

000 HILBERT: RECURSIVELY BUILDING FORMAL PROOFS WITH 001 INFORMAL REASONING 002

003 **Anonymous authors**
004
005

006 Paper under double-blind review
007
008

009 ABSTRACT 010

011 Large Language Models (LLMs) demonstrate impressive mathematical reasoning abilities,
012 but their solutions frequently contain errors that cannot be automatically verified. Formal
013 theorem proving systems such as Lean 4 offer automated verification with complete accu-
014 racy, motivating recent efforts to build specialized prover LLMs that generate verifiable
015 proofs in formal languages. However, a significant gap remains: current prover LLMs solve
016 substantially fewer problems than general-purpose LLMs operating in natural language. We
017 introduce HILBERT, an agentic framework that bridges this gap by combining the comple-
018 mentary strengths of informal reasoning and formal verification. Our system orchestrates
019 four components: an informal LLM that excels at mathematical reasoning, a specialized
020 prover LLM optimized for Lean 4 tactics, a formal verifier, and a semantic theorem re-
021 triever. Given a problem that the prover is unable to solve, HILBERT employs recursive
022 decomposition to split the problem into subgoals that it solves with the prover or reasoner
023 LLM. It leverages verifier feedback to refine incorrect proofs as necessary. Experimental
024 results demonstrate that HILBERT substantially outperforms existing approaches on key
025 benchmarks, achieving 99.2% on miniF2F, 6.6% points above the best publicly available
026 method. HILBERT achieves the **best known result** on PutnamBench. It solves 462/660
027 problems (70.0%), outperforming proprietary approaches like SeedProver (50.4%) and
028 achieving a 422% improvement over the best publicly available baseline. Thus, HILBERT
029 effectively narrows the gap between informal reasoning and formal proof generation.

030 1 INTRODUCTION 031

032 General-purpose Large Language Models (LLMs) have achieved dramatic improvements in mathematical
033 understanding. Reasoning LLMs like GPT-5 and Gemini 2.5 Pro attain near-perfect performance on high-
034 school olympiad exams such as AIME and can solve a significant proportion of competitive undergraduate-
035 level problems from the Putnam exam (Dekoninck et al., 2025). These systems also show promise on
036 research-level benchmarks like FrontierMath (Glazer et al., 2024; OpenAI, 2025).

037 However, several fundamental limitations severely constrain their practical utility. These systems frequently
038 hallucinate, producing confident-sounding but ultimately incorrect solutions. Even when the final answers
039 are correct, the underlying reasoning often contains serious flaws: "proving" by example, logical fallacies,
040 unjustified assumptions, and calculation errors (Petrov et al., 2025; Guo et al., 2025; Mahdavi et al., 2025;
041 Balunović et al., 2025). Manual verification of generated proofs is time-consuming, difficult, and error-prone.
042 Although recent advances show LLM-based verifiers can approach human-level performance (Guo et al.,
043 2025; Dekoninck et al., 2025), they remain fallible due to hallucinations and silent failures (Mahdavi et al.,
044 2025; Petrov et al., 2025).

045 Formal theorem proving systems such as Lean 4 (Moura & Ullrich, 2021) offer a promising solution
046 by enabling automated proof verification with complete accuracy, guaranteeing to prove or disprove the

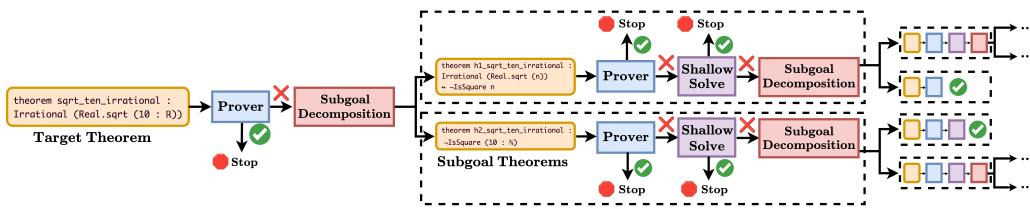


Figure 1: The HILBERT algorithm. Given a target theorem, HILBERT attempts formal proof generation with the prover. Upon failure, it decomposes the problem into subgoals and tries to solve them with the prover, followed by the reasoner (shallow solve). If both strategies fail, it resorts to recursive decomposition until all subgoals are resolved.

correctness of proofs in formal languages. This capability has spurred the development of purpose-built prover LLMs (Polu & Sutskever, 2020), with substantial research focused on developing specialized models for generating formal Lean 4 proofs (Yang et al., 2023; Xin et al., 2024a;b; 2025; Ren et al., 2025; Dong & Ma, 2025; Wang et al., 2025). The best open prover models achieve over 90% pass rate on miniF2F (Zheng et al., 2021) and solve 86 of 657 problems on the challenging PutnamBench (Tsoukalas et al., 2024). Proprietary systems such as AlphaProof (AlphaProof & AlphaGeometry, 2024) and SeedProver (Chen et al., 2025) demonstrate this paradigm’s potential, achieving a silver-medal performance on problems from the International Mathematical Olympiad (IMO).

Despite this progress, a significant performance gap remains between specialized prover LLMs and general-purpose reasoning LLMs. For example, Dekoninck et al. (2025) found through human verification that reasoning LLMs can solve approximately 83% of PutnamBench problems informally, while the best publicly available prover LLMs achieve only 13% with formal proofs. General-purpose LLMs excel at informal mathematical reasoning and understand formal language syntax well enough to write effective proof sketches and short proofs (Ren et al., 2025; Liang et al., 2025). However, they struggle with full formal program synthesis, achieving only 49.1% pass rate (with 16384 attempts) on miniF2F (Zhou et al., 2025b). Conversely, specialized prover LLMs excel at producing syntactically correct formal proofs for standalone theorems, but are brittle at language-intensive tasks like leveraging existing theorems or error correction (Liang et al., 2025).

To address this gap, several works have explored incorporating informal reasoning from general-purpose LLMs to augment formal theorem-proving capabilities. Early approaches like DSP (Jiang et al., 2022) and LEGO-Prover (Wang et al., 2023) used general-purpose LLMs to propose proof sketches, with automated theorem provers (ATPs) filling formal components, but were limited by heuristics-based ATP capabilities. DSP+ (Cao et al., 2025) extended this approach using modern prover LLMs for intermediate steps. However, these methods struggle with complex subgoals due to shallow, single-layer decomposition. They break down the original problem but cannot further decompose subgoals that remain too difficult to solve directly. Recent agentic frameworks including COPRA (Thakur et al., 2024), Prover-Agent (Baba et al., 2025), and ProofCompass (Wischermann et al., 2025) iteratively construct proofs using informal reasoning with feedback from the formal verifier. Although these methods show promise, their performance still significantly lags behind general-purpose reasoning LLMs.

We introduce HILBERT, an agentic framework that bridges informal reasoning with formal verification (Figure 1). It orchestrates four key components: a general-purpose reasoning LLM, a prover LLM, a verifier, and a semantic theorem retriever. Given a mathematical problem, HILBERT first retrieves relevant theorems from Mathlib (mathlib Community, 2020) and generates a detailed informal proof using the reasoner. It then creates a Lean 4 proof sketch decomposing the problem into manageable subgoals. For each subgoal, HILBERT employs a two-stage approach: attempting formal proof generation with the prover, then falling back to the reasoner augmented with retrieved theorems. When both stages fail, the system recursively decomposes problematic subgoals into smaller problems. At every stage, HILBERT leverages the reasoner’s

094 superior in-context learning capabilities to interpret compilation errors, suggest corrections, and guide proof
 095 refinement. We summarize our main contributions below.
 096

097 • We design **HILBERT**, a multi-turn agentic framework that systematically combines informal mathematical
 098 reasoning with formal proof verification, closing the performance gap between these two paradigms.
 099 • We conduct comprehensive experiments on MiniF2F and PutnamBench, achieving state-of-the-art per-
 100 formance on both benchmarks. **HILBERT** reaches 99.2% pass rate on miniF2F (6.6 points above the best
 101 public method) and solves 462/660 PutnamBench problems (70.0%), outperforming proprietary systems
 102 like SeedProver (50.4%) and achieving over 4 \times improvement versus the best open-source baseline.
 103 • Through extensive ablation studies, we validate the effectiveness of our key technical contributions:
 104 the recursive decomposition procedure for breaking down complex proofs and the retrieval-augmented
 105 generation mechanism for enhanced reasoning capabilities.
 106

107 2 RELATED WORK

109 Automated Theorem Provers (ATPs) are computational systems designed to automatically discover proofs
 110 of mathematical theorems. Traditional approaches have primarily relied on symbolic reasoning methods
 111 (Robinson, 1965; McCune, 2003; Schulz, 2002) and integration tools like Sledgehammer that connect ATPs
 112 with interactive proof assistants (Blanchette et al., 2013; Czajka & Kaliszyk, 2018). Recently, LLMs have
 113 emerged as a promising new tool for automated theorem proving (Polu & Sutskever, 2020; Yang et al., 2024).
 114

115 **Prover LLMs.** The general principle is to train specialized prover LLMs on large datasets of formal proofs,
 116 most prominently for the Lean (Moura & Ullrich, 2021) theorem prover. Some prominent models include
 117 GPT-f (Polu & Sutskever, 2020), ReProver (Yang et al., 2023), DeepSeek Prover family of models (Xin et al.,
 118 2024a;b; Ren et al., 2025), ABEL (Gloeckle et al., 2024), Goedel Prover V1 and V2 (Lin et al., 2025a;b),
 119 BFS Prover (Xin et al., 2025), STP-Prover (Dong & Ma, 2025) and Kimina Prover (Wang et al., 2025).
 120 These models are trained by curating a substantial corpus of formal proofs and performing some combination
 121 of supervised finetuning and reinforcement learning. Several approaches have enhanced these models by
 122 incorporating subgoal decomposition into the training process (Zhao et al., 2023; 2024; Ren et al., 2025), while
 123 POETRY (Wang et al., 2024) and ProD-RL (Dong et al., 2024) employ recursive problem decomposition.
 124 Proprietary prover LLMs like AlphaProof (AlphaProof & AlphaGeometry, 2024) and SeedProver (Chen
 125 et al., 2025) have pushed the frontier further, achieving a silver-medal performance on problems from the
 126 International Mathematics Olympiad (IMO). Still, significant performance gaps remain between specialized
 127 prover models and general-purpose LLMs in mathematical reasoning capabilities (Dekoninck et al., 2025).
 128

129 **Using Informal LLMs for Formal Theorem Proving.** Several previous works have attempted to incorporate
 130 informal reasoning from general-purpose LLMs to improve formal reasoning abilities. DSP (Jiang et al., 2022)
 131 used the Codex LLM to propose proof sketches in Isabelle, with intermediate steps filled in by Sledgehammer.
 132 LEGO-Prover (Wang et al., 2023) extended this framework to handle a growing skill library of intermediate
 133 theorems for retrieval-augmented proving. Liang et al. (2025) argue that general purpose reasoning LLMs are
 134 more effective at decomposing problems into simpler subgoals compared to prover LLMs. Our work extends
 135 upon this observation by using informal reasoners to recursively build proof sketches to break the problem
 136 down into simpler sub-problems that can be handled by a prover or reasoning LLM.
 137

138 Several works have also proposed using an informal LLM in an agentic framework for automated theorem
 139 proving. COPRA (Thakur et al., 2024) queries an informal LLM to construct proofs tactic by tactic,
 140 incorporating execution feedback, search history, and retrieved lemmas into subsequent prompts. Prover-
 141 Agent (Baba et al., 2025) uses a small informal reasoning model to produce proof steps and lemmas, which
 142 are autoformalized and solved using a prover LLM. Feedback from Lean is used to iteratively refine incorrect
 143 proofs. ProofCompass (Wischermann et al., 2025) enhances prover LLMs by adding informal proof steps as
 144

141 comments in the input. When proof attempts fail, it analyzes these failures to extract intermediate lemmas
 142 that enable effective problem decomposition. DeltaProver (Zhou et al., 2025b) introduces a custom Domain-
 143 Specific Language to perform subgoal decomposition, and iteratively repair the generated proof using verifier
 144 feedback. Notably, it only uses an informal LLM and does not rely on prover LLMs. In contrast, our work
 145 demonstrates that prover LLMs become highly effective tools when orchestrated in an appropriately designed
 146 multi-agent framework.

148 3 HILBERT SYSTEM

150 In this section, we detail HILBERT, a multi-agent system that bridges informal mathematical reasoning and
 151 formal verification by orchestrating general-purpose reasoning LLMs with specialized prover LLMs. Our
 152 approach uses recursive subgoal decomposition to break complex theorems into simpler subgoals that can be
 153 proven and combined, achieving performance exceeding either approach in isolation.

155 3.1 COMPONENTS

156 Before we describe the inference algorithm, we first describe the components that HILBERT orchestrates.

158 **Reasoner.** A general-purpose reasoning LLM to write informal proofs, proof sketches in Lean, and in certain
 159 instances, a formal proof. In our work, we use Google Gemini 2.5 Flash and Pro (Comanici et al., 2025) due
 160 to their superior mathematical reasoning capabilities (Zhou et al., 2025b; Dekoninck et al., 2025).

161 **Prover.** A specialized prover LLM to write formal proofs given a formal theorem statement. In our work, we
 162 use DeepSeek-V2-7B (Ren et al., 2025) and Goedel-Prover-V2 32B (Lin et al., 2025b).

164 **Verifier.** A formal language verifier to check the correctness of the theorem statements and proofs. We use
 165 the Kimina Lean Server (Santos et al., 2025) with Lean v4.15.0 and Mathlib v4.15.0.

166 **Retriever.** A semantic search engine to retrieve relevant theorems from Mathlib (mathlib Community,
 167 2020) built using sentence transformers (all-mnlp-base-v2 (Song et al., 2020)) and FAISS (Douze
 168 et al., 2024) indexing. The system computes cosine similarity between query embeddings and pre-computed
 169 embeddings of informal theorem descriptions from the mathlib_informal (Gao et al., 2024) dataset,
 170 providing a simple yet effective alternative to custom retrieval models (Gao et al., 2024; Lu et al., 2025).

172 3.2 ALGORITHM

174 Given a formal statement in Lean 4, we first attempt direct proof using the Prover. It generates $K_{\text{initial proof}} = 4$
 175 candidate proofs, which we verify using the Verifier. If any proof is valid, we return it immediately. When
 176 direct proof attempts fail, we use the Reasoner to decompose the problem into simpler subproblems and
 177 assemble them into a valid proof strategy. Figure 2 provides an overview of this stage.

178 3.2.1 SUBGOAL DECOMPOSITION

180 **Step 1** (Theorem Retrieval). Given the formal statement, we prompt the Reasoner to produce $s = 5$ search
 181 queries to look for theorems that might help simplify the proof strategy. For each search query, we use the
 182 Retriever to retrieve the top $m = 5$ most semantically similar theorems and tactics from Mathlib. We again
 183 query the Reasoner to select only the relevant theorems from the fetched search results.

184 **Step 2** (Formal Proof Sketch Generation). We prompt the Reasoner to produce a detailed informal proof
 185 using the retrieved theorems. With this proof supplied in-context, we ask the Reasoner to generate a Lean 4
 186 proof sketch that decomposes the problem into simpler subproblems represented as have statements. All
 187 subgoals are initially filled with sorry, a placeholder keyword that Lean can temporarily treat as a proof of

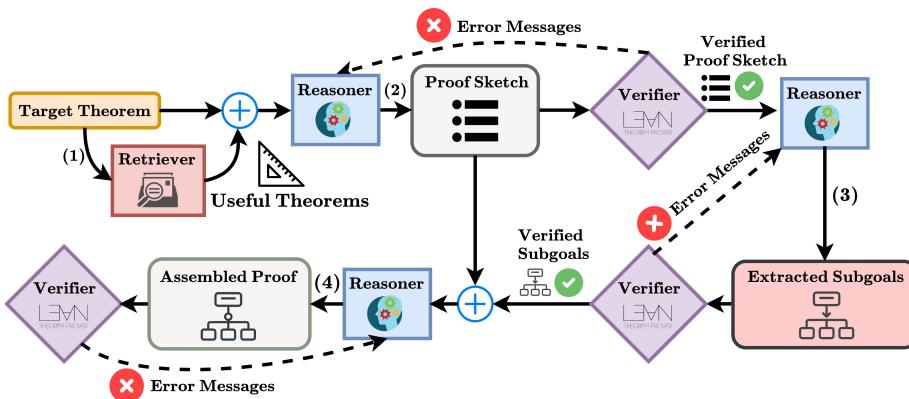


Figure 2: **Subgoal Decomposition:** Given a theorem statement, HILBERT: (1) retrieves relevant theorems from Mathlib using semantic search, (2) generates a formal proof sketch with subgoals marked as `have` statements with `sorry` placeholders, (3) extracts these subgoals as independent theorem statements, and (4) assembles the proof by replacing `sorry` placeholders with calls to the subgoal theorems. Verifiers ensure correctness at each stage. The error correction loops are indicated by dotted lines.

the subgoal. We verify that the proof sketch is valid using the Verifier and leverage its feedback to correct any errors. We generate a maximum of $K_{\text{sketch attempts}} = 4$ sketch attempts for each input theorem.

Step 3 (Subgoal Extraction). The Reasoner extracts subgoals from the proof sketch, converting them into independent theorem statements with relevant context from the original problem and preceding subgoals. As before, we use `sorry` for the proof. We verify completeness by counting `have` statements in the proof sketch and ensuring that all of them are extracted. In case any of them are missing, we prompt the Reasoner to extract the missing subgoals. Each extracted theorem undergoes syntax verification using the Verifier. When errors occur, we provide error messages in-context to the Reasoner for correction. This approach proves more reliable than parsing source code directly or extracting subgoals from Lean 4’s proof state data structure (InfoTree) (Liang et al., 2025).

Step 4 (Proof Assembly from Subgoals). We provide the Reasoner with the extracted subgoal theorem statements (which contain `sorry` placeholders) and validated proof sketch. The Reasoner produces an assembled proof for the target theorem by replacing each `sorry` placeholder in the proof sketch with calls to the corresponding subgoal theorem. We then verify both the subgoal theorem statements and the assembled proof together using the Verifier to ensure the overall structure is sound. We check for errors using the Verifier and correct them through iterative feedback with the Reasoner. This guarantees that after all subgoals are proven, we will have a complete proof of the given theorem.

3.2.2 SUBGOAL VERIFICATION

At this stage, we have a valid theorem proof structure and a list of subgoals that, if proven, complete the original proof. However, the mathematical correctness and provability of these subgoals remain unverified. For each subgoal, we execute the following verification and proof process:

Step 1 (Prover Attempts). We first attempt to prove each subgoal directly using the Prover, generating $K_{\text{formal proof}} = 4$ candidate proofs and verifying them with the Verifier. If any generated proof is valid, we accept it and proceed to the next subgoal.

Step 2 (Correctness Verification). For subgoals that cannot be directly proven, we prompt the Reasoner to evaluate whether the subgoal is mathematically correct and whether the formal statement is formulated

235 correctly and provable. If the Reasoner identifies the subgoal as mathematically incorrect, unprovable, or
 236 poorly formulated, we flag it for correction and return to refine the original proof sketch, repeating all steps
 237 from Section 3.2.1 onwards with the identified issues incorporated as feedback. Apart from mathematical
 238 errors, some common failure modes detected by the Reasoner at this stage include missing hypotheses or
 239 conditions in the subgoal theorem statement, and atypical behavior due to the Lean type system, such as
 240 truncation of natural numbers¹.

241 We prioritize direct Prover attempts over Reasoner verification because the Prover models are computationally
 242 cheaper, and a valid proof automatically confirms mathematical correctness. Empirically, we observe that a
 243 significant proportion of generated subgoals can be successfully proven by the Prover. Step 1 ensures that we
 244 save on the computational costs of the expensive Reasoner model for verification on the successful subgoals.

245 **Step 3 (Shallow Solve).** After Step 1 fails and Step 2 confirms subgoal correctness, we employ a Reasoner
 246 model for a "shallow solve" approach that writes short proofs for subgoals the Prover could not directly solve.
 247 We retrieve relevant theorems from the Mathlib library and ask the Reasoner to write a formal proof for
 248 the subgoal. The Reasoner iteratively refines proofs based on Verifier feedback for up to $K_{\text{proof correction}} = 6$
 249 passes. When compilation errors indicate missing or incorrect theorem references, we retrieve additional
 250 relevant theorems. To preserve computational resources, we terminate this step if an incorrect proof exceeds
 251 the length threshold $K_{\text{max shallow solve length}} = 30$ lines, as excessively long proofs indicate the need for further
 252 decomposition. This entire shallow solve process repeats for up to $K_{\text{informal passes}} = 6$ attempts until we obtain
 253 a successful proof or exhaust all attempts.

254 **Step 4 (Recursive Decomposition and Proof Assembly).** If subgoals remain unproven after Steps 1-3, we
 255 recursively apply the subgoal decomposition process (Section 3.2.1) to break them down further. Each subgoal
 256 is subdivided until it is either successfully proven or we reach the maximum recursion depth D . Should all
 257 subgoals become proven, we proceed to create a complete proof for the given theorem by stitching together
 258 the proofs for all subgoals and the assembled proof outline from Step 4 of subgoal decomposition. This is
 259 done by concatenating the proofs of the subgoals with the assembled proof produced in Step 4 of subgoal
 260 decomposition (Section 3.2.1). Any remaining unsolved subgoals at this point trigger a failed proof attempt,
 261 prompting us to restart the subgoal decomposition process for the theorem.

262 The complete algorithm is presented in Algorithm 1. For implementation details, particularly parallelization
 263 strategies, refer to Section A.3.

265 4 EXPERIMENTAL RESULTS

266 4.1 MAIN RESULTS

267 **MiniF2F.** The MiniF2F dataset (Zheng et al., 2021) is a 488 problem dataset comprising of high-school
 268 mathematics competition problems. Some problems are particularly challenging, sourced from the AMC,
 269 AIME and IMO competitions. We benchmark on the 244 problems from the test split of MiniF2F. We use
 270 recursion depth $D = 5$ for all our experiments. For the Prover, we instantiate HILBERT with two LLMs:
 271 DeepSeek-Prover-V2-7B (Ren et al., 2025), representing a relatively weaker model, and Goedel-Prover-V2-
 272 32B (Lin et al., 2025b), representing a stronger one. This pairing allows us to compare performance across
 273 different capability levels. For the Reasoner, we analogously employ Google’s Gemini 2.5 Flash and Gemini
 274 2.5 Pro (Comanici et al., 2025). The results are presented in Table 1.

275 HILBERT, demonstrates strong performance across all model configurations. Our top-performing setup
 276 combines Gemini 2.5 Pro with Goedel-Prover-V2-32B, achieving a 99.2% pass rate and failing on only two
 277 problems (AMC 12A 2020 Problem 25 and IMO Shortlist 2007 Problem A6). Even with weaker formal

278 ¹<https://lean-lang.org/doc/reference/latest/Basic-Types/Natural-Numbers/>

Method	Pass Rate
STP (Dong & Ma, 2025) (pass@3200) (pass@25600)	$65.0\% \pm 0.5\%$ 67.6%
Kimina-Prover-8B (Wang et al., 2025) (pass@32) Kimina-Prover-72B (pass@1024) w/ TTRL	78.3% 87.7% 92.2%
Gemini 2.5 Pro (pass@16384) Delta Prover (Zhou et al., 2025b) (pass@16384)	49.1% 95.9%
Seed Prover (Chen et al., 2025)	99.6%
Goedel-Prover-SFT (Lin et al., 2025a) (pass@3200) Goedel-Prover-V2-8B (Lin et al., 2025b) (pass@8192) w/ self-correction (pass@1024)	62.7% 90.2% 89.3%
Goedel-Prover-V2-32B (pass@4) (pass@8192) w/ self-correction (pass@1024)	$74.6\% \pm 1.2\%$ 92.2% 92.6%
HILBERT (Gemini 2.5 Flash) + Goedel-Prover-V2-32B HILBERT (Gemini 2.5 Pro) + Goedel-Prover-V2-32B	$94.7\% [+20.1\%]$ $99.2\% [+24.6\%]$
DeepSeek-Prover-V2-7B (CoT) (Ren et al., 2025) (pass@8192) DeepSeek-Prover-V2-7B (non CoT) (pass@4) (pass@8192)	82.0% $61.3\% \pm 0.2\%$ 75.0%
DeepSeek-Prover-V2-671B (pass@8192) HILBERT (Gemini 2.5 Flash) + DS Prover-V2-7B (non-CoT) HILBERT (Gemini 2.5 Pro) + DS Prover-V2-7B (non-CoT)	88.9% $96.7\% [+35.4\%]$ $98.4\% [+37.1\%]$

Table 1: **Results on the MiniF2F-Test dataset.** Improvements shown in brackets for HILBERT are calculated relative to the pass@4 baseline for each prover family. Note: Delta Prover and Seed Prover are proprietary methods and not publicly available to use. Gemini 2.5 Pro result obtained from Zhou et al. (2025b)

Model	# Solved Problems	% Solved Problems
Goedel-Prover-SFT (Lin et al., 2025a) (pass@512)	7/644	1.1%
ABEL (Gloeckle et al., 2024) (pass@596)	7/644	1.1%
Self-play Theorem Prover (Dong & Ma, 2025) (pass@3200)	8/644	1.2%
Kimina-Prover-7B-Distill (Wang et al., 2025) (pass@192)	10/657	1.5%
DSP+ (Cao et al., 2025) (pass@128)	23/644	3.6%
Bourbaki (Zimmer et al., 2025) (pass@512)	26/658	4.0%
DeepSeek-Prover-V2 671B (Ren et al., 2025) (pass@1024)	47/657	7.1%
SeedProver (Chen et al., 2025)	331/657	50.4%
Goedel-Prover-V2-32B (self-correction) (Lin et al., 2025b) (pass@184)	86/644	13.4%
HILBERT (Gemini 2.5 Pro) + Goedel-Prover-V2-32B	462/660	70.0%

Table 2: **Results on the PutnamBench dataset.** We benchmark on the most recent version (as of September 2025) containing 660 problems.

provers, HILBERT maintains impressive results: pairing DeepSeek-Prover-V2-7B with Gemini 2.5 Pro yields 98.4%, while using Gemini 2.5 Flash achieves 96.7%. Notably, the choice of informal reasoner appears more critical than prover strength. Gemini 2.5 Pro consistently outperforms Flash variants by 3-4%, a larger gap than observed between different prover models. Compared to standalone base provers at pass@4, our approach delivers substantial improvements ranging from 20.1% to 37.1%.

PutnamBench. PutnamBench is a challenging theorem-proving benchmark comprising 660 problems from the William Lowell Putnam Mathematical Competition from 1962 to 2024. It contains undergraduate-level

Method	Retrieval	Pass Rate	# Reasoner Calls	# Prover Calls	# Reasoner Tokens	# Prover Tokens
HILBERT+ DeepSeek-Prover-V2-7B	✓	98.4%	420	205	1.9M	0.3M
HILBERT+ DeepSeek-Prover-V2-7B	✗	97.1%	426	290	2.1M	0.4M
HILBERT+ Goedel-Prover-V2-32B	✓	99.2%	548	391	2.3M	1.3M
HILBERT+ Goedel-Prover-V2-32B	✗	97.9%	862	449	4.0M	1.2M

Table 3: **Ablation with/without retrieval.** HILBERT with retrieval achieves a higher pass rate while using less inference-time compute than without retrieval. Numbers show average calls and tokens per sample, computed over samples requiring subgoal decomposition.

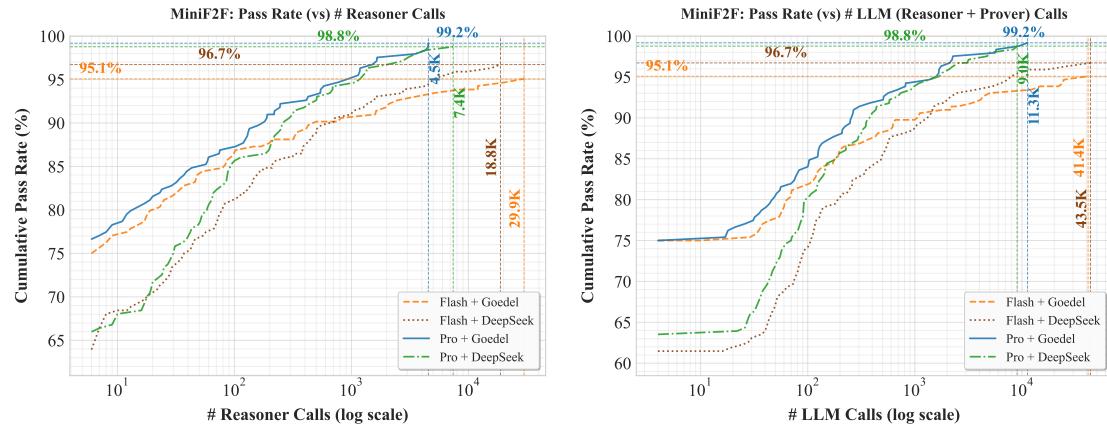


Figure 3: **Pass rate (vs) Inference-time Budget.** We plot the pass-rate for HILBERT on MiniF2F as a function of (left) the number of Reasoner calls (right) the total number of LLM (Reasoner + Prover) calls per sample.

problems across Algebra, Analysis, Number Theory, Geometry, Linear Algebra, Combinatorics, Abstract Algebra, Probability, and Set Theory. Given the high computational cost of evaluating on this dataset, we only experiment with the strongest configuration of HILBERT, (HILBERT with Gemini 2.5 Pro and Goedel-Prover-V2-32B). As before, we set $D = 5$. Our results are presented in Table 2.

HILBERT achieves state-of-the-art performance on PutnamBench, solving 462 out of 660 problems (70.0% pass rate). This surpasses the previous best method, the proprietary SeedProver (50.4%), by nearly 20 percentage points. HILBERT solves over 5 times more problems than the closest publicly available baseline, Goedel-Prover-V2-32B. We attribute this success to HILBERT’s ability to compose long proofs (see Figure 9) without the long-context reasoning issues that plague traditional LLMs (Zhou et al., 2025a).

4.2 SCALING BEHAVIOR WITH INFERENCE-TIME COMPUTE

Unlike traditional prover LLMs that distribute compute across many independent proof attempts from scratch, HILBERT allocates inference-time compute across multiple interconnected stages, from subgoal decomposition to subgoal proof generation. Since this compute allocation is adaptive, it cannot be captured by a simple count of independent attempts. To illustrate the compute-performance tradeoff, we plot HILBERT’s pass rate against the per-sample number of calls to (1) the Reasoner and (2) the Reasoner + Prover combined (Figure 3). The results reveal a clear scaling relationship where pass rates increase with the number of calls per sample. Our best-performing configuration (Gemini 2.5 Pro with Goedel Prover) requires at most 4.5K reasoner calls and 11.3K total calls, significantly fewer than DeltaProver’s 16,384 calls with Gemini 2.5 Pro. Interestingly, the weaker reasoner (Gemini 2.5 Flash) demands a substantially higher inference budget to achieve comparable performance with both prover variants. While HILBERT+ DeepSeek Prover starts with lower pass rates, it demonstrates faster improvement rates, particularly in low-budget settings, eventually

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
matching HILBERT+Goedel-Prover performance. For additional analyses of pass rates versus prover/verifier calls and total token usage, refer to Section A.6.

4.3 ABLATION STUDIES

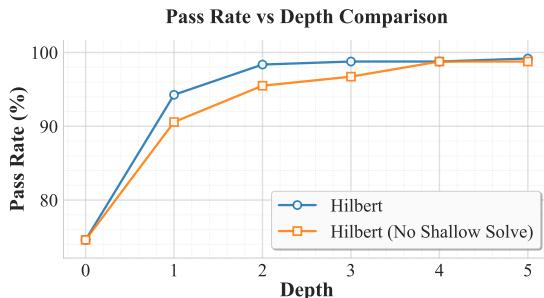


Figure 4: Pass rate (vs) recursive depth D on MiniF2F for HILBERT (Gemini 2.5 Pro) + Goedel-Prover-V2-32B gains from subgoal decomposition. Both configurations show monotonically increasing performance with depth, but exhibit different convergence patterns. The full HILBERT system achieves rapid performance gains, reaching 98.36% at $D = 2$ and 98.7% by $D = 3$. In contrast, the no-shallow-solve variant requires greater depth to achieve comparable performance, highlighting the importance of the shallow solving mechanism. The consistent improvement over the $D = 0$ baseline (75% pass rate) validates the efficacy of hierarchical subgoal decomposition, with the full system achieving near-optimal performance at relatively shallow depths.

Performance (vs) depth. To evaluate the effectiveness of subgoal decomposition, we analyze the pass rate of HILBERT using Gemini 2.5 Pro + Goedel-Prover-V2-32B on the MiniF2F dataset across different recursive depths D . The baseline ($D = 0$) corresponds to no decomposition, where we report the standalone Prover (pass@4) performance. We compare two configurations: the full HILBERT system, and a variant with shallow solving disabled ($K_{\text{informal passes}} = 0$). This variant relies solely on using the Prover for resolving subgoals. Figure 4 shows performance across different values of D , and demonstrates substantial gains from subgoal decomposition. Both configurations show monotonically increasing performance with depth, but exhibit different convergence patterns. The full HILBERT system achieves rapid performance gains, reaching 98.36% at $D = 2$ and 98.7% by $D = 3$. In contrast, the no-shallow-solve variant requires greater depth to achieve comparable performance, highlighting the importance of the shallow solving mechanism. The consistent improvement over the $D = 0$ baseline (75% pass rate) validates the efficacy of hierarchical subgoal decomposition, with the full system achieving near-optimal performance at relatively shallow depths.

Retrieval Ablation. To assess the impact of the Retriever on both performance and computational efficiency, we compare HILBERT to a variant that omits the retrieval step. We experiment on MiniF2F across two Prover configurations: DeepSeek-Prover-V2-7B and Goedel-Prover-V2-32B. Table 3 presents the results. With retrieval enabled, HILBERT achieves higher pass rates across both configurations: 98.4% vs 97.1% for DeepSeek Prover and 99.2% vs 97.9% for Goedel Prover. More importantly, retrieval significantly reduces inference-time compute utilization. For the DeepSeek model, retrieval decreases reasoner calls from 426 to 420, average prover calls from 290 to 205, and average reasoner tokens from 2.1M to 1.9M. The efficiency gains are even more pronounced with the Goedel Prover, where retrieval reduces average reasoner calls from 862 to 548 and average reasoner tokens from 4.0M to 2.3M. These results show that retrieval improves both performance and efficiency by surfacing useful theorems that simplify proofs and preventing failures from incorrect theorem names.

5 CONCLUSION

We present HILBERT, a hierarchical agentic framework that bridges formal theorem proving in Lean with the informal mathematical reasoning capabilities of general-purpose LLMs. Our approach recursively decomposes complex problems into manageable subgoals and orchestrates informal reasoners (Gemini 2.5 Pro/Flash) with formal provers (DeepSeek-Prover-V2-7B and Goedel-Prover-V2-32B) to solve theorems that neither component can handle alone. HILBERT achieves state-of-the-art performance on miniF2F with pass rates of 94.7% to 99.2%. On the challenging PutnamBench dataset, HILBERT achieves 70.0% pass rate, nearly 20 percentage points above previous methods and approaching the 82% informal proof rate reported in Dekoninck et al. (2025). In the future, we plan to leverage this framework to train increasingly capable models. Proofs and reasoning traces generated by HILBERT can be used to train better Prover and Reasoner models. These improved models should be able to solve more complex problems than before, resulting in a virtuous cycle that has the potential to continually advance formal reasoning capabilities.

Reproducibility Statement. We provide comprehensive implementation details to ensure reproducibility of our results. The proposed algorithm (HILBERT) is described in detail in Section 3 with complete pseudocode provided in Algorithm 1. All hyperparameters, model configurations, and experimental settings are specified in Section 3, while the complete set of prompts used for both reasoning and prover LLMs are provided in Appendix A.2. We plan to release the source code and other artifacts upon publication.

LLM Usage. We acknowledge using LLMs as writing assistants to help refine phrasing and improve the clarity of the presentation. LLMs were not used for any substantive aspects of this work, including ideation, conceptual development, or literature review.

REFERENCES

Team AlphaProof and Team AlphaGeometry. Ai achieves silver-medal standard solving international mathematical olympiad problems. *DeepMind blog*, 179:45, 2024.

Kaito Baba, Chaoran Liu, Shuhei Kurita, and Akiyoshi Sannai. Prover agent: An agent-based framework for formal mathematical proofs. *arXiv preprint arXiv:2506.19923*, 2025.

Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Matharena: Evaluating llms on uncontaminated math competitions. *arXiv preprint arXiv:2505.23281*, 2025.

Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C Paulson. Extending sledgehammer with smt solvers. *Journal of automated reasoning*, 51(1):109–128, 2013.

Chenrui Cao, Liangcheng Song, Zenan Li, Xinyi Le, Xian Zhang, Hui Xue, and Fan Yang. Reviving dsp for advanced theorem proving in the era of reasoning models. *arXiv preprint arXiv:2506.11487*, 2025.

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin, Xing Jin, Chenggang Li, Kaijing Ma, et al. Seed-prover: Deep and broad reasoning for automated theorem proving. *arXiv preprint arXiv:2507.23726*, 2025.

Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. *arXiv preprint arXiv:2507.06261*, 2025.

Łukasz Czajka and Cezary Kaliszyk. Hammer for coq: Automation for dependent type theory. *Journal of automated reasoning*, 61(1):423–453, 2018.

Jasper Dekoninck, Ivo Petrov, Kristian Minchev, Mislav Balunovic, Martin Vechev, Miroslav Marinov, Maria Drencheva, Lyuba Konova, Milen Shumanov, Kaloyan Tsvetkov, et al. The open proof corpus: A large-scale study of llm-generated mathematical proofs. *arXiv preprint arXiv:2506.21621*, 2025.

Kefan Dong and Tengyu Ma. Stp: Self-play llm theorem provers with iterative conjecturing and proving. *arXiv preprint arXiv:2502.00212*, 2025.

Kefan Dong, Arvind Mahankali, and Tengyu Ma. Formal theorem proving by rewarding llms to decompose proofs hierarchically. *arXiv preprint arXiv:2411.01829*, 2024.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvassy, Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. 2024.

Guoxiong Gao, Haocheng Ju, Jiedong Jiang, Zihan Qin, and Bin Dong. A semantic search engine for mathlib4. *arXiv preprint arXiv:2403.13310*, 2024.

470 Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caroline Falkman
 471 Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, et al. *Frontiermath: A benchmark for*
 472 *evaluating advanced mathematical reasoning in ai.* *arXiv preprint arXiv:2411.04872*, 2024.

473

474 Fabian Gloeckle, Jannis Limperg, Gabriel Synnaeve, and Amaury Hayat. Abel: Sample efficient online
 475 reinforcement learning for neural theorem proving. In *The 4th Workshop on Mathematical Reasoning and*
 476 *AI at NeurIPS'24*, 2024.

477 Jiaxing Guo, Wenjie Yang, Shengzhong Zhang, Tongshan Xu, Lun Du, Da Zheng, and Zengfeng Huang.
 478 Right is not enough: The pitfalls of outcome supervision in training llms for math reasoning. *arXiv preprint*
 479 *arXiv:2506.06877*, 2025.

480

481 Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée Lacroix,
 482 Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem provers with
 483 informal proofs. *arXiv preprint arXiv:2210.12283*, 2022.

484

485 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez,
 486 Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with
 487 pagedattention. In *Proceedings of the 29th symposium on operating systems principles*, pp. 611–626, 2023.

488

489 Zhenwen Liang, Linfeng Song, Yang Li, Tao Yang, Feng Zhang, Haitao Mi, and Dong Yu. Towards solving
 490 more challenging imo problems via decoupled reasoning and proving. *arXiv preprint arXiv:2507.06804*,
 491 2025.

492

493 Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia, Danqi
 494 Chen, Sanjeev Arora, et al. Goedel-prover: A frontier model for open-source automated theorem proving.
 495 *arXiv preprint arXiv:2502.07640*, 2025a.

496

497 Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan Geng, Jiawei
 498 Ge, Jingruo Sun, et al. Goedel-prover-v2: Scaling formal theorem proving with scaffolded data synthesis
 499 and self-correction. *arXiv preprint arXiv:2508.03613*, 2025b.

500

501 Jialin Lu, Kye Emond, Weiran Sun, and Wuyang Chen. Lean finder: Semantic search for mathlib
 502 that understands user intents. In *2nd AI for Math Workshop @ ICML 2025*, 2025. URL <https://openreview.net/forum?id=5SF4fFRw7u>.

503

504 Hamed Mahdavi, Alireza Hashemi, Majid Daliri, Pegah Mohammadipour, Alireza Farhadi, Samira Malek,
 505 Yekta Yazdanifard, Amir Khasahmadi, and Vasant Honavar. Brains vs. bytes: Evaluating llm proficiency in
 506 olympiad mathematics. *arXiv preprint arXiv:2504.01995*, 2025.

507

508 The mathlib Community. The lean mathematical library. In *Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs*, POPL '20, pp. 367–381. ACM, January 2020. doi:
 509 10.1145/3372885.3373824. URL <http://dx.doi.org/10.1145/3372885.3373824>.

510

511 William McCune. Otter 3.3 reference manual. *arXiv preprint cs/0310056*, 2003.

512

513 Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language. In *International Conference on Automated Deduction*, pp. 625–635. Springer, 2021.

514

515 OpenAI. Introducing gpt-5. 2025. URL <https://openai.com/index/introducing-gpt-5/>.

516 Ivo Petrov, Jasper Dekoninck, Lyuben Baltadzhiev, Maria Drencheva, Kristian Minchev, Mislav Balunović,
 517 Nikola Jovanović, and Martin Vechev. Proof or bluff? evaluating llms on 2025 usa math olympiad. *arXiv*
 518 *preprint arXiv:2503.21934*, 2025.

517 Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving. *arXiv*
 518 *preprint arXiv:2009.03393*, 2020.

519

520 ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanja Zhao, Liyue Zhang, Zhe
 521 Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical reasoning via
 522 reinforcement learning for subgoal decomposition. *arXiv preprint arXiv:2504.21801*, 2025.

523 J. A. Robinson. A machine-oriented logic based on the resolution principle. *J. ACM*, 12(1):23–41, January
 524 1965. ISSN 0004-5411. doi: 10.1145/321250.321253. URL <https://doi.org/10.1145/321250.321253>.

525

526 Marco Dos Santos, Haiming Wang, Hugues de Saxcé, Ran Wang, Mantas Baksys, Mert Unsal, Junqi Liu,
 527 Zhengying Liu, and Jia Li. Kimina lean server: Technical report. *arXiv preprint arXiv:2504.21230*, 2025.

528

529 Stephan Schulz. E-a brainiac theorem prover. *Ai Communications*, 15(2-3):111–126, 2002.

530

531 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-training for
 532 language understanding. *Advances in neural information processing systems*, 33:16857–16867, 2020.

533

534 Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An in-context
 535 learning agent for formal theorem-proving. In *First Conference on Language Modeling*, 2024.

536

537 George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Amitayush
 538 Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the putnam mathe-
 539 matical competition. *Advances in Neural Information Processing Systems*, 37:11545–11569, 2024.

540

541 Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya Huang, Jing
 542 Xiong, Han Shi, Enze Xie, et al. Lego-prover: Neural theorem proving with growing libraries. *arXiv*
 543 *preprint arXiv:2310.00656*, 2023.

544

545 Haiming Wang, Huajian Xin, Zhengying Liu, Wenda Li, Yinya Huang, Jianqiao Lu, Zhicheng Yang, Jing Tang,
 546 Jian Yin, Zhenguo Li, et al. Proving theorems recursively. *Advances in Neural Information Processing*
 547 *Systems*, 37:86720–86748, 2024.

548

549 Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood Sung, Marina
 550 Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large formal reasoning models
 551 with reinforcement learning. *arXiv preprint arXiv:2504.11354*, 2025.

552

553 Nicolas Wischermann, Claudio Mayrink Verdun, Gabriel Poesia, and Francesco Noseda. Proofcompass:
 554 Enhancing specialized provers with llm guidance. In *2nd AI for Math Workshop@ ICML 2025*, 2025.

555

556 Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and
 557 Xiaodan Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale synthetic data.
 558 *arXiv preprint arXiv:2405.14333*, 2024a.

559

560 Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanja Zhao, Haocheng Wang, Bo Liu, Liyue Zhang,
 561 Xuan Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback for reinforcement
 562 learning and monte-carlo tree search. *arXiv preprint arXiv:2408.08152*, 2024b.

563

Ran Xin, Chenguang Xi, Jie Yang, Feng Chen, Hang Wu, Xia Xiao, Yifan Sun, Shen Zheng, and Kai
 Shen. Bfs-prover: Scalable best-first tree search for llm-based automatic theorem proving. *arXiv preprint*
arXiv:2502.03438, 2025.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan Prenger,
 and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented language models. In
Neural Information Processing Systems (NeurIPS), 2023.

564 Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn Song.
 565 Formal mathematical reasoning: A new frontier in ai. *arXiv preprint arXiv:2412.16075*, 2024.
 566

567 Xueliang Zhao, Wenda Li, and Lingpeng Kong. Decomposing the enigma: Subgoal-based demonstration
 568 learning for formal theorem proving. *arXiv preprint arXiv:2305.16366*, 2023.
 569

570 Xueliang Zhao, Lin Zheng, Haige Bo, Changran Hu, Urmish Thakker, and Lingpeng Kong. Subgoalxl:
 571 Subgoal-based expert learning for theorem proving. *arXiv preprint arXiv:2408.11172*, 2024.
 572

573 Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for formal
 574 olympiad-level mathematics. *arXiv preprint arXiv:2109.00110*, 2021.
 575

576 Yang Zhou, Hongyi Liu, Zhuoming Chen, Yuandong Tian, and Beidi Chen. Gsm-infinite: How do your
 577 llms behave over infinitely increasing context length and reasoning complexity?, 2025a. URL <https://arxiv.org/abs/2502.05252>.
 578

579 Yichi Zhou, Jianqiu Zhao, Yongxin Zhang, Bohan Wang, Siran Wang, Luoxin Chen, Jiahui Wang, Haowei
 580 Chen, Allan Jie, Xinbo Zhang, et al. Solving formal math problems by decomposition and iterative
 581 reflection. *arXiv preprint arXiv:2507.15225*, 2025b.
 582

583 Matthieu Zimmer, Xiaotong Ji, Rasul Tutunov, Anthony Bordg, Jun Wang, and Haitham Bou Ammar. Bour-
 584 baki: Self-generated and goal-conditioned mdps for theorem proving. *arXiv preprint arXiv:2507.02726*,
 585 2025.
 586

A APPENDIX

A.1 ALGORITHM

589 The complete algorithm is presented across multiple blocks for clarity and modularity. Algorithm 1 provides
 590 the main entry point and high-level control flow, while Algorithm 2 details the subgoal resolution strategies.
 591 Algorithms 3 and 4 focus on sketch generation, validation, and assembly processes. Algorithm 5 contains the
 592 core proof generation functions that interface with different LLM components, while Algorithm 6 specifies
 593 the prompt-based functions for various reasoning tasks. Algorithm 7 handles error correction and refinement
 594 procedures, and Algorithm 8 provides supporting functions for theorem retrieval and verification.
 595

596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610

611 **Algorithm 1** HILBERT: Hierarchical Proof Generation System

```

612 1: function GENERATEPROOF(problem, header)
613 2:   ▷ Input: problem (formal statement), header (context)
614 3:
615 4:   ▷ Phase 1: Direct Proof Attempt
616 5:   proof  $\leftarrow$  ATTEMPTPROVERLLMPROOF(problem, header)
617 6:   if proof  $\neq \perp$  then
618 7:     return proof
619 8:   end if
620 9:
621 10:  ▷ Phase 2: Subgoal Decomposition
622 11:  proof  $\leftarrow$  SUBGOALDECOMPOSITION(problem, header, depth=1)
623 12:  return proof
624 13: end function
625 14:
626 15: function SUBGOALDECOMPOSITION(problem, header, depth)
627 16:   ▷ Decompose problem into subgoals and solve recursively
628 17:   if depth  $> D$  then
629 18:     return  $\perp$  ▷ Maximum recursion depth reached
630 19:   end if
631 20:
632 21:   for attempt  $\leftarrow 1$  to  $K_{\text{sketch attempts}}$  do
633 22:     relevant_theorems  $\leftarrow$  RETRIEVETHEOREMS(problem)
634 23:     sketch  $\leftarrow$  GENERATEPROFSKETCH(problem, relevant_theorems)
635 24:     sketch_assembled, subgoals, proved_subgoals  $\leftarrow$ 
636:      REFINEANDVALIDATESKETCH(sketch, header, relevant_theorems)
637 25:
638 26:     if sketch_assembled  $\neq \perp$  then
639 27:       final_proof  $\leftarrow$  SOLVEALLSUBGOALS(subgoals, proved_subgoals,
640 28:       sketch_assembled, header, depth)
641 29:       if final_proof  $\neq \perp$  then
642 30:         return final_proof
643 31:       end if
644 32:     end if
645 33:   end for
646 34:   return  $\perp$ 
647 35: end function
648
649
650
651
652
653
654
655
656
657

```

658

659 **Algorithm 2** HILBERT: Subgoal Resolution

660 1: **function** SOLVEALLSUBGOALS(subgoals, proved_subgoals, sketch_assembled, header, depth)

661 2: *▷ Solve all remaining subgoals and assemble final proof*

662 3: subgoal_proofs $\leftarrow \emptyset$

663 4:

664 5: **for all** subgoal \in subgoals \ proved_subgoals **do**

665 6: proof \leftarrow SOLVESUBGOAL(subgoal, header, depth)

666 7: **if** proof $= \perp$ **then**

667 8: **return** \perp *▷ Failed to prove required subgoal*

668 9: **end if**

669 10: subgoal_proofs[subgoal] \leftarrow proof

670 11: **end for**

671 12:

672 13: final_proof \leftarrow CONCATENATE(header, subgoal_proofs, sketch)

673 14: **return** final_proof

674 15: **end function**

675 16:

676 17: **function** SOLVESUBGOAL(subgoal, header, depth)

677 18: *▷ Solve individual subgoal with multiple strategies*

678 19:

680 20: **Strategy 1:** Direct Prover Attempt

681 21: proof \leftarrow ATTEMPTPROVERLLMPROOF(subgoal, header)

682 22: **if** proof $\neq \perp$ **then**

683 23: **return** proof

684 24: **end if**

685 25:

686 26: **Strategy 2:** Shallow Solve with Reasoner

687 27: relevant_theorems \leftarrow RETRIEVETHEOREMS(subgoal)

688 28: proof \leftarrow SHALLOWSOLVE(subgoal, header, relevant_theorems)

689 29: **if** proof $\neq \perp$ **then**

690 30: **return** proof

691 31: **end if**

692 32:

693 33: **Strategy 3:** Recursive Decomposition

694 34: **if** depth $< D$ **then**

695 35: proof \leftarrow SUBGOALDECOMPOSITION(subgoal, header, depth + 1)

696 36: **if** proof $\neq \perp$ **then**

697 37: **return** proof

698 38: **end if**

699 39: **end if**

700 40: **return** \perp

701 41: **end function**

702

703

704

705 **Algorithm 3** HILBERT: Sketch Validation and Refinement

706 1: **function** REFINEANDVALIDATESKETCH(sketch, header, relevant_theorems)

707 2: *▷ Iteratively refine sketch until all subgoals are valid*

708 3: **for** correction $\leftarrow 1$ **to** $K_{\text{sketch corrections}}$ **do**

709 4: sketch_syntactic $\leftarrow \text{COMPILEANDCORRECTSYNTAXERRORS}(\text{sketch}, \text{header}, \text{relevant_theorems})$

710 5: **if** sketch_syntactic $\equiv \perp$ **then**

711 6: **return** $\perp, \emptyset, \emptyset$

712 7: **end if**

713 8: subgoals $\leftarrow \text{EXTRACTSUBGOALS}(\text{sketch_syntactic}, \text{header})$

714 9: **if** subgoals $\equiv \perp$ **then**

715 10: **return** $\perp, \emptyset, \emptyset$

716 11: **end if**

717 12: sketch_assembled $\leftarrow \text{ASSEMBLEPROOFFROMSUBGOALS}(\text{sketch_syntactic}, \text{subgoals}, \text{header})$

718 13: **if** sketch_assembled $\equiv \perp$ **then**

719 14: **return** $\perp, \emptyset, \emptyset$

720 15: **end if**

721 16: valid, verified_subgoals, proved_subgoals, error_justification $\leftarrow \text{VALIDATESUBGOALS}(\text{subgoals}, \text{header})$

722 17: **if** valid **then**

723 18: **return** sketch_assembled, verified_subgoals, proved_subgoals

724 19: **else**

725 20: sketch $\leftarrow \text{REFINESKETCHBASEDONERROR}(\text{sketch_syntactic}, \text{error_justification})$

726 21: **end if**

727 22: **end for**

728 23: **return** $\perp, \emptyset, \emptyset$

729 24: **end function**

730

731 25: **function** VALIDATESUBGOALS(subgoals, header)

732 26: *▷ Validate subgoals through formal proving and correctness checking*

733 27: verified_subgoals $\leftarrow \emptyset$

734 28: proved_subgoals $\leftarrow \{\}$

735 29: **for all** subgoal \in subgoals **do**

736 30: proof $\leftarrow \text{ATTEMPTPROVERLLMPROOF}(\text{subgoal}, \text{header})$

737 31: **if** proof $\neq \perp$ **then**

738 32: verified_subgoals $\leftarrow \text{verified_subgoals} \cup \{\text{subgoal}\}$

739 33: proved_subgoals[subgoal] \leftarrow proof

740 34: **else**

741 35: mathematically_correct, justification $\leftarrow \text{CHECKMATHEMATICALCORRECTNESS}(\text{subgoal})$

742 36: **if** mathematically_correct **then**

743 37: verified_subgoals $\leftarrow \text{verified_subgoals} \cup \{\text{subgoal}\}$

744 38: **else**

745 39: **return** false, $\emptyset, \emptyset, \text{justification}$

746 40: **end if**

747 41: **end if**

748 42: **end if**

749 43: **end if**

750 44: **end for**

751 45: **return** true, verified_subgoals, proved_subgoals, \perp

46: **end function**

752 **Algorithm 4** HILBERT: Proof Sketch Refinement and Assembly

753 1: **function** COMPILEANDCORRECTSYNTAXERRORS(sketch, header, relevant_theorems)

754 2: *▷ Compile sketch with sorry statements and correct errors*

755 3: verified, error_message \leftarrow VERIFYPROOF(header + sketch)

756 4: **if** verified **then**

757 **return** sketch

758 **end if**

759 *▷ Error correction loop for sketch*

760 9: **for** correction $\leftarrow 1$ **to** $K_{\text{theorem corrections}}$ **do**

761 10: augmented_theorems \leftarrow AUGMENTTHEOREMS(error_message, relevant_theorems)

762 11: sketch \leftarrow CORRECTSKETCHERROR(sketch, error_message, augmented_theorems)

763 12: verified, error_message \leftarrow VERIFYPROOF(header + sketch)

764 13: **if** verified **then**

765 **return** sketch

766 **end if**

767 16: **end for**

768 17: **return** \perp

769 18: **end function**

770 20: **function** ASSEMBLEPROOFFROMSUBGOALS(sketch, subgoals, header)

771 21: *▷ Assemble complete proof outline with verification*

772 22: all_theorems \leftarrow CONCATENATETHEOREMS(subgoals)

773 23: sketch_assembled \leftarrow REASONERLLM(*USE_SKETCH_AND_THEOREMS_PROMPT*, sketch, all_theorems)

774 24: corrected_proof \leftarrow VERIFYANDCORRECTPROFWITHTHEOREMS(sketch_assembled, all_theorems, header)

775 25: **return** corrected_proof

776 26: **end function**

777 27: **function** VERIFYANDCORRECTPROFWITHTHEOREMS(sketch_assembled, theorems, header)

778 29: *▷ Verify assembled sketch and correct errors*

779 30: full_proof \leftarrow header + theorems + sketch_assembled

780 31: verified, error \leftarrow VERIFYPROOF(full_proof)

781 32: **if** verified **then**

782 **return** sketch_assembled

783 **end if**

784 36: **for** correction $\leftarrow 1$ **to** $K_{\text{theorem corrections}}$ **do**

785 37: corrected_proof \leftarrow REASONERLLM(*ASSEMBLY_CORRECTION_PROMPT*, error)

786 38: **if** sketch_assembled $\equiv \perp$ **then**

787 **continue**

788 **end if**

789 full_proof \leftarrow header + theorems + sketch_assembled

790 verified, error \leftarrow VERIFYPROOF(full_proof)

791 **if** verified **then**

792 **return** sketch_assembled

793 **end if**

794 46: **end for**

795 47: **return** \perp

796 48: **end function**

797

798

799 **Algorithm 5** HILBERT: Proof Generation

800 1: **function** ATTEMPTPROVERLLMPROOF(problem, header)

801 2: *▷ Multiple attempts with formal prover LLM*

802 3: **for** attempt $\leftarrow 1$ **to** $K_{\text{formal attempts}}$ **do**

803 4: proof $\leftarrow \text{PROVERLLM}(\text{problem})$

804 5: verified, error $\leftarrow \text{VERIFYPROOF}(\text{header} + \text{proof})$

805 6: **if** verified **then**

806 7: **return** proof

807 8: **end if**

808 9: **end for**

809 10: **return** \perp

810 11: **end function**

811 12:

812 13: **function** GENERATEPROOFSKETCH(problem, relevant_theorems)

813 14: *▷ Generate informal proof sketch using prompts*

814 15: informal_proof $\leftarrow \text{REASONERLLM}(\text{INFORMAL_PROOF_PROMPT}, \text{problem},$

815 16: relevant_theorems)

816 17: sketch $\leftarrow \text{REASONERLLM}(\text{CREATE_LEAN_SKETCH_PROMPT}, \text{problem}, \text{relevant_theorems},$

817 18: informal_proof)

818 19: **return** sketch

819 20: **end function**

820 21:

821 22: **function** SHALLOWOLVE(subgoal, header, relevant_theorems)

822 23: *▷ Shallow solve with error correction loop*

823 24: proof $\leftarrow \text{ATTEMPTREASONERPROOF}(\text{subgoal}, \text{relevant_theorems})$

824 25: verified, error_message $\leftarrow \text{VERIFYPROOF}(\text{header} + \text{proof})$

825 26: **if** verified **then**

826 27: **return** proof

827 28: **end if**

828 29: **for** correction $\leftarrow 1$ **to** $K_{\text{subgoal corrections}}$ **do**

829 30: augmented_theorems $\leftarrow \text{AUGMENTTHEOREMS}(\text{error_message}, \text{relevant_theorems})$

830 31: proof $\leftarrow \text{CORRECTPROOFERROR}(\text{proof}, \text{error_message}, \text{augmented_theorems})$

831 32: verified, error_message $\leftarrow \text{VERIFYPROOF}(\text{header} + \text{proof})$

832 33: **if** verified **then**

833 34: **return** proof

834 35: **else**

835 36: *▷ Check proof length cutoff when verification fails*

836 37: **if** $|\text{proof}| > K_{\text{max shallow solve length}}$ **then**

837 38: **return** \perp *▷ Proof too long and still incorrect, abandon*

838 39: **end if**

839 40: **end if**

840 41: **end for**

841 42: **return** \perp

842 43: **end function**

843

844

845

846

Algorithm 6 HILBERT: LLM Prompt Functions

847

```

1: function ATTEMPTREASONERPROOF(subgoal, relevant_theorems)
2:   ▷ Shallow solve using informal reasoning
3:   proof  $\leftarrow$  REASONERLLM(SOLVE_SUBGOAL_PROMPT, subgoal, relevant_theorems)
4:   return proof
5: end function
6:
7: function CHECKMATHEMATICALCORRECTNESS(subgoal)
8:   ▷ Verify mathematical correctness of subgoal
9:   correct, justification  $\leftarrow$  REASONERLLM(DETERMINE_IF_CORRECT_SUBGOAL_PROMPT,
10:    subgoal)
11:  return correct, justification
12: end function
13: function EXTRACTSUBGOALS(sketch, header)
14:   ▷ Extract have statements as independent subgoals
15:   subgoals  $\leftarrow$  REASONERLLM(EXTRACT_SUBGOALS_FROM_SKETCH_PROMPT, sketch)
16:
17:   ▷ Syntax check and correction for each subgoal
18:   corrected_subgoals  $\leftarrow$   $\emptyset$ 
19:   for all subgoal  $\in$  subgoals do
20:     verified, error  $\leftarrow$  VERIFYPROOF(header + subgoal)
21:     if verified then
22:       corrected_subgoals  $\leftarrow$  corrected_subgoals  $\cup$  {subgoal}
23:     else
24:       ▷ Error correction loop
25:       corrected  $\leftarrow$  false
26:       for attempt  $\leftarrow$  1 to  $K_{\text{subgoal error corrections}}$  do
27:         subgoal  $\leftarrow$  CORRECTTHEOREMERROR(subgoal, error)
28:         verified, error  $\leftarrow$  VERIFYPROOF(header + subgoal)
29:         if verified then
30:           corrected_subgoals  $\leftarrow$  corrected_subgoals  $\cup$  {subgoal}
31:           corrected  $\leftarrow$  true
32:           break ▷ Successfully corrected
33:         end if
34:       end for
35:       if  $\neg$ corrected then
36:         return  $\perp$  ▷ Failed to correct subgoal, return failure
37:       end if
38:     end if
39:   end for
40:
41:   return corrected_subgoals
42: end function

```

884

885

886

887

888

889

890

891

892

893 **Algorithm 7** HILBERT: Error Correction

894 1: **function** REFINESKETCHBASEDONERROR(sketch, error_justification)
895 2: ▷ *Refine proof sketch based on subgoal validation errors*
896 3: refined ← REASONERLLM(**CORRECT_SKETCH_BASED_ON_INCORRECT_SUBGOAL_PROMPT**,
897 sketch, error_justification)
898 4: **return** refined
899 5: **end function**
900 6:
901 7: **function** CORRECTSKETCHERROR(sketch, error_message, relevant_theorems)
902 8: ▷ *Correct syntax and compilation errors*
903 9: corrected ← REASONERLLM(**PROOF_SKETCH_CORRECTION_PROMPT**, error_message,
904 sketch, relevant_theorems)
905 10: **return** corrected
906 11: **end function**
907 12:
908 13: **function** CORRECTPROOFERROR(proof, error_message, augmented_theorems)
909 14: ▷ *Correct proof errors using error feedback*
910 15: corrected ← REASONERLLM(**PROOF_CORRECTION_PROMPT**, error_message, proof,
911 augmented_theorems)
912 16: **return** corrected
913 17: **end function**
914 18:
915 19: **function** CORRECTTHEOREMERROR(subgoal, error_message)
916 20: ▷ *Correct syntax errors in extracted subgoals*
917 21: corrected ← REASONERLLM(**SUBGOAL_SYNTAX_CORRECTION_PROMPT**, error_message,
918 subgoal)
919 22: **return** corrected
920 23: **end function**

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

940

941 **Algorithm 8** HILBERT: Retrieval and Helper Functions

942 1: **function** RETRIEVETHEOREMS(problem, error_message = None)

943 2: *▷ Theorem retrieval from Mathlib with optional parameter for error message*

944 3: **if** retrieval_enabled **then**

945 4: search_queries \leftarrow GENERATESEARCHQUERIES(problem, error_message)

946 5: candidate_theorems \leftarrow SEMANTICSEARCHENGINE(search_queries)

947 6: relevant_theorems \leftarrow SELECTRELEVANTTHEOREMS(candidate_theorems, problem)

948 7: **return** relevant_theorems

949 8: **else**

950 9: **return** \emptyset

951 10: **end if**

952 11: **end function**

953 12:

954 13: **function** GENERATESEARCHQUERIES(problem)

955 14: *▷ Generate search queries for theorem retrieval*

956 15: queries \leftarrow REASONERLLM(**SEARCH_QUERY_PROMPT**, problem)

957 16: **return** queries

958 17: **end function**

959 18:

960 19: **function** SELECTRELEVANTTHEOREMS(candidate_theorems, problem)

961 20: *▷ Select most relevant theorems from candidates*

962 21: selected \leftarrow REASONERLLM(**SEARCH_ANSWER_PROMPT**, problem, candidate_theorems)

963 22: **return** selected

964 23: **end function**

965 24:

966 25: **function** VERIFYPROOF(full_proof)

967 26: *▷ Verify proof using Lean verifier*

968 27: result, error_message \leftarrow LEANVERIFIER(full_proof)

969 28: **return** result, error_message

970 29: **end function**

971 30:

972 31: **function** AUGMENTTHEOREMS(error_message, existing_theorems)

973 32: *▷ Add theorems for missing identifiers*

974 33: missing_ids \leftarrow EXTRACTMISSINGIDENTIFIERS(error_message)

975 34: **if** missing_ids $\neq \emptyset$ **then**

976 35: additional_theorems \leftarrow RETRIEVETHEOREMS(problem, error_message)

977 36: **return** existing_theorems + additional_theorems

978 37: **end if**

979 38: **return** existing_theorems

980 39: **end function**

981

982

983

984

985

986

987
988

A.2 PROMPTS

989
990**Search Query Generation (SEARCH_QUERY_PROMPT)**

991

You are helping solve a Lean theorem proving problem using the mathlib library.
Before attempting to write the proof, you must first search for relevant theorems and tactics.

992

Search Process:

993

1. Identify key concepts: Break down the problem into mathematical concepts, operations, and structures involved.
2. Generate search queries: For each concept, create informal search strings that describe:
 - Relevant theorems or results (e.g., "associativity of addition", "existence of inverse elements")
 - Useful tactics (e.g., "simplify arithmetic expressions", "split conjunctions")
 - Properties (e.g., "group structure on integers", "metric space properties")
 - Relevant definitions useful for the proof or any used theorem (e.g. "definition of a group", "definition of a metric space")

1000

Search Query Format:

1001
1002

Enclose each search query in <search> tags with your informal description. Limit yourself to a maximum of 5 search queries. Make the search queries simple, concise, and clear.

1003

Guidelines:

1004

- You can either search by theorem name or natural language description
- Search for theorems that might automate parts of the proof
- Consider edge cases and special conditions mentioned in the problem

1005

Problem to Solve:

1006

{problem}

1007

1008

Theorem Selection (SEARCH_ANSWER_PROMPT)

1009

1010

You are helping to solve a Lean theorem proving problem using the mathlib library. The problem is:
{problem}

1011

Here are some potentially relevant theorems and definitions:
{theorems}

1012

Instructions:

1013

1. Select important theorems and definitions necessary to solve the problem.
2. IMPORTANT: ONLY SELECT theorems from the GIVEN list.
3. Enclose each of them in separate <theorem> tags.
4. Only state the full names of the theorems. Do NOT include the module name.
5. Select all theorems that could be useful in the intermediate steps of the proof.

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035 **Informal Proof Generation (INFORMAL_PROOF_PROMPT)**

1036

1037 You are a mathematical expert whose goal is to solve problems with rigorous
mathematical reasoning.

1038

1039 {useful_theorems_section}

1040 Instructions:

1. Provide a natural language, step-by-step proof for the given problem.
2. Start from the given premises and reason step-by-step to reach the conclusion.
3. Number each step of the proof as 1, 2, and so on.
4. Be as pedantic and thorough as possible.
5. Keep each step precise, increase the number of steps if needed.
6. Do NOT gloss over any step. Make sure to be as thorough as possible.
7. Show the explicit calculations/simplifications, theorem applications and case analysis.
8. Enclose the informal proof in <informal_proof> tags.

1045

1046 Problem Statement: {problem}

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

```

1081
1082 Lean Sketch Creation (CREATE_LEAN_SKETCH_PROMPT)
1083
1084 You are a Lean 4 expert who is trying to help write a proof in Lean 4.
1085 Problem Statement: {problem}
1086 {useful_theorems_section}
1087 Informal Proof:
1088 {informal_proof}
1089 Instructions:
1090 Use the informal proof to write a proof sketch for the problem in Lean 4 following
1091 these guidelines:
1092 - Break complex reasoning into logical sub-goals using `have` statements.
1093 - The subgoals should build up to prove the main theorem.
1094 - Make sure to include all the steps and calculations from the given proof in the
1095 proof sketch.
1096 - Each subgoal should ideally require applying just one key theorem or lemma, or a
1097 few tactic applications.
1098 - Base subgoals around:
1099   - Useful theorems mentioned in the problem context
1100   - Standard library theorems (like arithmetic properties, set operations, etc.)
1101   - The supplied premises in the theorem statement
1102   - Do NOT create subgoals identical to any of the given hypotheses
1103   - Do NOT create subgoals that are more complex than the original problems. The
1104     subgoals should be SIMPLER than the given problem.
1105   - Do NOT skip over any steps. Do NOT make any mathematical leaps.
1106
1107 **Subgoal Structure Requirements:**
1108 - **Simplicity**: Each subgoal proof should be achievable with 1-3 basic tactics
1109 - **Atomic reasoning**: Avoid combining multiple logical steps in one subgoal
1110 - **Clear progression**: Show logical flow: `premises → intermediate steps → final result`
1111 - **Theorem-focused**: Design each subgoal to directly apply a specific theorem when possible
1112
1113 NOTE: Only add sub-goals that simplify the proof of the main goal.
1114
1115 When writing Lean proofs, maintain consistent indentation levels.
1116
1117 Rules:
1118 1. Same proof level = same indentation: All tactics at the same logical level must
1119     use identical indentation
1120 2. Consistent characters: Use either tabs OR spaces consistently (don't mix)
1121 3. Proper nesting: Indent sub-proofs one level deeper than their parent
1122 4. Do NOT nest `have` statements in each other. Use distinct sub-goals as much as
1123     possible. Ensure all sub goals are named. Do NOT create anonymous have statements.
1124 5. Do NOT include any imports or open statements in your code.
1125 6. One line = One `have` subgoal. Do NOT split subgoals across different lines.
1126 7. Use proper Lean 4 syntax and conventions. Ensure the proof sketch is enclosed in
1127     triple backticks ```lean```
1128 8. Use `sorry` for all subgoal proofs - focus on structure, not implementation
1129 9. **Do NOT use `sorry` for the main goal proof** - use your subgoals to prove it
1130 10. NEVER use `sorry` IN the theorem statement itself
1131 11. Ensure subgoals collectively provide everything needed for the main proof
1132 12. Make the logical dependencies between subgoals explicit. Ensure that the subgoals
1133     are valid and provable in Lean 4.
1134 13. Do NOT change anything in the original theorem statement.
1135
1136 Lean Hints:
1137 {lean_hints}
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177

```

IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and subtraction operations on natural number literals with UNDEFINED types, unless REQUIRED by the theorem statement. For example, do NOT allow literals like `1 / 3` or `2 / 5` or `1 - 3` ANYWHERE in ANY of the subgoals. ALWAYS specify the types. AVOID natural number arithmetic UNLESS NEEDED by the theorem statement. ALWAYS specify types when describing fractions. For example, $((2 : \mathbb{R}) / 3)$ or $((2 : \mathbb{Q}) / 3)$ instead of $(2 / 3)$. Do this everywhere EXCEPT the given theorem statement.

IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and subtraction operations on variables of type natural numbers (Nat or N), unless REQUIRED by the theorem statement. For example, do NOT allow expressions like $(a-b)$ or (a/b) where a, b are of type N. ALWAYS cast the variables to a suitable type (\mathbb{Z} , \mathbb{Q} or \mathbb{R}) when performing arithmetic operations. AVOID natural number arithmetic UNLESS NEEDED by the theorem statement.

Subgoal Extraction (EXTRACT_SUBGOALS_FROM_SKETCH_PROMPT)

From this proof sketch, extract any missing proofs (specified with `sorry`) as independent subgoals (theorems).

Instructions:

1. Use the same name as the have statements for the theorems.
2. Each subgoal should have the relevant context from the previous subgoals needed to simplify the proof as much as possible.
3. There should be as many extracted theorems as `sorry`'s in the given theorem.
4. Do NOT include any imports or open statements. Do NOT add any definitions. ONLY include the theorem statement.
5. Use a separate Lean 4 ``lean`` block for each subgoal.
6. Use sorry for the proof. Do NOT prove any theorem.
7. Do NOT change the conclusion of the theorems from the extracted subgoals. Keep them AS IT IS.
8. Do NOT change the conclusions of the preceding theorems when presenting them as hypotheses for the next subgoals. Keep them AS IT IS.
9. Do NOT duplicate theorem names. Use distinct theorem names for the different theorems.
10. Make sure the names and types of the premises/arguments in the extracted theorems MATCH the subgoals from which they are extracted.

IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and subtraction operations on natural number literals with UNDEFINED types, unless REQUIRED by the theorem statement. For example, do NOT allow literals like `1 / 3` or `^2 / 5` or `1 - 3` ANYWHERE in the theorem statement. ALWAYS specify the types. AVOID natural number arithmetic UNLESS NEEDED by the theorem statement. ALWAYS specify types when describing fractions. For example, $((2 : \mathbb{R}) / 3)$ or $((2 : \mathbb{Q}) / 3)$ instead of $(2 / 3)$

IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and subtraction operations on variables of type natural numbers (Nat or N), unless REQUIRED by the theorem statement. For example, do NOT allow expressions like $(a-b)$ or (a/b) where a, b are of type N. ALWAYS cast the variables to a suitable type (\mathbb{Z} , \mathbb{Q} or \mathbb{R}) when performing arithmetic operations. AVOID natural number arithmetic UNLESS NEEDED by the theorem statement.

```
1164     Lean Hints:  
1165     {lean_hints}  
1166     Proof Sketch:  
1167     ```lean4  
1168     {proof_sketch}  
1169     ``
```

1175
1176 **Subgoal Solving (SOLVE_SUBGOAL_PROMPT)**
1177 Think step-by-step to complete the following Lean 4 proof.
1178
1179 {problem}
1180
1181 Lean Hints:
1182 {lean_hints}
1183
1184 Tactic Hints:
1185 {tactic_hints}
1186
1187 Rules:
1188 1. Same proof level = same indentation: All tactics at the same logical level must
1189 use identical indentation
1190 2. Consistent characters: Use either tabs OR spaces consistently (don't mix)
1191 3. Proper nesting: Indent sub-proofs one level deeper than their parent
1192 4. Do NOT include any imports or open statements.
1193 5. Use proper Lean 4 syntax and conventions. Ensure the proof sketch is enclosed in
1194 triple backticks ```lean```.
1195 6. Only include a single Lean 4 code block, corresponding to the proof along with
1196 the theorem statement.
1197 7. When dealing with large numerical quantities, avoid explicit computation as much
1198 as possible. Use tactics like rw to perform symbolic manipulation rather than
1199 numerical computation.
1200 8. Do NOT use sorry.
1201 9. Do NOT change anything in the original theorem statement.
1202 {useful_theorems_section}

Mathematical Correctness Check (DETERMINE IF CORRECT SUBGOAL PROMPT)

1198 You are an expert in mathematics.
1199
1200 Your task is to evaluate whether the given mathematical theorem statement is mathematically correct. You do NOT have to provide a proof for the theorem in Lean.

1201 Evaluation criteria:
1202 1. Mathematical validity: Check for logical errors, incorrect assumptions, or
1203 calculation mistakes.
1204 2. Do NOT flag general results or helper lemmas that are true independent of the
1205 given premises. ONLY flag inaccuracies or mistakes.
1206 5. Provability: Determine if the statement can be proven given the provided premises,
1207 or otherwise.

1207 Assumptions:
1208 1. The given premises are mathematically correct. Do NOT check this.
2. The syntax is guaranteed to be correct (do not assess syntax)

1209 Theorem Statement:
1210 {problem}

1211 Report your answer as either:
1212 • YES - if the statement is mathematically correct
1213 NO - if the statement is not mathematically correct

1214 Also provide a brief justification for your decision in <justification>/</justification>
1215 tags, adding details about why the statement is correct or incorrect.
1216 If it is incorrect, also provide a description of how the error can be corrected.
1217 If there are missing arguments, make sure to add the relevant missing proof steps.

1222

1223 **Sketch Assembly (USE_SKETCH_AND_THEOREMS_PROMPT)**

1224 You are a Lean 4 expert. Your goal is to write a proof in Lean 4, according to the
1225 given proof sketch, using the supplied theorems.

1226 Proof sketch:
1227 {proof_sketch}

1228 Theorems:
1229 {theorems_string}

1230 Instructions:
1231 1. You can assume that the theorems are correct and use them directly in your proof.
1232 2. Do NOT modify the given theorems.
1233 3. Do NOT prove the given theorems.
1234 4. Do NOT modify the given proof sketch steps. Simply apply the given theorems to
complete the missing `sorry` steps.
1235 5. Do NOT use `sorry` in your proof.
1236 6. Do NOT include any imports or definitions or open statements.
7. Do NOT re-define the given theorems in your response.
1237 8. Do NOT write a proof for any subgoal from scratch. ALWAYS use the supplied theorems.

1238 IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
1239 subtraction operations on natural number literals with UNDEFINED types, unless
1240 REQUIRED by the theorem statement. For example, do NOT allow literals like `1 / 3`
or `2 / 5` or `1 - 3`. ALWAYS specify the types. AVOID natural number arithmetic
1241 UNLESS NEEDED by the theorem statement.
1242 ALWAYS specify types when describing fractions. For example, ((2 : ℝ) / 3) or
((2 : ℚ) / 3) instead of (2 / 3). Do this everywhere EXCEPT the given theorem statement.
1243 IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
1244 subtraction operations on variables of type natural numbers (Nat or N), unless
1245 REQUIRED by the theorem statement. For example, do NOT allow expressions like (a-b)
or (a/b) where a, b are of type N. ALWAYS cast the variables to a suitable type
(Z, Q or ℝ) when performing arithmetic operations. AVOID natural number arithmetic
1246 UNLESS NEEDED by the theorem statement.

1247 Your answer should be a single Lean 4 block containing the completed proof for the
1248 given theorem.

1249

1250 **Assembly Correction (ASSEMBLY_CORRECTION_PROMPT)**

1251

1252 The following Lean 4 code has compilation errors. Please fix the errors while
1253 maintaining the mathematical meaning.

1254 {error_message}

1255 Lean Hints:
1256 {lean_hints}

1257 Instructions:
1258 1. Analyze what the theorem is trying to prove. Then, analyze why the error is
happening, step-by-step. Add a brief explanation.
1259 2. Then, provide a corrected version of the Lean 4 code that addresses these
specific errors.
1260 3. You should ONLY correct the main theorem that appears at the end. Do NOT
change any of the helper theorems.
1261 4. Do NOT include any other Lean code blocks except for the proof. Do NOT
include any imports or open statements.
1262 5. Do NOT use `sorry` in any part of the proof.
1263 6. Do NOT change anything in the original theorem statement.
1264 7. Do NOT include the helper theorem definitions in your response.
1265 8. Do NOT write a proof for any subgoal from scratch. ALWAYS use the supplied
1266 theorems.

1267

1268

1269
1270 **Sketch Refinement Based on Incorrect Subgoal**
1271 (**CORRECT_SKETCH_BASED_ON_INCORRECT_SUBGOAL_PROMPT**)
1272
1273 You are an expert in writing Lean 4 proofs. You are given a Lean 4 proof sketch
1274 where one of the subgoals has some issues.
1275 Your task is to fix the issues and write a new proof sketch.
1276
1277 Proof Sketch:
1278 {proof_sketch}
1279
1280 Issues:
1281 {issues}
1282
1283 Lean Hints:
1284 {lean_hints}
1285
1286 Rules:
1287 1. Same proof level = same indentation: All tactics at the same logical level
1288 must use identical indentation
1289 2. Consistent characters: Use either tabs OR spaces consistently (don't mix)
1290 3. Proper nesting: Indent sub-proofs one level deeper than their parent
1291 4. Do NOT nest 'have' statements in each other. Write different have statements
1292 for different sub goals.
1293 5. Ensure all sub goals are named. Do NOT create anonymous have statements.
1294 6. Do NOT include any imports or open statements.
1295 7. One line = One 'have' subgoal. Do NOT split subgoals across different lines.
1296 8. Use proper Lean 4 syntax and conventions. Ensure the proof sketch is enclosed
1297 in triple backticks ` ` `lean` ` ` `
1298 9. Use 'sorry' for all subgoal proofs - focus on structure, not implementation
1299 10. **Do NOT use 'sorry' for the main goal proof** - use your subgoals to prove it
1300 11. NEVER use 'sorry' IN the theorem statement itself
1301 12. Ensure subgoals collectively provide everything needed for the main proof
1302 13. Make the logical dependencies between subgoals explicit. Ensure that the
1303 subgoals are valid and provable in Lean 4.
1304 14. Modify only the incorrect subgoal and everything that follows it in the proof
1305 sketch. Leave all preceding portions unchanged.
1306 15. Either modify the problematic subgoals to fix the errors, or add additional
1307 subgoals to fill in the missing mathematical arguments.
1308
1309
1310
1311
1312
1313
1314
1315

1316

Proof Sketch Correction (PROOF_SKETCH_CORRECTION_PROMPT)

1317

1318

The following Lean 4 code has compilation errors. Please fix the errors while maintaining the mathematical meaning.

1319

Original statement: {informal_statement}

1320

{error_message}

1321

Lean Hints:

{lean_hints}

1322

Instructions:

1. Analyze what the theorem is trying to prove. Then, analyze why the error is happening, step-by-step. Add a brief explanation.
2. Then, provide a corrected version of the Lean 4 code that addresses these specific errors.
3. Do NOT include any other Lean code blocks except for the proof. Do NOT include any imports or open statements.
4. Use sorry for the proof of all `have` statements.
5. Ensure there are no use of `sorry` statements outside of `have` statements. Do NOT use `sorry` while proving the main theorem.
6. Do NOT change anything in the original theorem statement.
7. Do NOT nest `have` statements in each other. Use distinct sub-goals as much as possible. Ensure all sub goals are named. Do NOT create anonymous have statements.

{useful_theorems_section}

1336

Proof Correction (PROOF_CORRECTION_PROMPT)

1337

1338

The following Lean 4 code has compilation errors. Please fix the errors while maintaining the mathematical meaning.

1339

{error_message}

1340

Instructions:

1. Analyze what the theorem is trying to prove. Then, analyze why the error is happening, step-by-step. Add a brief explanation.
2. Then, provide a corrected version of the Lean 4 code that addresses these specific errors.
3. Do NOT include any other Lean code blocks except for the proof.
4. Do NOT use sorry.
5. Do NOT include any imports or open statements.
6. Do NOT change anything in the original theorem statement.

{useful_theorems_section}

1349

1350

Subgoal Syntax Correction (SUBGOAL_SYNTAX_CORRECTION_PROMPT)

1351

1352

The following Lean 4 theorem has compilation errors. Please fix the errors while maintaining the mathematical meaning.

1353

{error_message}

1354

Instructions:

1. Analyze why the error is happening, step-by-step. Add a brief explanation.
2. Then, provide a corrected version of the Lean 4 code that addresses these specific errors.
3. Do NOT include any other Lean code blocks except for the theorem.
4. Use sorry for the proof.
5. Do NOT include any imports or open statements.

{potentially_useful_theorems}

1355

1356

1357

1358

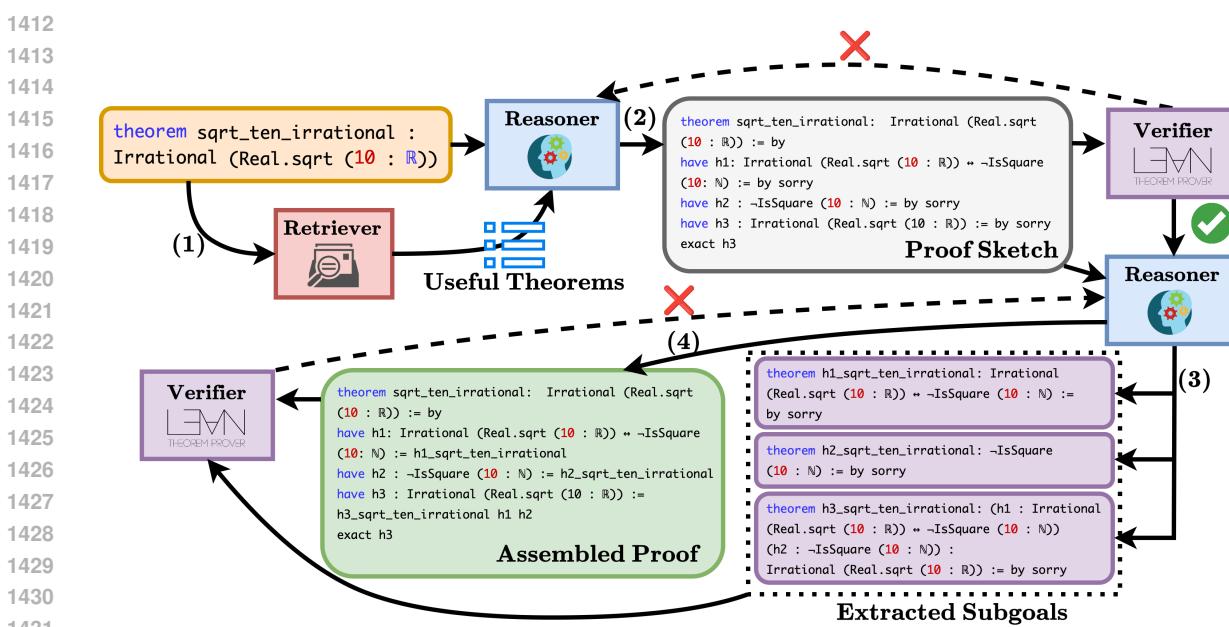
1359

1360

1361

1362

1363 A.3 IMPLEMENTATION DETAILS
13641365 We improve HILBERT’s efficiency through several runtime optimizations focused on parallelization. The
1366 Prover LLM is served using vLLM (Kwon et al., 2023) and the Lean Verifier using Kimina Lean Server
1367 (Santos et al., 2025) to handle multiple requests in parallel.1368 We implement `AsyncJobPool`, a mechanism built around Python’s `asyncio` library, to orchestrate
1369 parallel requests across our framework’s multiple steps. Submitted jobs run concurrently until specific
1370 completion criteria are met based on the algorithm step. Concurrency is controlled using Semaphores. We
1371 implement three completion criteria:1372
1373 • **Wait for All.** The execution terminates when all jobs in the pool have finished execution. This criterion is
1374 used to parallelize across examples, and across subgoals (Section 3.2.2).
1375 • **First-Success Termination.** Execution terminates as soon as one successful job is found, and pending jobs
1376 are terminated. This criterion is used to parallelize across proof attempts (the initial Prover attempts, and
1377 Steps 1 and 3 in Section 3.2.2).
1378 • **First Failure.** Execution halts upon the first job failure, immediately canceling remaining jobs. This criterion
1379 is applied during subgoal correctness verification (Step 2 in Section 3.2.2). Since verification failures often
1380 indicate fundamental issues with the proof sketch that affect multiple subgoals, early termination prevents
1381 wasted computation on dependent subgoals, which may change after correcting the problematic subgoal.
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

1410
1411 A.4 SUBGOAL DECOMPOSITION EXAMPLE

1432 **Figure 5: Subgoal Decomposition Example.** We illustrate the subgoal decomposition process using the
 1433 input theorem `sqrt_ten_irrational`. The process consists of four main steps: (1) We retrieve relevant
 1434 theorems from Mathlib to inform the proof strategy. (2) The Reasoner generates a proof sketch, which is
 1435 verified by the Lean Verifier for validity. If verification fails, error messages guide the Reasoner to make
 1436 corrections. (3) The Reasoner extracts subgoals from the validated sketch and verifies their correctness,
 1437 refining them as needed. (4) The Reasoner assembles a complete proof by incorporating the extracted subgoals
 1438 into the original sketch. Since the subgoals lack proofs at this stage, they are denoted by `sorry`. This
 1439 assembled proof undergoes final verification. The process outputs both the complete assembled proof and the
 1440 verified subgoals (without their proofs). Note that while Steps (3) and (4) are shown together in this figure for
 1441 simplicity, they represent distinct operations as detailed in Figure 2.

1442 A.5 MINIF2F PROOF EXAMPLE

1444 We include an example to demonstrate how our hierarchical algorithm can help discover proofs that are too
 1445 complex for either the Prover or informal Reasoner alone. We present the proof for Problem 4 from AMC
 1446 12B 2002, a problem which was unsolved even by DeepSeek Prover V2-671B after 8196 passes. We find that
 1447 HILBERT is able to solve the problem with one layer of decomposition using Goedel Prover V2-32B model
 1448 as the Prover.

```

1450 import Mathlib
1451 import Aesop
1452
1453 set_option maxHeartbeats 0
1454
1455 open BigOperators Real Nat Topology Rat
1456 theorem k_one_amc12b_2002_p4 (n : ℕ) (h₀ : 0 < n) (k : ℕ) (hk : 41 * n + 42 = k * (42 * n))
1457   ↔ (h_k_is_one : ∀ (k : ℕ), 41 * n + 42 = k * (42 * n) → k = 1) : k = 1 := by
1458   have h_main : k = 1 := by
1459     have h₁ : k = 1 := h_k_is_one k hk
  
```

```

1457      exact h1
1458
1459      exact h_main
1460
1461 theorem h_sum_is_frac_amc12b_2002_p4 (n :  $\mathbb{N}$ ) (h0 : 0 < n) : (1 / 2 + 1 / 3 + 1 / 7 + 1 /  $\uparrow$ n :  $\mathbb{Q}$ ) =
1462    $\rightarrow$  ( $\uparrow$ (41 * n + 42)) /  $\uparrow$ (42 * n) := by
1463   have h1 : (1 / 2 + 1 / 3 + 1 / 7 + 1 /  $\uparrow$ n :  $\mathbb{Q}$ ) = ( $\uparrow$ (41 * n + 42)) /  $\uparrow$ (42 * n) := by
1464   have h2 : (n :  $\mathbb{Q}$ )  $\neq$  0 := by
1465   norm_cast
1466   <;> linarith
1467   -- Use field_simp to find a common denominator and simplify the expression
1468   field_simp [h2]
1469   -- Normalize the expression by expanding and simplifying it
1470   <;> ring_nf
1471   <;> norm_cast
1472   <;> field_simp [h2]
1473   <;> ring_nf
1474   <;> norm_cast
1475   <;> simp [mul_assoc]
1476   <;> norm_num
1477   <;> linarith
1478
1479   apply h1
1480
1481 theorem h_k_is_one_amc12b_2002_p4 (n :  $\mathbb{N}$ ) (h0 : 0 < n) :  $\forall$  (k :  $\mathbb{N}$ ), 41 * n + 42 = k * (42 * n)  $\rightarrow$  k =
1482   1 := by
1483   intro k hk
1484   have h1 : k  $\neq$  0 := by
1485   by_contra h
1486   -- Assume k = 0 and derive a contradiction.
1487   have h2 : k = 0 := by simpa using h
1488   rw [h2] at hk
1489   have h3 : 41 * n + 42 = 0 := by
1490   ring_nf at hk  $\vdash$ 
1491   <;> nlinarith
1492   have h4 : 41 * n + 42 > 0 := by
1493   nlinarith
1494   linarith
1495
1496   have h2 : k < 2 := by
1497   by_contra h
1498   -- Assume k  $\geq$  2 and derive a contradiction.
1499   have h3 : k  $\geq$  2 := by
1500   omega
1501   have h4 : k * (42 * n)  $\geq$  2 * (42 * n) := by
1502   have h5 : k * (42 * n)  $\geq$  2 * (42 * n) := by
1503   have h6 : k  $\geq$  2 := h3
1504   have h7 : (42 :  $\mathbb{N}$ ) * n > 0 := by positivity
1505   nlinarith
1506   exact h5
1507   have h5 : 2 * (42 * n) = 84 * n := by
1508   ring
1509   have h6 : k * (42 * n)  $\geq$  84 * n := by
1510   nlinarith
1511   have h7 : 41 * n + 42 < 84 * n := by
1512   have h8 : n  $\geq$  1 := by linarith
1513   have h9 : 43 * n  $\geq$  43 := by
1514   nlinarith
1515   have h10 : 43 * n - 42  $\geq$  1 := by
1516   have h11 : 43 * n  $\geq$  43 := by nlinarith
1517   omega
1518   have h11 : 84 * n > 41 * n + 42 := by
1519   cases n with
1520   | zero => contradiction
1521   | succ n =>
1522     simp [Nat.mul_add, Nat.add_mul, Nat.add_assoc] at h6  $\vdash$ 
1523     <;> ring_nf at h6  $\vdash$  <;>
1524     (try omega) <;>
1525     (try nlinarith)

```

```

1504
1505     omega
1506     have h8 : 41 * n + 42 < k * (42 * n) := by
1507     linarith
1508     linarith
1509
1510     have h3 : k = 1 := by
1511     have h4 : k ≤ 1 := by
1512     omega
1513     have h5 : k ≥ 1 := by
1514     by_contra h6
1515     -- If k is not ≥ 1, then k = 0, which contradicts h1.
1516     have h7 : k = 0 := by
1517     omega
1518     contradiction
1519     omega
1520
1521     exact h3
1522
1523
1524 theorem h_divides_amc12b_2002_p4 (n :  $\mathbb{N}$ ) (h0 : 0 < n) (h1 : (1 / 2 + 1 / 3 + 1 / 7 + 1 /  $\uparrow$ n :  $\mathbb{Q}$ ).den
1525   ← = 1) (h_sum_is_frac : (1 / 2 + 1 / 3 + 1 / 7 + 1 /  $\uparrow$ n :  $\mathbb{Q}$ ) = ( $\uparrow$ (41 * n + 42)) / ( $\uparrow$ (42 * n)) : 42 *
1526   ← n | 41 * n + 42 := by
1527     have h2 : (( $\uparrow$ (41 * n + 42) :  $\mathbb{Q}$ ) / ( $\uparrow$ (42 * n))).den = 1 := by
1528     have h21 : (( $\uparrow$ (41 * n + 42) :  $\mathbb{Q}$ ) / ( $\uparrow$ (42 * n))) = (1 / 2 + 1 / 3 + 1 / 7 + 1 /  $\uparrow$ n :  $\mathbb{Q}$ ) := by
1529     rw [h_sum_is_frac]
1530     < ; > field_simp < ; > ring_nf < ; > norm_cast
1531     < ; > field_simp < ; > ring_nf < ; > norm_cast
1532     rw [h21]
1533     exact h1
1534
1535     have h3 : (42 * n :  $\mathbb{Z}$ ) | (41 * n + 42 :  $\mathbb{Z}$ ) := by
1536     have h31 : (((41 * n + 42 :  $\mathbb{Z}$ ) :  $\mathbb{Q}$ ) / (42 * n :  $\mathbb{Z}$ )).den = 1 := by
1537     norm_cast at h2 ⊢
1538     < ; > simp [div_eq_mul_inv] using h2
1539     have h32 : ∃ (k :  $\mathbb{Z}$ ), ((41 * n + 42 :  $\mathbb{Z}$ ) :  $\mathbb{Q}$ ) / (42 * n :  $\mathbb{Z}$ ) = (k :  $\mathbb{Q}$ ) := by
1540     have h33 : (((41 * n + 42 :  $\mathbb{Z}$ ) :  $\mathbb{Q}$ ) / (42 * n :  $\mathbb{Z}$ )).den = 1 := h31
1541     have h34 : ∃ (k :  $\mathbb{Z}$ ), ((41 * n + 42 :  $\mathbb{Z}$ ) :  $\mathbb{Q}$ ) / (42 * n :  $\mathbb{Z}$ ) = (k :  $\mathbb{Q}$ ) := by
1542     -- Use the fact that the denominator is 1 to find an integer k
1543     have h35 : ∃ (k :  $\mathbb{Z}$ ), ((41 * n + 42 :  $\mathbb{Z}$ ) :  $\mathbb{Q}$ ) / (42 * n :  $\mathbb{Z}$ ) = (k :  $\mathbb{Q}$ ) := by
1544     -- Use the property of rational numbers with denominator 1
1545     have h36 : (((41 * n + 42 :  $\mathbb{Z}$ ) :  $\mathbb{Q}$ ) / (42 * n :  $\mathbb{Z}$ )).den = 1 := h31
1546     have h37 : ∃ (k :  $\mathbb{Z}$ ), ((41 * n + 42 :  $\mathbb{Z}$ ) :  $\mathbb{Q}$ ) / (42 * n :  $\mathbb{Z}$ ) = (k :  $\mathbb{Q}$ ) := by
1547     -- Use the fact that the denominator is 1 to find an integer k
1548     refine' (((41 * n + 42 :  $\mathbb{Z}$ ) :  $\mathbb{Q}$ ) / (42 * n :  $\mathbb{Z}$ )).num, _)
1549     have h38 : (((41 * n + 42 :  $\mathbb{Z}$ ) :  $\mathbb{Q}$ ) / (42 * n :  $\mathbb{Z}$ )) = (((41 * n + 42 :  $\mathbb{Z}$ ) :  $\mathbb{Q}$ ) / (42 * n
1550   ← :  $\mathbb{Z}$ )).num :  $\mathbb{Q}$ ) := by
1551     have h39 : (((41 * n + 42 :  $\mathbb{Z}$ ) :  $\mathbb{Q}$ ) / (42 * n :  $\mathbb{Z}$ )).den = 1 := h31
1552     have h40 : (((41 * n + 42 :  $\mathbb{Z}$ ) :  $\mathbb{Q}$ ) / (42 * n :  $\mathbb{Z}$ )) = (((41 * n + 42 :  $\mathbb{Z}$ ) :  $\mathbb{Q}$ ) / (42 *
1553   ← n :  $\mathbb{Z}$ )).num :  $\mathbb{Q}$ ) := by
1554     rw [← Rat.num_div_den (((41 * n + 42 :  $\mathbb{Z}$ ) :  $\mathbb{Q}$ ) / (42 * n :  $\mathbb{Z}$ ))]
1555     < ; > field_simp [h39]
1556     < ; > norm_cast
1557     < ; > simp_all [Rat.den_nz]
1558     exact h40
1559     exact h38
1560     exact h37
1561     exact h35
1562     exact h34
1563     obtain (k, h33) := h32
1564     have h34 : (42 * n :  $\mathbb{Z}$ ) | (41 * n + 42 :  $\mathbb{Z}$ ) := by
1565     have h35 : ((41 * n + 42 :  $\mathbb{Z}$ ) :  $\mathbb{Q}$ ) / (42 * n :  $\mathbb{Z}$ ) = (k :  $\mathbb{Q}$ ) := h33
1566     have h36 : (42 * n :  $\mathbb{Z}$ ) ≠ 0 := by
1567     have h37 : (n :  $\mathbb{N}$ ) > 0 := h0
1568     have h38 : (42 * n :  $\mathbb{Z}$ ) > 0 := by
1569     norm_cast
1570     < ; > linarith
1571     linarith
1572     have h37 : ((41 * n + 42 :  $\mathbb{Z}$ ) :  $\mathbb{Q}$ ) = (k :  $\mathbb{Q}$ ) * (42 * n :  $\mathbb{Z}$ ) := by
1573     field_simp [h36] at h35 ⊢
1574     < ; > ring_nf at h35 ⊢ < ; > norm_cast at h35 ⊢ < ; >

```

```

1551
1552     (try norm_num at h35 ⊢) <;>
1553     (try linarith) <;>
1554     (try simp_all [mul_comm]) <;>
1555     (try ring_nf at h35 ⊢ <;> norm_cast at h35 ⊢ <;> linarith)
1556     <;>
1557     (try
1558     {
1559         nlinarith
1560     })
1561     <;>
1562     (try
1563     {
1564         field_simp at h35 ⊢ <;>
1565         ring_nf at h35 ⊢ <;>
1566         norm_cast at h35 ⊢ <;>
1567         linarith
1568     })
1569     have h38 : (41 * n + 42 : ℤ) = k * (42 * n : ℤ) := by
1570     norm_cast at h37 ⊢
1571     <;>
1572     (try ring_nf at h37 ⊢) <;>
1573     (try norm_num at h37 ⊢) <;>
1574     (try linarith)
1575     <;>
1576     (try
1577     {
1578         field_simp at h37 ⊢ <;>
1579         ring_nf at h37 ⊢ <;>
1580         norm_cast at h37 ⊢ <;>
1581         linarith
1582     })
1583     have h39 : (42 * n : ℤ) | (41 * n + 42 : ℤ) := by
1584     use k
1585     <;>
1586     linarith
1587     exact h39
1588     exact h34
1589
1590     have h4 : 42 * n | 41 * n + 42 := by
1591     have h41 : (42 * n : ℤ) | (41 * n + 42 : ℤ) := h3
1592     have h42 : (42 * n : ℑ) | (41 * n + 42 : ℑ) := by
1593     -- Convert the divisibility from integers to natural numbers
1594     norm_cast at h41 ⊢
1595     <;>
1596     (try omega) <;>
1597     (try
1598     {
1599         -- Use the fact that the integers are positive to convert to natural numbers
1600         cases' h41 with k hk
1601         use k
1602         <;>
1603         (try ring_nf at hk ⊢) <;>
1604         (try norm_cast at hk ⊢) <;>
1605         (try omega)
1606     })
1607     <;>
1608     (try
1609     {
1610         -- Handle any remaining cases or simplifications
1611         simp_all [mul_comm]
1612         <;>
1613         ring_nf at *
1614         <;>
1615         norm_cast at *
1616         <;>
1617         omega
1618     })
1619     -- Use the natural number divisibility to conclude the proof
1620     simpa [mul_comm] using h42

```

```

1598
1599   exact h4
1600
1601 theorem amc12b_2002_p4 (n :  $\mathbb{N}$ ) (h0 : 0 < n) (h1 : (1 / 2 + 1 / 3 + 1 / 7 + 1 /  $\uparrow$ n :  $\mathbb{Q}$ ).den = 1) : n =
1602    $\hookrightarrow$  42 := by
1603   -- Step 1: Combine the rational numbers into a single fraction.
1604   have h_sum_is_frac : (1 / 2 + 1 / 3 + 1 / 7 + 1 /  $\uparrow$ n :  $\mathbb{Q}$ ) = ( $\uparrow$ (41 * n + 42)) /  $\uparrow$ (42 * n) := by
1605   exact h_sum_is_frac_amc12b_2002_p4 n h0
1606   -- Step 2: Use the denominator condition (h1) to establish a divisibility relation.
1607   -- According to `Rat.den_div_natCast_eq_one_iff`, for `m, d :  $\mathbb{N}$ ` with `d ≠ 0`,
1608   -- `(m :  $\mathbb{Q}$ ) / d).den = 1` iff `d | m`.
1609   have h_divides : 42 * n | 41 * n + 42 := by
1610   exact h_divides_amc12b_2002_p4 n h0 h1 h_sum_is_frac
1611   -- Step 3: By the definition of divisibility, `h_divides` implies there exists a natural number `k`
1612   -- such that `41 * n + 42 = k * (42 * n)`. This step proves that `k` must be 1.
1613   have h_k_is_one :  $\forall k : \mathbb{N}, 41 * n + 42 = k * (42 * n) \rightarrow k = 1$  := by
1614   exact h_k_is_one_amc12b_2002_p4 n h0
1615   -- From h_divides, we obtain the existence of such a `k` and its corresponding equation.
1616   rcases h_divides with (k, hk)
1617
1618   -- We use commutativity of multiplication to match the form expected by the helper theorem.
1619   rw [mul_comm (42 * n)] at hk
1620
1621   -- We use our proof from h_k_is_one to show that this specific `k` must be 1.
1622   have k_one : k = 1 := by
1623   exact k_one_amc12b_2002_p4 n h0 k hk h_k_is_one
1624
1625   -- Substituting k = 1 back into the equation.
1626   rw [k_one, one_mul] at hk
1627
1628   -- The equation is now `41 * n + 42 = 42 * n`. We solve for `n`.
1629   -- We can rewrite `42 * n` as `41 * n + n`.
1630   rw [show 42 * n = 41 * n + n by ring] at hk
1631
1632   -- By cancelling `41 * n` from both sides, we get `42 = n`.
1633   exact (Nat.add_left_cancel hk).symm
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

```

A.6 INFERENCE TIME COMPUTE

Beyond inference-time scaling with the number of Reasoner calls (Figure 3), we demonstrate how HILBERT scales with additional metrics: the number of tokens consumed by the Reasoner and Prover (Figure 6), and the number of Prover and Verifier calls (Figure 7). Consistent with our previous findings, we observe a continuous increase in pass rate as token usage increases. Notably, the most challenging problems required 22.8M and 27.0M tokens for the Gemini 2.5 Pro variants with Goedel-Prover-V2 and DeepSeek-Prover-V2, respectively. These token counts far exceed the context length of most LLMs, demonstrating that our agentic framework enables models to go beyond their inherent context limitations when solving complex mathematical problems, at the cost of increased inference-time computation.

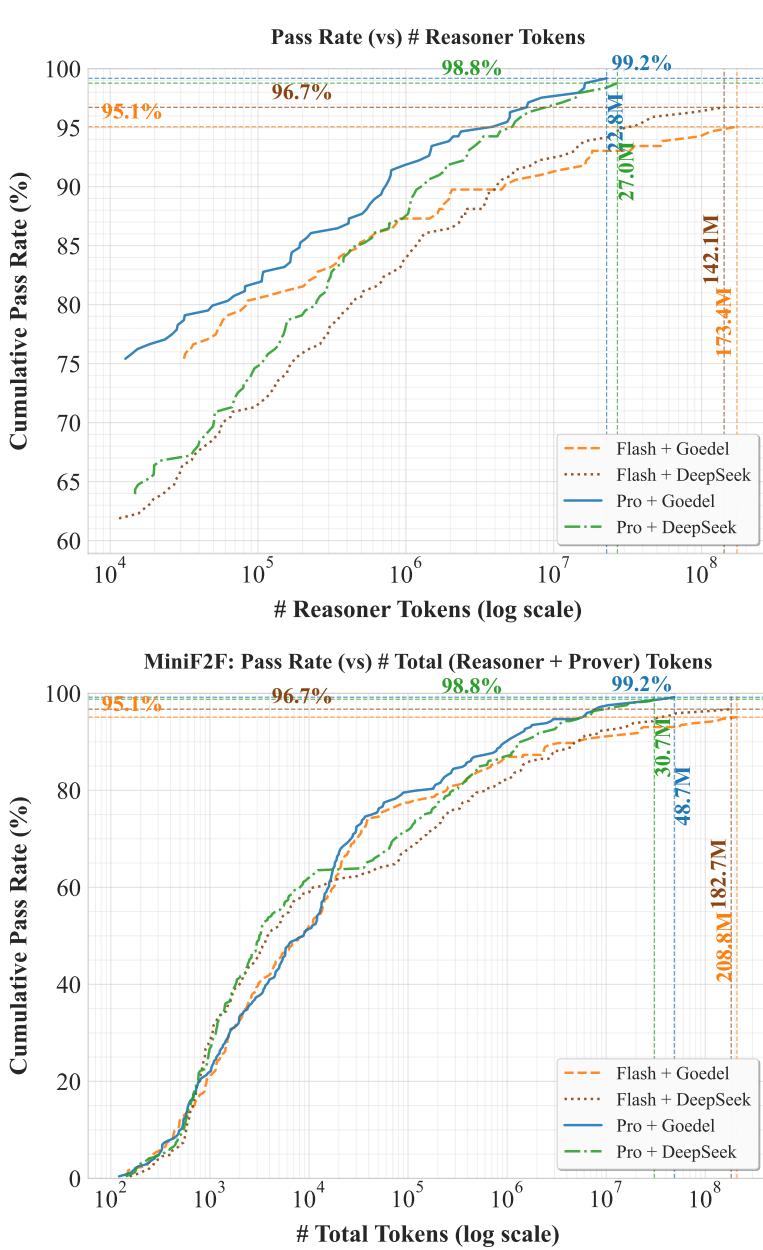


Figure 6: **Pass rate (vs) Reasoner and Total Tokens.** We plot the pass-rate for HILBERT on MiniF2F as a function of (top) the number of tokens used by the Reasoner (bottom) the total number of tokens used (Reasoner + Prover), per sample.

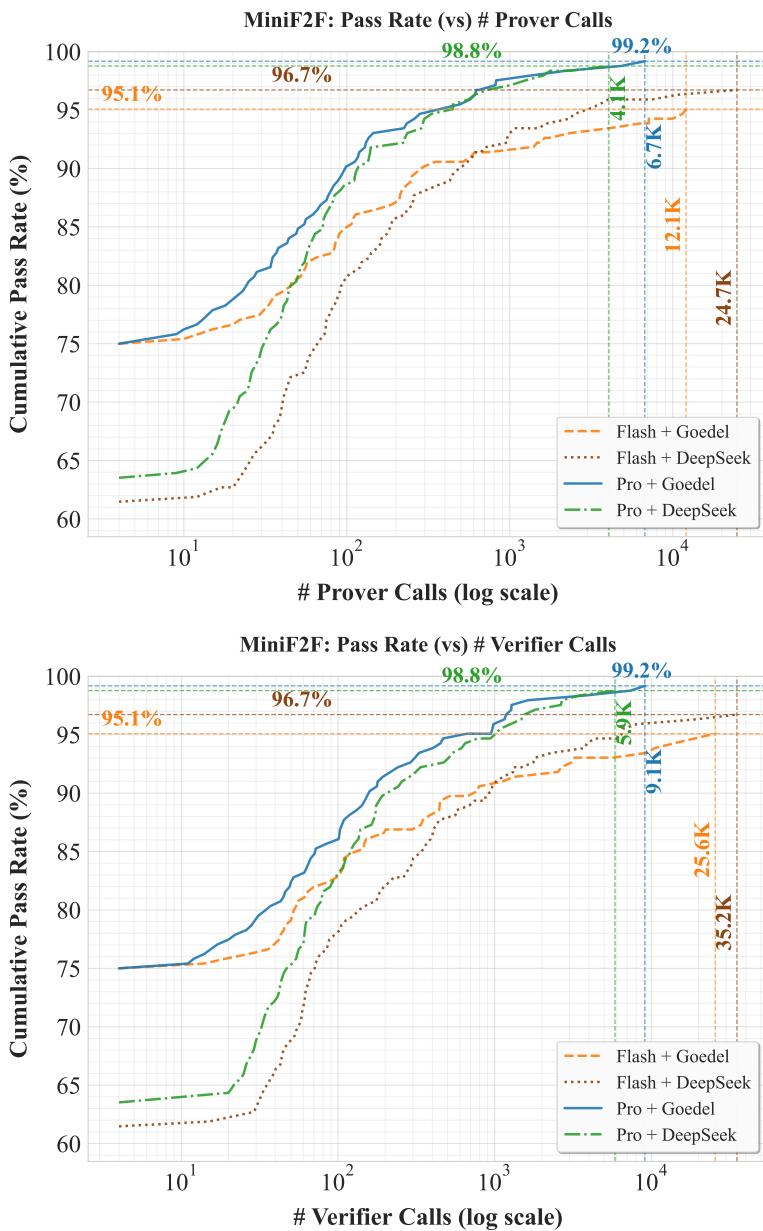


Figure 7: **Pass rate (vs) Prover and Verifier Calls.** We plot the pass-rate for HILBERT on MiniF2F as a function of (top) the number of calls to the Prover (bottom) the number of calls to the Verifier, per sample.

A.7 PROOF LENGTHS

Figures 8 and 9 show the distribution of proof lengths generated by HILBERT on the MiniF2F and Putnam-Bench datasets, respectively. For comparison, Figure 8 also includes proof lengths from DeepSeek-Prover-V2-671B on MiniF2F problems.

1739 On MiniF2F, HILBERT generates substantially longer proofs than DeepSeek-Prover-V2-671B, with an average
 1740 length of 247 lines compared to 86.7 lines. Notably, HILBERT produces one proof spanning 8,313 lines,
 1741 demonstrating its capacity for tackling hard problems.

1742 This trend toward longer proofs is even more pronounced on PutnamBench, where HILBERT achieves an
 1743 average proof length of 1,454 lines. The longest proof on this dataset exceeds 15,000 lines of code. The
 1744 ability to consistently generate such extensive proofs likely contributes to HILBERT’s superior performance
 1745 on PutnamBench compared to baseline methods, as longer proofs may reflect more thorough exploration of
 1746 intermediate steps necessary for a complete Lean proof.

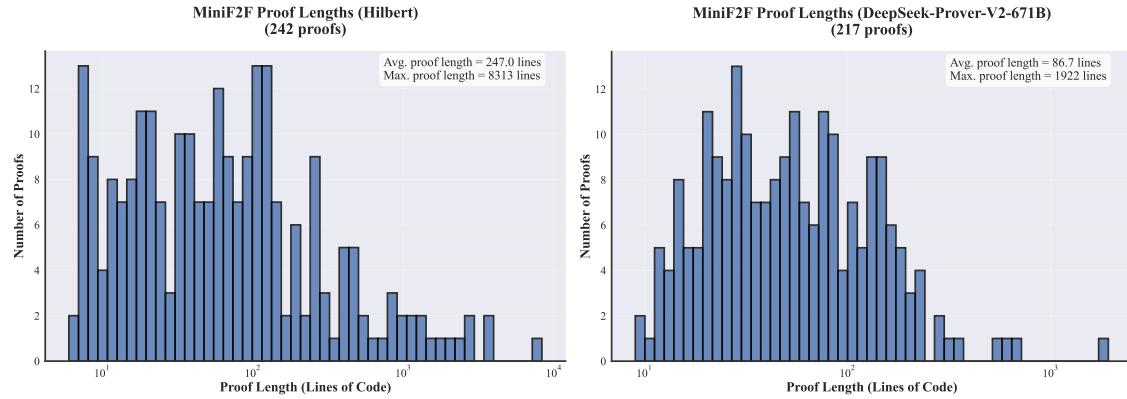


Figure 8: Lengths of proofs generated by (left) HILBERT (Gemini 2.5 Pro + Goedel-Prover-V2) (right) DeepSeek-Prover-V2 671B for problems from MiniF2F.

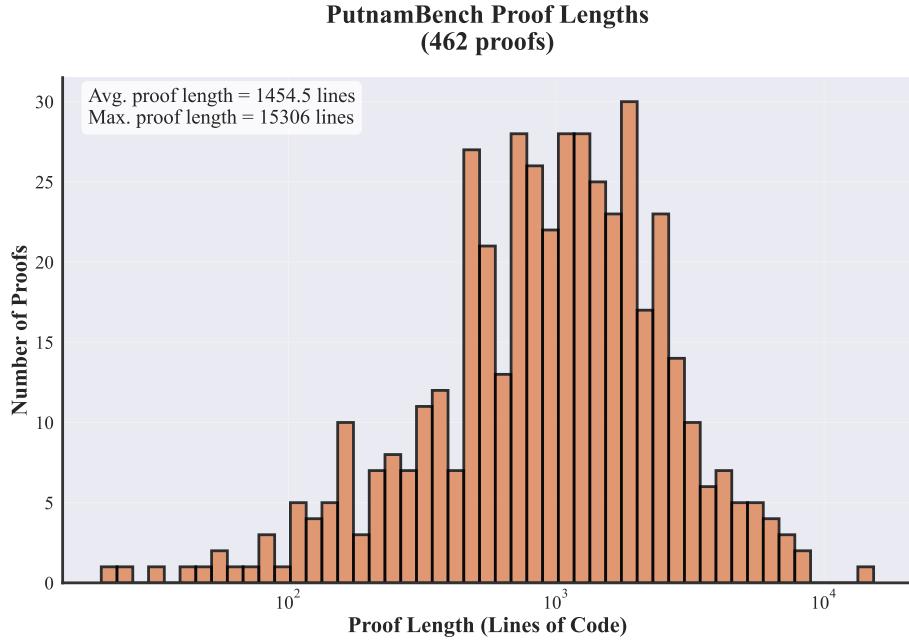


Figure 9: Lengths of proofs generated by HILBERT (Gemini 2.5 Pro + Goedel-Prover-V2) for problems from PutnamBench.