theorem by stitching together
the proofs for all subgoals and the assembled proof outline from Step 4 of subgoal decomposition. This is
done by concatenating the proofs of the subgoals with the assembled proof produced in Step 4 of subgoal
decomposition (Section 3.2.1). Any remaining unsolved subgoals at this point trigger a failed proof attempt,
prompting us to restart the subgoal decomposition process for the theorem.

The complete algorithm is presented in Algorithm 1. For implementation details, particularly parallelization
strategies, refer to Section A.3.

4 EXPERIMENTAL RESULTS

4.1 MAIN RESULTS

MiniF2F. The MiniF2F dataset (Zheng et al., 2021) is a 488 problem dataset comprising of high-school
mathematics competition problems. Some problems are particularly challenging, sourced from the AMC,
AIME and IMO competitions. We benchmark on the 244 problems from the test split of MiniF2F. We use
recursion depth D = 5 for all our experiments. For the Prover, we instantiate HILBERT with two LLMs:
DeepSeek-Prover-V2-7B (Ren et al., 2025), representing a relatively weaker model, and Goedel-Prover-V2-
32B (Lin et al., 2025b), representing a stronger one. This pairing allows us to compare performance across
different capability levels. For the Reasoner, we analogously employ Google’s Gemini 2.5 Flash and Gemini
2.5 Pro (Comanici et al., 2025). The results are presented in Table 1.

HILBERT, demonstrates strong performance across all model configurations. Our top-performing setup
combines Gemini 2.5 Pro with Goedel-Prover-V2-32B, achieving a 99.2% pass rate and failing on only two
problems (AMC 12A 2020 Problem 25 and IMO Shortlist 2007 Problem A6). Even with weaker formal

1https://lean-lang.org/doc/reference/latest/Basic-Types/Natural-Numbers/

6

https://lean-lang.org/doc/reference/latest/Basic-Types/Natural-Numbers/

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

Method Pass Rate
STP (Dong & Ma, 2025) (pass@3200) 65.0% ± 0.5%

(pass@25600) 67.6%

Kimina-Prover-8B (Wang et al., 2025) (pass@32) 78.3%
Kimina-Prover-72B (pass@1024) 87.7%

w/ TTRL 92.2%

Gemini 2.5 Pro (pass@16384) 49.1%
Delta Prover (Zhou et al., 2025b) (pass@16384) 95.9%

Seed Prover (Chen et al., 2025) 99.6%

Goedel-Prover-SFT (Lin et al., 2025a) (pass@3200) 62.7%
Goedel-Prover-V2-8B (Lin et al., 2025b) (pass@8192) 90.2%

w/ self-correction (pass@1024) 89.3%
Goedel-Prover-V2-32B (pass@4) 74.6% ± 1.2%

(pass@8192) 92.2%
w/ self-correction (pass@1024) 92.6%

HILBERT (Gemini 2.5 Flash) + Goedel-Prover-V2-32B 94.7% [+20.1%]
HILBERT (Gemini 2.5 Pro) + Goedel-Prover-V2-32B 99.2% [+24.6%]

DeepSeek-Prover-V2-7B (CoT) (Ren et al., 2025) (pass@8192) 82.0%
DeepSeek-Prover-V2-7B (non CoT) (pass@4) 61.3% ± 0.2%

(pass@8192) 75.0%
DeepSeek-Prover-V2-671B (pass@8192) 88.9%
HILBERT (Gemini 2.5 Flash) + DS Prover-V2-7B (non-CoT) 96.7% [+35.4%]
HILBERT (Gemini 2.5 Pro) + DS Prover-V2-7B (non-CoT) 98.4% [+37.1%]

Table 1: Results on the MiniF2F-Test dataset. Improvements shown in brackets for HILBERT are calculated
relative to the pass@4 baseline for each prover family. Note: Delta Prover and Seed Prover are proprietary
methods and not publicly available to use. Gemini 2.5 Pro result obtained from Zhou et al. (2025b)

Model # Solved Problems % Solved Problems
Goedel-Prover-SFT (Lin et al., 2025a) (pass@512) 7/644 1.1%
ABEL (Gloeckle et al., 2024) (pass@596) 7/644 1.1%
Self-play Theorem Prover (Dong & Ma, 2025) (pass@3200) 8/644 1.2%
Kimina-Prover-7B-Distill (Wang et al., 2025) (pass@192) 10/657 1.5%
DSP+ (Cao et al., 2025) (pass@128) 23/644 3.6%
Bourbaki (Zimmer et al., 2025) (pass@512) 26/658 4.0%
DeepSeek-Prover-V2 671B (Ren et al., 2025) (pass@1024) 47/657 7.1%
SeedProver (Chen et al., 2025) 331/657 50.4%

Goedel-Prover-V2-32B (self-correction) (Lin et al., 2025b) (pass@184) 86/644 13.4%
HILBERT (Gemini 2.5 Pro) + Goedel-Prover-V2-32B 462/660 70.0%

Table 2: Results on the PutnamBench dataset. We benchmark on the most recent version (as of September
2025) containing 660 problems.

provers, HILBERT maintains impressive results: pairing DeepSeek-Prover-V2-7B with Gemini 2.5 Pro yields
98.4%, while using Gemini 2.5 Flash achieves 96.7%. Notably, the choice of informal reasoner appears
more critical than prover strength. Gemini 2.5 Pro consistently outperforms Flash variants by 3-4%, a larger
gap than observed between different prover models. Compared to standalone base provers at pass@4, our
approach delivers substantial improvements ranging from 20.1% to 37.1%.

PutnamBench. PutnamBench is a challenging theorem-proving benchmark comprising 660 problems from
the William Lowell Putnam Mathematical Competition from 1962 to 2024. It contains undergraduate-level

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Method Retrieval Pass Rate # Reasoner Calls # Prover Calls # Reasoner Tokens # Prover Tokens
HILBERT+ DeepSeek-Prover-V2-7B ✓ 98.4% 420 205 1.9M 0.3M
HILBERT+ DeepSeek-Prover-V2-7B ✗ 97.1% 426 290 2.1M 0.4M

HILBERT+ Goedel-Prover-V2-32B ✓ 99.2% 548 391 2.3M 1.3M
HILBERT+ Goedel-Prover-V2-32B ✗ 97.9% 862 449 4.0M 1.2M

Table 3: Ablation with/without retrieval. HILBERT with retrieval achieves a higher pass rate while using
less inference-time compute than without retrieval. Numbers show average calls and tokens per sample,
computed over samples requiring subgoal decomposition.

101 102 103 104

Reasoner Calls (log scale)

65

70

75

80

85

90

95

100

C
um

ul
at

iv
e

Pa
ss

 R
at

e
(%

)

4.
5K

7.
4K

18
.8

K
29

.9
K

95.1%
96.7%

98.8% 99.2%
MiniF2F: Pass Rate (vs) # Reasoner Calls

Flash + Goedel
Flash + DeepSeek
Pro + Goedel
Pro + DeepSeek

101 102 103 104

LLM Calls (log scale)

60

65

70

75

80

85

90

95

100

C
um

ul
at

iv
e

Pa
ss

 R
at

e
(%

)

9.
0K

11
.3

K

41
.4

K
43

.5
K

95.1%
96.7%

98.8% 99.2%
MiniF2F: Pass Rate (vs) # LLM (Reasoner + Prover) Calls

Flash + Goedel
Flash + DeepSeek
Pro + Goedel
Pro + DeepSeek

Figure 3: Pass rate (vs) Inference-time Budget. We plot the pass-rate for HILBERT on MiniF2F as a function
of (left) the number of Reasoner calls (right) the total number of LLM (Reasoner + Prover) calls per sample.

problems across Algebra, Analysis, Number Theory, Geometry, Linear Algebra, Combinatorics, Abstract
Algebra, Probability, and Set Theory. Given the high computational cost of evaluating on this dataset,
we only experiment with the strongest configuration of HILBERT, (HILBERT with Gemini 2.5 Pro and
Goedel-Prover-V2-32B). As before, we set D = 5. Our results are presented in Table 2.

HILBERT achieves state-of-the-art performance on PutnamBench, solving 462 out of 660 problems (70.0%
pass rate). This surpasses the previous best method, the proprietary SeedProver (50.4%), by nearly 20
percentage points. HILBERT solves over 5 times more problems than the closest publicly available baseline,
Goedel-Prover-V2-32B. We attribute this success to HILBERT’s ability to compose long proofs (see Figure 9)
without the long-context reasoning issues that plague traditional LLMs (Zhou et al., 2025a).

4.2 SCALING BEHAVIOR WITH INFERENCE-TIME COMPUTE

Unlike traditional prover LLMs that distribute compute across many independent proof attempts from
scratch, HILBERT allocates inference-time compute across multiple interconnected stages, from subgoal
decomposition to subgoal proof generation. Since this compute allocation is adaptive, it cannot be captured by
a simple count of independent attempts. To illustrate the compute-performance tradeoff, we plot HILBERT’s
pass rate against the per-sample number of calls to (1) the Reasoner and (2) the Reasoner + Prover combined
(Figure 3. The results reveal a clear scaling relationship where pass rates increase with the number of calls
per sample. Our best-performing configuration (Gemini 2.5 Pro with Goedel Prover) requires at most 4.5K
reasoner calls and 11.3K total calls, significantly fewer than DeltaProver’s 16,384 calls with Gemini 2.5 Pro.
Interestingly, the weaker reasoner (Gemini 2.5 Flash) demands a substantially higher inference budget to
achieve comparable performance with both prover variants. While HILBERT+ DeepSeek Prover starts with
lower pass rates, it demonstrates faster improvement rates, particularly in low-budget settings, eventually

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

matching HILBERT+Goedel-Prover performance. For additional analyses of pass rates versus prover/verifier
calls and total token usage, refer to Section A.6.

4.3 ABLATION STUDIES

0 1 2 3 4 5
Depth

80

90

100

Pa
ss

 R
at

e
(%

)

Pass Rate vs Depth Comparison

Hilbert
Hilbert (No Shallow Solve)

Figure 4: Pass rate (vs) recursive depth D on MiniF2F
for HILBERT (Gemini 2.5 Pro) + Goedel-Prover-V2-32B

Performance (vs) depth. To evaluate the effec-
tiveness of subgoal decomposition, we analyze
the pass rate of HILBERT using Gemini 2.5 Pro
+ Goedel-Prover-V2-32B on the MiniF2F dataset
across different recursive depths D. The base-
line (D = 0) corresponds to no decomposition,
where we report the standalone Prover (pass@4)
performance. We compare two configurations: the
full HILBERT system, and a variant with shallow
solving disabled (Kinformal passes = 0). This vari-
ant relies solely on using the Prover for resolving
subgoals. Figure 4 shows performance across dif-
ferent values of D, and demonstrates substantial

gains from subgoal decomposition. Both configurations show monotonically increasing performance with
depth, but exhibit different convergence patterns. The full HILBERT system achieves rapid performance gains,
reaching 98.36% at D = 2 and 98.7% by D = 3. In contrast, the no-shallow-solve variant requires greater
depth to achieve comparable performance, highlighting the importance of the shallow solving mechanism.
The consistent improvement over the D = 0 baseline (75% pass rate) validates the efficacy of hierarchical
subgoal decomposition, with the full system achieving near-optimal performance at relatively shallow depths.

Retrieval Ablation. To assess the impact of the Retriever on both performance and computational efficiency,
we compare HILBERT to a variant that omits the retrieval step. We experiment on MiniF2F across two
Prover configurations: DeepSeek-Prover-V2-7B and Goedel-Prover-V2-32B. Table 3 presents the results.
With retrieval enabled, HILBERT achieves higher pass rates across both configurations: 98.4% vs 97.1% for
DeepSeek Prover and 99.2% vs 97.9% for Goedel Prover. More importantly, retrieval significantly reduces
inference-time compute utilitzation. For the DeepSeek model, retrieval decreases reasoner calls from 426 to
420, average prover calls from 290 to 205, and average reasoner tokens from 2.1M to 1.9M. The efficiency
gains are even more pronounced with the Goedel Prover, where retrieval reduces average reasoner calls from
862 to 548 and average reasoner tokens from 4.0M to 2.3M. These results show that retrieval improves both
performance and efficiency by surfacing useful theorems that simplify proofs and preventing failures from
incorrect theorem names.

5 CONCLUSION

We present HILBERT, a hierarchical agentic framework that bridges formal theorem proving in Lean with
the informal mathematical reasoning capabilities of general-purpose LLMs. Our approach recursively
decomposes complex problems into manageable subgoals and orchestrates informal reasoners (Gemini 2.5
Pro/Flash) with formal provers (DeepSeek-Prover-V2-7B and Goedel-Prover-V2-32B) to solve theorems
that neither component can handle alone. HILBERT achieves state-of-the-art performance on miniF2F with
pass rates of 94.7% to 99.2%. On the challenging PutnamBench dataset, HILBERT achieves 70.0% pass rate,
nearly 20 percentage points above previous methods and approaching the 82% informal proof rate reported
in Dekoninck et al. (2025). In the future, we plan to leverage this framework to train increasingly capable
models. Proofs and reasoning traces generated by HILBERT can be used to train better Prover and Reasoner
models. These improved models should be able to solve more complex problems than before, resulting in a
virtuous cycle that has the potential to continually advance formal reasoning capabilities.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

Reproducibility Statement. We provide comprehensive implementation details to ensure reproducibility of
our results. The proposed algorithm (HILBERT) is described in detail in Section 3 with complete pseudocode
provided in Algorithm 1. All hyperparameters, model configurations, and experimental settings are specified
in Section 3, while the complete set of prompts used for both reasoning and prover LLMs are provided in
Appendix A.2. We plan to release the source code and other artifacts upon publication.

LLM Usage. We acknowledge using LLMs as writing assistants to help refine phrasing and improve the
clarity of the presentation. LLMs were not used for any substantive aspects of this work, including ideation,
conceptual development, or literature review.

REFERENCES

Team AlphaProof and Team AlphaGeometry. Ai achieves silver-medal standard solving international 178
mathematical olympiad problems. DeepMind blog, 179:45, 2024.

Kaito Baba, Chaoran Liu, Shuhei Kurita, and Akiyoshi Sannai. Prover agent: An agent-based framework for
formal mathematical proofs. arXiv preprint arXiv:2506.19923, 2025.

Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Matharena: Evaluat-
ing llms on uncontaminated math competitions. arXiv preprint arXiv:2505.23281, 2025.

Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C Paulson. Extending sledgehammer with smt
solvers. Journal of automated reasoning, 51(1):109–128, 2013.

Chenrui Cao, Liangcheng Song, Zenan Li, Xinyi Le, Xian Zhang, Hui Xue, and Fan Yang. Reviving dsp for
advanced theorem proving in the era of reasoning models. arXiv preprint arXiv:2506.11487, 2025.

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin, Xing Jin,
Chenggang Li, Kaijing Ma, et al. Seed-prover: Deep and broad reasoning for automated theorem proving.
arXiv preprint arXiv:2507.23726, 2025.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon,
Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with ad-
vanced reasoning, multimodality, long context, and next generation agentic capabilities. arXiv preprint
arXiv:2507.06261, 2025.

Łukasz Czajka and Cezary Kaliszyk. Hammer for coq: Automation for dependent type theory. Journal of
automated reasoning, 61(1):423–453, 2018.

Jasper Dekoninck, Ivo Petrov, Kristian Minchev, Mislav Balunovic, Martin Vechev, Miroslav Marinov,
Maria Drencheva, Lyuba Konova, Milen Shumanov, Kaloyan Tsvetkov, et al. The open proof corpus: A
large-scale study of llm-generated mathematical proofs. arXiv preprint arXiv:2506.21621, 2025.

Kefan Dong and Tengyu Ma. Stp: Self-play llm theorem provers with iterative conjecturing and proving.
arXiv preprint arXiv:2502.00212, 2025.

Kefan Dong, Arvind Mahankali, and Tengyu Ma. Formal theorem proving by rewarding llms to decompose
proofs hierarchically. arXiv preprint arXiv:2411.01829, 2024.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré,
Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. 2024.

Guoxiong Gao, Haocheng Ju, Jiedong Jiang, Zihan Qin, and Bin Dong. A semantic search engine for mathlib4.
arXiv preprint arXiv:2403.13310, 2024.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caroline Falkman
Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, et al. Frontiermath: A benchmark for
evaluating advanced mathematical reasoning in ai. arXiv preprint arXiv:2411.04872, 2024.

Fabian Gloeckle, Jannis Limperg, Gabriel Synnaeve, and Amaury Hayat. Abel: Sample efficient online
reinforcement learning for neural theorem proving. In The 4th Workshop on Mathematical Reasoning and
AI at NeurIPS’24, 2024.

Jiaxing Guo, Wenjie Yang, Shengzhong Zhang, Tongshan Xu, Lun Du, Da Zheng, and Zengfeng Huang.
Right is not enough: The pitfalls of outcome supervision in training llms for math reasoning. arXiv preprint
arXiv:2506.06877, 2025.

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée Lacroix,
Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem provers with
informal proofs. arXiv preprint arXiv:2210.12283, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez,
Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with
pagedattention. In Proceedings of the 29th symposium on operating systems principles, pp. 611–626, 2023.

Zhenwen Liang, Linfeng Song, Yang Li, Tao Yang, Feng Zhang, Haitao Mi, and Dong Yu. Towards solving
more challenging imo problems via decoupled reasoning and proving. arXiv preprint arXiv:2507.06804,
2025.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia, Danqi
Chen, Sanjeev Arora, et al. Goedel-prover: A frontier model for open-source automated theorem proving.
arXiv preprint arXiv:2502.07640, 2025a.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan Geng, Jiawei
Ge, Jingruo Sun, et al. Goedel-prover-v2: Scaling formal theorem proving with scaffolded data synthesis
and self-correction. arXiv preprint arXiv:2508.03613, 2025b.

Jialin Lu, Kye Emond, Weiran Sun, and Wuyang Chen. Lean finder: Semantic search for mathlib
that understands user intents. In 2nd AI for Math Workshop @ ICML 2025, 2025. URL https:
//openreview.net/forum?id=5SF4fFRw7u.

Hamed Mahdavi, Alireza Hashemi, Majid Daliri, Pegah Mohammadipour, Alireza Farhadi, Samira Malek,
Yekta Yazdanifard, Amir Khasahmadi, and Vasant Honavar. Brains vs. bytes: Evaluating llm proficiency in
olympiad mathematics. arXiv preprint arXiv:2504.01995, 2025.

The mathlib Community. The lean mathematical library. In Proceedings of the 9th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, POPL ’20, pp. 367–381. ACM, January 2020. doi:
10.1145/3372885.3373824. URL http://dx.doi.org/10.1145/3372885.3373824.

William McCune. Otter 3.3 reference manual. arXiv preprint cs/0310056, 2003.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language. In
International Conference on Automated Deduction, pp. 625–635. Springer, 2021.

OpenAI. Introducing gpt-5. 2025. URL https://openai.com/index/introducing-gpt-5/.

Ivo Petrov, Jasper Dekoninck, Lyuben Baltadzhiev, Maria Drencheva, Kristian Minchev, Mislav Balunović,
Nikola Jovanović, and Martin Vechev. Proof or bluff? evaluating llms on 2025 usa math olympiad. arXiv
preprint arXiv:2503.21934, 2025.

11

https://openreview.net/forum?id=5SF4fFRw7u
https://openreview.net/forum?id=5SF4fFRw7u
http://dx.doi.org/10.1145/3372885.3373824
https://openai.com/index/introducing-gpt-5/

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving. arXiv
preprint arXiv:2009.03393, 2020.

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang, Zhe
Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical reasoning via
reinforcement learning for subgoal decomposition. arXiv preprint arXiv:2504.21801, 2025.

J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12(1):23–41, January
1965. ISSN 0004-5411. doi: 10.1145/321250.321253. URL https://doi.org/10.1145/321250.
321253.

Marco Dos Santos, Haiming Wang, Hugues de Saxcé, Ran Wang, Mantas Baksys, Mert Unsal, Junqi Liu,
Zhengying Liu, and Jia Li. Kimina lean server: Technical report. arXiv preprint arXiv:2504.21230, 2025.

Stephan Schulz. E–a brainiac theorem prover. Ai Communications, 15(2-3):111–126, 2002.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-training for
language understanding. Advances in neural information processing systems, 33:16857–16867, 2020.

Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An in-context
learning agent for formal theorem-proving. In First Conference on Language Modeling, 2024.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Amitayush
Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the putnam mathe-
matical competition. Advances in Neural Information Processing Systems, 37:11545–11569, 2024.

Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya Huang, Jing
Xiong, Han Shi, Enze Xie, et al. Lego-prover: Neural theorem proving with growing libraries. arXiv
preprint arXiv:2310.00656, 2023.

Haiming Wang, Huajian Xin, Zhengying Liu, Wenda Li, Yinya Huang, Jianqiao Lu, Zhicheng Yang, Jing Tang,
Jian Yin, Zhenguo Li, et al. Proving theorems recursively. Advances in Neural Information Processing
Systems, 37:86720–86748, 2024.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood Sung, Marina
Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large formal reasoning models
with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025.

Nicolas Wischermann, Claudio Mayrink Verdun, Gabriel Poesia, and Francesco Noseda. Proofcompass:
Enhancing specialized provers with llm guidance. In 2nd AI for Math Workshop@ ICML 2025, 2025.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and
Xiaodan Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale synthetic data.
arXiv preprint arXiv:2405.14333, 2024a.

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue Zhang,
Xuan Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback for reinforcement
learning and monte-carlo tree search. arXiv preprint arXiv:2408.08152, 2024b.

Ran Xin, Chenguang Xi, Jie Yang, Feng Chen, Hang Wu, Xia Xiao, Yifan Sun, Shen Zheng, and Kai
Shen. Bfs-prover: Scalable best-first tree search for llm-based automatic theorem proving. arXiv preprint
arXiv:2502.03438, 2025.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan Prenger,
and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented language models. In
Neural Information Processing Systems (NeurIPS), 2023.

12

https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/321250.321253

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn Song.
Formal mathematical reasoning: A new frontier in ai. arXiv preprint arXiv:2412.16075, 2024.

Xueliang Zhao, Wenda Li, and Lingpeng Kong. Decomposing the enigma: Subgoal-based demonstration
learning for formal theorem proving. arXiv preprint arXiv:2305.16366, 2023.

Xueliang Zhao, Lin Zheng, Haige Bo, Changran Hu, Urmish Thakker, and Lingpeng Kong. Subgoalxl:
Subgoal-based expert learning for theorem proving. arXiv preprint arXiv:2408.11172, 2024.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for formal
olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

Yang Zhou, Hongyi Liu, Zhuoming Chen, Yuandong Tian, and Beidi Chen. Gsm-infinite: How do your
llms behave over infinitely increasing context length and reasoning complexity?, 2025a. URL https:
//arxiv.org/abs/2502.05252.

Yichi Zhou, Jianqiu Zhao, Yongxin Zhang, Bohan Wang, Siran Wang, Luoxin Chen, Jiahui Wang, Haowei
Chen, Allan Jie, Xinbo Zhang, et al. Solving formal math problems by decomposition and iterative
reflection. arXiv preprint arXiv:2507.15225, 2025b.

Matthieu Zimmer, Xiaotong Ji, Rasul Tutunov, Anthony Bordg, Jun Wang, and Haitham Bou Ammar. Bour-
baki: Self-generated and goal-conditioned mdps for theorem proving. arXiv preprint arXiv:2507.02726,
2025.

A APPENDIX

A.1 ALGORITHM

The complete algorithm is presented across multiple blocks for clarity and modularity. Algorithm 1 provides
the main entry point and high-level control flow, while Algorithm 2 details the subgoal resolution strategies.
Algorithms 3 and 4 focus on sketch generation, validation, and assembly processes. Algorithm 5 contains the
core proof generation functions that interface with different LLM components, while Algorithm 6 specifies
the prompt-based functions for various reasoning tasks. Algorithm 7 handles error correction and refinement
procedures, and Algorithm 8 provides supporting functions for theorem retrieval and verification.

13

https://arxiv.org/abs/2502.05252
https://arxiv.org/abs/2502.05252

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Algorithm 1 HILBERT: Hierarchical Proof Generation System
1: function GENERATEPROOF(problem, header)
2: ▷ Input: problem (formal statement), header (context)
3:
4: ▷ Phase 1: Direct Proof Attempt
5: proof← ATTEMPTPROVERLLMPROOF(problem, header)
6: if proof ̸= ⊥ then
7: return proof
8: end if
9:

10: ▷ Phase 2: Subgoal Decomposition
11: proof← SUBGOALDECOMPOSITION(problem, header, depth=1)
12: return proof
13: end function
14:
15: function SUBGOALDECOMPOSITION(problem, header, depth)
16: ▷ Decompose problem into subgoals and solve recursively
17: if depth > D then
18: return ⊥ ▷ Maximum recursion depth reached
19: end if
20:
21: for attempt← 1 to Ksketch attempts do
22: relevant_theorems← RETRIEVETHEOREMS(problem)
23: sketch← GENERATEPROOFSKETCH(problem, relevant_theorems)
24: sketch_assembled, subgoals, proved_subgoals←

REFINEANDVALIDATESKETCH(sketch, header, relevant_theorems)
25:
26: if sketch_assembled ̸= ⊥ then
27: final_proof ← SOLVEALLSUBGOALS(subgoals, proved_subgoals,

sketch_assembled, header, depth)
28: if final_proof ̸= ⊥ then
29: return final_proof
30: end if
31: end if
32: end for
33: return ⊥
34: end function

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

Algorithm 2 HILBERT: Subgoal Resolution
1: function SOLVEALLSUBGOALS(subgoals, proved_subgoals, sketch_assembled, header,

depth)
2: ▷ Solve all remaining subgoals and assemble final proof
3: subgoal_proofs← ∅
4:
5: for all subgoal ∈ subgoals \ proved_subgoals do
6: proof← SOLVESUBGOAL(subgoal, header, depth)
7: if proof = ⊥ then
8: return ⊥ ▷ Failed to prove required subgoal
9: end if

10: subgoal_proofs[subgoal]← proof
11: end for
12:
13: final_proof← CONCATENATE(header, subgoal_proofs, sketch)
14: return final_proof
15: end function
16:
17: function SOLVESUBGOAL(subgoal, header, depth)
18: ▷ Solve individual subgoal with multiple strategies
19:
20: Strategy 1: Direct Prover Attempt
21: proof← ATTEMPTPROVERLLMPROOF(subgoal, header)
22: if proof ̸= ⊥ then
23: return proof
24: end if
25:
26: Strategy 2: Shallow Solve with Reasoner
27: relevant_theorems← RETRIEVETHEOREMS(subgoal)
28: proof← SHALLOWSOLVE(subgoal, header, relevant_theorems)
29: if proof ̸= ⊥ then
30: return proof
31: end if
32:
33: Strategy 3: Recursive Decomposition
34: if depth < D then
35: proof← SUBGOALDECOMPOSITION(subgoal, header, depth+ 1)
36: if proof ̸= ⊥ then
37: return proof
38: end if
39: end if
40: return ⊥
41: end function

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

Algorithm 3 HILBERT: Sketch Validation and Refinement
1: function REFINEANDVALIDATESKETCH(sketch, header, relevant_theorems)
2: ▷ Iteratively refine sketch until all subgoals are valid
3: for correction← 1 to Ksketch corrections do
4: sketch_syntactic ← COMPILEANDCORRECTSYNTAXERRORS(sketch, header,

relevant_theorems)
5: if sketch_syntactic == ⊥ then
6: return ⊥, ∅, ∅
7: end if
8: subgoals← EXTRACTSUBGOALS(sketch_syntactic, header)
9: if subgoals == ⊥ then

10: return ⊥, ∅, ∅
11: end if
12: sketch_assembled ← ASSEMBLEPROOFFROMSUBGOALS(sketch_syntactic, subgoals,

header)
13: if sketch_assembled == ⊥ then
14: return ⊥, ∅, ∅
15: end if
16: valid, verified_subgoals, proved_subgoals, error_justification←

VALIDATESUBGOALS(subgoals, header)
17: if valid then
18: return sketch_assembled, verified_subgoals, proved_subgoals
19: else
20: sketch ← REFINESKETCHBASEDONERROR(sketch_syntactic,

error_justification)
21: end if
22: end for
23: return ⊥, ∅, ∅
24: end function
25:
26: function VALIDATESUBGOALS(subgoals, header)
27: ▷ Validate subgoals through formal proving and correctness checking
28: verified_subgoals← ∅
29: proved_subgoals← {}
30:
31: for all subgoal ∈ subgoals do
32: proof← ATTEMPTPROVERLLMPROOF(subgoal, header)
33: if proof ̸= ⊥ then
34: verified_subgoals← verified_subgoals ∪ {subgoal}
35: proved_subgoals[subgoal]← proof
36: else
37: mathematically_correct, justification ← CHECKMATHEMATICALCORRECT-

NESS(subgoal)
38: if mathematically_correct then
39: verified_subgoals← verified_subgoals ∪ {subgoal}
40: else
41: return false, ∅, ∅, justification
42: end if
43: end if
44: end for
45: return true, verified_subgoals, proved_subgoals, ⊥
46: end function

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

Algorithm 4 HILBERT: Proof Sketch Refinement and Assembly
1: function COMPILEANDCORRECTSYNTAXERRORS(sketch, header, relevant_theorems)
2: ▷ Compile sketch with sorry statements and correct errors
3: verified, error_message← VERIFYPROOF(header + sketch)
4: if verified then
5: return sketch
6: end if
7:
8: ▷ Error correction loop for sketch
9: for correction← 1 to Ktheorem corrections do

10: augmented_theorems← AUGMENTTHEOREMS(error_message, relevant_theorems)
11: sketch← CORRECTSKETCHERROR(sketch, error_message, augmented_theorems)
12: verified, error_message← VERIFYPROOF(header + sketch)
13: if verified then
14: return sketch
15: end if
16: end for
17: return ⊥
18: end function
19:
20: function ASSEMBLEPROOFFROMSUBGOALS(sketch, subgoals, header)
21: ▷ Assemble complete proof outline with verification
22: all_theorems← CONCATENATETHEOREMS(subgoals)
23: sketch_assembled ← REASONERLLM(USE_SKETCH_AND_THEOREMS_PROMPT, sketch,

all_theorems)
24: corrected_proof ← VERIFYANDCORRECTPROOFWITHTHEOREMS(sketch_assembled,

all_theorems, header)
25: return corrected_proof
26: end function
27:
28: function VERIFYANDCORRECTPROOFWITHTHEOREMS(sketch_assembled, theorems, header)
29: ▷ Verify assembled sketch and correct errors
30: full_proof← header+ theorems+ sketch_assembled
31: verified, error← VERIFYPROOF(full_proof)
32: if verified then
33: return sketch_assembled
34: end if
35:
36: for correction← 1 to Ktheorem corrections do
37: corrected_proof← REASONERLLM(ASSEMBLY_CORRECTION_PROMPT, error)
38: if sketch_assembled == ⊥ then
39: continue
40: end if
41: full_proof← header+ theorems+ sketch_assembled
42: verified, error← VERIFYPROOF(full_proof)
43: if verified then
44: return sketch_assembled
45: end if
46: end for
47: return ⊥
48: end function

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

Algorithm 5 HILBERT: Proof Generation
1: function ATTEMPTPROVERLLMPROOF(problem, header)
2: ▷ Multiple attempts with formal prover LLM
3: for attempt← 1 to Kformal attempts do
4: proof← PROVERLLM(problem)
5: verified, error← VERIFYPROOF(header + proof)
6: if verified then
7: return proof
8: end if
9: end for

10: return ⊥
11: end function
12:
13: function GENERATEPROOFSKETCH(problem, relevant_theorems)
14: ▷ Generate informal proof sketch using prompts
15: informal_proof ← REASONERLLM(INFORMAL_PROOF_PROMPT, problem,

relevant_theorems)
16: sketch ← REASONERLLM(CREATE_LEAN_SKETCH_PROMPT, problem, relevant_theorems,

informal_proof)
17: return sketch
18: end function
19:
20: function SHALLOWSOLVE(subgoal, header, relevant_theorems)
21: ▷ Shallow solve with error correction loop
22: proof← ATTEMPTREASONERPROOF(subgoal, relevant_theorems)
23: verified, error_message← VERIFYPROOF(header + proof)
24: if verified then
25: return proof
26: end if
27:
28: ▷ Error correction loop
29: for correction← 1 to Ksubgoal corrections do
30: augmented_theorems← AUGMENTTHEOREMS(error_message, relevant_theorems)
31: proof← CORRECTPROOFERROR(proof, error_message, augmented_theorems)
32: verified, error_message← VERIFYPROOF(header + proof)
33: if verified then
34: return proof
35: else
36: ▷ Check proof length cutoff when verification fails
37: if |proof| > Kmax shallow solve length then
38: return ⊥ ▷ Proof too long and still incorrect, abandon
39: end if
40: end if
41: end for
42: return ⊥
43: end function

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

Algorithm 6 HILBERT: LLM Prompt Functions
1: function ATTEMPTREASONERPROOF(subgoal, relevant_theorems)
2: ▷ Shallow solve using informal reasoning
3: proof← REASONERLLM(SOLVE_SUBGOAL_PROMPT, subgoal, relevant_theorems)
4: return proof
5: end function
6:
7: function CHECKMATHEMATICALCORRECTNESS(subgoal)
8: ▷ Verify mathematical correctness of subgoal
9: correct, justification ← REASONERLLM(DETERMINE_IF_CORRECT_SUBGOAL_PROMPT,

subgoal)
10: return correct, justification
11: end function
12:
13: function EXTRACTSUBGOALS(sketch, header)
14: ▷ Extract have statements as independent subgoals
15: subgoals← REASONERLLM(EXTRACT_SUBGOALS_FROM_SKETCH_PROMPT, sketch)
16:
17: ▷ Syntax check and correction for each subgoal
18: corrected_subgoals← ∅
19: for all subgoal ∈ subgoals do
20: verified, error← VERIFYPROOF(header + subgoal)
21: if verified then
22: corrected_subgoals← corrected_subgoals ∪ {subgoal}
23: else
24: ▷ Error correction loop
25: corrected← false
26: for attempt← 1 to Ksubgoal error corrections do
27: subgoal← CORRECTTHEOREMERROR(subgoal, error)
28: verified, error← VERIFYPROOF(header + subgoal)
29: if verified then
30: corrected_subgoals← corrected_subgoals ∪ {subgoal}
31: corrected← true
32: break ▷ Successfully corrected
33: end if
34: end for
35: if ¬corrected then
36: return ⊥ ▷ Failed to correct subgoal, return failure
37: end if
38: end if
39: end for
40:
41: return corrected_subgoals
42: end function

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

Algorithm 7 HILBERT: Error Correction
1: function REFINESKETCHBASEDONERROR(sketch, error_justification)
2: ▷ Refine proof sketch based on subgoal validation errors
3: refined ← REASONERLLM(CORRECT_SKETCH_BASED_ON_INCORRECT_SUBGOAL_PROMPT,

sketch, error_justification)
4: return refined
5: end function
6:
7: function CORRECTSKETCHERROR(sketch, error_message, relevant_theorems)
8: ▷ Correct syntax and compilation errors
9: corrected ← REASONERLLM(PROOF_SKETCH_CORRECTION_PROMPT, error_message,

sketch, relevant_theorems)
10: return corrected
11: end function
12:
13: function CORRECTPROOFERROR(proof, error_message, augmented_theorems)
14: ▷ Correct proof errors using error feedback
15: corrected ← REASONERLLM(PROOF_CORRECTION_PROMPT, error_message, proof,

augmented_theorems)
16: return corrected
17: end function
18:
19: function CORRECTTHEOREMERROR(subgoal, error_message)
20: ▷ Correct syntax errors in extracted subgoals
21: corrected ← REASONERLLM(SUBGOAL_SYNTAX_CORRECTION_PROMPT, error_message,

subgoal)
22: return corrected
23: end function

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

Algorithm 8 HILBERT: Retrieval and Helper Functions
1: function RETRIEVETHEOREMS(problem, error_message = None)
2: ▷ Theorem retrieval from Mathlib with optional parameter for error message
3: if retrieval_enabled then
4: search_queries← GENERATESEARCHQUERIES(problem, error_message)
5: candidate_theorems← SEMANTICSEARCHENGINE(search_queries)
6: relevant_theorems← SELECTRELEVANTTHEOREMS(candidate_theorems, problem)
7: return relevant_theorems
8: else
9: return ∅

10: end if
11: end function
12:
13: function GENERATESEARCHQUERIES(problem)
14: ▷ Generate search queries for theorem retrieval
15: queries← REASONERLLM(SEARCH_QUERY_PROMPT, problem)
16: return queries
17: end function
18:
19: function SELECTRELEVANTTHEOREMS(candidate_theorems, problem)
20: ▷ Select most relevant theorems from candidates
21: selected← REASONERLLM(SEARCH_ANSWER_PROMPT, problem, candidate_theorems)
22: return selected
23: end function
24:
25: function VERIFYPROOF(full_proof)
26: ▷ Verify proof using Lean verifier
27: result, error_message← LEANVERIFIER(full_proof)
28: return result, error_message
29: end function
30:
31: function AUGMENTTHEOREMS(error_message, existing_theorems)
32: ▷ Add theorems for missing identifiers
33: missing_ids← EXTRACTMISSINGIDENTIFIERS(error_message)
34: if missing_ids ̸= ∅ then
35: additional_theorems← RETRIEVETHEOREMS(problem, error_message)
36: return existing_theorems+ additional_theorems
37: end if
38: return existing_theorems
39: end function

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

A.2 PROMPTS

Search Query Generation (SEARCH_QUERY_PROMPT)

You are helping solve a Lean theorem proving problem using the mathlib library.
Before attempting to write the proof, you must first search for relevant theorems and tactics.

Search Process:
1. Identify key concepts: Break down the problem into mathematical concepts, operations, and

structures involved.↪→
2. Generate search queries: For each concept, create informal search strings that describe:

- Relevant theorems or results (e.g., "associativity of addition", "existence of inverse
elements")↪→

- Useful tactics (e.g., "simplify arithmetic expressions", "split conjunctions")
- Properties (e.g., "group structure on integers", "metric space properties")
- Relevant definitions useful for the proof or any used theorem (e.g. "definition of a group",

"definition of a metric space")↪→

Search Query Format:
Enclose each search query in <search> tags with your informal description. Limit yourself to a

maximum of 5 search queries. Make the search queries simple, concise, and clear.↪→

Guidelines:
- You can either search by theorem name or natural language description
- Search for theorems that might automate parts of the proof
- Consider edge cases and special conditions mentioned in the problem

Problem to Solve:
{problem}

Theorem Selection (SEARCH_ANSWER_PROMPT)

You are helping to solve a Lean theorem proving problem using the mathlib library. The problem is:
{problem}

Here are some potentially relevant theorems and definitions:
{theorems}

Instructions:
1. Select important theorems and definitions necessary to solve the problem.
2. IMPORTANT: ONLY SELECT theorems from the GIVEN list.
3. Enclose each of them in separate <theorem> tags.
4. Only state the full names of the theorems. Do NOT include the module name.
5. Select all theorems that could be useful in the intermediate steps of the proof.

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

Informal Proof Generation (INFORMAL_PROOF_PROMPT)

You are a mathematical expert whose goal is to solve problems with rigorous
mathematical reasoning.

{useful_theorems_section}
Instructions:
1. Provide a natural language, step-by-step proof for the given problem.
2. Start from the given premises and reason step-by-step to reach the conclusion.
3. Number each step of the proof as 1, 2, and so on.
4. Be as pedantic and thorough as possible.
5. Keep each step precise, increase the number of steps if needed.
6. Do NOT gloss over any step. Make sure to be as thorough as possible.
7. Show the explicit calculations/simplifications, theorem applications and case

analysis.
8. Enclose the informal proof in <informal_proof> tags.

Problem Statement: {problem}

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

Lean Sketch Creation (CREATE_LEAN_SKETCH_PROMPT)

You are a Lean 4 expert who is trying to help write a proof in Lean 4.

Problem Statement: {problem}

{useful_theorems_section}
Informal Proof:
{informal_proof}

Instructions:

Use the informal proof to write a proof sketch for the problem in Lean 4 following
these guidelines:
- Break complex reasoning into logical sub-goals using `have` statements.
- The subgoals should build up to prove the main theorem.
- Make sure to include all the steps and calculations from the given proof in the

proof sketch.
- Each subgoal should ideally require applying just one key theorem or lemma, or a

few tactic applications.
- Base subgoals around:

- Useful theorems mentioned in the problem context
- Standard library theorems (like arithmetic properties, set operations, etc.)
- The supplied premises in the theorem statement

- Do NOT create subgoals identical to any of the given hypotheses
- Do NOT create subgoals that are more complex than the original problems. The

subgoals should be SIMPLER than the given problem.
- Do NOT skip over any steps. Do NOT make any mathematical leaps.

Subgoal Structure Requirements:
- **Simplicity**: Each subgoal proof should be achievable with 1-3 basic tactics
- **Atomic reasoning**: Avoid combining multiple logical steps in one subgoal
- **Clear progression**: Show logical flow: `premises → intermediate steps → final result`
- **Theorem-focused**: Design each subgoal to directly apply a specific theorem when possible

NOTE: Only add sub-goals that simplify the proof of the main goal.

When writing Lean proofs, maintain consistent indentation levels.

Rules:
1. Same proof level = same indentation: All tactics at the same logical level must

use identical indentation
2. Consistent characters: Use either tabs OR spaces consistently (don't mix)
3. Proper nesting: Indent sub-proofs one level deeper than their parent
4. Do NOT nest `have` statements in each other. Use distinct sub-goals as much as

possible. Ensure all sub goals are named. Do NOT create anonymous have statements.
5. Do NOT include any imports or open statements in your code.
6. One line = One `have` subgoal. Do NOT split subgoals across different lines.
7. Use proper Lean 4 syntax and conventions. Ensure the proof sketch is enclosed in

triple backticks ```lean```
8. Use `sorry` for all subgoal proofs - focus on structure, not implementation
9. **Do NOT use `sorry` for the main goal proof** - use your subgoals to prove it
10. NEVER use `sorry` IN the theorem statement itself
11. Ensure subgoals collectively provide everything needed for the main proof
12. Make the logical dependencies between subgoals explicit. Ensure that the subgoals

are valid and provable in Lean 4.
13. Do NOT change anything in the original theorem statement.

Lean Hints:
{lean_hints}

24

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

Lean Sketch Creation (CREATE_LEAN_SKETCH_PROMPT) (continued)

IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
subtraction operations on natural number literals with UNDEFINED types, unless
REQUIRED by the theorem statement. For example, do NOT allow literals like `1 / 3`
or `2 / 5` or `1 - 3` ANYWHERE in ANY of the subgoals. ALWAYS specify the types.
AVOID natural number arithmetic UNLESS NEEDED by the theorem statement.
ALWAYS specify types when describing fractions. For example, ((2 : R) / 3) or
((2 : Q) / 3) instead of (2 / 3). Do this everywhere EXCEPT the given theorem statement.
IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
subtraction operations on variables of type natural numbers (Nat or N), unless
REQUIRED by the theorem statement. For example, do NOT allow expressions like (a-b)
or (a/b) where a, b are of type N. ALWAYS cast the variables to a suitable type
(Z, Q or R) when performing arithmetic operations. AVOID natural number arithmetic
UNLESS NEEDED by the theorem statement.

Subgoal Extraction (EXTRACT_SUBGOALS_FROM_SKETCH_PROMPT)

From this proof sketch, extract any missing proofs (specified with `sorry`) as
independent subgoals (theorems).
Instructions:
1. Use the same name as the have statements for the theorems.
2. Each subgoal should have the relevant context from the previous subgoals needed

to simplify the proof as much as possible.
3. There should be as many extracted theorems as `sorry`s in the given theorem.
4. Do NOT include any imports or open statements. Do NOT add any definitions. ONLY

include the theorem statement.
5. Use a separate Lean 4 ``lean`` block for each subgoal.
6. Use sorry for the proof. Do NOT prove any theorem.
7. Do NOT change the conclusion of the theorems from the extracted subgoals. Keep

them AS IT IS.
8. Do NOT change the conclusions of the preceding theorems when presenting them as

hypotheses for the next subgoals. Keep them AS IT IS.
9. Do NOT duplicate theorem names. Use distinct theorem names for the different theorems.
10. Make sure the names and types of the premises/arguments in the extracted theorems

MATCH the subgoals from which they are extracted.

IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
subtraction operations on natural number literals with UNDEFINED types, unless
REQUIRED by the theorem statement. For example, do NOT allow literals like `1 / 3`
or `2 / 5` or `1 - 3` ANYWHERE in the theorem statement. ALWAYS specify the types.
AVOID natural number arithmetic UNLESS NEEDED by the theorem statement.
ALWAYS specify types when describing fractions. For example, ((2 : R) / 3) or
((2 : Q) / 3) instead of (2 / 3)
IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
subtraction operations on variables of type natural numbers (Nat or N), unless
REQUIRED by the theorem statement. For example, do NOT allow expressions like (a-b)
or (a/b) where a, b are of type N. ALWAYS cast the variables to a suitable type
(Z, Q or R) when performing arithmetic operations. AVOID natural number arithmetic
UNLESS NEEDED by the theorem statement.

Lean Hints:
{lean_hints}

Proof Sketch:
```lean4
{proof_sketch}
```

25

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

Subgoal Solving (SOLVE_SUBGOAL_PROMPT)

Think step-by-step to complete the following Lean 4 proof.

{problem}

Lean Hints:
{lean_hints}

Tactic Hints:
{tactic_hints}

Rules:
1. Same proof level = same indentation: All tactics at the same logical level must

use identical indentation
2. Consistent characters: Use either tabs OR spaces consistently (don't mix)
3. Proper nesting: Indent sub-proofs one level deeper than their parent
4. Do NOT include any imports or open statements.
5. Use proper Lean 4 syntax and conventions. Ensure the proof sketch is enclosed in

triple backticks ```lean```.
6. Only include a single Lean 4 code block, corresponding to the proof along with

the theorem statement.
7. When dealing with large numerical quantities, avoid explicit computation as much

as possible. Use tactics like rw to perform symbolic manipulation rather than
numerical computation.

8. Do NOT use sorry.
9. Do NOT change anything in the original theorem statement.
{useful_theorems_section}

Mathematical Correctness Check (DETERMINE_IF_CORRECT_SUBGOAL_PROMPT)

You are an expert in mathematics.

Your task is to evaluate whether the given mathematical theorem statement is
mathematically correct. You do NOT have to provide a proof for the theorem in Lean.

Evaluation criteria:
1. Mathematical validity: Check for logical errors, incorrect assumptions, or

calculation mistakes.
2. Do NOT flag general results or helper lemmas that are true independent of the

given premises. ONLY flag inaccuracies or mistakes.
5. Provability: Determine if the statement can be proven given the provided premises,

or otherwise.

Assumptions:
1. The given premises are mathematically correct. Do NOT check this.
2. The syntax is guaranteed to be correct (do not assess syntax)

Theorem Statement:
{problem}

Report your answer as either:
• YES - if the statement is mathematically correct
• NO - if the statement has mathematical errors that prevent proof

Also provide a brief justification for your decision in <justification></justification>
tags, adding details about why the statement is correct or incorrect.
If it is incorrect, also provide a description of how the error can be corrected.
If there are missing arguments, make sure to add the relevant missing proof steps.

26

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2026

Sketch Assembly (USE_SKETCH_AND_THEOREMS_PROMPT)

You are a Lean 4 expert. Your goal is to write a proof in Lean 4, according to the
given proof sketch, using the supplied theorems.

Proof sketch:
{proof_sketch}

Theorems:
{theorems_string}

Instructions:
1. You can assume that the theorems are correct and use them directly in your proof.
2. Do NOT modify the given theorems.
3. Do NOT prove the given theorems.
4. Do NOT modify the given proof sketch steps. Simply apply the given theorems to

complete the missing `sorry` steps.
5. Do NOT use `sorry` in your proof.
6. Do NOT include any imports or definitions or open statements.
7. Do NOT re-define the given theorems in your response.
8. Do NOT write a proof for any subgoal from scratch. ALWAYS use the supplied theorems.

IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
subtraction operations on natural number literals with UNDEFINED types, unless
REQUIRED by the theorem statement. For example, do NOT allow literals like `1 / 3`
or `2 / 5` or `1 - 3`. ALWAYS specify the types. AVOID natural number arithmetic
UNLESS NEEDED by the theorem statement.
ALWAYS specify types when describing fractions. For example, ((2 : R) / 3) or
((2 : Q) / 3) instead of (2 / 3). Do this everywhere EXCEPT the given theorem statement.
IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
subtraction operations on variables of type natural numbers (Nat or N), unless
REQUIRED by the theorem statement. For example, do NOT allow expressions like (a-b)
or (a/b) where a, b are of type N. ALWAYS cast the variables to a suitable type
(Z, Q or R) when performing arithmetic operations. AVOID natural number arithmetic
UNLESS NEEDED by the theorem statement.

Your answer should be a single Lean 4 block containing the completed proof for the
given theorem.

Assembly Correction (ASSEMBLY_CORRECTION_PROMPT)

The following Lean 4 code has compilation errors. Please fix the errors while
maintaining the mathematical meaning.

{error_message}

Lean Hints:
{lean_hints}

Instructions:
1. Analyze what the theorem is trying to prove. Then, analyze why the error is

happening, step-by-step. Add a brief explanation.
2. Then, provide a corrected version of the Lean 4 code that addresses these

specific errors.
3. You should ONLY correct the main theorem that appears at the end. Do NOT

change any of the helper theorems.
3. Do NOT include any other Lean code blocks except for the proof. Do NOT

include any imports or open statements.
4. Do NOT use `sorry` in any part of the proof.
5. Do NOT change anything in the original theorem statement.
6. Do NOT include the helper theorem definitions in your response.
7. Do NOT write a proof for any subgoal from scratch. ALWAYS use the supplied

theorems.

27

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

Under review as a conference paper at ICLR 2026

Sketch Refinement Based on Incorrect Subgoal
(CORRECT_SKETCH_BASED_ON_INCORRECT_SUBGOAL_PROMPT)

You are an expert in writing Lean 4 proofs. You are given a Lean 4 proof sketch
where one of the subgoals has some issues.
Your task is to fix the issues and write a new proof sketch.

Proof Sketch:
{proof_sketch}

Issues:
{issues}

Lean Hints:
{lean_hints}

Rules:
1. Same proof level = same indentation: All tactics at the same logical level

must use identical indentation
2. Consistent characters: Use either tabs OR spaces consistently (don't mix)
3. Proper nesting: Indent sub-proofs one level deeper than their parent
4. Do NOT nest `have` statements in each other. Write different have statements

for different sub goals.
5. Ensure all sub goals are named. Do NOT create anonymous have statements.
6. Do NOT include any imports or open statements.
7. One line = One `have` subgoal. Do NOT split subgoals across different lines.
8. Use proper Lean 4 syntax and conventions. Ensure the proof sketch is enclosed

in triple backticks ```lean```
9. Use `sorry` for all subgoal proofs - focus on structure, not implementation
10. **Do NOT use `sorry` for the main goal proof** - use your subgoals to prove it
11. NEVER use `sorry` IN the theorem statement itself
12. Ensure subgoals collectively provide everything needed for the main proof
13. Make the logical dependencies between subgoals explicit. Ensure that the

subgoals are valid and provable in Lean 4.
14. Modify only the incorrect subgoal and everything that follows it in the proof

sketch. Leave all preceding portions unchanged.
15. Either modify the problematic subgoals to fix the errors, or add additional

subgoals to fill in the missing mathematical arguments.

28

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Under review as a conference paper at ICLR 2026

Proof Sketch Correction (PROOF_SKETCH_CORRECTION_PROMPT)

The following Lean 4 code has compilation errors. Please fix the errors while
maintaining the mathematical meaning.

Original statement: {informal_statement}

{error_message}

Lean Hints:
{lean_hints}

Instructions:
1. Analyze what the theorem is trying to prove. Then, analyze why the error is

happening, step-by-step. Add a brief explanation.
2. Then, provide a corrected version of the Lean 4 code that addresses these

specific errors.
3. Do NOT include any other Lean code blocks except for the proof. Do NOT

include any imports or open statements.
4. Use sorry for the proof of all `have` statements.
5. Ensure there are no use of `sorry` statements outside of `have` statements.

Do NOT use `sorry` while proving the main theorem.
6. Do NOT change anything in the original theorem statement.
7. Do NOT nest `have` statements in each other. Use distinct sub-goals as much

as possible. Ensure all sub goals are named. Do NOT create anonymous have
statements.

{useful_theorems_section}

Proof Correction (PROOF_CORRECTION_PROMPT)

The following Lean 4 code has compilation errors. Please fix the errors while
maintaining the mathematical meaning.

{error_message}

Instructions:
1. Analyze what the theorem is trying to prove. Then, analyze why the error is

happening, step-by-step. Add a brief explanation.
2. Then, provide a corrected version of the Lean 4 code that addresses these

specific errors.
3. Do NOT include any other Lean code blocks except for the proof.
4. Do NOT use sorry.
5. Do NOT include any imports or open statements.
6. Do NOT change anything in the original theorem statement.

{useful_theorems_section}

Subgoal Syntax Correction (SUBGOAL_SYNTAX_CORRECTION_PROMPT)

The following Lean 4 theorem has compilation errors. Please fix the errors while
maintaining the mathematical meaning.

{error_message}
Instructions:
1. Analyze why the error is happening, step-by-step. Add a brief explanation.
2. Then, provide a corrected version of the Lean 4 code that addresses these

specific errors.
3. Do NOT include any other Lean code blocks except for the theorem.
4. Use sorry for the proof.
5. Do NOT include any imports or open statements.
{potentially_useful_theorems}

29

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

Under review as a conference paper at ICLR 2026

A.3 IMPLEMENTATION DETAILS

We improve HILBERT’s efficiency through several runtime optimizations focused on parallelization. The
Prover LLM is served using vLLM (Kwon et al., 2023) and the Lean Verifier using Kimina Lean Server
(Santos et al., 2025) to handle multiple requests in parallel.

We implement AsyncJobPool, a mechanism built around Python’s asyncio library, to orchestrate
parallel requests across our framework’s multiple steps. Submitted jobs run concurrently until specific
completion criteria are met based on the algorithm step. Concurrency is controlled using Semaphores. We
implement three completion criteria:

• Wait for All. The execution terminates when all jobs in the pool have finished execution. This criterion is
used to parallelize across examples, and across subgoals (Section 3.2.2).

• First-Success Termination. Execution terminates as soon as one successful job is found, and pending jobs
are terminated. This criterion is used to parallelize across proof attempts (the initial Prover attempts, and
Steps 1 and 3 in Section 3.2.2).

• First Failure. Execution halts upon the first job failure, immediately canceling remaining jobs. This criterion
is applied during subgoal correctness verification (Step 2 in Section 3.2.2). Since verification failures often
indicate fundamental issues with the proof sketch that affect multiple subgoals, early termination prevents
wasted computation on dependent subgoals, which may change after correcting the problematic subgoal.

30

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

Under review as a conference paper at ICLR 2026

A.4 SUBGOAL DECOMPOSITION EXAMPLE

Figure 5: Subgoal Decomposition Example. We illustrate the subgoal decomposition process using the
input theorem sqrt_ten_irrational. The process consists of four main steps: (1) We retrieve relevant
theorems from Mathlib to inform the proof strategy. (2) The Reasoner generates a proof sketch, which is
verified by the Lean Verifier for validity. If verification fails, error messages guide the Reasoner to make
corrections. (3) The Reasoner extracts subgoals from the validated sketch and verifies their correctness,
refining them as needed. (4) The Reasoner assembles a complete proof by incorporating the extracted subgoals
into the original sketch. Since the subgoals lack proofs at this stage, they are denoted by sorry. This
assembled proof undergoes final verification. The process outputs both the complete assembled proof and the
verified subgoals (without their proofs). Note that while Steps (3) and (4) are shown together in this figure for
simplicity, they represent distinct operations as detailed in Figure 2.

A.5 MINIF2F PROOF EXAMPLE

We include an example to demonstrate how our hierarchical algorithm can help discover proofs that are too
complex for either the Prover or informal Reasoner alone. We present the proof for Problem 4 from AMC
12B 2002, a problem which was unsolved even by DeepSeek Prover V2-671B after 8196 passes. We find that
HILBERT is able to solve the problem with one layer of decomposition using Goedel Prover V2-32B model
as the Prover.

import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat
theorem k_one_amc12b_2002_p4 (n : N) (h0 : 0 < n) (k : N) (hk : 41 * n + 42 = k * (42 * n))

(h_k_is_one : ∀ (k : N), 41 * n + 42 = k * (42 * n) → k = 1) : k = 1 := by↪→
have h_main : k = 1 := by
have h1 : k = 1 := h_k_is_one k hk

31

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

Under review as a conference paper at ICLR 2026

exact h1

exact h_main

theorem h_sum_is_frac_amc12b_2002_p4 (n : N) (h0 : 0 < n) : (1 / 2 + 1 / 3 + 1 / 7 + 1 / ↑n : Q) =
(↑(41 * n + 42)) / ↑(42 * n) := by↪→

have h1 : (1 / 2 + 1 / 3 + 1 / 7 + 1 / ↑n : Q) = (↑(41 * n + 42)) / ↑(42 * n) := by
have h2 : (n : Q) ̸= 0 := by

norm_cast
<;> linarith

-- Use field_simp to find a common denominator and simplify the expression
field_simp [h2]
-- Normalize the expression by expanding and simplifying it
<;> ring_nf
<;> norm_cast
<;> field_simp [h2]
<;> ring_nf
<;> norm_cast
<;> simp [mul_assoc]
<;> norm_num
<;> linarith

apply h1

theorem h_k_is_one_amc12b_2002_p4 (n : N) (h0 : 0 < n) : ∀ (k : N), 41 * n + 42 = k * (42 * n) → k =
1 := by↪→

intro k hk
have h1 : k ̸= 0 := by

by_contra h
-- Assume k = 0 and derive a contradiction.
have h2 : k = 0 := by simpa using h
rw [h2] at hk
have h3 : 41 * n + 42 = 0 := by

ring_nf at hk ⊢
<;> nlinarith

have h4 : 41 * n + 42 > 0 := by
nlinarith

linarith

have h2 : k < 2 := by
by_contra h
-- Assume k ≥ 2 and derive a contradiction.
have h3 : k ≥ 2 := by

omega
have h4 : k * (42 * n) ≥ 2 * (42 * n) := by
have h5 : k * (42 * n) ≥ 2 * (42 * n) := by
have h6 : k ≥ 2 := h3

have h7 : (42 : N) * n > 0 := by positivity
nlinarith

exact h5

have h5 : 2 * (42 * n) = 84 * n := by
ring

have h6 : k * (42 * n) ≥ 84 * n := by
linarith

have h7 : 41 * n + 42 < 84 * n := by
have h8 : n ≥ 1 := by linarith
have h9 : 43 * n ≥ 43 := by
nlinarith

have h10 : 43 * n - 42 ≥ 1 := by
have h11 : 43 * n ≥ 43 := by nlinarith
omega

have h11 : 84 * n > 41 * n + 42 := by
cases n with
| zero => contradiction
| succ n =>
simp [Nat.mul_add, Nat.add_mul, Nat.add_assoc] at h6 ⊢
<;> ring_nf at h6 ⊢ <;>
(try omega) <;>
(try nlinarith)

32

1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

Under review as a conference paper at ICLR 2026

omega
have h8 : 41 * n + 42 < k * (42 * n) := by

linarith
linarith

have h3 : k = 1 := by
have h4 : k ≤ 1 := by

omega
have h5 : k ≥ 1 := by

by_contra h6

-- If k is not ≥ 1, then k = 0, which contradicts h1.
have h7 : k = 0 := by
omega

contradiction
omega

exact h3

theorem h_divides_amc12b_2002_p4 (n : N) (h0 : 0 < n) (h1 : (1 / 2 + 1 / 3 + 1 / 7 + 1 / ↑n : Q).den
= 1) (h_sum_is_frac : (1 / 2 + 1 / 3 + 1 / 7 + 1 / ↑n : Q) = (↑(41 * n + 42)) / ↑(42 * n)) : 42 *
n | 41 * n + 42 := by

↪→
↪→
have h2 : ((↑(41 * n + 42) : Q) / ↑(42 * n)).den = 1 := by
have h21 : ((↑(41 * n + 42) : Q) / ↑(42 * n)) = (1 / 2 + 1 / 3 + 1 / 7 + 1 / ↑n : Q) := by

rw [h_sum_is_frac]
<;> field_simp <;> ring_nf <;> norm_cast
<;> field_simp <;> ring_nf <;> norm_cast

rw [h21]
exact h1

have h3 : (42 * n : Z) | (41 * n + 42 : Z) := by
have h31 : (((41 * n + 42 : Z) : Q) / (42 * n : Z)).den = 1 := by
norm_cast at h2 ⊢
<;> simpa [div_eq_mul_inv] using h2

have h32 : ∃ (k : Z), ((41 * n + 42 : Z) : Q) / (42 * n : Z) = (k : Q) := by
have h33 : (((41 * n + 42 : Z) : Q) / (42 * n : Z)).den = 1 := h31

have h34 : ∃ (k : Z), ((41 * n + 42 : Z) : Q) / (42 * n : Z) = (k : Q) := by
-- Use the fact that the denominator is 1 to find an integer k
have h35 : ∃ (k : Z), ((41 * n + 42 : Z) : Q) / (42 * n : Z) = (k : Q) := by
-- Use the property of rational numbers with denominator 1
have h36 : (((41 * n + 42 : Z) : Q) / (42 * n : Z)).den = 1 := h31

have h37 : ∃ (k : Z), ((41 * n + 42 : Z) : Q) / (42 * n : Z) = (k : Q) := by
-- Use the fact that the denominator is 1 to find an integer k
refine' ⟨(((41 * n + 42 : Z) : Q) / (42 * n : Z)).num, _⟩
have h38 : (((41 * n + 42 : Z) : Q) / (42 * n : Z)) = ((((41 * n + 42 : Z) : Q) / (42 * n

: Z)).num : Q) := by↪→
have h39 : (((41 * n + 42 : Z) : Q) / (42 * n : Z)).den = 1 := h31

have h40 : (((41 * n + 42 : Z) : Q) / (42 * n : Z)) = ((((41 * n + 42 : Z) : Q) / (42 *
n : Z)).num : Q) := by↪→

rw [← Rat.num_div_den (((41 * n + 42 : Z) : Q) / (42 * n : Z))]
<;> field_simp [h39]
<;> norm_cast
<;> simp_all [Rat.den_nz]

exact h40

exact h38

exact h37

exact h35

exact h34

obtain ⟨k, h33⟩ := h32

have h34 : (42 * n : Z) | (41 * n + 42 : Z) := by
have h35 : ((41 * n + 42 : Z) : Q) / (42 * n : Z) = (k : Q) := h33

have h36 : (42 * n : Z) ̸= 0 := by
have h37 : (n : N) > 0 := h0

have h38 : (42 * n : Z) > 0 := by
norm_cast
<;> nlinarith

linarith
have h37 : ((41 * n + 42 : Z) : Q) = (k : Q) * (42 * n : Z) := by
field_simp [h36] at h35 ⊢
<;> ring_nf at h35 ⊢ <;> norm_cast at h35 ⊢ <;>

33

1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597

Under review as a conference paper at ICLR 2026

(try norm_num at h35 ⊢) <;>
(try linarith) <;>
(try simp_all [mul_comm]) <;>
(try ring_nf at h35 ⊢ <;> norm_cast at h35 ⊢ <;> linarith)

<;>
(try

{
nlinarith

})
<;>
(try

{
field_simp at h35 ⊢ <;>
ring_nf at h35 ⊢ <;>
norm_cast at h35 ⊢ <;>
linarith

})
have h38 : (41 * n + 42 : Z) = k * (42 * n : Z) := by
norm_cast at h37 ⊢
<;>
(try ring_nf at h37 ⊢) <;>
(try norm_num at h37 ⊢) <;>
(try linarith)

<;>
(try

{
field_simp at h37 ⊢ <;>
ring_nf at h37 ⊢ <;>
norm_cast at h37 ⊢ <;>
linarith

})
have h39 : (42 * n : Z) | (41 * n + 42 : Z) := by
use k
<;>

linarith
exact h39

exact h34

have h4 : 42 * n | 41 * n + 42 := by
have h41 : (42 * n : Z) | (41 * n + 42 : Z) := h3

have h42 : (42 * n : N) | (41 * n + 42 : N) := by
-- Convert the divisibility from integers to natural numbers
norm_cast at h41 ⊢
<;>
(try omega) <;>
(try

{
-- Use the fact that the integers are positive to convert to natural numbers
cases' h41 with k hk
use k
<;>
(try ring_nf at hk ⊢) <;>
(try norm_cast at hk ⊢) <;>
(try omega)

})
<;>
(try

{
-- Handle any remaining cases or simplifications
simp_all [mul_comm]
<;>
ring_nf at *
<;>
norm_cast at *
<;>
omega

})
-- Use the natural number divisibility to conclude the proof
simpa [mul_comm] using h42

34

1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

Under review as a conference paper at ICLR 2026

exact h4

theorem amc12b_2002_p4 (n : N) (h0 : 0 < n) (h1 : (1 / 2 + 1 / 3 + 1 / 7 + 1 / ↑n : Q).den = 1) : n =
42 := by↪→

-- Step 1: Combine the rational numbers into a single fraction.
have h_sum_is_frac : (1 / 2 + 1 / 3 + 1 / 7 + 1 / ↑n : Q) = (↑(41 * n + 42)) / ↑(42 * n) := by
exact h_sum_is_frac_amc12b_2002_p4 n h0

-- Step 2: Use the denominator condition (h1) to establish a divisibility relation.
-- According to `Rat.den_div_natCast_eq_one_iff`, for `m, d : N` with `d ̸= 0`,
-- `((m : Q) / d).den = 1` iff `d | m`.
have h_divides : 42 * n | 41 * n + 42 := by
exact h_divides_amc12b_2002_p4 n h0 h1 h_sum_is_frac

-- Step 3: By the definition of divisibility, `h_divides` implies there exists a natural number `k`
-- such that `41 * n + 42 = k * (42 * n)`. This step proves that `k` must be 1.
have h_k_is_one : ∀ k : N, 41 * n + 42 = k * (42 * n) → k = 1 := by
exact h_k_is_one_amc12b_2002_p4 n h0

-- From h_divides, we obtain the existence of such a `k` and its corresponding equation.
rcases h_divides with ⟨k, hk⟩

-- We use commutativity of multiplication to match the form expected by the helper theorem.
rw [mul_comm (42 * n)] at hk

-- We use our proof from h_k_is_one to show that this specific `k` must be 1.
have k_one : k = 1 := by
exact k_one_amc12b_2002_p4 n h0 k hk h_k_is_one

-- Substituting k = 1 back into the equation.
rw [k_one, one_mul] at hk

-- The equation is now `41 * n + 42 = 42 * n`. We solve for `n`.
-- We can rewrite `42 * n` as `41 * n + n`.
rw [show 42 * n = 41 * n + n by ring] at hk

-- By cancelling `41 * n` from both sides, we get `42 = n`.
exact (Nat.add_left_cancel hk).symm

A.6 INFERENCE TIME COMPUTE

Beyond inference-time scaling with the number of Reasoner calls (Figure 3), we demonstrate how HILBERT
scales with additional metrics: the number of tokens consumed by the Reasoner and Prover (Figure 6), and the
number of Prover and Verifier calls (Figure 7). Consistent with our previous findings, we observe a continuous
increase in pass rate as token usage increases. Notably, the most challenging problems required 22.8M and
27.0M tokens for the Gemini 2.5 Pro variants with Goedel-Prover-V2 and DeepSeek-Prover-V2, respectively.
These token counts far exceed the context length of most LLMs, demonstrating that our agentic framework
enables models to go beyond their inherent context limitations when solving complex mathematical problems,
at the cost of increased inference-time computation.

35

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

Under review as a conference paper at ICLR 2026

104 105 106 107 108

Reasoner Tokens (log scale)

60

65

70

75

80

85

90

95

100

C
um

ul
at

iv
e

Pa
ss

 R
at

e
(%

)

22
.8

M
27

.0
M

14
2.

1M
17

3.
4M

95.1%
96.7%

98.8% 99.2%
Pass Rate (vs) # Reasoner Tokens

Flash + Goedel
Flash + DeepSeek
Pro + Goedel
Pro + DeepSeek

102 103 104 105 106 107 108

Total Tokens (log scale)

0

20

40

60

80

100

C
um

ul
at

iv
e

Pa
ss

 R
at

e
(%

)

30
.7

M
48

.7
M

18
2.

7M
20

8.
8M

95.1% 96.7% 98.8% 99.2%
MiniF2F: Pass Rate (vs) # Total (Reasoner + Prover) Tokens

Flash + Goedel
Flash + DeepSeek
Pro + Goedel
Pro + DeepSeek

Figure 6: Pass rate (vs) Reasoner and Total Tokens. We plot the pass-rate for HILBERT on MiniF2F as
a function of (top) the number of tokens used by the Reasoner (bottom) the total number of tokens used
(Reasoner + Prover), per sample.

36

1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738

Under review as a conference paper at ICLR 2026

101 102 103 104

Prover Calls (log scale)

60

65

70

75

80

85

90

95

100

C
um

ul
at

iv
e

Pa
ss

 R
at

e
(%

)

4.
1K

6.
7K

12
.1

K

24
.7

K

95.1%
96.7%

98.8% 99.2%
MiniF2F: Pass Rate (vs) # Prover Calls

Flash + Goedel
Flash + DeepSeek
Pro + Goedel
Pro + DeepSeek

101 102 103 104

Verifier Calls (log scale)

60

65

70

75

80

85

90

95

100

C
um

ul
at

iv
e

Pa
ss

 R
at

e
(%

)

5.
9K

9.
1K

25
.6

K
35

.2
K

95.1%
96.7%

98.8% 99.2%
MiniF2F: Pass Rate (vs) # Verifier Calls

Flash + Goedel
Flash + DeepSeek
Pro + Goedel
Pro + DeepSeek

Figure 7: Pass rate (vs) Prover and Verifier Calls. We plot the pass-rate for HILBERT on MiniF2F as a
function of (top) the number of calls to the Prover (bottom) the number of calls to the Verifier, per sample.

A.7 PROOF LENGTHS

Figures 8 and 9 show the distribution of proof lengths generated by HILBERT on the MiniF2F and Putnam-
Bench datasets, respectively. For comparison, Figure 8 also includes proof lengths from DeepSeek-Prover-
V2-671B on MiniF2F problems.

37

1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785

Under review as a conference paper at ICLR 2026

On MiniF2F, HILBERT generates substantially longer proofs than DeepSeek-Prover-V2-671B, with an average
length of 247 lines compared to 86.7 lines. Notably, HILBERT produces one proof spanning 8,313 lines,
demonstrating its capacity for tackling hard problems.

This trend toward longer proofs is even more pronounced on PutnamBench, where HILBERT achieves an
average proof length of 1,454 lines. The longest proof on this dataset exceeds 15,000 lines of code. The
ability to consistently generate such extensive proofs likely contributes to HILBERT’s superior performance
on PutnamBench compared to baseline methods, as longer proofs may reflect more thorough exploration of
intermediate steps necessary for a complete Lean proof.

101 102 103 104

Proof Length (Lines of Code)

0

2

4

6

8

10

12

N
um

be
r

of
 P

ro
of

s

Avg. proof length = 247.0 lines
Max. proof length = 8313 lines

MiniF2F Proof Lengths (Hilbert)
(242 proofs)

101 102 103

Proof Length (Lines of Code)

0

2

4

6

8

10

12

N
um

be
r

of
 P

ro
of

s

Avg. proof length = 86.7 lines
Max. proof length = 1922 lines

MiniF2F Proof Lengths (DeepSeek-Prover-V2-671B)
(217 proofs)

Figure 8: Lengths of proofs generated by (left) HILBERT (Gemini 2.5 Pro + Goedel-Prover-V2) (right)
DeepSeek-Prover-V2 671B for problems from MiniF2F.

102 103 104

Proof Length (Lines of Code)

0

5

10

15

20

25

30

N
um

be
r

of
 P

ro
of

s

Avg. proof length = 1454.5 lines
Max. proof length = 15306 lines

PutnamBench Proof Lengths
(462 proofs)

Figure 9: Lengths of proofs generated by HILBERT (Gemini 2.5 Pro + Goedel-Prover-V2) for problems from
PutnamBench.

38

	Introduction
	Related Work
	Hilbert System
	Components
	Algorithm
	Subgoal Decomposition
	Subgoal Verification

	Experimental Results
	Main Results
	Scaling Behavior with Inference-Time Compute
	Ablation Studies

	Conclusion
	Appendix
	Algorithm
	Prompts
	Implementation Details
	Subgoal Decomposition Example
	MiniF2F Proof Example
	Inference Time Compute
	Proof Lengths

