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ABSTRACT

Retrieval-augmented language models can better adapt to changes in world state
and incorporate long-tail knowledge. However, most existing methods retrieve
only short contiguous chunks from a retrieval corpus, limiting holistic under-
standing of the overall document context. We introduce the novel approach of
recursively embedding, clustering, and summarizing chunks of text, constructing
a tree with differing levels of summarization from the bottom up. At inference
time, our RAPTOR model retrieves from this tree, integrating information across
lengthy documents at different levels of abstraction. Controlled experiments show
that retrieval with recursive summaries offers significant improvements over tra-
ditional retrieval-augmented LMs on several tasks. On question-answering tasks
that involve complex, multi-step reasoning, we show state-of-the-art results; for
example, by coupling RAPTOR retrieval with the use of GPT-4, we can improve
the best performance on the QuALITY benchmark by 20% in absolute accuracy.

1 INTRODUCTION

Large Language Models (LLMs) have emerged as transformative tools showing impressive perfor-
mance on many tasks. With the growing size of LLMs, they can serve standalone as very effective
knowledge stores, with facts encoded within their parameters (Petroni et al., 2019; Jiang et al., 2020;
Talmor et al., 2020; Rae et al., 2021; Hoffmann et al., 2022; Chowdhery et al., 2022; Bubeck et al.,
2023; Kandpal et al., 2023) and models can be further improved with fine-tuning on downstream
tasks (Roberts et al., 2020). Nevertheless, even a large model does not contain sufficient domain-
specific knowledge for particular tasks and the world continues to change, invalidating facts in the
LLM. Updating the knowledge of these models through additional fine-tuning or editing is difficult,
particularly when dealing with vast text corpora (Lewis et al., 2020; Mitchell et al., 2022). An alter-
native approach, pioneered in open domain question answering systems (Chen et al., 2017; Yu et al.,
2018), is to index large quantities of text, after splitting it into chunks (paragraphs), in a separate
information retrieval system. Retrieved information is then presented to the LLM along with the
question as context (“retrieval augmentation”, Lewis et al., 2020; Izacard et al., 2022; Min et al.,
2023; Ram et al., 2023), making it easy to provide a system with current knowledge particular to
some domain and enabling easy interpretability and provenance tracking, whereas the parametric
knowledge of LLMs is opaque and difficult to trace back to its source (Akyurek et al., 2022).

Nevertheless, existing retrieval-augmented approaches also have flaws. The one we tackle is that
most existing methods retrieve only a few short, contiguous text chunks, which limits their ability
to represent and leverage large-scale discourse structure. This is particularly relevant for thematic
questions that require integrating knowledge from multiple parts of a text, such as understanding
an entire book, as in the NarrativeQA dataset (Kočiskỳ et al., 2018). Consider the fairy tale of
Cinderella, and the question “How did Cinderella reach her happy ending?”. The top-k retrieved
short contiguous texts will not contain enough context to answer the question.

To address this, we design an indexing and retrieval system that uses a tree structure to capture both
high-level and low-level details about a text. As shown in Figure 1, our system, RAPTOR, clusters
chunks of text, generates text summaries of those clusters, and then repeats, generating a tree from
the bottom up. This structure enables RAPTOR to load into an LLM’s context chunks representing
the text at different levels so that it can effectively and efficiently answer questions at different levels.
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Figure 1: Tree construction process: RAPTOR recursively clusters chunks of text based on their
vector embeddings and generates text summaries of those clusters, constructing a tree from the
bottom up. Nodes clustered together are siblings; a parent node contains the text summary of that
cluster.

Our main contribution is the idea of using text summarization to allow retrieval augmentation of
context at different scales, and to show its effectiveness in experiments on collections of long doc-
uments. Controlled experiments with three language models (UnifiedQA (Khashabi et al., 2020),
GPT-3 (Brown et al., 2020) and GPT-4 (OpenAI, 2023)) show that RAPTOR outperforms current
retrieval augmentation. Moreover, RAPTOR coupled with GPT-4, and sometimes even with Uni-
fiedQA, gives new state-of-the-art results on three QA tasks: free text response questions on books
and movies (NarrativeQA, Kočiskỳ et al. 2018), full-text NLP papers (QASPER, Dasigi et al. 2021),
and multiple-choice questions based on medium-length passages (QuALITY, Pang et al. 2022).1

2 RELATED WORK

Why Retrieval? Recent advances in hardware and algorithms have indeed expanded the con-
text lengths that models can handle, leading to questions about the need for retrieval systems (Dai
et al., 2019; Dao et al., 2022; Liu et al., 2023). However, as Liu et al. (2023) and Sun et al. (2021)
have noted, models tend to underutilize long-range context and see diminishing performance as con-
text length increases, especially when pertinent information is embedded within a lengthy context.
Moreover, practically, use of long contexts is expensive and slow. This suggests that selecting the
most relevant information for knowledge-intensive tasks is still crucial.

Retrieval Methods Retrieval-augmented language models (RALMs) have seen improvements in
various components: the retriever, the reader, and end-to-end system training. Retrieval methods
have transitioned from traditional term-based techniques like TF-IDF (Spärck Jones, 1972) and
BM25 (Robertson et al., 1995; Roberts et al., 2020) to deep learning–based strategies (Karpukhin
et al., 2020; Khattab & Zaharia, 2020; Sachan et al., 2023). Some recent work proposes using
large language models as retrievers due to their ability to memorize extensive knowledge (Yu et al.,
2022; Sun et al., 2022). Research on the reader component includes Fusion-in-Decoder (FiD)
(Izacard & Grave, 2022), which employs both DPR and BM25 for retrieval and processes passages
independently in the encoder and RETRO (Borgeaud et al., 2022; Wang et al., 2023), which utilizes
cross-chunked attention and chunkwise retrieval to generate text grounded on retrieved context.

End-to-end system training work includes Atlas (Izacard et al., 2022), which fine-tunes an encoder-
decoder model in conjunction with the retriever; REALM (Guu et al., 2020), a bidirectional, masked
LM fine-tuned for open-domain question answering; and RAG (Retrieval-Augmented Genera-
tion) (Lewis et al., 2020), which integrates pre-trained sequence-to-sequence models with a neural
retriever. Min et al. (2021) introduced Joint Passage Retrieval (JPR) model which uses a tree-
decoding algorithm to handle passage diversity and relevance in multi-answer retrieval. Dense Hi-
erarchical Retrieval (DHR) and Hybrid Hierarchical Retrieval (HHR) represent advancements
in retrieval accuracy by combining document and passage level retrievals and integrating sparse and
dense retrieval methods, respectively (Liu et al., 2021; Arivazhagan et al., 2023).

1We have released the code of RAPTOR at https://github.com/parthsarthi03/raptor.
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Despite a diversity in methods, the retrieving components of models predominantly rely on stan-
dard approaches, i.e., chunking corpora and encoding with BERT-based retrievers. Although this
approach is widely adopted, Nair et al. (2023) highlights a potential shortcoming: contiguous seg-
mentation might not capture the complete semantic depth of the text. Reading extracted snippets
from technical or scientific documents may lack important context making them difficult to read or
even misleading. (Cohan & Goharian, 2017; Newman et al., 2023; Zhang et al., 2023).

Recursive summarization as Context Summarization techniques provide a condensed view of
documents, enabling more focused engagement with the content (Angelidis & Lapata, 2018). The
summarization/snippet model by Gao et al. (2023) uses summarizations and snippets of passages,
which improves correctness on most datasets but can sometimes be a lossy means of compression.
The recursive-abstractive summarization model by Wu et al. (2021) employs task decomposition
to summarize smaller text chunks, which are later integrated to form summaries of larger sections.
While this method is effective for capturing broader themes, it can miss granular details. LlamaIndex
(Liu, 2022) mitigates this issue by similarly summarizing adjacent text chunks but also retaining
intermediate nodes thus storing varying levels of detail, keeping granular details. However, both
methods, due to their reliance on adjacency for grouping or summarizing adjacent nodes, may still
overlook distant interdependencies within the text, which we can find and group with RAPTOR.

3 METHODS

Overview of RAPTOR Building on the idea that long texts often present subtopics and hierarchi-
cal structures (Cao & Wang, 2022; Dong et al., 2023b), RAPTOR addresses the issue of semantic
depth and connection in reading by building a recursive tree structure that balances broader thematic
comprehension with granular details and which allows nodes to be grouped based on semantic sim-
ilarity not just order in the text.

Construction of the RAPTOR tree begins with segmenting the retrieval corpus into short, contiguous
texts of length 100, similar to traditional retrieval augmentation techniques. If a sentence exceeds the
100-token limit, we move the entire sentence to the next chunk, rather than cutting it mid-sentence.
This preserves the contextual and semantic coherence of the text within each chunk. These texts
are then embedded using SBERT, a BERT-based encoder (multi-qa-mpnet-base-cos-v1)
(Reimers & Gurevych, 2019). The chunks and their corresponding SBERT embeddings form the
leaf nodes of our tree structure.

To group similar text chunks, we employ a clustering algorithm. Once clustered, a Language Model
is used to summarize the grouped texts. These summarized texts are then re-embedded, and the cycle
of embedding, clustering, and summarization continues until further clustering becomes infeasible,
resulting in a structured, multi-layered tree representation of the original documents. An important
aspect of RAPTOR is its computational efficiency. The system scales linearly in terms of both build
time and token expenditure, making it suitable for processing large and complex corpora. For a
comprehensive discussion on RAPTOR’s scalability, please refer to the Appendix A.

For querying within this tree, we introduce two distinct strategies: tree traversal and collapsed tree.
The tree traversal method traverses the tree layer-by-layer, pruning and selecting the most relevant
nodes at each level. The collapsed tree method evaluates nodes collectively across all layers to find
the most relevant ones.

Clustering Algorithm Clustering plays a key role in building the RAPTOR tree, organizing text
segments into cohesive groups. This step groups related content together, which helps the subse-
quent retrieval process.

One of the unique aspects of our clustering approach is the use of soft clustering, where nodes can
belong to multiple clusters without requiring a fixed number of clusters. This flexibility is essen-
tial because individual text segments often contain information relevant to various topics, thereby
warranting their inclusion in multiple summaries.

Our clustering algorithm is based on Gaussian Mixture Models (GMMs), an approach that offers
both flexibility and a probabilistic framework. GMMs assume that data points are generated from a
mixture of several Gaussian distributions.
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Given a set of N text segments, each represented as a d-dimensional dense vector embedding, the
likelihood of a text vector, x, given its membership in the kth Gaussian distribution, is denoted by
P (x|k) = N (x;µk,Σk). The overall probability distribution is a weighted combination P (x) =∑K

k=1 πkN (x;µk,Σk), where πk signifies the mixture weight for the kth Gaussian distribution.

The high dimensionality of vector embeddings presents a challenge for traditional GMMs, as dis-
tance metrics may behave poorly when used to measure similarity in high-dimensional spaces (Ag-
garwal et al., 2001). To mitigate this, we employ Uniform Manifold Approximation and Projection
(UMAP), a manifold learning technique for dimensionality reduction (McInnes et al., 2018). The
number of nearest neighbors parameter, n neighbors, in UMAP determines the balance between
the preservation of local and global structures. Our algorithm varies n neighbors to create a hierar-
chical clustering structure: it first identifies global clusters and then performs local clustering within
these global clusters. This two-step clustering process captures a broad spectrum of relationships
among the text data, from broad themes to specific details.

Should a local cluster’s combined context ever exceed the summarization model’s token threshold,
our algorithm recursively applies clustering within the cluster, ensuring that the context remains
within the token threshold.

To determine the optimal number of clusters, we employ the Bayesian Information Criterion (BIC)
for model selection. BIC not only penalizes model complexity but also rewards goodness of fit
(Schwarz, 1978). The BIC for a given GMM is BIC = ln(N)k − 2 ln(L̂), where N is the number
of text segments (or data points), k is the number of model parameters, and L̂ is the maximized
value of the likelihood function of the model. In the context of GMM, the number of parameters k
is a function of the dimensionality of the input vectors and the number of clusters.

With the optimal number of clusters determined by BIC, the Expectation-Maximization algorithm
is then used to estimate the GMM parameters, namely the means, covariances, and mixture weights.

While the Gaussian assumption in GMMs may not perfectly align with the nature of text data, which
often exhibits a sparse and skewed distribution, our empirical observations suggest that it offers an
effective model for our purpose. We run an ablation comparing GMM Clustering with summarizing
contiguous chunks and provide details in Appendix B.

Model-Based Summarization After clustering the nodes using Gaussian Mixture Models, the
nodes in each cluster are sent to a language model for summarization. This step allows the model
to transform large chunks of text into concise, coherent summaries of the selected nodes. For our
experiments, we use gpt-3.5-turbo to generate the summaries. The summarization step con-
denses the potentially large volume of retrieved information into a manageable size. We provide
statistics on the compression due to the summarization in Appendix C and the prompt used for
summarization in Appendix D.

While the summarization model generally produces reliable summaries, a focused annotation study
revealed that about 4% of the summaries contained minor hallucinations. These did not propagate
to parent nodes and had no discernible impact on question-answering tasks. For an in-depth analysis
of hallucinations, refer to the appendix E.

Querying In this section, we elaborate on the two querying mechanisms employed by RAPTOR:
tree traversal and collapsed tree. These methods offer unique ways of traversing the multi-layered
RAPTOR tree to retrieve relevant information, each with its own advantages and trade-offs. We
provide the pseudocode of both methods in Appendix F. Note that we embed all nodes using SBERT.

The tree traversal method first selects the top-k most relevant root nodes based on their cosine
similarity to the query embedding. The children of these selected nodes are considered at the next
layer and the top-k nodes are selected from this pool again based on their cosine similarity to the
query vector. This process is repeated until we reach the leaf nodes. Finally, the text from all selected
nodes is concatenated to form the retrieved context. The algorithm’s steps are outlined below:

1. Start at the root layer of the RAPTOR tree. Compute the cosine similarity between the
query embedding and the embeddings of all nodes present at this initial layer.

2. Choose the top-k nodes based on the highest cosine similarity scores, forming the set S1.
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Figure 2: Illustration of the tree traversal and collapsed tree retrieval mechanisms. Tree traver-
sal starts at the root level of the tree and retrieves the top-k (here, top-1) node(s) based on cosine
similarity to the query vector. At each level, it retrieves the top-k node(s) from the child nodes of
the previous layer’s top-k. Collapsed tree collapses the tree into a single layer and retrieves nodes
until a threshold number of tokens is reached, based on cosine similarity to the query vector. The
nodes on which cosine similarity search is performed are highlighted in both illustrations.

3. Proceed to the child nodes of the elements in set S1. Compute the cosine similarity between
the query vector and the vector embeddings of these child nodes.

4. Select the top k child nodes with the highest cosine similarity scores to the query, forming
the set S2.

5. Continue this process recursively for d layers, producing sets S1, S2, . . . , Sd.

6. Concatenate sets S1 through Sd to assemble the relevant context to the query.

By adjusting the depth d and the number of nodes k selected at each layer, the tree traversal method
offers control over the specificity and breadth of the information retrieved. The algorithm starts with
a broad outlook by considering the top layers of the tree and progressively focuses on finer details
as it descends through the lower layers.

The collapsed tree approach offers a simpler way to search for relevant information by considering
all nodes in the tree simultaneously, as depicted in Figure 2. Instead of going layer-by-layer, this
method flattens the multi-layered tree into a single layer, essentially bringing all the nodes onto the
same level for comparison. The steps for this method are outlined below:

1. First, collapse the entire RAPTOR tree into a single layer. This new set of nodes, denoted
as C, contains nodes from every layer of the original tree.

2. Next, calculate the cosine similarity between the query embedding and the embeddings of
all nodes present in the collapsed set C.

3. Finally, pick the top-k nodes that have the highest cosine similarity scores with the query.
Keep adding nodes to the result set until you reach a predefined maximum number of
tokens, ensuring you don’t exceed the model’s input limitations.

We tested both approaches on 20 stories from the QASPER dataset. Figure 3 shows the performance
of tree traversal with different top- sizes and collapsed tree with different maximum token numbers.
The collapsed tree approach consistently performs better. We believe collapsed tree retrieval is
better due to offering greater flexibility than tree traversal; i.e., by searching through all the nodes
simultaneously, it retrieves information that is at the correct level of granularity for a given question.
In comparison, while using tree traversal with the same values of d and k, the ratio of nodes from
each level of the tree will be constant. So, the ratio of higher-order thematic information to granular
details will remain the same regardless of the question.

5



Published as a conference paper at ICLR 2024

One drawback, however, of the collapsed tree approach is that it requires cosine similarity search to
be performed on all nodes in the tree. However, this can be made more efficient with fast k-nearest
neighbor libraries such as FAISS (Johnson et al., 2019).

Figure 3: Comparison of querying methods.
Results on 20 stories from the QASPER dataset
using tree traversal with different top-k values,
and collapsed tree with different context lengths.
Collapsed tree with 2000 tokens produces the best
results, so we use this querying strategy for our
main results.

Overall, given the collapsed tree approach’s
greater flexibility and its superior performance
on the subset of the QASPER dataset, this is
the querying approach with which we proceed.
Specifically, we use the collapsed tree with
2000 maximum tokens, which approximately
equates to retrieving the top-20 nodes. Using a
token-based approach ensures the context does
not exceed model context constraints as token
counts can vary across nodes. For experiments
with the UnifiedQA model, we provide 400 to-
kens of context, as UnifiedQA has a max con-
text length of 512 tokens. We provide the same
amount of tokens of context to RAPTOR and to
the baselines.

Qualitative Study We conduct a qualitative
analysis to understand the benefits of RAP-
TOR’s retrieval process compared to Dense
Passage Retrieval (DPR) methods. Our study
focuses on thematic, multi-hop questions using
a 1500-word Cinderella fairytale. As illustrated

in Figure 4, RAPTOR’s tree-based retrieval allows it to choose nodes from different tree layers,
matching the question’s detail level. This approach often yields more relevant and comprehensive
information for downstream tasks than DPR. For a detailed discussion and examples, including the
text retrieved by both RAPTOR and DPR for specific questions, please refer to the appendix G.

4 EXPERIMENTS

Datasets We measure RAPTOR’s performance across three question-answering datasets: Narra-
tiveQA, QASPER, and QuALITY.

NarrativeQA is a dataset that comprises question-answer pairs based on the full texts of books
and movie transcripts, totaling 1,572 documents (Kočiskỳ et al., 2018; Wu et al., 2021). The
NarrativeQA-Story task requires a comprehensive understanding of the entire narrative in order
to accurately answer its questions, thus testing the model’s ability to comprehend longer texts in
the literary domain. We measure performance on this dataset using the standard BLEU (B-1, B-4),
ROUGE (R-L), and METEOR (M) metrics. Please see appendix H for more details on the Narra-
tiveQA evaluation script used in our experiments.

The QASPER dataset includes 5,049 questions across 1,585 NLP papers, with each question probing
for information embedded within the full text (Dasigi et al., 2021). The answer types in QASPER
are categorized as Answerable/Unanswerable, Yes/No, Abstractive, and Extractive. Accuracy is
measured using standard F1.

Lastly, the QuALITY dataset consists of multiple-choice questions, each accompanied by context
passages averaging approximately 5,000 tokens in length (Pang et al., 2022). This dataset calls for
reasoning over the entire document for QA tasks, enabling us to measure the performance of our re-
trieval system on medium-length documents. The dataset includes a challenging subset, QuALITY-
HARD, which contains questions that a majority of human annotators answered incorrectly in a
speed-setting. We report accuracies for both the entire test set and the HARD subset.

Controlled Baseline Comparisons We first present controlled comparisons using the UnifiedQA
3B as the reader, with SBERT (Reimers & Gurevych, 2019), BM25 (Robertson et al., 1995; 2009),
and DPR (Karpukhin et al., 2020) as the embedding models with and without the RAPTOR tree
structure, on three datasets: QASPER, NarrativeQA, and QuALITY. As shown in Tables 1 and 2,
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Figure 4: Querying Process: Illustration of how RAPTOR retrieves information for two questions
about the Cinderella story: “What is the central theme of the story?” and “How did Cinderella find
a happy ending?”. Highlighted nodes indicate RAPTOR’s selections, while arrows point to DPR’s
leaf nodes. Notably, RAPTOR’s context often encompasses the information retrieved by DPR, either
directly or within higher-layer summaries.

our results demonstrate that RAPTOR, when combined with any retriever, consistently outperforms
the respective retriever across all datasets. 2

Since RAPTOR with SBERT has the best performance, we use it in all subsequent experiments.
We now compare RAPTOR with BM25 and DPR, using three different LLMs: GPT-3, GPT-4, and
UnifiedQA. As shown in Table 3, RAPTOR consistently outperforms BM25 and DPR across all
three Language Models on the QASPER dataset. RAPTOR’s F-1 Match scores are 53.1%, 55.7%,
and 36.6% when using GPT-3, GPT-4, and UnifiedQA, respectively. These scores surpass DPR by
margins of 1.8, 2.7, and 4.5 points, and outdo BM25 by 6.5, 5.5, and 10.2 points across the respective
LLMs. QASPER requires synthesizing information within NLP papers, so it is unsurprising that
RAPTOR’s higher-level summary nodes would allow it to outperform methods that can only extract
the top-k most similar raw chunks of text, which may not contain the correct response in isolation.

Table 1: NarrativeQA Performance With + Without RAPTOR: Performance comparison of
various retrieval methods (SBERT, BM25, DPR) with and without RAPTOR on the NarrativeQA
dataset, using UnifiedQA-3B as the language model. RAPTOR outperforms baselines of each re-
spective retrieval method.

Model ROUGE BLEU-1 BLEU-4 METEOR

SBERT with RAPTOR 30.87% 23.50% 6.42% 19.20%
SBERT without RAPTOR 29.26% 22.56% 5.95% 18.15%
BM25 with RAPTOR 27.93% 21.17% 5.70% 17.03%
BM25 without RAPTOR 23.52% 17.73% 4.65% 13.98%
DPR with RAPTOR 30.94% 23.51% 6.45% 19.05%
DPR without RAPTOR 29.56% 22.84% 6.12% 18.44%

Likewise, in the QuALITY dataset as shown in Table 4, RAPTOR achieves an accuracy of 62.4%,
which is a 2% and 5.1% improvement over DPR and BM25. Similar trends are observed when Uni-
fiedQA is employed, with RAPTOR outperforming DPR and BM25 by 2.7% and 6.7%, respectively.

Finally, in the NarrativeQA dataset, as presented in Table 6, RAPTOR excels across multiple met-
rics. For ROUGE-L, it surpasses BM25 and DPR by 7.3 and 2.7 points, respectively. In other
metrics like BLEU-1, BLEU-4, and METEOR, RAPTOR outperforms BM25 and DPR by margins
ranging from 1.7 to 5.8 and 0.7 to 2.1 points, respectively.

2For the DPR experiments in Tables 1 and 2, we used the dpr-multiset-base model as opposed to
dpr-single-nq-base which was used in rest of the experiments done earlier. This decision was based on
the performance observed in Karpukhin et al. (2020), where dpr-multiset-base showed superior results.
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Table 2: QuALITY and QASPER Performance With + Without RAPTOR: Performance com-
parison across the QuALITY and QASPER datasets of various retrieval methods (SBERT, BM25,
DPR) with and without RAPTOR. UnifiedQA-3B is used as the language model. RAPTOR outper-
forms baselines of each respective retrieval method for both datasets.

Model Accuracy (QuALITY) Answer F1 (QASPER)

SBERT with RAPTOR 56.6% 36.70%
SBERT without RAPTOR 54.9% 36.23%
BM25 with RAPTOR 52.1% 27.00%
BM25 without RAPTOR 49.9% 26.47%
DPR with RAPTOR 54.7% 32.23%
DPR without RAPTOR 53.1% 31.70%

Table 3: Controlled comparison of F-1 scores on the QASPER dataset, using three different lan-
guage models (GPT-3, GPT-4, UnifiedQA 3B) and various retrieval methods. The column ”Title +
Abstract” reflects performance when only the title and abstract of the papers are used for context.
RAPTOR outperforms the established baselines BM25 and DPR across all tested language models.
Specifically, RAPTOR’s F-1 scores are at least 1.8% points higher than DPR and at least 5.3% points
higher than BM25.

Retriever GPT-3 F-1 Match GPT-4 F-1 Match UnifiedQA F-1 Match

Title + Abstract 25.2 22.2 17.5
BM25 46.6 50.2 26.4
DPR 51.3 53.0 32.1
RAPTOR 53.1 55.7 36.6

Table 4: Comparison of accuracies on the QuAL-
ITY dev dataset for two different language mod-
els (GPT-3, UnifiedQA 3B) using various retrieval
methods. RAPTOR outperforms the baselines of
BM25 and DPR by at least 2.0% in accuracy.

Model GPT-3 Acc. UnifiedQA Acc.

BM25 57.3 49.9
DPR 60.4 53.9
RAPTOR 62.4 56.6

Table 5: Results on F-1 Match scores of various
models on the QASPER dataset.

Model F-1 Match

LongT5 XL (Guo et al., 2022) 53.1
CoLT5 XL (Ainslie et al., 2023) 53.9
RAPTOR + GPT-4 55.7

Comparison to State-of-the-art Systems
Building upon our controlled comparisons,
we examine RAPTOR’s performance relative
to other state-of-the-art models. As shown
in Table 5, RAPTOR with GPT-4 sets a new
benchmark on QASPER, with a 55.7% F-1
score, surpassing the CoLT5 XL’s score of
53.9%.

In the QuALITY dataset, as shown in Table 7,
RAPTOR paired with GPT-4 sets a new state-
of-the-art with an accuracy of 82.6%, surpass-
ing the previous best result of 62.3%. In par-
ticular, it outperforms CoLISA by 21.5% on
QuALITY-HARD, which represents questions
that humans took unusually long to correctly
answer, requiring rereading parts of the text,
difficult reasoning, or both.

For the NarrativeQA dataset, as represented in
Table 6, RAPTOR paired with UnifiedQA sets
a new state-of-the-art METEOR score. When compared to the recursively summarizing model by
Wu et al. (2021), which also employs UnifiedQA, RAPTOR outperforms it on all metrics. While
Wu et al. (2021) rely solely on the summary in the top root node of the tree structure, RAPTOR
benefits from its intermediate layers and clustering approaches, which allows it to capture a range of
information, from general themes to specific details, contributing to its overall strong performance.

4.1 CONTRIBUTION OF THE TREE STRUCTURE

We examine the contribution of each layer of nodes to RAPTOR’s retrieval capabilities. We hy-
pothesized that upper nodes play a crucial role in handling thematic or multi-hop queries requiring
a broader understanding of the text.
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Table 6: Performance comparison on the NarrativeQA dataset across multiple models, focusing
on four metrics: ROUGE-L, BLEU-1, BLEU-4, and METEOR. RAPTOR, when paired with Uni-
fiedQA 3B, not only surpasses retrieval methods like BM25 and DPR but also sets a new state-of-
the-art in the METEOR metric.

Model ROUGE-L BLEU-1 BLEU-4 METEOR

BiDAF (Kočiskỳ et al., 2018) 6.2 5.7 0.3 3.7
BM25 + BERT (Mou et al., 2020) 15.5 14.5 1.4 5.0
Recursively Summarizing Books (Wu et al., 2021) 21.6 22.3 4.2 10.6
Retriever + Reader (Izacard & Grave, 2022) 32.0 35.3 7.5 11.1
RAPTOR + UnifiedQA 30.8 23.5 6.4 19.1

Table 7: Accuracies of the QuALITY dataset on both the overall test set and the more challenging
hard subset. GPT-4 with RAPTOR sets a new state-of-the-art.

Model Accuracy

Test Set Hard Subset

Longformer-base (Beltagy et al., 2020) 39.5 35.3
DPR and DeBERTaV3-large (Pang et al., 2022) 55.4 46.1

CoLISA (DeBERTaV3-large) (Dong et al., 2023a) 62.3 54.7
RAPTOR + GPT-4 82.6 76.2

Table 8: Performance of RAPTOR when querying different tree layers for Story 1 from the QuAL-
ITY dataset. Columns represent different starting points (highest layer) and rows represent different
numbers of layers queried.

Layers Queried / Start Layer Layer 0 (Leaf Nodes) Layer 1 Layer 2

1 layer 57.9 57.8 57.9
2 layers - 52.6 63.15
3 layers - - 73.68

We validated this hypothesis both quantitatively and qualitatively. We present qualitative analysis in
appendix G. To quantitatively understand the contribution of the upper-level nodes, we used stories
from the QuALITY dataset. The RAPTOR tree is built for each of these stories, as described in
Section 3. However, during retrieval, we limit the search to different subsets of layers. For example,
we exclusively retrieve from the leaf nodes and each upper layer, as well as from different contiguous
subsets of the layers. We show findings specific to one story in Table 8, revealing that a full-tree
search, utilizing all layers, outperformed retrieval strategies that focused only on specific layers.

These findings highlight the importance of the full tree structure in RAPTOR. By providing both
the original text and higher-level summaries for retrieval, RAPTOR can effectively handle a wider
range of questions, from higher-order thematic queries to detail-oriented questions. Detailed results
for additional stories and an ablation study on layer contributions can be found in Appendix I.

5 CONCLUSION

In this paper, we have presented RAPTOR, a novel tree-based retrieval system that augments the
parametric knowledge of large language models with contextual information at various levels of
abstraction. By employing recursive clustering and summarization techniques, RAPTOR creates a
hierarchical tree structure that is capable of synthesizing information across various sections of the
retrieval corpora. During the query phase, RAPTOR leverages this tree structure for more effective
retrieval. Our controlled experiments demonstrated that RAPTOR not only outperforms traditional
retrieval methods but also sets new performance benchmarks on several question-answering tasks.
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6 REPRODUCIBILITY STATEMENT

Language Models for QA and Summarization Four language models are used in our RAPTOR
experiments: GPT-3 and GPT-4 for QA tasks, and GPT-3.5-turbo for summarization. The gpt-3,
gpt-4, and gpt-3.5-turbo models can be accessed via API calls (OpenAI API). UnifiedQA,
which is used for QA tasks, is publicly available at Hugging Face.

Evaluation Datasets The three evaluation datasets used in our experiments—QuALITY,
QASPER, and NarrativeQA—are all publicly accessible. These datasets ensure that the retrieval
and QA tests conducted in this study can be replicated.

Source Code We have released the code of RAPTOR at https://github.com/
parthsarthi03/raptor.
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A SCALABILITY AND COMPUTATIONAL EFFICIENCY OF THE
TREE-BUILDING PROCESS

To assess the computational efficiency and cost-effectiveness of RAPTOR’s tree-building process,
we conducted experiments on a consumer-grade laptop, specifically an Apple M1 Mac with 16GB
of RAM. These experiments aimed to demonstrate the scalability and feasibility of RAPTOR on
typical hardware. We varied the context length from 12,500 to 78,000 tokens and measured both the
token expenditure and the time required to complete the tree-building process, from initial splitting
and embedding to the construction of the final root node.

Figure 5: Token cost as a function of document length for QASPER, NarrativeQA, and QuALITY.
RAPTOR tree construction costs scale linearly with document length for each of the datasets.

Token Expenditure We empirically investigated the relationship between the initial document
length and the total number of tokens expended during the tree-building process, which includes
both the prompt and completion tokens. The document lengths varied significantly across the three
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datasets examined: QuALITY, QASPER, and NarrativeQA. Figure 5 illustrates a clear linear corre-
lation between the initial document length and the total token expenditure, emphasizing that RAP-
TOR maintains a linear token scaling regardless of document complexity or length.

Figure 6: Build time as a function of document length for documents of up to 80,000 tokens. RAP-
TOR tree construction time scales linearly with document length for each of the datasets.

Build Time We also empirically observed a consistent linear trend between the document length
and the build time, as shown in Figure 6. This suggests that RAPTOR scales linearly in terms of
time, making it a viable solution for efficiently processing large corpora of varying lengths.

Conclusion Overall, our empirical results indicate that RAPTOR scales both in terms of tokens
expended and build time. Even as the complexity and volume of the input text grow, the cost of
constructing the tree scales predictably and linearly. This demonstrates that RAPTOR is computa-
tionally efficient and well-suited for processing large and diverse corpora.

B ABLATION STUDY ON CLUSTERING MECHANISM IN RAPTOR

To assess the effectiveness of the clustering mechanism in our RAPTOR approach, we conducted
an ablation study on the QuALITY dataset. This study compares RAPTOR’s performance with a
balanced tree-style encoding and summarization of contiguous chunks, in contrast to our standard
clustering method.

B.1 METHODOLOGY

Both configurations in this ablation study utilized SBERT embeddings and UnifiedQA to maintain
consistency in retrieval. For RAPTOR, we employed our typical clustering and summarization
process. In contrast, the alternative setup involved creating a balanced tree by recursively encoding
and summarizing contiguous text chunks. We determined the window size for this setup based on
the average cluster size observed in RAPTOR, which is approximately 6.7 nodes. Hence, we chose
a window size of 7 nodes. The collapsed tree approach was applied for retrieval in both models.

B.2 RESULTS & DISCUSSION

The results of the ablation study are presented in table 9. The results from this ablation study clearly
indicate an improvement in accuracy when employing RAPTOR’s clustering mechanism over the
recency-based tree approach. This finding substantiates our hypothesis that the clustering strategy in
RAPTOR is more effective in capturing homogeneous content for summarization, thereby enhancing
the overall retrieval performance.
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Table 9: Ablation study results comparing RAPTOR with a recency-based tree approach

Configuration Accuracy
RAPTOR + SBERT embeddings + UnifiedQA 56.6%
Recency-based tree + SBERT embeddings + UnifiedQA 55.8%

C DATASET STATISTICS AND COMPRESSION RATIOS

The average ratio of the summary length to the sum of child node lengths across all datasets is 0.28,
indicating a 72% compression rate. On average, the summary length is 131 tokens, and the average
child node length is 86 tokens. Below are the detailed statistics for all three datasets:

Table 10: Statistics of Average Summary Length and Child Node Length Across Datasets

Dataset Avg.
Summary

Length
(tokens)

Avg. Child
Node Text

Length
(tokens)

Avg. # of
Child Nodes
Per Parent

Avg.
Compression

Ratio (%)

All Datasets 131 85.6 6.7 .28
QuALITY 124.4 87.9 5.7 .28
NarrativeQA 129.7 85.5 6.8 .27
QASPER 145.9 86.2 5.7 .35

D SUMMARIZATION PROMPT

Table 11 shows the prompt used for summarization.

Table 11: Prompt for Summarization

Role Content
system You are a Summarizing Text Portal
user Write a summary of the following, including as many key details as

possible: {context}:

E HALLUCINATION ANALYSIS

To assess the quality and accuracy of the summarizations within our RAPTOR model, we conducted
an analysis focusing on hallucinations in the generated summaries. The summaries were generated
by gpt-3.5-turbo and subsequently annotated to quantify the rates of hallucinations, to examine
whether such inaccuracies propagate to parent nodes, and to evaluate their impact on question-
answering (QA) tasks.

E.1 METHODOLOGY

We randomly sampled 150 nodes across 40 stories and evaluated them for hallucinations. This
sampling strategy provides a broad view of the model’s performance across different contexts. Each
node was annotated by hand, and determined if it contained a hallucination.

E.2 FINDINGS

Out of the 150 nodes sampled, 4% (6 nodes) contained some form of hallucination. Most commonly,
these hallucinations originated from the model adding minor information possibly from its training
data that was not present in the text being summarized, or from incorrectly extrapolating some
information when creating the summary.
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Example:

Text of the child nodes:

”And you will come with me to my people? We may live here among them, and
you will be a great warrior–oh, when Jor dies you may even be chief, for there is
none so mighty as my warrior...”But your father will not permit it–Jor, my father,
High Chief of the Galus, will not permit it, for like me you are cos-ata-lo. Oh, Co-
Tan, if we but could!... Bradley noticed that she spoke in English–broken English
like Co-Tan’s but equally appealing.

Summary found in the parent of that node:

The protagonist, Bradley, is being asked by Co-Tan to stay with her people and
become a great warrior, but he refuses and must return to his own country. Tom
Billings of Santa Monica arrives and tells them he came to search for a man named
Bowen J. Tyler, Jr. Ajor, Co-Tan’s sister, is excited about the possibility of going
to Tom’s country to see strange and wonderful things...

The hallucination here is that the summary states that Jr. Ajor and Co-Tan are sisters, but does not
explicitly mention or imply this.

Upon reviewing all parent nodes, we found that hallucinations did not propagate to higher layers.
Generally, the hallucinations were minor and did not alter the thematic interpretation of the text.

E.3 IMPACT ON QA TASKS

In our findings, hallucinations had no discernible impact on the performance of QA tasks. This sug-
gests that hallucination is not a major concerns for the summarization component in our RAPTOR
architecture.

F PSEUDOCODE FOR RETRIEVAL METHODS

Algorithm 1 Tree Traversal Algorithm

function TRAVERSETREE(tree, query, k)
Scurrent ← tree.layer[0]
for layer in range(tree.num layers) do

topk ← []
for node in Scurrent do

score← dot product(query, node)
top k.append((node, score))

end for
Slayer ← sorted(top k)[:k].nodes
Scurrent ← Slayer

end for
return S0 ∪ S1 ∪ S2 ∪ . . . ∪ Sk

end function

G QUALITATIVE ANALYSIS

To qualitatively examine RAPTOR’s retrieval process, we test it on thematic, multi-hop questions
about a 1500-word version of the fairytale Cinderella. We compare the context retrieved by RAP-
TOR with the context retrieved by Dense Passage Retrieval (DPR). Figure 4 in the main paper details
the retrieval process within RAPTOR’s tree structure for two questions. The nodes that RAPTOR
selects for each question are highlighted, while the leaf nodes that DPR selects for the same question
are indicated with arrows. This comparison illustrates the advantage of RAPTOR’s tree structure.
RAPTOR selects nodes from different layers depending on the level of granularity required by the
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Algorithm 2 Collapsed Tree Algorithm

function COLLAPSEDTREE(tree, query, k,max tokens)
tree← flatten(tree) ▷ Flatten tree into 1D
top nodes← []
for node in tree do

top nodes.append((node, dot product(query, node))
end for
top nodes← sorted(top nodes)
result← []
total tokens← 0
for node in top nodes do

if total tokens + node.token size < max tokens then
result.append(node)

end if
total tokens← total tokens + node.token size

end for
return result

end function

Question: What is the central theme of the story?
RAPTOR Fairy Godmother helps Cinderella attend a ball by transforming her rags. . . Cinderella

impresses the Prince at the ball. . . she loses track of time and has to run home alone in
the darkness. The Prince is unable to find Cinderella and goes in search of her . . . She
forgave her sisters, and treated them always very kindly, and the Prince had great cause
to be glad that he had found the glass slipper.

DPR Two mice were turned into footmen; four grasshoppers into white horses. Next, the
Fairy touched Cinderella’s rags, and they became rich satin robes, trimmed with point
lace. . . . Alas! the clock had struck Eleven. She found no coach, only a pumpkin, and
the rat and mice ran quickly away when they saw her; while all her fine dress turned to
rags, and she had to run home alone. . . They told her a beautiful Princess had been at
the ball, with whom the Prince was delighted. They did not know it was Cinderella.

Question: How does Cinderella find a happy ending?
RAPTOR The story of Cinderella involves her godmother, a fairy, who transforms a pumpkin

into a grand coach with her wand and allows Cinderella to attend the ball. However,
Cinderella must return home before the clock strikes eleven or her dress will turn back
into rags. . . Cinderella impresses the Prince at the ball but leaves before he can find
out who she is. . . The Prince searched for the owner of a lost glass slipper and found it
belonged to Cinderella. She forgave her sisters and the Prince was glad to have found
her.

DPR the clock had struck Eleven. . . The Prince was very much surprised when he missed
Cinderella again, and leaving the ball, went in search of her. . . Fairy touched Cin-
derella’s rags, and they became rich satin robes, trimmed with point lace... Her old
shoes became a charming pair of glass slippers, which shone like diamonds. “Now go
to the ball, my love,” she said, “and enjoy yourself. But remember, you must leave the
room before the clock strikes eleven. If you do not your dress will return to its original
rags.”

Table 12: Relevant excerpts from text retrieved by RAPTOR and DPR for the questions on the
fairytale Cinderella.

question at hand. Further, the information that would be retrieved by DPR is more often than not
included in the context retrieved by RAPTOR, either directly as a leaf node or indirectly as part of a
summary from a higher layer.

”The first question we examine is “How does Cinderella find a happy ending?”, a multi-hop question
best answered by synthesizing information from various text segments. To control for the language
model’s potential familiarity with the Cinderella story, we instructed it to rely solely on the retrieved
information for its answers. Table 12 shows the text retrieved by both RAPTOR and DPR for this
question. RAPTOR’s context succinctly describes Cinderella’s journey to happiness, while DPR’s
leaf nodes primarily focus on her initial transformation. The difference in retrieved information
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significantly impacts downstream tasks. When GPT-4 is provided with RAPTOR’s context, it gen-
erates a detailed answer: “Cinderella finds a happy ending when the Prince searches for the owner
of the lost glass slipper and discovers it belongs to Cinderella. They eventually marry, transform-
ing Cinderella’s life for the better.” In contrast, using DPR’s context, GPT-4 states: “Based on the
given context, it is not possible to determine how Cinderella finds a happy ending, as the text lacks
information about the story’s conclusion.”

The second question we examine is “What is the central theme of the story?”, a thematic question
that requires holistic understanding of the entire text. The text retrieved by RAPTOR and DPR for
this question is shown in Table 12. The text retrieved by RAPTOR contains short descriptions of
all the major parts of the story, whereas the text retrieved by DPR contains detailed descriptions of
a narrow subset of the story. Again, the difference in retrieval mechanisms affects the performance
of GPT-4 when answering the question. Given DPR’s context, it outputs “The central theme of
the story is transformation and the power of inner beauty, as Cinderella, a kind and humble girl, is
magically transformed into a beautiful princess, capturing the attention and admiration of the Prince
and others at the ball.” This answer only takes into account the first portion of the story, up until
Cinderella first meets the prince. In contrast, given RAPTOR’s context, GPT-4 outputs “The central
theme of the story is transformation and overcoming adversity, as Cinderella, with the help of her
Fairy Godmother, transforms from a mistreated and downtrodden girl into a beautiful and confident
young woman who ultimately finds happiness and love with the Prince.” This is a more complete
answer, demonstrating a comprehensive understanding of the story.

This qualitative analysis indicates that RAPTOR outperforms prior retrieval mechanisms because
the information that it retrieves is more relevant and exhaustive, allowing for better performance on
downstream tasks.

We also created a 2600-word story along with questions about its narrative and theme. An excerpt
from the story is present below and the full PDF of this story is linked here. For questions like “What
is the central theme of the story?”, an upper-level node is retrieved which includes the sentence:
“This story is about the power of human connection... inspiring and uplifting each other as they
pursued their passions.” This summary, not explicitly present in the original text, almost directly
answers the question.

Excerpt from ”The Eager Writer”:

”Ethan’s passion for writing had always been a part of him. As a child, he would
often scribble stories and poems in his notebook, and as he grew older, his love
for writing only intensified. His evenings were often spent in the dim light of his
room, typing away at his laptop. He had recently taken a job as a content writer
for an online marketing firm to pay the bills, but his heart still longed for the
world of storytelling. However, like many aspiring writers, he struggled to find a
foothold in the industry. He took a job as a content writer for an online marketing
firm, but it was growing increasingly evident to him that this was not the path he
wanted to pursue. It was during this time that he stumbled upon the Pathways
app. The app offered a platform for people in similar professions to connect and
share knowledge, and he saw it as an opportunity to finally connect with others
who shared his passion for writing. Ethan saw an opportunity to meet others who
shared his passion and could offer guidance and mentorship. He quickly signed
up and was surprised by the number of writers he found on the platform, from
well establish professionals to beginners just starting out in the business.”

H NARRATIVEQA EVALUATION SCRIPT

We made several modifications to AllenNLP’s evaluation script3 to better fit our evaluation needs:

• Added Smoothing: Smoothing was incorporated to handle cases where BLEU score is
zero, due to no n-gram matches occurring in the reference text. A BLEU score of zero
skews the results, leading to an overly harsh evaluation for rare or novel phrases. By adding

3docs.allennlp.org/models/main/models/rc/tools/narrativeqa/
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a smoothing function, we prevent the BLEU scores from dropping to zero, providing a more
fair evaluation.

• Modified BLEU-4 Weighting: The original script applied a weight of 1 to the highest
order n-gram (4-gram) and 0 to the rest in its BLEU-4 calculation (i.e., weights=(0, 0,
0, 1)). This approach may overly focus on 4-gram matches while neglecting lower-order
matches. To provide a more balanced evaluation, we evenly distributed the weight across
all n-gram levels, changing the weights for the BLEU-4 calculation to (0.25, 0.25, 0.25,
0.25).

• Tokenization before Mapping in METEOR Calculation: The original script utilized a
simple split and map method for METEOR calculation. We fixed this by first tokenizing the
text and then mapping the tokens. This amendment improves the accuracy of the METEOR
calculation by taking into account the correct linguistic boundaries of words.

I ANALYSIS OF DIFFERENT LAYERS ON RAPTOR’S PERFORMANCE

I.1 HOW DO DIFFERENT LAYERS IMPACT PERFORMANCE ?

In this section, we present a detailed breakdown of RAPTOR’s retrieval performance when querying
different layers of the hierarchical tree structure for various stories. These tables validate the utility
of RAPTOR’s multi-layered structure for diverse query requirements.

Figure 7: Histogram showing the percentage of nodes retrieved from different layers of the RAPTOR
tree across three datasets (NarrativeQA, Quality, and Qasper) using three retrievers (SBERT, BM25,
and DPR). The data indicate that a substantial portion of the nodes contributing to the final retrieval
comes from non-leaf layers, with a notable percentage from the first and second layers, highlighting
the importance of RAPTOR’s hierarchical summarization in the retrieval process.

Table 13: Performance of RAPTOR when querying different layers of the tree for Story 2.

Layers Queried / Start Layer Layer 0 (Leaf Nodes) Layer 1 Layer 2

1 layer 58.8 47.1 41.1
2 layers - 64.7 52.9
3 layers - - 47.1

Table 14: Performance of RAPTOR when querying different layers of the tree for Story 3.

Layers Queried / Start Layer Layer 0 (Leaf Nodes) Layer 1 Layer 2

1 layer 66.6 61.1 61.1
2 layers - 66.6 66.6
3 layers - - 83.3

I.2 WHICH LAYERS DO RETRIEVED NODES COME FROM ?

We further conduct an ablation study across all three datasets and across three different retrievers
with RAPTOR with the collapsed tree retrieval to examine the layers from which the retrieved nodes
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Table 15: Performance of RAPTOR when querying different layers of the tree for Story 4.

Layers Queried / Start Layer Layer 0 (Leaf Nodes) Layer 1

1 layer 94.7 84.2
2 layers - 89.4

Table 16: Performance of RAPTOR when querying different layers of the tree for Story 5.

Layers Queried / Start Layer Layer 0 (Leaf Nodes) Layer 1

1 layer 57.9 47.3
2 layers - 68.4

originate. We observe that between 18.5% to 57% of the retrieved nodes come from non-leaf nodes.
As illustrated in Figure 7, the retrieval pattern across layers reveals the importance of RAPTOR’s
multi-layered tree structure. Notably, a significant percentage of the nodes retrieved by RAPTOR
using the DPR retriever for the NarrativeQA dataset come from the first and second layers of the
tree, as opposed to the leaf nodes. This pattern is consistent across the other datasets and retrievers,
albeit with varying percentages.

Table 17: Percentage of nodes from non-leaf nodes across different datasets and retrievers

Dataset DPR SBERT BM25
NarrativeQA 57.36% 36.78% 34.96%
Quality 32.28% 24.41% 32.36%
Qasper 22.93% 18.49% 22.76%

Table 18: Percentage of nodes from different layers with DPR as the retriever

Layer NarrativeQA Quality Qasper
0 42.64% 67.71% 77.07%
1 45.00% 29.43% 21.88%
2 10.57% 2.85% 1.05%
3 1.78% - -
4 0.003% - -

Table 19: Percentage of nodes from different layers with SBERT as the retriever

Layer NarrativeQA Quality Qasper
0 63.22% 75.59% 81.51%
1 31.51% 22.78% 17.84%
2 4.85% 1.63% 0.65%
3 0.42% - -

Table 20: Percentage of nodes from different layers with BM25 as the retriever

Layer NarrativeQA Quality Qasper
0 65.04% 67.64% 77.24%
1 28.79% 28.85% 21.57%
2 5.36% 3.51% 1.19%
3 0.81% - -

22


	Introduction
	Related Work
	Methods
	Experiments
	Contribution of the tree structure

	Conclusion
	Reproducibility Statement
	Scalability and Computational Efficiency of the Tree-Building Process
	Ablation Study on Clustering Mechanism in RAPTOR
	Methodology
	Results & Discussion

	Dataset Statistics and Compression Ratios
	Summarization Prompt
	Hallucination Analysis
	Methodology
	Findings
	Impact on QA Tasks

	Pseudocode for Retrieval Methods
	Qualitative Analysis
	NarrativeQA Evaluation Script
	Analysis of Different Layers on RAPTOR's Performance
	How do different Layers impact performance ?
	Which Layers do Retrieved Nodes come from ?


