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ABSTRACT

Large Language Models (LLMs) demonstrate impressive mathematical reasoning abilities,
but their solutions frequently contain errors that cannot be automatically verified. Formal
theorem proving systems such as Lean 4 offer automated verification with complete accu-
racy, motivating recent efforts to build specialized prover LLMs that generate verifiable
proofs in formal languages. However, a significant gap remains: current prover LLMs solve
substantially fewer problems than general-purpose LLMs operating in natural language. We
introduce HILBERT, an agentic framework that bridges this gap by combining the comple-
mentary strengths of informal reasoning and formal verification. Our system orchestrates
four components: an informal LL.M that excels at mathematical reasoning, a specialized
prover LLM optimized for Lean 4 tactics, a formal verifier, and a semantic theorem re-
triever. Given a problem that the prover is unable to solve, HILBERT employs recursive
decomposition to split the problem into subgoals that it solves with the prover or reasoner
LLM. It leverages verifier feedback to refine incorrect proofs as necessary. Experimental
results demonstrate that HILBERT substantially outperforms existing approaches on key
benchmarks, achieving 99.2% on miniF2F, 6.6% points above the best publicly available
method. HILBERT achieves the best known result on PutnamBench. It solves 462/660
problems (70.0%), outperforming proprietary approaches like SeedProver (50.4%) and
achieving a 422% improvement over the best publicly available baseline. Thus, HILBERT
effectively narrows the gap between informal reasoning and formal proof generation.

1 INTRODUCTION

General-purpose Large Language Models (LLMs) have achieved dramatic improvements in mathematical
understanding. Reasoning LLMs like GPT-5 and Gemini 2.5 Pro attain near-perfect performance on high-
school olympiad exams such as AIME and can solve a significant proportion of competitive undergraduate-
level problems from the Putnam exam (Dekoninck et al.| 2025). These systems also show promise on
research-level benchmarks like FrontierMath (Glazer et al., [2024; |OpenAlL 2025)).

However, several fundamental limitations severely constrain their practical utility. These systems frequently
hallucinate, producing confident-sounding but ultimately incorrect solutions. Even when the final answers
are correct, the underlying reasoning often contains serious flaws: "proving" by example, logical fallacies,
unjustified assumptions, and calculation errors (Petrov et al., 2025} |Guo et al.,|2025; |Mahdavi et al., [2025;
Balunovic et al.} 2025). Manual verification of generated proofs is time-consuming, difficult, and error-prone.
Although recent advances show LLM-based verifiers can approach human-level performance (Guo et al.|
20255 |IDekoninck et al., [2025)), they remain fallible due to hallucinations and silent failures (Mahdavi et al.}
2025; [Petrov et al.| |[2025)).

Formal theorem proving systems such as Lean 4 (Moura & Ullrich, 2021) offer a promising solution
by enabling automated proof verification with complete accuracy, guaranteeing to prove or disprove the
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Figure 1: The HILBERT algorithm. Given a target theorem, HILBERT attempts formal proof generation with
the prover. Upon failure, it decomposes the problem into subgoals and tries to solve them with the prover,
followed by the reasoner (shallow solve). If both strategies fail, it resorts to recursive decomposition until all
subgoals are resolved.

correctness of proofs in formal languages. This capability has spurred the development of purpose-built
prover LLMs (Polu & Sutskever, 2020)), with substantial research focused on developing specialized models
for generating formal Lean 4 proofs (Yang et al., 2023} Xin et al., 2024ajb; [2025; Ren et al., |2025; |[Dong
& Ma, 2025 [Wang et all [2025). The best open prover models achieve over 90% pass rate on miniF2F
(Zheng et al.,|2021)) and solve 86 of 657 problems on the challenging PutnamBench (Tsoukalas et al., 2024)).
Proprietary systems such as AlphaProof (AlphaProof & AlphaGeometry} 2024)) and SeedProver (Chen et al.|
2025) demonstrate this paradigm’s potential, achieving a silver-medal performance on problems from the
International Mathematical Olympiad (IMO).

Despite this progress, a significant performance gap remains between specialized prover LLMs and general-
purpose reasoning LLMs. For example, Dekoninck et al.| (2025) found through human verification that
reasoning LLMs can solve approximately 83% of PutnamBench problems informally, while the best publicly
available prover LLMs achieve only 13% with formal proofs. General-purpose LLMs excel at informal
mathematical reasoning and understand formal language syntax well enough to write effective proof sketches
and short proofs (Ren et al.} |[2025; |[Liang et al., 2025)). However, they struggle with full formal program
synthesis, achieving only 49.1% pass rate (with 16384 attempts) on miniF2F (Zhou et al., 2025b)). Conversely,
specialized prover LLMs excel at producing syntactically correct formal proofs for standalone theorems, but
are brittle at language-intensive tasks like leveraging existing theorems or error correction (Liang et al.,2025)).

To address this gap, several works have explored incorporating informal reasoning from general-purpose
LLMs to augment formal theorem-proving capabilities. Early approaches like DSP (Jiang et al.| 2022)) and
LEGO-Prover (Wang et al., 2023)) used general-purpose LLMs to propose proof sketches, with automated
theorem provers (ATPs) filling formal components, but were limited by heuristics-based ATP capabilities.
DSP+ (Cao et al., [2025) extended this approach using modern prover LLMs for intermediate steps. However,
these methods struggle with complex subgoals due to shallow, single-layer decomposition. They break
down the original problem but cannot further decompose subgoals that remain too difficult to solve directly.
Recent agentic frameworks including COPRA (Thakur et al.,|2024)), Prover-Agent (Baba et al.,[2025)), and
ProofCompass (Wischermann et al.,2025) iteratively construct proofs using informal reasoning with feedback
from the formal verifier. Although these methods show promise, their performance still significantly lags
behind general-purpose reasoning LLM:s.

We introduce HILBERT, an agentic framework that bridges informal reasoning with formal verification (Figure
[I). It orchestrates four key components: a general-purpose reasoning LLM, a prover LLM, a verifier, and
a semantic theorem retriever. Given a mathematical problem, HILBERT first retrieves relevant theorems
from Mathlib (mathlib Community, 2020) and generates a detailed informal proof using the reasoner. It
then creates a Lean 4 proof sketch decomposing the problem into manageable subgoals. For each subgoal,
HILBERT employs a two-stage approach: attempting formal proof generation with the prover, then falling
back to the reasoner augmented with retrieved theorems. When both stages fail, the system recursively
decomposes problematic subgoals into smaller problems. At every stage, HILBERT leverages the reasoner’s



Under review as a conference paper at ICLR 2026

superior in-context learning capabilities to interpret compilation errors, suggest corrections, and guide proof
refinement. We summarize our main contributions below.

* We design HILBERT, a multi-turn agentic framework that systematically combines informal mathematical
reasoning with formal proof verification, closing the performance gap between these two paradigms.

* We conduct comprehensive experiments on MiniF2F and PutnamBench, achieving state-of-the-art per-
formance on both benchmarks. HILBERT reaches 99.2% pass rate on miniF2F (6.6 points above the best
public method) and solves 462/660 PutnamBench problems (70.0%), outperforming proprietary systems
like SeedProver (50.4%) and achieving over 4 x improvement versus the best open-source baseline.

* Through extensive ablation studies, we validate the effectiveness of our key technical contributions:
the recursive decomposition procedure for breaking down complex proofs and the retrieval-augmented
generation mechanism for enhanced reasoning capabilities.

2 RELATED WORK

Automated Theorem Provers (ATPs) are computational systems designed to automatically discover proofs
of mathematical theorems. Traditional approaches have primarily relied on symbolic reasoning methods
(Robinson, |1965} [McCunel 2003} |Schulz, |2002) and integration tools like Sledgehammer that connect ATPs
with interactive proof assistants (Blanchette et al.,|2013} |Czajka & Kaliszykl [2018). Recently, LLMs have
emerged as a promising new tool for automated theorem proving (Polu & Sutskever, |2020; |Yang et al.| [2024).

Prover LLMs. The general principle is to train specialized prover LLMs on large datasets of formal proofs,
most prominently for the Lean (Moura & Ullrich, [2021)) theorem prover. Some prominent models include
GPT-f (Polu & Sutskever, |2020), ReProver (Yang et al.| [2023)), DeepSeek Prover family of models (Xin et al.,
2024azb; [Ren et al., 2025), ABEL (Gloeckle et al., 2024), Goedel Prover V1 and V2 (Lin et al., 2025a:b)),
BFS Prover (Xin et al., 2025), STP-Prover (Dong & Ma, [2025) and Kimina Prover (Wang et al., [2025).
These models are trained by curating a substantial corpus of formal proofs and performing some combination
of supervised finetuning and reinforcement learning. Several approaches have enhanced these models by
incorporating subgoal decomposition into the training process (Zhao et al.,[2023;2024; Ren et al.,2025)), while
POETRY (Wang et al.,[2024)) and ProD-RL (Dong et al., [2024)) employ recursive problem decomposition.
Proprietary prover LLMs like AlphaProof (AlphaProof & AlphaGeometry,|2024) and SeedProver (Chen
et al., |2025) have pushed the frontier further, achieving a silver-medal performance on problems from the
International Mathematics Olympiad (IMO). Still, significant performance gaps remain between specialized
prover models and general-purpose LLMs in mathematical reasoning capabilities (Dekoninck et al., 2025]).

Using Informal LLMs for Formal Theorem Proving. Several previous works have attempted to incorporate
informal reasoning from general-purpose LLMs to improve formal reasoning abilities. DSP (Jiang et al.,|2022)
used the Codex LLM to propose proof sketches in Isabelle, with intermediate steps filled in by Sledgehammer.
LEGO-Prover (Wang et al.| [2023) extended this framework to handle a growing skill library of intermediate
theorems for retrieval-augmented proving. |[Liang et al.| (2025) argue that general purpose reasoning LLMs are
more effective at decomposing problems into simpler subgoals compared to prover LLMs. Our work extends
upon this observation by using informal reasoners to recursively build proof sketches to break the problem
down into simpler sub-problems that can be handled by a prover or reasoning LLM.

Several works have also proposed using an informal LLM in an agentic framework for automated theorem
proving. COPRA (Thakur et al.l [2024) queries an informal LLM to construct proofs tactic by tactic,
incorporating execution feedback, search history, and retrieved lemmas into subsequent prompts. Prover-
Agent (Baba et al.,|2025) uses a small informal reasoning model to produce proof steps and lemmas, which
are autoformalized and solved using a prover LLM. Feedback from Lean is used to iteratively refine incorrect
proofs. ProofCompass (Wischermann et al.| 2025) enhances prover LLMs by adding informal proof steps as
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comments in the input. When proof attempts fail, it analyzes these failures to extract intermediate lemmas
that enable effective problem decomposition. DeltaProver (Zhou et al.,[2025b) introduces a custom Domain-
Specific Language to perform subgoal decomposition, and iteratively repair the generated proof using verifier
feedback. Notably, it only uses an informal LLM and does not rely on prover LLMs. In contrast, our work
demonstrates that prover LLMs become highly effective tools when orchestrated in an appropriately designed
multi-agent framework.

3 HILBERT SYSTEM

In this section, we detail HILBERT, a multi-agent system that bridges informal mathematical reasoning and
formal verification by orchestrating general-purpose reasoning LL.Ms with specialized prover LLMs. Our
approach uses recursive subgoal decomposition to break complex theorems into simpler subgoals that can be
proven and combined, achieving performance exceeding either approach in isolation.

3.1 COMPONENTS

Before we describe the inference algorithm, we first describe the components that HILBERT orchestrates.

Reasoner. A general-purpose reasoning LLM to write informal proofs, proof sketches in Lean, and in certain
instances, a formal proof. In our work, we use Google Gemini 2.5 Flash and Pro (Comanici et al., 2025) due
to their superior mathematical reasoning capabilities (Zhou et al.l 2025b; [Dekoninck et al., 2025)).

Prover. A specialized prover LLM to write formal proofs given a formal theorem statement. In our work, we
use DeepSeek-V2-7B (Ren et al., 2025) and Goedel-Prover-V2 32B (Lin et al.,|2025b).

Verifier. A formal language verifier to check the correctness of the theorem statements and proofs. We use
the Kimina Lean Server (Santos et al., [2025) with Lean v4.15.0 and Mathlib v4.15.0.

Retriever. A semantic search engine to retrieve relevant theorems from Mathlib (mathlib Communityl,
2020) built using sentence transformers (all-mpnet-base-v2 (Song et al., [2020)) and FAISS (Douze
et al., [2024) indexing. The system computes cosine similarity between query embeddings and pre-computed
embeddings of informal theorem descriptions from the mathlib_informal (Gao et al.|2024) dataset,
providing a simple yet effective alternative to custom retrieval models (Gao et al., 2024;|Lu et al.| 2025).

3.2 ALGORITHM

Given a formal statement in Lean 4, we first attempt direct proof using the Prover. It generates Kinitial proof = 4
candidate proofs, which we verify using the Verifier. If any proof is valid, we return it immediately. When
direct proof attempts fail, we use the Reasoner to decompose the problem into simpler subproblems and
assemble them into a valid proof strategy. Figure 2] provides an overview of this stage.

3.2.1 SUBGOAL DECOMPOSITION

Step 1 (Theorem Retrieval). Given the formal statement, we prompt the Reasoner to produce s = 5 search
queries to look for theorems that might help simplify the proof strategy. For each search query, we use the
Retriever to retrieve the top m = 5 most semantically similar theorems and tactics from Mathlib. We again
query the Reasoner to select only the relevant theorems from the fetched search results.

Step 2 (Formal Proof Sketch Generation). We prompt the Reasoner to produce a detailed informal proof
using the retrieved theorems. With this proof supplied in-context, we ask the Reasoner to generate a Lean 4
proof sketch that decomposes the problem into simpler subproblems represented as have statements. All
subgoals are initially filled with sorry, a placeholder keyword that Lean can temporarily treat as a proof of
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Figure 2: Subgoal Decomposition: Given a theorem statement, HILBERT: (1) retrieves relevant theorems
from Mathlib using semantic search, (2) generates a formal proof sketch with subgoals marked as have
statements with sorry placeholders, (3) extracts these subgoals as independent theorem statements, and (4)
assembles the proof by replacing sorry placeholders with calls to the subgoal theorems. Verifiers ensure
correctness at each stage. The error correction loops are indicated by dotted lines.

the subgoal. We verify that the proof sketch is valid using the Verifier and leverage its feedback to correct any
errors. We generate a maximum of Kgetch awempts = 4 sketch attempts for each input theorem.

Step 3 (Subgoal Extraction). The Reasoner extracts subgoals from the proof sketch, converting them into
independent theorem statements with relevant context from the original problem and preceding subgoals.
As before, we use sorry for the proof. We verify completeness by counting have statements in the proof
sketch and ensuring that all of them are extracted. In case any of them are missing, we prompt the Reasoner to
extract the missing subgoals. Each extracted theorem undergoes syntax verification using the Verifier. When
errors occur, we provide error messages in-context to the Reasoner for correction. This approach proves
more reliable than parsing source code directly or extracting subgoals from Lean 4’s proof state data structure
(InfoTree) (Liang et al., [2025).

Step 4 (Proof Assembly from Subgoals). We provide the Reasoner with the extracted subgoal theorem
statements (which contain sorry placeholders) and validated proof sketch. The Reasoner produces an
assembled proof for the target theorem by replacing each sorry placeholder in the proof sketch with calls to
the corresponding subgoal theorem. We then verify both the subgoal theorem statements and the assembled
proof together using the Verifier to ensure the overall structure is sound. We check for errors using the Verifer
and correct them through iterative feedback with the Reasoner. This guarantees that after all subgoals are
proven, we will have a complete proof of the given theorem.

3.2.2 SUBGOAL VERIFICATION

At this stage, we have a valid theorem proof structure and a list of subgoals that, if proven, complete the
original proof. However, the mathematical correctness and provability of these subgoals remain unverified.
For each subgoal, we execute the following verification and proof process:

Step 1 (Prover Attempts). We first attempt to prove each subgoal directly using the Prover, generating
Kormal proot = 4 candidate proofs and verifying them with the Verifier. If any generated proof is valid, we
accept it and proceed to the next subgoal.

Step 2 (Correctness Verification). For subgoals that cannot be directly proven, we prompt the Reasoner
to evaluate whether the subgoal is mathematically correct and whether the formal statement is formulated
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correctly and provable. If the Reasoner identifies the subgoal as mathematically incorrect, unprovable, or
poorly formulated, we flag it for correction and return to refine the original proof sketch, repeating all steps
from Section [3.2.T)onwards with the identified issues incorporated as feedback. Apart from mathematical
errors, some common failure modes detected by the Reasoner at this stage include missing hypotheses or
conditions in the subgoal theorem statement, and atypical behavior due to the Lean type system, such as
truncation of natural numberd!]

We prioritize direct Prover attempts over Reasoner verification because the Prover models are computationally
cheaper, and a valid proof automatically confirms mathematical correctness. Empirically, we observe that a
significant proportion of generated subgoals can be successfully proven by the Prover. Step 1 ensures that we
save on the computational costs of the expensive Reasoner model for verification on the successful subgoals.

Step 3 (Shallow Solve). After Step 1 fails and Step 2 confirms subgoal correctness, we employ a Reasoner
model for a "shallow solve" approach that writes short proofs for subgoals the Prover could not directly solve.
We retrieve relevant theorems from the Mathlib library and ask the Reasoner to write a formal proof for
the subgoal. The Reasoner iteratively refines proofs based on Verifier feedback for up to Koot correction = 6
passes. When compilation errors indicate missing or incorrect theorem references, we retrieve additional
relevant theorems. To preserve computational resources, we terminate this step if an incorrect proof exceeds
the length threshold K'max shattow solve length = 30 lines, as excessively long proofs indicate the need for further
decomposition. This entire shallow solve process repeats for up t0 Kinformal passes = 6 attempts until we obtain
a successful proof or exhaust all attempts.

Step 4 (Recursive Decomposition and Proof Assembly). If subgoals remain unproven after Steps 1-3, we
recursively apply the subgoal decomposition process (Section[3.2.1)) to break them down further. Each subgoal
is subdivided until it is either successfully proven or we reach the maximum recursion depth D. Should all
subgoals become proven, we proceed to create a complete proof for the given theorem by stitching together
the proofs for all subgoals and the assembled proof outline from Step 4 of subgoal decomposition. This is
done by concatenating the proofs of the subgoals with the assembled proof produced in Step 4 of subgoal
decomposition (Section[3.2.I). Any remaining unsolved subgoals at this point trigger a failed proof attempt,
prompting us to restart the subgoal decomposition process for the theorem.

The complete algorithm is presented in Algorithm [I] For implementation details, particularly parallelization
strategies, refer to Section[A.3]

4 EXPERIMENTAL RESULTS

4.1 MAIN RESULTS

MiniF2F. The MiniF2F dataset (Zheng et al., 2021) is a 488 problem dataset comprising of high-school
mathematics competition problems. Some problems are particularly challenging, sourced from the AMC,
AIME and IMO competitions. We benchmark on the 244 problems from the test split of MiniF2F. We use
recursion depth D = 5 for all our experiments. For the Prover, we instantiate HILBERT with two LLMs:
DeepSeek-Prover-V2-7B (Ren et al.|[2025)), representing a relatively weaker model, and Goedel-Prover-V2-
32B (Lin et al., |2025b)), representing a stronger one. This pairing allows us to compare performance across
different capability levels. For the Reasoner, we analogously employ Google’s Gemini 2.5 Flash and Gemini
2.5 Pro (Comanici et al.;[2025)). The results are presented in Tablem

HILBERT, demonstrates strong performance across all model configurations. Our top-performing setup
combines Gemini 2.5 Pro with Goedel-Prover-V2-32B, achieving a 99.2% pass rate and failing on only two
problems (AMC 12A 2020 Problem 25 and IMO Shortlist 2007 Problem A6). Even with weaker formal

"https://lean-lang.org/doc/reference/latest/Basic-Types/Natural-Numbers/
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Method Pass Rate
STP (Dong & Mal[2025) (pass@3200) 65.0% £ 0.5%
(pass@25600) 67.6%

Kimina-Prover-8B (Wang et al.,2025) (pass@32) 78.3%
Kimina-Prover-72B (pass@1024) 87.7%
w/ TTRL 92.2%
Gemini 2.5 Pro (pass@16384) 49.1%
Delta Prover (Zhou et al.| [2025b) (pass@16384) 95.9%
Seed Prover (Chen et al.| 2025) 99.6%
Goedel-Prover-SFT (Lin et al.,2025a) (pass@3200) 62.7%
Goedel-Prover-V2-8B (Lin et al.,[2025b)) (pass@8192) 90.2%
w/ self-correction (pass@1024) 89.3%
Goedel-Prover-V2-32B (pass@4) 74.6% + 1.2%
(pass@8192) 92.2%

w/ self-correction (pass@1024) 92.6%
HILBERT (Gemini 2.5 Flash) + Goedel-Prover-V2-32B 94.7% [+20.1%]
HILBERT (Gemini 2.5 Pro) + Goedel-Prover-V2-32B 99.2% [+24.6%]
DeepSeek-Prover-V2-7B (CoT) (Ren et al.} 2025) (pass@8192) 82.0%
DeepSeek-Prover-V2-7B (non CoT) (pass@4) 61.3% + 0.2%
(pass@8192) 75.0%

DeepSeek-Prover-V2-671B (pass@8192) 88.9%
HILBERT (Gemini 2.5 Flash) + DS Prover-V2-7B (non-CoT) 96.7% [+35.4%]
HILBERT (Gemini 2.5 Pro) + DS Prover-V2-7B (non-CoT) 98.4% [+37.1%]

Table 1: Results on the MiniF2F-Test dataset. Improvements shown in brackets for HILBERT are calculated
relative to the pass@4 baseline for each prover family. Note: Delta Prover and Seed Prover are proprietary
methods and not publicly available to use. Gemini 2.5 Pro result obtained from |[Zhou et al.| (2025b)

Model # Solved Problems % Solved Problems
Goedel-Prover-SFT (Lin et al.|[2025a) (pass@512) 7/644 1.1%
ABEL (Gloeckle et al.|[2024) (pass@596) 7/644 1.1%
Self-play Theorem Prover (Dong & Ma!|2025) (pass @3200) 8/644 1.2%
Kimina-Prover-7B-Distill (Wang et al.||2025) (pass@192) 10/657 1.5%
DSP+ (Cao et al.||2025) (pass @128) 23/644 3.6%
Bourbaki (Zimmer et al.|[2025) (pass@512) 26/658 4.0%
DeepSeek-Prover-V2 671B (Ren et al.|[2025) (pass@1024) 47/657 7.1%
SeedProver (Chen et al.|[2025) 331/657 50.4%
Goedel-Prover-V2-32B (self-correction) (Lin et al.|[2025b) (pass @ 184) 86/644 13.4%
HILBERT (Gemini 2.5 Pro) + Goedel-Prover-V2-32B 462/660 70.0%

Table 2: Results on the PutnamBench dataset. We benchmark on the most recent version (as of September
2025) containing 660 problems.

provers, HILBERT maintains impressive results: pairing DeepSeek-Prover-V2-7B with Gemini 2.5 Pro yields
98.4%, while using Gemini 2.5 Flash achieves 96.7%. Notably, the choice of informal reasoner appears
more critical than prover strength. Gemini 2.5 Pro consistently outperforms Flash variants by 3-4%, a larger
gap than observed between different prover models. Compared to standalone base provers at pass @4, our
approach delivers substantial improvements ranging from 20.1% to 37.1%.

PutnamBench. PutnamBench is a challenging theorem-proving benchmark comprising 660 problems from
the William Lowell Putnam Mathematical Competition from 1962 to 2024. It contains undergraduate-level
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Method Retrieval Pass Rate # Reasoner Calls # Prover Calls # Reasoner Tokens # Prover Tokens
HILBERT+ DeepSeek-Prover-V2-7B v 98.4% 420 205 1.9M 0.3M
HILBERT+ DeepSeek-Prover-V2-7B X 97.1% 426 290 2.1M 0.4M
HILBERT+ Goedel-Prover-V2-32B v 99.2% 548 391 2.3M 1.3M
HILBERT+ Goedel-Prover-V2-32B X 97.9% 862 449 4.0M 1.2M

Table 3: Ablation with/without retrieval. HILBERT with retrieval achieves a higher pass rate while using
less inference-time compute than without retrieval. Numbers show average calls and tokens per sample,
computed over samples requiring subgoal decomposition.

MiniF2F: Pass Rate (vs) # Reasoner Calls MiniF2F: Pass Rate (vs) # LLM (Reasoner + Prover) Calls
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Figure 3: Pass rate (vs) Inference-time Budget. We plot the pass-rate for HILBERT on MiniF2F as a function
of (left) the number of Reasoner calls (right) the total number of LLM (Reasoner + Prover) calls per sample.

problems across Algebra, Analysis, Number Theory, Geometry, Linear Algebra, Combinatorics, Abstract
Algebra, Probability, and Set Theory. Given the high computational cost of evaluating on this dataset,
we only experiment with the strongest configuration of HILBERT, (HILBERT with Gemini 2.5 Pro and
Goedel-Prover-V2-32B). As before, we set D = 5. Our results are presented in Table

HILBERT achieves state-of-the-art performance on PutnamBench, solving 462 out of 660 problems (70.0%
pass rate). This surpasses the previous best method, the proprietary SeedProver (50.4%), by nearly 20
percentage points. HILBERT solves over 5 times more problems than the closest publicly available baseline,
Goedel-Prover-V2-32B. We attribute this success to HILBERTs ability to compose long proofs (see Figure [J)
without the long-context reasoning issues that plague traditional LLMs (Zhou et al.} [2025a).

4.2 SCALING BEHAVIOR WITH INFERENCE-TIME COMPUTE

Unlike traditional prover LLMs that distribute compute across many independent proof attempts from
scratch, HILBERT allocates inference-time compute across multiple interconnected stages, from subgoal
decomposition to subgoal proof generation. Since this compute allocation is adaptive, it cannot be captured by
a simple count of independent attempts. To illustrate the compute-performance tradeoff, we plot HILBERT’s
pass rate against the per-sample number of calls to (1) the Reasoner and (2) the Reasoner + Prover combined
(Figure[3] The results reveal a clear scaling relationship where pass rates increase with the number of calls
per sample. Our best-performing configuration (Gemini 2.5 Pro with Goedel Prover) requires at most 4.5K
reasoner calls and 11.3K total calls, significantly fewer than DeltaProver’s 16,384 calls with Gemini 2.5 Pro.
Interestingly, the weaker reasoner (Gemini 2.5 Flash) demands a substantially higher inference budget to
achieve comparable performance with both prover variants. While HILBERT+ DeepSeek Prover starts with
lower pass rates, it demonstrates faster improvement rates, particularly in low-budget settings, eventually
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matching HILBERT+Goedel-Prover performance. For additional analyses of pass rates versus prover/verifier
calls and total token usage, refer to Section

4.3 ABLATION STUDIES

Pass Rate vs Depth Comparison Performance (vs) depth. To evaluate the effec-
tiveness of subgoal decomposition, we analyze
the pass rate of HILBERT using Gemini 2.5 Pro
+ Goedel-Prover-V2-32B on the MiniF2F dataset
across different recursive depths D. The base-
line (D = 0) corresponds to no decomposition,
—o— Hilbert where we report the standalone Prover (pass@4)

Hilbert (No Shallow Solve) performance. We compare two configurations: the

full HILBERT system, and a variant with shallow

0 I 2 3 4 5 . . . .
Depth solving disabled (Kinformal passes = 0). This vari-

. . .. ant relies solely on using the Prover for resolvin
Figure 4: Pass rate.(\./s) recursive depth D on MiniFi2F subgoals. Figu}rleE]shongs performance across di%—
for HILBERT (Gemini 2.5 Pro) + Goedel-Prover-V2-32B ferent values of D, and demonstrates substantial

gains from subgoal decomposition. Both configurations show monotonically increasing performance with
depth, but exhibit different convergence patterns. The full HILBERT system achieves rapid performance gains,
reaching 98.36% at D = 2 and 98.7% by D = 3. In contrast, the no-shallow-solve variant requires greater
depth to achieve comparable performance, highlighting the importance of the shallow solving mechanism.
The consistent improvement over the D = 0 baseline (75% pass rate) validates the efficacy of hierarchical
subgoal decomposition, with the full system achieving near-optimal performance at relatively shallow depths.
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Retrieval Ablation. To assess the impact of the Retriever on both performance and computational efficiency,
we compare HILBERT to a variant that omits the retrieval step. We experiment on MiniF2F across two
Prover configurations: DeepSeek-Prover-V2-7B and Goedel-Prover-V2-32B. Table [3| presents the results.
With retrieval enabled, HILBERT achieves higher pass rates across both configurations: 98.4% vs 97.1% for
DeepSeek Prover and 99.2% vs 97.9% for Goedel Prover. More importantly, retrieval significantly reduces
inference-time compute utilitzation. For the DeepSeek model, retrieval decreases reasoner calls from 426 to
420, average prover calls from 290 to 205, and average reasoner tokens from 2.1M to 1.9M. The efficiency
gains are even more pronounced with the Goedel Prover, where retrieval reduces average reasoner calls from
862 to 548 and average reasoner tokens from 4.0M to 2.3M. These results show that retrieval improves both
performance and efficiency by surfacing useful theorems that simplify proofs and preventing failures from
incorrect theorem names.

5 CONCLUSION

We present HILBERT, a hierarchical agentic framework that bridges formal theorem proving in Lean with
the informal mathematical reasoning capabilities of general-purpose LLMs. Our approach recursively
decomposes complex problems into manageable subgoals and orchestrates informal reasoners (Gemini 2.5
Pro/Flash) with formal provers (DeepSeek-Prover-V2-7B and Goedel-Prover-V2-32B) to solve theorems
that neither component can handle alone. HILBERT achieves state-of-the-art performance on miniF2F with
pass rates of 94.7% to 99.2%. On the challenging PutnamBench dataset, HILBERT achieves 70.0% pass rate,
nearly 20 percentage points above previous methods and approaching the 82% informal proof rate reported
in Dekoninck et al.|(2025). In the future, we plan to leverage this framework to train increasingly capable
models. Proofs and reasoning traces generated by HILBERT can be used to train better Prover and Reasoner
models. These improved models should be able to solve more complex problems than before, resulting in a
virtuous cycle that has the potential to continually advance formal reasoning capabilities.



Under review as a conference paper at ICLR 2026

Reproducibility Statement. We provide comprehensive implementation details to ensure reproducibility of
our results. The proposed algorithm (HILBERT) is described in detail in Section [3| with complete pseudocode
provided in Algorithm[I] All hyperparameters, model configurations, and experimental settings are specified
in Section[3] while the complete set of prompts used for both reasoning and prover LLM:s are provided in
Appendix We plan to release the source code and other artifacts upon publication.

LLM Usage. We acknowledge using LLMs as writing assistants to help refine phrasing and improve the
clarity of the presentation. LLMs were not used for any substantive aspects of this work, including ideation,
conceptual development, or literature review.
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A APPENDIX

A.1 ALGORITHM

The complete algorithm is presented across multiple blocks for clarity and modularity. Algorithm|[I]provides
the main entry point and high-level control flow, while Algorithm [2]details the subgoal resolution strategies.
Algorithms [3|and ] focus on sketch generation, validation, and assembly processes. Algorithm [5]contains the
core proof generation functions that interface with different LLM components, while Algorithm [6]specifies
the prompt-based functions for various reasoning tasks. Algorithm[7/handles error correction and refinement
procedures, and Algorithm [§|provides supporting functions for theorem retrieval and verification.
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Algorithm 1 HILBERT: Hierarchical Proof Generation System

function GENERATEPROOF(problem, header)
> Input: problem (formal statement), header (context)

> Phase 1: Direct Proof Attempt
proof <— ATTEMPTPROVERLLMPROOF(problem, header)
if proof # L then
return proof
end if

> Phase 2: Subgoal Decomposition
proof < SUBGOALDECOMPOSITION(problem, header, depth=1)
return proof

: end function

: function SUBGOALDECOMPOSITION(problem, header, depth)

> Decompose problem into subgoals and solve recursively
if depth > D then
return | > Maximum recursion depth reached
end if

for attempt < 1 to Kketch attempts do
relevant_theorems < RETRIEVETHEOREMS(problem)
sketch < GENERATEPROOFSKETCH(problem, relevant_theorems)
sketch_assembled, subgoals, proved_subgoals <«
REFINEANDVALIDATESKETCH(sketch, header, relevant_theorems)

if sketch_assembled # L then
final_proof — SOLVEALLSUBGOALS(subgoals,
sketch_assembled, header, depth)
if final_proof # | then
return final_ proof
end if
end if
end for
return |

. end function

proved_subgoals,
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Algorithm 2 HILBERT: Subgoal Resolution

: function SOLVEALLSUBGOALS(subgoals, proved_subgoals, sketch_assembled,
depth)

> Solve all remaining subgoals and assemble final proof
subgoal_proofs < ()

for all subgoal € subgoals \ proved_subgoals do
proof < SOLVESUBGOAL(subgoal, header, depth)
if proof = 1 then
return | > Failed to prove required subgoal
end if
subgoal_proofs[subgoal] < proof
end for

final_proof < CONCATENATE(header, subgoal_proofs, sketch)
return final_proof

: end function

. function SOLVESUBGOAL(subgoal, header, depth)

> Solve individual subgoal with multiple strategies

Strategy 1: Direct Prover Attempt
proof < ATTEMPTPROVERLLMPROOF(subgoal, header)
if proof # L then
return proof
end if

Strategy 2: Shallow Solve with Reasoner
relevant_theorems < RETRIEVETHEOREMS(subgoal)
proof <~ SHALLOWSOLVE(subgoal, header, relevant_theorems)
if proof # L then
return proof
end if

Strategy 3: Recursive Decomposition
if depth < D then
proof < SUBGOALDECOMPOSITION(subgoal, header, depth+ 1)
ifproof # L then
return proof
end if
end if
return |

: end function

header,
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Algorithm 3 HILBERT: Sketch Validation and Refinement

1: function REFINEANDVALIDATESKETCH(sketch, header, relevant_theorems)
2: > Iteratively refine sketch until all subgoals are valid
3: for correction < 1 t0 Kketch corrections 4O
4. sketch_syntactic <  COMPILEANDCORRECTSYNTAXERRORS(sketch, header,
relevant_theorems)
5 if sketch_syntactic == 1 then
6: return L, 0, )
7 end if
8: subgoals < EXTRACTSUBGOALS(sketch_syntactic, header)
9: if subgoals == 1 then
10: return L, 0,
11: end if
12: sketch_assembled < ASSEMBLEPROOFFROMSUBGOALS(sketch_syntactic, subgoals,
header)
13: if sketch_assembled == 1 then
14: return L, (), 0
15: end if
16: valid, verified_subgoals, proved_subgoals, error_justification «
VALIDATESUBGOALS(subgoals, header)
17: if valid then
18: return sketch_assembled, verified_subgoals, proved_subgoals
19: else
20: sketch — REFINESKETCHBASEDONERROR(sketch_syntactic,
error_justification)
21: end if
22: end for

23: return L, 0, 0
24: end function

25:

26: function VALIDATESUBGOALS(subgoals, header)

27: > Validate subgoals through formal proving and correctness checking

28: verified_subgoals < 0

29: proved_subgoals + {}

30:

31: for all subgoal € subgoals do

32: proof < ATTEMPTPROVERLLMPROOF(subgoal, header)

33: if proof # L then

34: verified_subgoals + verified_subgoals U {subgoal}

35: proved_subgoals[subgoal] < proof

36: else

37: mathematically_correct, justification < CHECKMATHEMATICALCORRECT-
NESS(subgoal)

38: if mathematically_correct then

39: verified_subgoals + verified_subgoals U {subgoal}

40: else

41: return false, 0, (), justification

42: end if

43: end if

44: end for

45: return true, verified_subgoals, proved_subgoals, L

46: end function
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Algorithm 4 HILBERT: Proof Sketch Refinement and Assembly

1:

45:
46:
47:
48:

function COMPILEANDCORRECTSYNTAXERRORS(sketch, header, relevant_theorems)
> Compile sketch with sorry statements and correct errors
verified, error_message < VERIFYPROOF(header + sketch)
if verified then
return sketch
end if

> Error correction loop for sketch
for correction < 1 t0 Kiheorem corrections A0
augmented_theorems <~ AUGMENTTHEOREMS(error_message, relevant_theorems)
sketch <~ CORRECTSKETCHERROR(sketch, error_message, augmented_theorems)
verified, error_message < VERIFYPROOF(header + sketch)
if verified then
return sketch
end if
end for
return |

: end function

: function ASSEMBLEPROOFFROMSUBGOALS(sketch, subgoals, header)

> Assemble complete proof outline with verification
all_theorems < CONCATENATETHEOREMS(subgoals)
sketch_assembled < REASONERLLM( s sketch,
all_theorems)
corrected_proof — VERIFYANDCORRECTPROOFWITHTHEOREMS(sketch_assembled,

all_theorems, header)
return corrected_proof

: end function

. function VERIFYANDCORRECTPROOFWITHTHEOREMS(sketch_assembled, theorems, header)

> Verify assembled sketch and correct errors
full_proof < header + theorems + sketch_assembled
verified, error < VERIFYPROOF(full_proof)
if verified then
return sketch_assembled
end if

for correction < 1 t0 Kiheorem corrections A0
corrected_proof <— REASONERLLM( , error)
if sketch_assembled == 1 then
continue
end if
full_proof < header 4 theorems + sketch_assembled
verified, error < VERIFYPROOF(full_proof)
if verified then
return sketch_assembled
end if
end for
return |
end function
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Algorithm 5 HILBERT: Proof Generation

: function ATTEMPTPROVERLLMPROOF(problem, header)
> Multiple attempts with formal prover LLM
for attempt < 1 t0 Kformal attempts 40
proof < PROVERLLM(problem)
verified, error < VERIFYPROOF(header + proof)
if verified then
return proof
end if
end for
10: return |
11: end function

R A A N

12:

13: function GENERATEPROOFSKETCH(problem, relevant_theorems)

14: > Generate informal proof sketch using prompts

15: informal_proof — REASONERLLM( s problem,
relevant_theorems)

16: sketch < REASONERLLM( , problem, relevant_theorems,
informal_proof)

17: return sketch

18: end function

19:

20: function SHALLOWSOLVE(subgoal, header, relevant_theorems)

21: > Shallow solve with error correction loop

22: proof < ATTEMPTREASONERPROOF(subgoal, relevant_theorems)

23: verified, error_message < VERIFYPROOF(header + proof)

24: if verified then

25: return proof

26: end if

27:

28: > Error correction loop

29: for correction < 1 to Kubgoal corrections O

30: augmented_theorems <— AUGMENTTHEOREMS(error_message, relevant_theorems)

31: proof < CORRECTPROOFERROR(proof, error_message, augmented_theorems)

32: verified, error_message < VERIFYPROOF(header + proof)

33: if verified then

34: return proof

35: else

36: > Check proof length cutoff when verification fails

37: if |prOOf‘ > Kmax shallow solve length then

38: return L > Proof too long and still incorrect, abandon

39: end if

40: end if

41: end for

42: return |
43: end function
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Algorithm 6 HILBERT: LLM Prompt Functions

1: function ATTEMPTREASONERPROOF(subgoal, relevant_theorems)
2: > Shallow solve using informal reasoning
3: proof <— REASONERLLM( , subgoal, relevant_theorems)
4: return proof
5: end function
6:
7: function CHECKMATHEMATICALCORRECTNESS(subgoal)
8: > Verify mathematical correctness of subgoal
9: correct, Jjustification < REASONERLLM(
subgoal)
10: return correct, justification
11: end function
12:
13: function EXTRACTSUBGOALS(sketch, header)
14: > Extract have statements as independent subgoals
15: subgoals < REASONERLLM( , sketch)
16:
17: > Syntax check and correction for each subgoal
18: corrected_subgoals < 1}
19: for all subgoal € subgoals do
20: verified, error < VERIFYPROOF(header + subgoal)
21: if verified then
22: corrected_subgoals < corrected_subgoals U {subgoal}
23: else
24: > Error correction loop
25: corrected ¢ false
26: for attempt < 1to Ksubgoal error corrections A0
27: subgoal <~ CORRECTTHEOREMERROR(subgoal, error)
28: verified, error <- VERIFYPROOF(header + subgoal)
29: if verified then
30: corrected_subgoals < corrected_subgoals U {subgoal}
31: corrected ¢ true
32: break > Successfully corrected
33: end if
34: end for
35: if ~corrected then
36: return | > Failed to correct subgoal, return failure
37: end if
38: end if
39: end for
40:
41: return corrected_subgoals

42: end function
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Algorithm 7 HILBERT: Error Correction

1: function REFINESKETCHBASEDONERROR(sketch, error_justification)
2: > Refine proof sketch based on subgoal validation errors
3: refined < REASONERLLM( R
sketch, error_justification)
return refined
end function

function CORRECTSKETCHERROR(sketch, error_message, relevant_theorems)
> Correct syntax and compilation errors
corrected <— REASONERLLM( , error_message,
sketch, relevant_theorems)
10: return corrected
11: end function

13: function CORRECTPROOFERROR(proof, error_message, augmented_theorems)

14: > Correct proof errors using error feedback

15: corrected < REASONERLLM( , error_message, proof,
augmented_theorems)

16: return corrected

17: end function

19: function CORRECTTHEOREMERROR(subgoal, error_message)

20: > Correct syntax errors in extracted subgoals

21: corrected < REASONERLLM( , error_message,
subgoal)

22: return corrected

23: end function
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Algorithm 8 HILBERT: Retrieval and Helper Functions

: function RETRIEVETHEOREMS(problem, error_message = None)
> Theorem retrieval from Mathlib with optional parameter for error message
if retrieval_enabled then
search_queries - GENERATESEARCHQUERIES(problem, error_message)
candidate_theorems <~ SEMANTICSEARCHENGINE(search_queries)
relevant_theorems < SELECTRELEVANTTHEOREMS(candidate_theorems, problem)
return relevant_theorems
else
return ()
end if
: end function

> Generate search queries for theorem retrieval
queries <— REASONERLLM( , problem)
return queries
: end function

: function SELECTRELEVANTTHEOREMS(candidate_theorems, problem)

1
2
3
4
5
6
7
8
9
10
11
12:
13: function GENERATESEARCHQUERIES(problem)
14:
15
16
17
18
19
20 > Select most relevant theorems from candidates

21: selected < REASONERLLM( , problem, candidate_theorems)
22: return selected

23: end function

24:

25: function VERIFYPROOF(full_proof)

26: > Verify proof using Lean verifier

27: result, error_message < LEANVERIFIER(full_proof)

28: return result, error_message

29: end function

30:

31: function AUGMENTTHEOREMS(error_message, existing_theorems)

32: > Add theorems for missing identifiers

33: missing_ids <— EXTRACTMISSINGIDENTIFIERS(error_message)

34: ifmissing_ids # 0 then

35: additional_theorems < RETRIEVETHEOREMS(problem, error_message)
36: return existing_theorems 4+ additional_theorems

37: end if

38: return existing_theorems

39: end function
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A.2 PROMPTS

Search Query Generation (SEARCH_QUERY_PROMPT)

You are helping solve a Lean theorem proving problem using the mathlib library.
Before attempting to write the proof, you must first search for relevant theorems and tactics.

Search Process:

1. Identify key concepts: Break down the problem into mathematical concepts, operations, and
— structures involved.

2. Generate search queries: For each concept, create informal search strings that describe:

— Relevant theorems or results (e.g., "associativity of addition", "existence of inverse
— elements")
— Useful tactics (e.g., "simplify arithmetic expressions", "split conjunctions")

- Properties (e.g., "group structure on integers", "metric space properties"
- Relevant definitions useful for the proof or any used theorem (e.g. "definition of a group",
< "definition of a metric space")

Search Query Format:
Enclose each search query in <search> tags with your informal description. Limit yourself to a
< maximum of 5 search queries. Make the search queries simple, concise, and clear.

Guidelines:

- You can either search by theorem name or natural language description
— Search for theorems that might automate parts of the proof

— Consider edge cases and special conditions mentioned in the problem

Problem to Solve:
{problem}

Theorem Selection (SEARCH_ANSWER_PROMPT)

You are helping to solve a Lean theorem proving problem using the mathlib library. The problem is:
{problem}

Here are some potentially relevant theorems and definitions:
{theorems}

Instructions:

1. Select important theorems and definitions necessary to solve the problem.

2. IMPORTANT: ONLY SELECT theorems from the GIVEN list.

3. Enclose each of them in separate <theorem> tags.

4. Only state the full names of the theorems. Do NOT include the module name.

5. Select all theorems that could be useful in the intermediate steps of the proof.
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Informal Proof Generation (INFORMAL_PROOF_PROMPT)

You are a mathematical expert whose goal is to solve problems with rigorous
mathematical reasoning.

{useful_theorems_section}

Instructions:

1. Provide a natural language, step-by-step proof for the given problem.

2. Start from the given premises and reason step-by-step to reach the conclusion.

3. Number each step of the proof as 1, 2, and so on.

4. Be as pedantic and thorough as possible.

5. Keep each step precise, increase the number of steps if needed.

6. Do NOT gloss over any step. Make sure to be as thorough as possible.

7. Show the explicit calculations/simplifications, theorem applications and case
analysis.

8. Enclose the informal proof in <informal_proof> tags.

Problem Statement: {problem}
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Lean Sketch Creation (CREATE_LEAN SKETCH_PROMPT)

You are a Lean 4 expert who is trying to help write a proof in Lean 4.
Problem Statement: {problem}

{useful_theorems_section}
Informal Proof:
{informal_proof}

Instructions:

Use the informal proof to write a proof sketch for the problem in Lean 4 following

these guidelines:

- Break complex reasoning into logical sub-goals using “have”™ statements.

— The subgoals should build up to prove the main theorem.

— Make sure to include all the steps and calculations from the given proof in the
proof sketch.

— Each subgoal should ideally require applying Jjust one key theorem or lemma, or a
few tactic applications.

- Base subgoals around:
— Useful theorems mentioned in the problem context
- Standard library theorems (like arithmetic properties, set operations, etc.)
— The supplied premises in the theorem statement

— Do NOT create subgoals identical to any of the given hypotheses

— Do NOT create subgoals that are more complex than the original problems. The
subgoals should be SIMPLER than the given problem.

— Do NOT skip over any steps. Do NOT make any mathematical leaps.

*xSubgoal Structure Requirements:#*x

- *xSimplicity**: Each subgoal proof should be achievable with 1-3 basic tactics

- x*xAtomic reasoning*x: Avoid combining multiple logical steps in one subgoal

— x*xClear progression**: Show logical flow: “premises — intermediate steps — final result~
— *xxTheorem-focusedxx: Design each subgoal to directly apply a specific theorem when possible

NOTE: Only add sub-goals that simplify the proof of the main goal.
When writing Lean proofs, maintain consistent indentation levels.

Rules:

1. Same proof level = same indentation: All tactics at the same logical level must
use identical indentation

2. Consistent characters: Use either tabs OR spaces consistently (don't mix)

3. Proper nesting: Indent sub-proofs one level deeper than their parent

4. Do NOT nest “have” statements in each other. Use distinct sub-goals as much as
possible. Ensure all sub goals are named. Do NOT create anonymous have statements.

5. Do NOT include any imports or open statements in your code.

6. One line = One “have” subgoal. Do NOT split subgoals across different lines.

7. Use proper Lean 4 syntax and conventions. Ensure the proof sketch is enclosed in

triple backticks “"“lean™""
8. Use “sorry~ for all subgoal proofs - focus on structure, not implementation
9. xxDo NOT use ~“sorry  for the main goal proofx* - use your subgoals to prove it

10. NEVER use “sorry”~ IN the theorem statement itself

11. Ensure subgoals collectively provide everything needed for the main proof

12. Make the logical dependencies between subgoals explicit. Ensure that the subgoals
are valid and provable in Lean 4.

13. Do NOT change anything in the original theorem statement.

Lean Hints:
{lean_hints}
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Lean Sketch Creation (CREATE_LEAN SKETCH_PROMPT) (continued)

IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
subtraction operations on natural number literals with UNDEFINED types, unless
REQUIRED by the theorem statement. For example, do NOT allow literals like "1 / 37
or "2 / 5% or "1 - 3° ANYWHERE in ANY of the subgoals. ALWAYS specify the types.
AVOID natural number arithmetic UNLESS NEEDED by the theorem statement.

ALWAYS specify types when describing fractions. For example, ((2 : R) / 3) or

((2 : Q) / 3) instead of (2 / 3). Do this everywhere EXCEPT the given theorem statement.
IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
subtraction operations on variables of type natural numbers (Nat or N), unless
REQUIRED by the theorem statement. For example, do NOT allow expressions like (a-b)
or (a/b) where a, b are of type N. ALWAYS cast the variables to a suitable type

(Z, Q or R) when performing arithmetic operations. AVOID natural number arithmetic
UNLESS NEEDED by the theorem statement.

Subgoal Extraction (EXTRACT SUBGOALS_FROM SKETCH_PROMPT)

From this proof sketch, extract any missing proofs (specified with “sorry™) as

independent subgoals (theorems).

Instructions:

1. Use the same name as the have statements for the theorems.

2. Each subgoal should have the relevant context from the previous subgoals needed
to simplify the proof as much as possible.

3. There should be as many extracted theorems as “sorry's in the given theorem.

4. Do NOT include any imports or open statements. Do NOT add any definitions. ONLY
include the theorem statement.

5. Use a separate Lean 4 ““lean™” block for each subgoal.

6. Use sorry for the proof. Do NOT prove any theorem.

7. Do NOT change the conclusion of the theorems from the extracted subgoals. Keep
them AS IT IS.

8. Do NOT change the conclusions of the preceding theorems when presenting them as
hypotheses for the next subgoals. Keep them AS IT IS.

9. Do NOT duplicate theorem names. Use distinct theorem names for the different theorems.

10. Make sure the names and types of the premises/arguments in the extracted theorems
MATCH the subgoals from which they are extracted.

IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
subtraction operations on natural number literals with UNDEFINED types, unless
REQUIRED by the theorem statement. For example, do NOT allow literals like "1 / 3~
or "2 / 5 or "1 - 37 ANYWHERE in the theorem statement. ALWAYS specify the types.
AVOID natural number arithmetic UNLESS NEEDED by the theorem statement.

ALWAYS specify types when describing fractions. For example, ((2 : R) / 3) or

((2 : Q) / 3) instead of (2 / 3)

IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
subtraction operations on variables of type natural numbers (Nat or N), unless
REQUIRED by the theorem statement. For example, do NOT allow expressions like (a-b)
or (a/b) where a, b are of type N. ALWAYS cast the variables to a suitable type

(Z, Q or R) when performing arithmetic operations. AVOID natural number arithmetic
UNLESS NEEDED by the theorem statement.

Lean Hints:
{lean_hints}

Proof Sketch:
""" leand
{proof_sketch}
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Subgoal Solving (SOLVE_SUBGOAL_PROMPT)

Think step-by-step to complete the following Lean 4 proof.
{problem}

Lean Hints:
{lean_hints}

Tactic Hints:
{tactic_hints}

Rules:

1. Same proof level = same indentation: All tactics at the same logical level must

use identical indentation

Consistent characters: Use either tabs OR spaces consistently (don't mix)

Proper nesting: Indent sub-proofs one level deeper than their parent

Do NOT include any imports or open statements.

Use proper Lean 4 syntax and conventions. Ensure the proof sketch is enclosed in

triple backticks “"“lean™""

6. Only include a single Lean 4 code block, corresponding to the proof along with
the theorem statement.

7. When dealing with large numerical quantities, avoid explicit computation as much
as possible. Use tactics like rw to perform symbolic manipulation rather than
numerical computation.

8. Do NOT use sorry.

9. Do NOT change anything in the original theorem statement.

{useful_theorems_section}

g W N

Mathematical Correctness Check (DETERMINE_IF CORRECT SUBGOAL_PROMPT)

You are an expert in mathematics.

Your task is to evaluate whether the given mathematical theorem statement is
mathematically correct. You do NOT have to provide a proof for the theorem in Lean.

Evaluation criteria:

1. Mathematical validity: Check for logical errors, incorrect assumptions, or
calculation mistakes.

2. Do NOT flag general results or helper lemmas that are true independent of the
given premises. ONLY flag inaccuracies or mistakes.

5. Provability: Determine if the statement can be proven given the provided premises,
or otherwise.

Assumptions:
1. The given premises are mathematically correct. Do NOT check this.
2. The syntax is guaranteed to be correct (do not assess syntax)

Theorem Statement:
{problem}

Report your answer as either:
« YES - if the statement is mathematically correct
« NO - if the statement has mathematical errors that prevent proof

Also provide a brief justification for your decision in <justification></justification>
tags, adding details about why the statement is correct or incorrect.

If it is incorrect, also provide a description of how the error can be corrected.

If there are missing arguments, make sure to add the relevant missing proof steps.
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Sketch Assembly (USE_SKETCH_AND_THEOREMS_PROMPT)

You are a Lean 4 expert. Your goal is to write a proof in Lean 4, according to the
given proof sketch, using the supplied theorems.

Proof sketch:
{proof_sketch}

Theorems:
{theorems_string}

Instructions:
1. You can assume that the theorems are correct and use them directly in your proof.

2. Do NOT modify the given theorems.

3. Do NOT prove the given theorems.

4. Do NOT modify the given proof sketch steps. Simply apply the given theorems to
complete the missing “sorry™ steps.

5. Do NOT use “sorry~ in your proof.

6. Do NOT include any imports or definitions or open statements.

7. Do NOT re-define the given theorems in your response.

8. Do NOT write a proof for any subgoal from scratch. ALWAYS use the supplied theorems.

IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
subtraction operations on natural number literals with UNDEFINED types, unless
REQUIRED by the theorem statement. For example, do NOT allow literals like "1 / 3~
or "2 / 5 or "1 - 3°. ALWAYS specify the types. AVOID natural number arithmetic
UNLESS NEEDED by the theorem statement.

ALWAYS specify types when describing fractions. For example, ((2 : R) / 3) or

((2 : Q) / 3) instead of (2 / 3). Do this everywhere EXCEPT the given theorem statement.
IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
subtraction operations on variables of type natural numbers (Nat or N), unless
REQUIRED by the theorem statement. For example, do NOT allow expressions like (a-b)
or (a/b) where a, b are of type N. ALWAYS cast the variables to a suitable type

(Z, Q or R) when performing arithmetic operations. AVOID natural number arithmetic
UNLESS NEEDED by the theorem statement.

Your answer should be a single Lean 4 block containing the completed proof for the
given theorem.

Assembly Correction (ASSEMBLY CORRECTION_PROMPT)

The following Lean 4 code has compilation errors. Please fix the errors while
maintaining the mathematical meaning.

{error_message}

Lean Hints:
{lean_hints}

Instructions:

1. Analyze what the theorem is trying to prove. Then, analyze why the error is
happening, step-by-step. Add a brief explanation.

2. Then, provide a corrected version of the Lean 4 code that addresses these
specific errors.

3. You should ONLY correct the main theorem that appears at the end. Do NOT
change any of the helper theorems.

3. Do NOT include any other Lean code blocks except for the proof. Do NOT
include any imports or open statements.

4. Do NOT use “sorry  in any part of the proof.

5. Do NOT change anything in the original theorem statement.

6. Do NOT include the helper theorem definitions in your response.

7. Do NOT write a proof for any subgoal from scratch. ALWAYS use the supplied

theorems.
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Sketch Refinement Based on Incorrect Subgoal
(CORRECT_SKETCH_BASED_ON_INCORRECT SUBGOAL_PROMPT)

You are an expert in writing Lean 4 proofs. You are given a Lean 4 proof sketch
where one of the subgoals has some issues.
Your task is to fix the issues and write a new proof sketch.

Proof Sketch:
{proof_sketch}

Issues:
{issues}

Lean Hints:
{lean_hints}

Rules:

1. Same proof level = same indentation: All tactics at the same logical level
must use identical indentation

2. Consistent characters: Use either tabs OR spaces consistently (don't mix)

3. Proper nesting: Indent sub-proofs one level deeper than their parent

4. Do NOT nest “have® statements in each other. Write different have statements
for different sub goals.

5. Ensure all sub goals are named. Do NOT create anonymous have statements.

6. Do NOT include any imports or open statements.

7. One line = One “have® subgoal. Do NOT split subgoals across different lines.

8. Use proper Lean 4 syntax and conventions. Ensure the proof sketch is enclosed
in triple backticks “"“lean”™ ™"

9. Use “sorry” for all subgoal proofs - focus on structure, not implementation

10. *xDo NOT use ~“sorry~ for the main goal proofxx* - use your subgoals to prove it

11. NEVER use “sorry”~ IN the theorem statement itself

12. Ensure subgoals collectively provide everything needed for the main proof

13. Make the logical dependencies between subgoals explicit. Ensure that the
subgoals are valid and provable in Lean 4.

14. Modify only the incorrect subgoal and everything that follows it in the proof
sketch. Leave all preceding portions unchanged.

15. Either modify the problematic subgoals to fix the errors, or add additional

subgoals to fill in the missing mathematical arguments.
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Proof Sketch Correction (PROOF_SKETCH_CORRECTION_PROMPT)

The following Lean 4 code has compilation errors. Please fix the errors while
maintaining the mathematical meaning.

Original statement: {informal_ statement}
{error_message}

Lean Hints:
{lean_hints}

Instructions:

1. Analyze what the theorem is trying to prove. Then, analyze why the error is
happening, step-by-step. Add a brief explanation.

2. Then, provide a corrected version of the Lean 4 code that addresses these
specific errors.

3. Do NOT include any other Lean code blocks except for the proof. Do NOT
include any imports or open statements.

4. Use sorry for the proof of all “have® statements.

5. Ensure there are no use of “sorry  statements outside of “have”™ statements.
Do NOT use “sorry” while proving the main theorem.

6. Do NOT change anything in the original theorem statement.

7. Do NOT nest “have™ statements in each other. Use distinct sub-goals as much
as possible. Ensure all sub goals are named. Do NOT create anonymous have
statements.

{useful_theorems_section}

Proof Correction (PROOF_CORRECTION_ PROMPT)

The following Lean 4 code has compilation errors. Please fix the errors while
maintaining the mathematical meaning.

{error_message}

Instructions:

1. Analyze what the theorem is trying to prove. Then, analyze why the error is
happening, step-by-step. Add a brief explanation.

2. Then, provide a corrected version of the Lean 4 code that addresses these
specific errors.
Do NOT include any other Lean code blocks except for the proof.
Do NOT use sorry.

NOT include any imports or open statements.

Do NOT change anything in the original theorem statement.

o U W
]
o

{useful_theorems_section}

Subgoal Syntax Correction (SUBGOAL_SYNTAX CORRECTION_PROMPT)

The following Lean 4 theorem has compilation errors. Please fix the errors while
maintaining the mathematical meaning.

{error_message}

Instructions:

1. Analyze why the error is happening, step-by-step. Add a brief explanation.
2. Then, provide a corrected version of the Lean 4 code that addresses these
specific errors.

Do NOT include any other Lean code blocks except for the theorem.

Use sorry for the proof.

. Do NOT include any imports or open statements.
potentially_useful_theorems}

~— 0D W
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A.3 IMPLEMENTATION DETAILS

We improve HILBERT’s efficiency through several runtime optimizations focused on parallelization. The
Prover LLM is served using vVLLM (Kwon et al.l [2023)) and the Lean Verifier using Kimina Lean Server
(Santos et al.l2025) to handle multiple requests in parallel.

We implement AsyncJobPool, a mechanism built around Python’s asyncio library, to orchestrate
parallel requests across our framework’s multiple steps. Submitted jobs run concurrently until specific
completion criteria are met based on the algorithm step. Concurrency is controlled using Semaphores. We
implement three completion criteria:

* Wait for All. The execution terminates when all jobs in the pool have finished execution. This criterion is
used to parallelize across examples, and across subgoals (Section [3.2.2).

* First-Success Termination. Execution terminates as soon as one successful job is found, and pending jobs
are terminated. This criterion is used to parallelize across proof attempts (the initial Prover attempts, and
Steps 1 and 3 in Section[3.2.2)).

* First Failure. Execution halts upon the first job failure, immediately canceling remaining jobs. This criterion
is applied during subgoal correctness verification (Step 2 in Section [3.2.2)). Since verification failures often
indicate fundamental issues with the proof sketch that affect multiple subgoals, early termination prevents
wasted computation on dependent subgoals, which may change after correcting the problematic subgoal.
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A.4 SUBGOAL DECOMPOSITION EXAMPLE

g g Reasoner theorem sqrt_ten_irrational: Irrational (Real.sgrt .
theor‘e'em sqrt_ten_irrational : > @0 3 B & iy Verifier
Irrational (Real.sqgrt (10 : R & / have hl: Irrational (Real.sgrt (10 : R)) « -IsSquare

(10: N) := by sorry TH=CREM FROVES
have h2 : -IsSquare (10 : N) := by sorry
Retriever have h3 : Irrational (Real.sqrt (10 : R)) := by sorry lo
(1) Dﬁ. e exact h3 Proof Sketch
Z Useful Theorems x_ > Reasoner
R e ¢

Verifier e theorem sqrt_ten_irrational: Irrational (Redl.sgrt (Redl.sqrt (10 : R)) « -IsSquare (10 : N) := P( )
»
\—:'W (10 : R)) := by by sorry .
— L have hl: Irrational (Real.sqrt (1@ : R)) « -IsSquare :
[ (10: N) := hl_sqrt_ten_irrational theorem h2_sqrt_ten_irrational: -IsSquare

have h2 : -IsSquare (10 : N) := h2_sqrt_ten_irrational (10 : N) := by sorry
have h3 : Irrational (Real.sqrt (10 : R)) :=

h3_sqrt_ten_irrational hl h2

rtheor'em h3_sqrt_ten_irrational: (hl : Ir‘r‘ationa'lj

exact h3 (Real.sqrt (10 : R)) « -IsSquare (10 : N)) l(
Assembled Proof @2 & —IeRpe 0 8 R § .
LIrr‘ationul (Real.sgrt (10 : R)) := by sorry =
——— Extracted Subgoals

Figure 5: Subgoal Decomposition Example. We illustrate the subgoal decomposition process using the
input theorem sqrt_ten_irrational. The process consists of four main steps: (1) We retrieve relevant
theorems from Mathlib to inform the proof strategy. (2) The Reasoner generates a proof sketch, which is
verified by the Lean Verifier for validity. If verification fails, error messages guide the Reasoner to make
corrections. (3) The Reasoner extracts subgoals from the validated sketch and verifies their correctness,
refining them as needed. (4) The Reasoner assembles a complete proof by incorporating the extracted subgoals
into the original sketch. Since the subgoals lack proofs at this stage, they are denoted by sorry. This
assembled proof undergoes final verification. The process outputs both the complete assembled proof and the
verified subgoals (without their proofs). Note that while Steps (3) and (4) are shown together in this figure for
simplicity, they represent distinct operations as detailed in Figure @

A.5 MINIF2F PROOF EXAMPLE

We include an example to demonstrate how our hierarchical algorithm can help discover proofs that are too
complex for either the Prover or informal Reasoner alone. We present the proof for Problem 4 from AMC
12B 2002, a problem which was unsolved even by DeepSeek Prover V2-671B after 8196 passes. We find that
HILBERT is able to solve the problem with one layer of decomposition using Goedel Prover V2-32B model
as the Prover.

import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat
theorem k_one_amcl2b_2002_p4 (n : N) (hg : O
< (h_k_is_one : V (k : N), 41 » n + 42 = k
have h_main : k = 1 := by
have h; : k = 1 := h_k_is_one k hk

<mn) (k : N) (hk : 41 * n + 42 = k » (42 * n))
* (42 » n) — k = 1) : k :
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exact hi

exact h_main

theorem h_sum_is_frac_amcl2b_2002_p4 (n : N) (hg 0 < n)
— (T(41 » n + 42)) / 1(42 % n) := by
have h; 1/ 2+1/3+1/7+1/1n Q) = (1(41 = n + 42)
have hy : (n : Q) # 0 := by

norm_cast
<;> linarith

(L /2+1/3+1/7+1/ 1T

/ 1(42 % n) := by

—-— Use field _simp to find a common denominator and simplify the expression

field_simp [ha]

-— Normalize the expression by expanding and simplifying it
ring_nf
norm_cast
field_simp
ring_nf
norm_cast
simp [mul_assoc]
norm_num
linarith

7

VVVVVVVYV

[ha]

7

7

7

<
<
<
<
<
<
<;
<

;
apply hi
theorem h_k_is_one_amcl2b_2002_p4 (n : N) 0 <n) :V (k
— 1 := by
intro k hk
have h; k # 0 :=
by_contra h
—— Assume k = 0 and derive a contradiction.
have hj k = 0 := by simpa using h
rw [ho] at hk
have hgj 41 «+ n + 42 = 0 :=
ring_nf at hk
<;> nlinarith
have hy 41 » n + 42 > 0 :=
nlinarith
linarith

(ho

by

by

by

have hs : k
by_contra
—— Assume
have hs

omega
have hy : k = (
have hy : k =
have hg : k
have hry (
nlinarith
exact hs

have hy : 2
ring

have hg : k =*
linarith

have hr7 41 » n + 42 < 84 x n :=
have hg : n > 1 := by linarith
have hg 43 « n > 43 := by

nlinarith
have hig
have hij
omega
have hiy 84 x n > 41 » n + 42 :=
cases n with
| zero => contradiction
| succ n =>
simp [Nat.mul_add, Nat.add_mul,
<;> ring_nf at hg b <;>
(try omega) <;>
(try nlinarith)

2 := by

2 and derive a contradiction.

>
> 2 := by

o oA

:= by positivity

(42 * n) = 84 » n := by

(42 » n) > 84 x* n := by

by

43 * n - 42 > 1
43 * n > 43 :=

:= by
by nlinarith

by

Nat.add_assoc]
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omega

have hg : 41 » n + 42 < k * (42 x n) := by
linarith

linarith

have hg : k =

have hy : k
omega

have hs : k

by_contra

-—- If k is not > 1, then k = 0, which contradicts hj.

IN =
=
I
o
>

gV
.

[}

o

>3]

have hy : k = 0 := by
omega
contradiction
omega
exact hs
theorem h_divides_amcl2b_2002_p4 (n : N) (hg : 0 <n) (hy = (L / 2+ 1/ 3+ 1/ 7+ 1/ T :Q).den
< = 1) (h_sum_is_frac : (1L / 2+ 1 /3 +1/ 7+ 1/ 1Th:Q = (1041 » n + 42)) / 1(42 * n)) : 42 «
— n | 41 x n + 42 := by
have ha : ((T(41 * n + 42) : Q) / 7(42 %« n)).den = 1 := by
have ha; : ((1(41 » n+ 42) : Q) / 1(42 +n)) = (1L / 2+ 1 /3 +1/7+1/1n:Q) :=by

rw [h_sum_is_frac]
<;> field_simp <;> ring_nf <;> norm_cast
<;> field_simp <;> ring_nf <;> norm_cast

rw [ho1]
exact hjp
have hg : (42 » n : Z) | (41 » n + 42 : Z) := by
have hz; : (((41 » n + 42 : Z) : Q) / (42 » n : Z)).den = 1 := by

norm_cast at ho F
<;> simpa [div_eq mul_inv] using hs

have hge : 3 (k : Z), ((41 » n + 42 : Z) : Q) / (42 » n : Z) = (k : Q) := by
have hgs : (((41 » n + 42 : Z) : Q) / (42 » n : Z)).den = 1 := hz;
have hggy : 3 (k : Z), ((41 » n + 42 : Z) : Q) / (42 » n : Z) = (k : Q) := by
—-— Use the fact that the denominator is 1 to find an integer k
have hgs : 3 (k : Z), ((41 » n + 42 : Z) : Q) / (42 + n : Z) = (k : Q) := by
—-- Use the property of rational numbers with denominator 1
have hszg : (((41 » n + 42 : Z) : Q) / (42 » n : Z)).den = 1 := hzy
have hz7y : 3 (k : Z), ((41 » n + 42 : Z) : Q) / (42 » n : Z) = (k : Q := by

—-— Use the fact that the denominator is 1 to find an integer k
refine' ((((41 = n + 42 : Z) : Q) / (42 » n : Z)).num, _)

have hgg : (((41 » n + 42 : Z) : Q) / (42 = n : Z)) = ((((41 » n + 42 : Z) : Q) / (42 * n
— : Z)).num : Q) := by
have hzg : (((41 * n + 42 : Z) : Q) / (42 * n : Z)).den = 1 := hz;
have hao : (((41 » n + 42 : Z) : Q) / (42 *n : Z)) = ((((41 * n + 42 : Z) : Q) / (42 «
<~ n : Z)).num : Q) := by
rw [+ Rat.num_div_den (((41 = n + 42 : Z) : Q) / (42 » n : Z))]

<;> field_simp [hsg]
<;> norm_cast
<;> simp_all [Rat.den_nz]
exact ha4o
exact hssg
exact hs7
exact hss
exact hga
obtain <k, h33> := hgo
have hgs : (42 » n : Z) | (41 » n + 42 : Z) := by
have hzs : ((41 » n + 42 : Z) : Q) / (42 ' n : Z) = (k : Q) := hzs
have hgg : (42 » n : Z) # 0 := by
have hz7y : (n : N) > 0 := hg
have hzg : (42 » n : Z) > 0 := by
norm_cast
<;> nlinarith
linarith
have hg7y : ((41 » n + 42 : Z) : Q) = (k : Q) * (42 = n : Z)
field_simp [hgg] at hsgs k-
<;> ring_nf at hgs F <;> norm_cast at hgs F <;>

by
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(try norm_num at hgs bH) <;>

(try linarith) <;>

(try simp_all [mul_comm]) <;>

(try ring_nf at hgs F <;> norm_cast at hgs F <;> linarith)
>

(

<;
try
{
nlinarith
}
<;>
(try
{
field_simp at hgs F <;>
ring_nf at hss F <;>
norm_cast at hgs F <;>
linarith
}
have hgg : (41 » n + 42 : Z) =k % (42 * n : Z) := by
norm_cast at hg7 b
<;>
(try ring_nf at hgy F) <;>
(try norm_num at hg7y F) <;>
(try linarith)
<;>
(try
{
field_simp at hg7 F <;>
ring_nf at hgy F <;>
norm_cast at hgy F <;>
linarith
}
have hgg : (42 * n : Z) | (41 * n + 42 : Z) := by
use k
<;>
linarith
exact hsg
exact hga
have hy : 42 » n | 41 * n + 42 := by
have hg1 : (42 » n : Z) | (41 » n + 42 : Z) := hg
have hygo : (42 » n : N) | (41 » n + 42 : N) := by

—— Convert the divisibility from integers to natural numbers
norm_cast at hgy F

<;>
(try omega) <;>
(try
{
—-- Use the fact that the integers are positive to convert to natural numbers
cases' hygi with k hk
use k
<;>
(try ring_nf at hk k) <;>
(try norm_cast at hk k) <;>
(try omega)
}
<;>
(try

{
—— Handle any remaining cases or simplifications
simp_all [mul_comm]
<;>
ring_nf at =
<;>
norm_cast at =
<;>
omega
}
—— Use the natural number divisibility to conclude the proof
simpa [mul_comm] using hgso
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exact hg
theorem amcl2b_2002_p4 (n : N) (hgp : 0 <n) (hy : (L / 2+ 1 /3 +1/7+1/Tn:Q).den=1) : n =
— 42 := by

—— Step 1: Combine the rational numbers into a single fraction.

have h_sum is_frac : (1 / 2 + 1/ 3+ 1/ 7+ 1/t :Q) = (1(41 x n + 42)) / 1(42 * n) := by

exact h_sum_is_frac_amcl2b_2002 p4 n ho
-—- Step 2: Use the denomin
-— According to ‘Rat.den_ Cast_eq _one_

-— ((m : Q) / d).den = 1" d | m
have h_divides : 42 » n | 41 * n o+ 42 := by
exact h_divides_amcl2b_2002_p4 n hg hy h_sum_is_frac
3: Py the definition of divisibility,

‘h_divides® implies there exists a natural number 'k~

k = be 1.

that 41 = n + 42 = k * (42 % n)°. This step proves tha
havehklsone:Vk:N,41*n+47:k*(47*n)~>k:\::
exact h_k_is_one_amcl2b_2002_p4 n ho
From h_divides, we obtain the existence of such a ‘k° and its correspond
rcases h_divides with (k, hk)

1g equation.

-— We use co
rw [mul_comm (4

tivity of multiplication to match the form expected by the helper theorem.
+ n)] at hk

ta
42

—-— We use our proof from k_is_one to show t ‘k* must be 1.

have k_one : k = 1 := by
exact k_one_amcl2b_2002_p4 n hg k hk h_k_is_one
-— Substituting k = 1 back into the equation.

rw [k_one, one_mul] at hk

—— The equat iIs now 41 * n + 42 = 42 x n'. We solve for 'n-.

10n

i
-— We can rewrite 42 = n° as 41 = n + n".

rw [show 42 * n 41 » n + n by ring] at hk

-— By cancelling 41 % n' from both sides, we get 42 = n".
exact (Nat.add_left_cancel hk).symm

A.6 INFERENCE TIME COMPUTE

Beyond inference-time scaling with the number of Reasoner calls (Figure 3), we demonstrate how HILBERT
scales with additional metrics: the number of tokens consumed by the Reasoner and Prover (Figure[6)), and the
number of Prover and Verifier calls (Figure[7). Consistent with our previous findings, we observe a continuous
increase in pass rate as token usage increases. Notably, the most challenging problems required 22.8M and
27.0M tokens for the Gemini 2.5 Pro variants with Goedel-Prover-V2 and DeepSeek-Prover-V2, respectively.
These token counts far exceed the context length of most LLMs, demonstrating that our agentic framework
enables models to go beyond their inherent context limitations when solving complex mathematical problems,
at the cost of increased inference-time computation.
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Figure 6: Pass rate (vs) Reasoner and Total Tokens. We plot the pass-rate for HILBERT on MiniF2F as
a function of (top) the number of tokens used by the Reasoner (bottom) the total number of tokens used
(Reasoner + Prover), per sample.
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Figure 7: Pass rate (vs) Prover and Verifier Calls. We plot the pass-rate for HILBERT on MiniF2F as a
function of (top) the number of calls to the Prover (bottom) the number of calls to the Verifier, per sample.

A.7 PROOF LENGTHS
Figures [8 and 9] show the distribution of proof lengths generated by HILBERT on the MiniF2F and Putnam-

Bench datasets, respectively. For comparison, Figure §]also includes proof lengths from DeepSeek-Prover-
V2-671B on MiniF2F problems.
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On MiniF2F, HILBERT generates substantially longer proofs than DeepSeek-Prover-V2-671B, with an average
length of 247 lines compared to 86.7 lines. Notably, HILBERT produces one proof spanning 8,313 lines,
demonstrating its capacity for tackling hard problems.

This trend toward longer proofs is even more pronounced on PutnamBench, where HILBERT achieves an
average proof length of 1,454 lines. The longest proof on this dataset exceeds 15,000 lines of code. The
ability to consistently generate such extensive proofs likely contributes to HILBERT’s superior performance
on PutnamBench compared to baseline methods, as longer proofs may reflect more thorough exploration of
intermediate steps necessary for a complete Lean proof.

Number of Proofs

10

MiniF2F Proof Lengths (Hilbert) MiniF2F Proof Lengths (DeepSeek-Prover-V2-671B)

(242 proofs) (217 proofs)

Avg. proof length = 247.0 lines
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Avg. proof length = 86.7 lines
Max. proof length = 1922 lines
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Proof Length (Lines of Code)

10
Proof Length (Lines of Code)

Figure 8: Lengths of proofs generated by (left) HILBERT (Gemini 2.5 Pro + Goedel-Prover-V2) (right)
DeepSeek-Prover-V2 671B for problems from MiniF2F.
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Figure 9: Lengths of proofs generated by HILBERT (Gemini 2.5 Pro + Goedel-Prover-V2) for problems from

PutnamBench.
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