ElliCE: Efficient and Provably Robust Algorithmic
Recourse via the Rashomon Sets

Bohdan Turbal' Iryna Voitsitska’> Lesia Semenova®”

! Princeton University > Ukrainian Catholic University 3 Rutgers University
bt4811@princeton.edu, voitsitska.pn@ucu.edu.ua, lesia.semenovalrutgers.edu

Abstract

Machine learning models now influence decisions that directly affect people’s
lives, making it important to understand not only their predictions, but also how
individuals could act to obtain better results. Algorithmic recourse provides ac-
tionable input modifications to achieve more favorable outcomes, typically rely-
ing on counterfactual explanations to suggest such changes. However, when the
Rashomon set — the set of near-optimal models — is large, standard counterfactual
explanations can become unreliable, as a recourse action valid for one model may
fail under another. We introduce ElliCE, a novel framework for robust algorith-
mic recourse that optimizes counterfactuals over an ellipsoidal approximation of
the Rashomon set. The resulting explanations are provably valid over this ellip-
soid, with theoretical guarantees on uniqueness, stability, and alignment with key
feature directions. Empirically, ElliCE generates counterfactuals that are not only
more robust but also more flexible, adapting to user-specified features constraints
while being substantially faster than existing baselines. This provides a princi-
pled and practical solution for reliable recourse under model uncertainty, ensuring
stable recommendations for users even as models evolve.

1 Introduction

When an algorithmic decision denies someone a loan, a job, or insurance coverage, a natural ques-
tion follows: What could I change to obtain a better outcome next time? Algorithmic recourse
answers this question by providing concrete, actionable changes that could lead to a more favorable
decision. A common way to generate such recommendations is through counterfactual explanations
— small modifications to an individual’s features that flip the model’s prediction. Yet, even when the
recommendation looks specific (e.g. “increase your income by $50007), one must ask: Would that
same change still work tomorrow if the institution retrains or replaces its model? or How stable are
these suggestions across equally good models that explain the data in different ways?

Most existing counterfactual generation methods [25} 146, 50, 152} 154} 157, 161} 166] implicitly assume
that the underlying model is fixed and perfectly known. In practice, models evolve: banks regu-
larly retrain risk predictors, healthcare institutions update diagnostic classifiers, and regulators may
require model re-validation under new privacy or transparency constraints. Small shifts in data or
regularization can result in very different-yet-equally-accurate models. This phenomenon, known
as the Rashomon effect [8| [18, 23} 156, 58]}, implies that many distinct predictors achieve nearly op-
timal performance. In such settings, a counterfactual valid for one model can fail under another,
undermining the reliability and consistency of algorithmic recourse.
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Recent approaches have attempted to produce robust counterfactuals, meaning counterfactuals that
are valid under small parameter perturbations or across predefined ensembles [17, 22 1277, |34} 136,
37,141, 163]. However, these methods either rely on heavy-weight mixed-integer solvers, restrict
robustness to local neighborhoods around a single model, or lack formal guarantees of validity
across the full space of near-optimal solutions known as the Rashomon set. None of them directly
leverages the geometry of this Rashomon set itself.

We introduce ElliCE, an efficient and provably robust framework for algorithmic recourse that works
over an ellipsoidal approximation of the Rashomon set. By modeling the space of near-optimal mod-
els as an ellipsoid derived from the curvature (Hessian) of the loss landscape, ElliCE reformulates
robust counterfactual generation as a tractable convex optimization problem. The resulting counter-
factuals are valid for every model inside the ellipsoid, ensuring that a user’s recommended action
remains meaningful even if the deployed model is replaced by another equally accurate one from
the approximated Rashomon set.

Our contributions are fourfold: (1) Theoretical foundation. We derive a closed-form expression
for the worst-case prediction, which allows us to formulate the robust recourse problem as a con-
vex optimization and establish formal guarantees of validity, uniqueness, and stability for ElliCE’s
counterfactuals. (2) Geometric intuition. We show that EIliCE’s robustness term connects the coun-
terfactual’s stability with the importance of the features it modifies as the optimization naturally
aligns recourse directions with the principal curvature axes of the loss landscape. (3) Actionability.
ElliCE supports feature-level constraints, such as sparsity constraints, immutable or range-restricted
attributes, allowing users to generate realistic, actionable recourse tailored to specific application
or user settings. (4) Empirical validation. Across multiple high-stakes tabular datasets, EIliCE
achieves higher robustness and remains one to three orders of magnitude faster than competing
baselines, while maintaining proximity and plausibility.

Ultimately, ElliCE looks at algorithmic recourse through the lens of model multiplicity. Instead of
relying on a single model’s decision boundary, it offers explanations that stay consistent across many
models that fit the data almost equally well. This perspective treats the Rashomon Effect not as a
flaw to eliminate, but as an inherent source of uncertainty to account for, leading to stable recourse
in the presence of model diversity.

2 Related works

Rashomon Effect. The Rashomon Effect, a term popularized by Breiman [§] in the context of ma-
chine learning, describes the phenomenon where multiple distinct models can achieve near-optimal
empirical risk (these models form a Rashomon set). This effect is also referred to as model mul-
tiplicity [} 48]. The existence of the Rashomon set has implications for the trustworthiness and
reliability of machine learning systems, influencing feature importance [14} [15, 20l 511, fairness
[13} 145) 149], the existence of simple yet accurate models [6} 158, 59] to name a few. Significant
research has focused on measuring and characterizing the Rashomon set for different model classes
[29, 31} 132, 168} [70]. Our work leverages insights into the geometry of the Rashomon set, explored
by works like Donnelly et al. [16], Zhong et al. [[70], but applies them to the distinct challenge of
generating robust algorithmic recourse across this set.

Counterfactual Explanations. Counterfactual Explanations (CEs) have emerged as a promi-
nent tool for providing algorithmic recourse. Numerous approaches exist for generating CEs.
Proximity-based methods aim for counterfactuals requiring minimal feature space perturbations
[9L 1501 165, 166]]. Sparsity techniques prioritize modifying the fewest features possible to enhance ac-
tionability [25}161]], while some methods attempt to balance both objectives [46]. Another research
direction emphasizes plausibility, ensuring generated CEs represent realistic instances by constrain-
ing them to the data manifold, for example, using guidance from generative models [39, |52} |53],
encoding feasibility rules [40Q], or tracing density-aware paths [54]. Recent extensions also incor-
porate temporal reasoning [[L1] and fairness objectives [4, |43| 69]. A key limitation across these
approaches (which ElliCE directly addresses) is the assumption of a fixed, perfectly known predic-
tive model, as counterfactuals constructed near a specific decision boundary can become unstable
under model updates or perturbations.

Robustness to Local Model Perturbations. Building upon the limitation of fixed models, one
line of work has focused specifically on achieving robustness against small, local changes or per-



turbations in the model’s parameters. For instance, ROAR [63] optimizes CEs considering local
A-perturbations of the model. Jiang et al. [33] introduced A-robustness, a formal metric to as-
sess CE validity under bounded parameter perturbations in neural networks, with subsequent works
developing provably robust MILP-based methods [34} 36]. While these methods offer formal guar-
antees for A-robustness, MILP-based approaches can face scalability challenges, and the focus is
generally on local parameter stability rather than the broader implications of the Rashomon effect.

Robustness under the Rashomon Effect. A growing body of work addresses counterfactual ro-
bustness under model multiplicity, aligning closely with the Rashomon Effect. Several approaches
evaluate stability across predefined sets or ensembles of models, introducing heuristic stability mea-
sures (e.g., T:Rex [27] and RobX [17]]), probabilistic frameworks [22] 41]], or guarantees under
specific norms and conditions like distribution shift [24} 42} |44]]. Foundational work by Pawelczyk
et al. [S3] conceptually linked the Rashomon Effect to counterfactuals, though primarily enhancing
input perturbation robustness. More recent methods use argumentative ensembling [37] or aggregate
explanations across AutoML-generated sets [10] to handle model multiplicity.

Our work takes a distinct approach. Rather than relying on ensemble agreement, heuristic stability
metrics, local perturbations, or argumentative aggregation, ElliCE leverages the local geometry of
the Rashomon set, approximated by an ellipsoid, to derive theoretically grounded, robust recourse
valid across all models within the approximation.

3 Background and Notation

Dataset and hypothesis space. Consider n i.i.d. samples S,, = {z; = (x;,v;)}}_;, where x; €
X C R% and y; € Y = {0, 1} are generated from an unknown distribution D on X’ x ). Let Vpred
be an output space, where V,..q C R for scores (logits) or Vpreq C [0, 1] for probabilities. Then
F = {fe : 6 € ©} is a hypothesis space of functions fg : X — YV,,cq, parameterized by a vector
6 € © C RP. For example, F can represent linear models or multilayer perceptrons. We denote a
specific function by fg. As our analysis focuses on the parameter space ©, we will often refer to the
model directly by its parameter vector 6.

Loss and objective function. Let ¢ : V,req X V — R, be a loss function. In this work, we
consider logistic loss ¢(fo(x),y) = —[ylog(c(fe(x))) + (1 — y)log(1l — o(fe(x)))], which is
applied to the model’s raw score (logit), s = fg(x), where o(s) = Trow(=s) is the sigmoid
function. However, our results generalize to other convex losses. The true risk is the expected
loss J(0) = E.[¢(fo(x),y)] that we approximate with the empirical risk, which is the aver-

age loss, J(0) = 13"  é(fo(xi),y:;). We also define an (5-regularized objective function:
L(0) = J(6) + 2116]|3, where A > 0 is the regularization strength. The empirical risk minimizer
(ERM) is 0 € arg mingee I:(O) When \ = 0, the ERM is 6 € arg mingeo j(O)

Rashomon set. Following [21} 158} 67]], we define the e-Rashomon set within the parameter space
© as the set of parameter vectors whose corresponding models fg have objective value close to the
minimum: . L
R(e)={0€0O:L(0O)<L(O)+¢€},

where € > 0 is the Rashomon parameter defining the allowable tolerance in objective compared to
the ERM, ﬁ(é) It is typically a small value. The existence of the Rashomon set with multiple,
distinct parameter vectors 8 (corresponding to potentially distinct functions fg) achieving similar
performance implies that different underlying logic (how features contribute to predictions) can
explain the data equally well. It is important to be aware of this variability among near-optimal
models when generating explanations for individual predictions, as different models in R (¢) might
suggest different ways an outcome could be changed.

Counterfactual explanations. Let g : Vpreq — {0,1} be the decision function that converts a
model’s score output s = fg(x) to a final binary class label by applying a threshold ¢, such that

g(s) = 1[s > t]. For an ERM 6 and for an input vector xo with prediction g(f4(x0)) = 9o,
a counterfactual explanation x. is a data point such that its predicted class is the opposite, i.e.,

9(fs3(xc)) = 1 — go. The set of all counterfactual explanations for x, under the model 6 and
decision function g is defined as:

Clx0,0) = {xc € X : g(fy(xc)) = 1= g(fg(x0))} -



For instance, in a credit loan application scenario, if an applicant x( is denied a loan (e.g.,
9(f3(x0)) = 0), a counterfactual explanation x. would be a modified version of their ap-
plication details (e.g., increased income, reduced debt) such that the model predicts approval,
9(fs(xc)) = 1. While many such x. might exist, practical algorithmic recourse aims to find expla-
nations that require minimal change for the user. This means finding the “closest” counterfactual:
Xp = argming .4 V(Xe,Xo), where v(-,-) : R? x R? — R is a defined distance function or
cost metric.

Distance Metrics. In our framework, we primarily focus on the two distance metrics for gen-
erating actionable and interpretable counterfactuals: /5 or Euclidean distance and mixed distance
Lmiz. Note that ¢5 is a natural geometric measure of proximity, that penalizes large differences

in any feature, /5(x.,Xo) = ||x. — Xo||3 = Z;l:l(xcj — w0;)%. For practical applications where
features have different natures (continuous and categorical), one can also consider the mixed dis-

tance {,,,;,, inspired by Gower’s distance. Assuming that the data are standardized, it is defined
as: Uiz (Xc, X0) = \/Zjelcom (Tej — @0j)* + D ez, Willze; # @oj], where Leops and Zeqt de-

note the sets of continuous and categorical feature indices respectively, 1[-] is the indicator function,
and w; are optional weights reflecting the cost of changing feature j. We use /5 distance for our
theoretical analysis in the subsequent sections.

Next, we describe our approximating framework and outline the optimization process.

4 A Framework for Robust Recourse over the Rashomon Set

We focus our theoretical analysis on linear predictors of the form fg(x) = 8T x. However, the same
methodology applies in the final embedding space of multilayer perceptrons (MLPs) by writing the
model as fg(x) = 6 h(x), where h(x) is the penultimate-layer embedding and @ are the last-
layer parameters. We freeze h(-) and apply the same ellipsoidal procedure to 0 as in the linear case
(equivalently, replace x by h(x) in the formulas below).

Approximated Rashomon set. For certain objectives, such as />-regularized mean-squared error
on linear models, the Rashomon set is exactly an ellipsoid in the parameter space [58]: R(e) =
{6:(0—60)T(XTX +A,)(0 —6) < e}, where X € R"* s the data matrix, whose i-th row
is the feature vector x; , I, is an identity matrix of size p x p, and A € R is the regularization
parameter. Because mean-squared error provides a local quadratic approximation to other convex
losses, the exact ellipsoidal form of its Rashomon set serves as strong motivation for the Rashomon
set approximation. Building on this and on similar geometric intuition [[70], we approximate the
e-Rashomon set with an ellipsoid defined by the local geometry of the loss landscape:

R(e)=1{0: %(9 —0)"H(O-0) <},

where H = X TWX + A, is the Hessian of the ¢>-regularized loss function, evaluated at 0. For
logistic loss, T is an n x n diagonal matrix of weights where w;; = o(fg(x;))(1 — o(f4(xs)))-
Recall from Section [3|that o'(-) is the sigmoid function.

The Hessian matrix H of the regularized objective ﬁ(@) is strictly positive definite. This is because
it is the sum of the positive semidefinite (PSD) Hessian from the convex logistic loss and the positive
definite (PD) Hessian from the ¢, regularization term (A[,), assuming A > 0. A positive definite
Hessian is important for our framework, as it guarantees the approximating ellipsoid is well-defined
and bounded, and ensures that H is invertible for our closed-form solution.

In cases where the unregularized risk J(6) is minimized (e.g., for neural networks), the resulting
Hessian is only guaranteed to be PSD and may be singular. For these models, we ensure positive
definiteness in practice by adding a small stabilization term, af},, o > 0, to the computed Hessian,
which is a standard technique to guarantee invertibility.

Optimization. To find a robust counterfactual explanation, we want to compute an explanation x.
that is closest to the original point x, while ensuring that its predicted outcome is above a target
threshold ¢ for all models within the approximated Rashomon set. In other words, for a given xg,
we look for a minimally modified (measured in some distance; we will use {5 here) x., such that
its predicted outcome achieves ¢ even when evaluated by the least favorable model @ within the



approximated Rashomon set 7@(6) Formally, this requirement leads to the following optimization
problem:
min  ||x. — %03 s.t.  min 0 x. >t (D
Xc OeR(¢)
The inner minimization problem admits a closed-form solution, as we show next in Theorem[I] By
reformulating the problem in this way, we get a tractable optimization framework that supports more
efficient computation and analytical analysis of solution properties.

Theorem 1 (Closed-form solution). For positive-definite Hessian H, the inner minimization
problem over the ellipsoid-approximated Rashomon set R(e) has the closed-form solution
mineeﬁ(e) 0"x. = 0"x, — \/2¢ x! H-1x.. Moreover, for a given X., the worst-case model

H_lxC

O.0rst(Xc) that achieves this minimum is: 0,0r5t(Xc) = 0 — /2 N

We prove Theorem[I]in Appendix[A.T] As a direct consequence of Theorem [T} we obtain a practical
criterion for verifying the robustness of a potential counterfactual. Specifically, since the theorem
provides an explicit characterization of the output generated by the least favorable model 8 € 7%(6)
for a given x., we can immediately determine if this x. achieves the target ¢ across the entire set as
we show in the following corollary.

Corollary 1. A given counterfactual explanation x. is robust with respect to all models in the
ellipsoid-approximated Rashomon set R(¢) against a target score t if and only if: 0Tx. —

V2ex! H 1x. > t.

By substituting the closed-form solution from Theorem|I]into the original optimization problem (TJ),
the robust counterfactual optimization problem becomes:

min  ||x. — Xol|2 st. 0Tx, —\/2ex] H-1x, > t. (2)
Xe

The resulting problem is a quadratically constrained quadratic program (QCQP), which is a class
of tractable convex optimization problems. We solve it efficiently using a gradient-based method.
Leveraging the formulation (2), we implement two approaches for generating counterfactuals: a
search-based method for generating data-supported counterfactuals lying on the data manifold, and
a continuous optimization method for exploring potentially novel non-data supported solutions.

Continuous CE generation. For non-data supported counterfactuals, we solve the convex optimiza-
tion problem in Equation (Z) using a gradient-based approach for both linear models and multilayer
perceptrons. This method directly optimizes for a counterfactual x. in the input space. For neural
networks, the process is guided by the worst-case model 6,,,,-s:(X.) identified in the final layer’s
embedding space using Theorem [I| with the resulting gradients mapped back to the input features.
The full details of this procedure are available in Appendix [B.4]

Data-supported CE generation. For practical applications where counterfactuals should remain on
the data manifold, we generate data-supported explanations based on the training set. Specifically,

we evaluate the robust logit 07Tx; —+/ 2ex,; H~1x; for each training data point x; using Theorem
Then, we compute the subset Sg;qp¢ by filtering out points where this robust prediction exceeds the
target threshold t. Finally, we use k-d tree nearest neighbor search within Sg¢p;e to identify the
points closest to the input point Xg in terms of defined distance (for example, ¢5), which gives us a
counterfactual that is both robust and lies on the data manifold.

The continuous approach offers flexibility by exploring the entire feature space for new solutions,
while the data-supported approach guarantees plausibility by restricting solutions to observed ex-
amples. We evaluate the performance of both approaches in Section [ and focus on theoretical
guarantees of our framework next.

5 Theoretical Guarantees of ElliCE Counterfactuals

In this section, we explore key theoretical properties of the counterfactual explanations generated
under our framework. Note that we use {5 distance as target distance between x( and x.. We show
that the counterfactual explanations generated by our method are valid, unique, stable, and align



with important directions in the feature space. We focus on each of these properties separately and
proofs of theorems provided in this section are in Appendix [A.2]

Validity. By explicitly optimizing for the worst-case model 8,,,,-s; within the defined ellipsoid, any
counterfactual x. generated by ElliCE is, by construction, valid for all models in the approximated
Rashomon set. This inherent validity ensures that the provided recourse is faithful, regardless of
which model from the approximated Rashomon set was selected.

Uniqueness. By Theorem [2] that we state next, any solution X, to the modified optimization prob-
lem is unique. Because our objective is strictly convex and the approximated Rashomon set is
characterized as an ellipsoid, for a given X, there can never be two distinct counterfactuals at the
same /o distance from the original x. In practical terms, this uniqueness guarantees that EIliCE
provides a single solution for a given input and desired robustness level. This directly addresses and
resolves “explanation multiplicity” [26]], where multiple, distinct explanation paths might exist for a
single input (at least for ¢ distance).

Theorem 2 (Uniqueness). If a solution x. to the optimization problem (2)) exists, then X is unique.

Stability. The input data x is often subject to noise or minor variations. A desirable property is that
such small changes in the input do not lead to drastically different counterfactuals. Our framework
ensures this stability. Theorem [3|formally states that the process of generating robust counterfactuals
is Lipschitz continuous with a constant of 1. This means that if the original input x is perturbed
by a small amount d to become xj), the resulting robust counterfactual x/, will not deviate from the
original counterfactual x. by more than the magnitude of the initial perturbation ||d||2. This property
guarantees the reliability of the explanations.

Theorem 3 (Stability). Given an input X, let x. be the robust counterfactual solution for x¢. If the
input is perturbed to x)y = xq + 8, where § € R, and x., is the robust counterfactual solution for
X, then [|xc — x¢[l2 < [|8]]2.

Alignment with Important Feature Directions. An insightful explanation should not only pro-
vide a path to a different outcome but also highlight which features are most critical in achieving
that change, particularly under model uncertainty. The robustness penalty term, C...p(€,X.) =
/2ex] H—1x,, plays a key role in this alignment. Theorem@formalizes the intuition that to mini-
mize this penalty (and thus find an efficient robust counterfactual), the recourse direction x. should
align with directions in the feature space that are most sensitive or influential, as captured by the
eigenvectors of the Hessian matrix H. Specifically, under certain conditions, the penalty is mini-
mized when the counterfactual aligns with the leading eigenvector of H, which often corresponds
to the direction of greatest sensitivity. This encourages the counterfactual to suggest changes along
features that have a significant impact, making the explanation more informative.

Theorem 4 (Alignment with Important Feature Directions). Define the robustness penalty as
Crop(€,%c) = \/2ex] H=1x. for a symmetric positive definite Hessian H. Let A1 be the largest
eigenvalue of H with corresponding eigenvector qu, and assume that \1 is unique. Then the robust-
ness penalty term Cyop(€,X.) is minimized when the counterfactual vector x. is aligned with the
eigenvector qj.

Price of robustness. Previous literature has observed the trade-off between robustness and prox-
imity [22]]. Indeed, intuitively, increasing robustness and ensuring validity across a larger set of
potential models may require more changes to the input features, effectively increasing the proxim-
ity. This implies a “cost” for greater robustness that Theorem [5| formalizes.

Theorem 5 (Robustness-Proximity Trade-off). For an input xq such that 0Txo < t, where 0 is
ERM, let x%(€) be the optimal robust counterfactual for a given robustness level € > 0, and let
v(e) = ||xz(e) — xol|3 be its ls distance from xo. If v(e1) > 0 and x(e1) # O, then for any two
robustness levels 0 < €1 < €g, v(€1) < v(eg).

The practical impact of this trade-off is significant. Overly robust counterfactuals may become
distant and unactionable, while insufficient robustness compromises recourse reliability under model
shifts. This underscores the need for methods that efficiently explore this trade-off by achieving
substantial robustness with reasonable proximity — a goal that ElliCE effectively meets.

When applying our theoretical results to MLPs, the validity guarantee is fully preserved in the
input space, which is a key result. The formal guarantees for uniqueness (Theorem [2), stability



(Theorem[3), and the robustness-proximity trade-off (Theorem[5)), however, depend on the convexity
of the feasible set (see proof of Theorem [2). While this convexity is guaranteed in the embedding
space h(x), the nonlinear mapping from the input space (x — h(x)) means it is not guaranteed to
hold there. This distinction highlights a fundamental challenge for robust recourse in deep models
and underscores that extending these formal guarantees to the input space is a promising direction
for future work. Nonetheless, these theorems provide a principled geometric foundation for our
approach and hold for linear models and embedding spaces. Next, we present empirical results
showing that ElliCE’s performance is consistent with its theoretical guarantees.

6 Evaluation Pipeline and Experimental Results

In our evaluation pipeline, we work with the hypothesis space of linear models and multi-layer
perceptrons. However, our results can be extended to other hypothesis spaces that can be optimized
with gradient descent, such as neural additive models [[1]]. In this section, we empirically show that
ElliCE is faster and more robust as compared to other methods that produce robust counterfactuals
Please see Appendix [B|for additional details and results.

Datasets. We consider nine datasets from high-stakes decision domains such as lending (Aus-
tralian Credit [55], FICO [19], German Credit [28|], Banknote [47]), healthcare (Parkinson’s [62],
Diabetes [60]), and recidivism (COMPAS [2]), as well as benchmark datasets (Wine Quality [12],
Extended Iris [3]). Please see Table |3|for detailed dataset descriptions and preprocessing notes. We
used datasets with predominantly categorical features (FICO, Australian Credit, COMPAS, German
Credit, Diabetes) for data-supported CE generation, and datasets with continuous features (Diabetes,
Parkinson’s, Banknote, Iris, and Wine Quality) for continuous methods. We balanced the datasets,
standardized continuous features, and, for some datasets, dropped rows with missing values.

Baselines. We compare ElliCE to other methods that are designed to generate robust counterfactual
explanations, such as T:Rex, Interval Abstractions (we refer to it as Delta-robustness [33]), PRO-
PLACE, and ROAR. T:Rex [27] generates robust counterfactuals for neural networks using a Stabil-
ity measure that depends on variance. It quantifies robustness to naturally occurring model changes,
providing probabilistic validity guarantees. It is a successor of RobX [17], which targets tree-based
ensembles. Interval Abstractions [36] ensures that counterfactuals are robust to bounded changes
in model parameters (weights and biases). It uses interval neural networks and mixed-integer linear
programming. PROPLACE [335] formulates counterfactual generation as a bi-level robust optimiza-
tion problem: it enforces plausibility by restricting solutions to the convex hull of realistic samples
and uses interval bounds on neural networks to ensure robustness. ROAR [64] optimizes counter-
factual validity under bounded model parameter perturbations using a robustness-constrained loss
formulation. Most implementations of our baselines follow Jiang et al. [38]].

Evaluators. Precisely computing the entire Rashomon set for the hypothesis spaces that we con-
sider is intractable. Therefore, to evaluate the robustness and validity of counterfactual explanations
generated by ElliCE and the baselines, we rely on established techniques that approximate or char-
acterize this set. These approaches generate diverse collections of near-optimal models, each serving
as a proxy for the true Rashomon set. Our evaluators include: Random Retrain, which retrains mod-
els multiple times with different random seeds to capture procedural variability. Rashomon Dropout
[32], which applies binary dropout masks to a single trained neural network’s weights during in-
ference, creating an ensemble of thinned sub-models. Adversarial Weight Perturbation (AWP) [30],
which generates diverse models from an initially trained model by applying small perturbations to its
weights. We define the objective tolerance (Rashomon parameter) for the evaluators as egrger, Which
is distinct from €. This separation ensures that the Rashomon set used for evaluation is controlled
independently from the robustness tolerance e used by ElliCE.

Metrics. We evaluate the generated counterfactual explanations based on four metrics: validity,
proximity, robustness, and plausibility. Validity measures whether a generated counterfactual x.
for a given input x( successfully achieves the desired outcome ¢ when evaluated on the original
model fpaseline for which it was generated, Validity = % S 1 foaseline (Xei) = ). Proximity mea-
sures the closeness of a counterfactual x, to the original instance xy. We primarily report the /o
distance: ||x. — Xo|2. Lower values indicate less change required and are thus better. Plausibil-
ity checks whether the generated counterfactuals lie in realistic regions of the feature space. Our
data-supported counterfactuals are inherently plausible, as they lie on the data manifold. For con-



tinuous approach, because ElliCE enforces robustness by pushing counterfactuals away from the
decision boundary, the resulting counterfactuals tend to shift toward higher-density regions of the
target class. Nevertheless, we evaluate plausibility using the Local Outlier Factor (LOF) [35]], a stan-
dard outlier-detection metric. LOF values close to 1 indicate high plausibility, whereas larger values
suggest the counterfactual is in a low-density region. Robustness computes whether the generated
counterfactual x. remains valid (i.e., still achieves the desired outcome c) for all models within an
evaluator ensemble R(amget). Total is calculated as the average across all n counterfactual points:

Robustness = % Z?Zl 1 [V fo € ﬁ(etarget), fo(x¢,) = ¢| . A higher robustness score (closer to 1) is
better, indicating that more counterfactual explanations are robust to model changes.

Experimental Setup. For evaluators, we define a target multiplicity tolerance globally in range
Erarget € [0,0.1]. We provide discussion on how to choose ElliCE’s € in Appendix [B} For every
dataset, we performed 4-fold stratified cross-validation. Within each fold, the training data are
further split into 80% for training and 20% for validation. The procedure within each inner fold is as
follows: (1) We train a base model fyaseline, Which serves as a reference model for all counterfactual
generation methods. (2) Using fyaeline as a reference (if required by the evaluation method), we
generate €rei-Rashomon set. (3) Multiplicity parameters (e for ElliCE, ¢ for Delta Robustness,
ROAR and PROPLACE, or 7 for T:Rex) for each baseline are tuned via grid search on the validation
set with a goal of maximizing validity. We allocate approximately the same amount of time for each
method to tune its parameters with a hard maximum of 8 hours per method per data fold (as a result,
we could not run PROPLACE for Parkinsons dataset). (4) Final performance metrics are reported
on the held-out split of the outer fold. Note that due to our tuning procedure, we expect high validity
metric for ElliCE and baselines. Indeed, for data-supported methods validity is consistently 100%
across datasets, so we do not report it.

We conducted experiments on logistic regression and multilayer perceptrons. Consistent with prior
work [34} [63], we focus on generating counterfactuals that change predicted labels from O to 1.
Linear models are trained using Scikit-learn’s LBFGS solver with an /5 penalty (regularization pa-
rameter 0.001). MLPs are trained with the Adam optimizer (learning rate 0.001), early stopping, and
{5 regularization parameter 0.001. For evaluation, we generate one counterfactual per method for
each data point in the held-out set. Each counterfactual is then evaluated against the three evaluators
(Random Retrain, Rashomon Dropout, AWP). The exact construction algorithms for these evalua-
tors are described in Appendix[B.2] Reported metrics are averaged across data points and folds, with
plots displaying the mean and standard error.
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Figure 1: Robustness evaluation of ElliCE against baselines. The plot displays the robustness metric
(y-axis) as a function of the target robustness level ege; for the evaluators (x-axis). ElliCE consis-
tently outperforms all baselines across all robustness levels. See Appendix [B|for more figures. With
ElliCE+R for MLPs we apply additional regularization to the Hessian, A = 0.1, instead of 0.001.



Table 1: Performance of counterfactual methods on MLPs. For evaluators, we Set gt to 10% of

the training objective (€urget = 0.1 X L( foaseline))- R here stands for Robustness, L2 for proximity,

and PROP stands for PROPLACE. See Appendix [B|for results on other datasets.

Evaluation Metric

Data Method Retrain Dropout Rashomon AWP

Rt L2) Rt L2} Rt L2)
Data-supported (DS)

ElliCE 1.00 = 0.00 3.53 +0.17 | 1.00 = 0.00 4.91 +0.22 | 1.00 £ 0.00 5.06 £+ 0.29

FICO DeltaRob | 1.00 £+ 0.00 4.00 £ 0.10 | 1.00 £ 0.00 5.67 £0.58 | 0.96 + 0.07 5.70 £0.72

T:Rex 0.83 +£0.08 3.124+0.07 | 0.01 =0.00 3.07 & 0.11 | 0.00 & 0.00 2.77 4+ 0.19

ElliCE 1.00 £ 0.00 3.48 +0.10 | 1.00 £ 0.00 4.32 + 0.31 | 1.00 £ 0.00 4.00 + 0.24

German | DeltaRob | 0.98 4+ 0.01 3.45 4+ 0.06 | 0.99 +£0.02 4.00 & 0.15 | 1.00 £ 0.00 3.99 + 0.22

T:Rex 0.99 +0.01 3.474+0.04|097 +0.02 4.034+0.20|0.99 +0.01 4.234+0.24

Continuous (CNT)
ElliCE 0.98 +0.01 2.15+0.39]0.99 £0.02 3.05+0.34|0.98 +0.02 3.22 + 0.40
PROP 0.48 £048 2.01 £0.05|0.19+0.28 2.01 £0.05|0.08+0.19 2.01 £ 0.05

Diabetes | poAR | 0.86+0.11 1.86+ 024 | 0.40 + 028 1.86+0.24 | 0.31 + 026 1.86 + 0.24
T:Rex 094 +£0.03 247 +0.86|0.90 & 0.08 4.18 £0.36 | 0.94 +£0.04 4.18 £ 0.36
Table 2: Runtime performance and speedups for data-supported CE for MLP.
Absolute (seconds) Relative (speedup)
Dataset ElliCE T:Rex Delta Rob Over T:Rex Over Delta Rob
FICO 1.792 £0.123 7.006 4+ 0.058 242.035 £+ 1.161 3.91x 135.04 x
COMPAS | 0.526 £0.011 3.534 +0.128 360.480 + 6.701 6.72x 685.34 %
Australian | 0.057 & 0.011 0.281 £0.006 2.783 £ 0.032 4.92x 48.64 x
Diabetes 0.053 £ 0.001 0.296 =0.006  1.922 4 0.032 5.60x 36.33 %
German 0.101 +£0.001 0.432£0.013 9.905 4+ 0.068 4.27x 97.88x

6.1 ElliCE Generates Robust Counterfactuals

Figuremillustrates the relationship between the evaluators’ multiplicity level eqreer and the achieved
robustness for the baselines. We report results for both linear models and MLPs for data-supported
and continuous methods. Across different settings, we observe that ElliCE consistently produces
more robust counterfactuals than baselines. Notably, ElliCE’s counterfactuals generally do not ex-
hibit a decrease in robustness as egrger increases, demonstrating stability under different levels of
target multiplicity. This robustness, however, can sometimes come with a greater distance from
the original instance (i.e., longer CEs), a trade-off that we saw in Section [5] and report in Table [T}
For the MLP setting, our empirical results in Figure [1|and Table |1{suggest that ElliCE’s ellipsoidal
approximation offers good flexibility, allowing it to adapt to the underlying loss function’s shape.

6.2 EIlliCE is Efficient

Tables[2] [5and [6|clearly demonstrates ElliCE’s advantage in computational efficiency. Our method
is consistently one to three orders of magnitude faster than baselines. Moreover, the runtimes of both
T:Rex and Delta Robustness tend to grow substantially with the dataset size. In contrast, EIliCE
remains lightweight and exhibits better scalability. Across all datasets tested, ElliCE’s absolute
runtimes for generating a counterfactual remain under two seconds. This efficiency comes from a
closed-form solution for the inner optimization problem (Theorem 1). The primary preprocessing
cost involves computing and inverting the Hessian matrix H, requiring O(np?) for computation
and O(p®) for inversion, performed once per model (where n is the training set size and p is the
parameter dimension). Per-instance counterfactual generation then requires only O(p?) operations.

6.3 Sensitivity Analysis

Figure 2] (a,b) shows an empirical sensitivity analysis of EIliCE’s robustness with respect to its in-
ternal Rashomon parameter €. The plots show how the achieved robustness (evaluated against the
Random Retrain and Ellipsoidal Rashomon set evaluators, respectively) varies as ElliCE’s internal
e changes. These results illustrate that ElliCE can achieve high levels of robustness even for rel-
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Figure 2: (a,b) Sensitivity of ElliCE’s robustness (y-axis) to its internal ¢ hyperparameter (x-axis).
Robustness is evaluated against Random Retrain (a) and an Ellipsoidal Rashomon set approximation
defined with a fixed €reec (b). (¢, d) Robustness vs. £5 proximity trade-off (c) and plausibility (d) of
counterfactuals generated by ElliCE and baselines on Diabetes dataset.

atively small values of its internal e when evaluated against the Retrain ensemble. For the middle
plot (Ellipsoidal evaluator), while initial robustness may be lower for smaller internal € values, the
performance increases sharply, as e approaches the targeted robustness level.

6.4 Robustness-Proximity Trade-off and Plausibility

Figure [2|c) illustrates the inherent trade-off between robustness and proximity for CEs generated
by ElliCE, supporting our discussion in Section [5] While the trade-off occurs for all baselines,
ElliCE achieves the highest robustness at a given length level. Understanding this trade-off is key to
selecting counterfactuals that balance reliability under model shifts with practical user actionability.
ElliCE provides a mechanism to navigate this by allowing control over its Rashomon parameter. We
also observed good plausibility across all baselines and datasets, as supported by Figure [2(d) and[§]
All LOF values tend to be close to 1, thus the generated counterfactuals lie on the data manifold.

6.5 Actionability

To ensure that generated recourse remains realistic and feasible, we incorporate actionability con-
straints that specify which features can change and within what ranges. ElliCE supports restrictions
on features, including immutable features (e.g., age, citizenship) as well as range and direction con-
straints such as income or loan duration. It also allows for sparse counterfactuals by adding an
optional penalty on the number of modified features. For instance, before applying actionability,
one robust counterfactual on the German Credit dataset suggested changing the applicant’s age, an
immutable feature. After enforcing immutability and sparsity constraints, ElliCE instead adjusted
the credit amount and credit length, reducing both and thus lowering the predicted credit risk, which
is reasonable in the lending context. Further details are provided in Appendix D]

7 Conclusions, Implications and Limitations

Standard algorithmic recourse is fragile. A recommendation given to a user today may become
invalid tomorrow if the underlying model is retrained or replaced — a common scenario under the
Rashomon effect. This paper addressed this reliability gap by introducing ElliCE, a framework that
provides recourse with provable robustness guarantees. ElliCE approximates the set of near-optimal
models with an ellipsoid and computes counterfactuals that remain valid across this approximated
Rashomon set. A strength of ElliCE is its support for actionability. Users can specify immutable
features, range or direction constraints, and optional sparsity penalties, ensuring that the resulting
recourse is both robust and realistic. This flexibility might help prevent impractical or unethical rec-
ommendations and gives users greater control over actions. While robustness alone does not ensure
fairness, user-specified actionability constraints can help to ensure that counterfactuals remain feasi-
ble and ethically sound. A comprehensive fairness analysis remains an important direction for future
work. The ellipsoidal approximation, while efficient, is a simplification of the true Rashomon set,
and for neural networks our analysis currently captures local rather than global model multiplicity.
Despite these limitations, ElliCE provides a practical and theoretically grounded tool for robust and
actionable recourse, providing stable and trustworthy advice.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are consistent with the paper’s
scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitation in the conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the theorems in the main paper and proofs in the Appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental setups are detailed in the Experimental Section and the Ap-
pendix. The code is available in the supplement.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets used are publicly available (Australian Credit, COMPAS, Dia-
betes, FICO, German Credit). The paper provides sufficient algorithmic details and exper-
imental settings to reproduce results. Code is available in the supplement.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

¢ The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section[@
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report mean and standard deviation over multiple runs.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer “’Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

¢ Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please see Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work adheres to the NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have mentioned the broader impact in the introduction and conclusion.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper doesn’t release models that have the potential to cause harm.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use open access datasets and baselines and cite the sources of all the
datasets and baselines we used in the paper.835

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]
Justification: We provide the code for this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA|
Justification: The paper does not involve crowd-sourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowd-sourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|
Justification: We used LLM for editing and improving the clarity of wording.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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