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Abstract

Gaussian Processes (GPs) offer robust uncertainty estimates crucial for data-
efficient applications like Black-box Optimization or Model Predictive Control.
However, when the underlying function changes, previously gathered data can
mislead predictions, impacting performance. Instead of indiscriminately removing
all data points (or a large fraction) after detecting a change, the goal is to efficiently
identify and remove only the obsolete data points, a process we refer to as un-
learning in GPs. Leveraging the model’s uncertainty estimates, we transform the
unlearning problem into one of maximizing variance (nearly reverting to GP prior
values) at detected change points by selectively removing the most informative
training points. Though the exact solution to this problem is NP-hard, we propose
an efficient algorithm that approximates the optimal solution while significantly
reducing computational complexity. This algorithm utilizes novel fast reverse up-
date equations for GP models, enabling linear-time sequential computation of the
posterior variance function with removed training points.We test the performance of
our unlearning procedure across various tasks, including Model Predictive Control,
Transfer Bayesian Optimization, and Time-Varying Bayesian Optimization. Our
approach offers a comprehensive solution for handling out-of-distribution issues in
GP modeling, significantly outperforming baseline methods.

1 Introduction

Gaussian Processes (GPs) [16] are a class of models used to estimate a function over a domain
of interest based on limited observations of that function’s values. Because of good uncertainty
estimates, GPs found applications in domains, where the agent needs to be data-efficient and actively
query for new data points, such as Black-box Optimisation or Model Predictive Control. However,
if the target function is non-stationary or undergoes a one-time change, some previously gathered
data may become obsolete. This out-of-distribution data can mislead the model, resulting in incorrect
predictions and reduced task performance. One naive solution to this problem is to remove all data
points once we realize the function we wish to model has changed. However, this approach can be
very wasteful, especially if the change occurs in only a small domain region, leaving much of the
training data still valid. Instead, by observing discrepancies between model predictions and actual
observed values, we can pinpoint the obsolete data points that influenced those erroneous predictions
and remove them from the training set. Given that GPs provide uncertainty estimates, this problem
can be reframed as removing training points to maximize the GP variance at the points where we
detected function changes. We refer to this process as local unlearning in GPs and address this
specific problem setting.

Identifying a small number of data points to remove is, unfortunately, an NP-hard problem [7]. It
requires considering all possible combinations of training points to remove in order to find the one
that maximizes the variance at desired points. Combined with the cubic complexity of fitting a GP
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model, this makes the exact solution computationally infeasible. However, in this paper, we present
an efficient algorithm that approximates the solution in a fraction of the time required for an exact
combinatorial search. We derive fast reverse update equations for GPs, allowing us to compute the
variance function with a given training point removed at a computational cost that is only linear in
the number of training points. We provide a performance guarantee for this algorithm and state its
time complexity. We then demonstrate how the algorithm can address distribution shifts in Model
Predictive Control tasks, Transfer Bayesian Optimization, and Time-Varying Bayesian Optimization.

Related Work: The problem of transferring data between tasks using Gaussian Processes has
also been extensively explored in the context of Multi-Task GPs [3, 9, 13] and transfer Bayesian
Optimization (BO) [14, 17]. These studies typically assume that the training tasks share similarities
with the target task. Our work tackles an issue in which some previously gathered data may be
misspecified, shifting our focus from data transfer to effectively performing unlearning.

Efficient forward posterior updates in Gaussian Processes are commonly employed, especially in
sequential Bayesian optimization (see, e.g., Appendix F in [4]). However, to the best of our knowledge,
there is limited understanding regarding efficient reverse updates in GPs (i.e., computing posterior
updates after removing observations). [11] introduced a method for computing the downgraded
Cholesky matrix that scales quadratically with the number of observations. While downgrading the
Cholesky matrix allows for predictive variance calculations at any point, our equations provide a time
complexity advantage when predictive variance is needed only at a limited number of fixed points.

2 Efficient unlearning

Assume a problem setting when we use the GP model with the posterior predictive variance function
defined as σ2

D(x) = k(x, x) − kT
D(KD + σ2I|D|)

−1kD, where kD ∈ RT with elements (kD)i =

k(x, xi) and KD ∈ RT×T with entries (KD)i,j = k(xi, xj) . Let U be a set of points in a input
domain X for which we detected anomalies. We thus aim for our uncertainty estimate at those points
to revert (almost) to its prior state, as though no learning had occurred. However, we note that for
typically used kernels, such as RBF or Matérn, for any two points in the input domain x, x′ ∈ X
we have that k(x, x′) > 0. As a result, if we want to revert variance exactly to the prior, we need to
remove all of the training points. As such, we instead wish to be η-close to the prior variance. We
define this concept formally below.
Definition 2.1. For a specified unlearning set U ⊂ X and unlearning precision η > 0, let σ2

D(x)
represent the model’s current estimate based on the complete dataset D. The goal of unlearning
generating is to select a set of points subset S ⊂ D to remove to produce a new estimate of posterior
variance σ2

D\S(x), such that:

min
S⊂D

|S| s.t. ∀u ∈ U σ2
D\S(u) ≥ σ2

∅(u)− η,

where σ2
∅(x) corresponds to the prior GP variance.

Note that the optimisation constraint can also be written in an equivalent form: gD(S) = gD,max,
where the following function

gD(S) =
∑
u∈U

(
min{σ2

D\S(u), σ
2
∅(u)− η} −min{σ2

D(u), σ
2
∅(u)− η}

)
(1)

is the variance gain function and gD,max =
∑

u∈U max{σ2
∅(u) − η − σ2

D(u), 0} is the maximum
variance gain. Notice that we can think about gD,max as a type of loss function. The quantity gD\S,max
tells us how what is the maximum variance gain we can still achieve after we have already removed a
set of points S. Ideally, after we remove the chosen set of points, we would like this quantity to be
as small as possible. However, solving this problem is, in general, NP-hard, which means the exact
solution requires combinatorial time complexity. We will show how the solution to this problem can
be efficiently approximated with a greedy algorithm. Such a greedy algorithm at each timestep will
remove the point x that produces greatest variance increase, i.e. maxx∈D\S gD\S({x}). However, to
compute gD\S({x}) efficiently, we need to derive fast downgrade equations, which we do next.

Assuming we have access to the model matrix ∆D = (KD + σ2I|D|)
−1 for datapoints in D, we

will now show how one can quickly compute the variance function for the model with a datapoint
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removed. We also show how the model matrix ∆D itself can be efficiently downgraded, once we
decide on the point we want to remove at a given iteration. Without the loss of generality, we will
assume the point we want to remove is the last point with an index of T . We now present equations
allowing for fast computations of reverse updates in a GP.

σ2
D\{xT }(u) = σ2

D(u) +
1

∆D
T,T

(kT
D∆

D
T,1:T )

2 (2)

∆D\{xT } = ∆D
1:T−1,1:T−1 −

∆D
1:T−1,T∆

D
T,1:T−1

∆D
T,T

, (3)

where ∆D
T,1:T is the T th column of ∆D corresponding to point xT and ∆D

T,T is the T th diagonal
entry in ∆D. We derive those equations in Appendix B. We now propose our efficient GP unlearning
procedure in Algorithm 1. At each iteration of the while loop, the Algorithm (greedily) removes the
point that produces the highest increase in variance. To find that point, the Algorithm iterates through
all points by the for loop in lines 4-7. In line 5, the Algorithm uses fast reverse updates for the GP to
measure the variance value at a given point in U given that the point in question is removed.

Algorithm 1 Efficient unlearning algorithm

Require: unlearning set U , Training Data Points D, Unlearning precision η, Stopping criterion γ,
Mean and Variance of Original Model µD(·), σ2

D(·), Inverted Model Matrix ∆t

1: Initialise set for removed points S = ∅
2: while gD\S,max > γgD,max do
3: For each u ∈ U compute σ2

D\S(x) = k(x, x)− kT
D\S(KD\S + σ2I|D\S|)

−1kD\S
4: for each datapoint x ∈ D \ S do
5: For each u ∈ U compute σ2

D\(S∪{x})(u) given σ2
D\S(u) by using Equation 2

6: Use σ2
D\S(u) to compute gD\S({x}) and store it

7: end for
8: Find the next point to remove x = argmaxx∈D gD\S({x})
9: Compute new inverted model matrix ∆D\(S∪{x}) given the old ∆D\S using Equation 3

10: Compute gD\(S∪{x}),max = gD\S,max − gD\S({x})
11: Add this point to the set of removed points S := S ∪ {x}
12: end while

In Appendix D we show that the running time of Algorithm 1 is (|D|4|U||S⋆| log 1
γ ). Additionally

we have the following result (which we prove in Appendix C) on the performance of the algorithm.
Theorem 2.2. Assume the variance decrease function Fx(D) := σ2

∅(x)− σ2
s(x) is submodular. Let

Sgreedy be the set of points removed by the greedy algorithm until a γ-approximation to the optimal
solution can be found, that is gD\Sgreedy,max ≤ γgD\S⋆,max. We then have that:

|Sgreedy| ≤ |S⋆| log 1

γ
,

where S⋆ is the optimal solution to problem statement in Definition 2.1.

The assumption of submodularity of Fx(D) is standard [2] and prior work established conditions that
guarantee it[5]. As such, we see that a greedy algorithm can achieve 1− γ of the maximum possible
variance gain while removing only log 1

γ more points than the exact algorithm. We now proceed to
show how our algorithm can be applied in practical problem settings.

3 Experiments

We implemented our experiments in Python. We share our code via the following anonymised link1.
See details of each experiment in Appendix A. On each experiment, we classify an observation as an
anomaly if it lies outside of the 95% confidence interval.

1https://github.com/JuliuszZiomek/EfficientGPUnlearning
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3.1 Time varying Bayesian Optimisation

We perform time-varying Bayesian Optimisation on the Intel Research Dataset 2. The dataset consists
of temperature recordings gathered over 50 sensors placed in the Intel office in Berkeley. Our goal
is to select the sensor with the highest temperature at each timestep and the regret is the difference
between the highest and selected temperature. We show results in Figure 2. The baselines, we
compared against are keeping all points (Keep All) and sliding window (SW) algorithms [18] with
windows sizes of 5 and 10. We can see that after around iteration 40 all other methods start to
underperform compared to unlearning and at around iteration 80 they suffer a drastic jump in the
average regret values. Inspecting the number of points kept by unlearning at each iteration, we see
that our algorithm removes almost all datapoints around iteration 40 and after that almost all new
points are kept. This would imply that the underlying function experienced a change around that
iteration and after that remained relatively stable. The SW algorithms appear to be suffering from
catastrophic forgetting, whereas the baseline keeping all of the points is using obsolete data from
before the function change.
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Figure 1: Results on the Time-Varying BO experiments on the Intel Reserach Dataset. Left subplot
shows average regret at each iteration for all algorithms and the right plot shows the number of points
that the unlearning algorithm kept (i.e. have not removed) against the iteration. Shaded areas are
standard erros over six seeds.

3.2 Transfer Bayesian Optimisation

Next, we consider the problem of transferring data from one BO problem to another, we describe the
details in Appendix A. We show the results in Figure 2 As baselines, we use the TAF method of [17],
as well as the two state-of-the-art Multi-Task GP baselines proposed by [14], namely WSGP and
SHGP. We can see that utilising prior data gives a head start to the method, compared to optimising
the hyperparameters from scratch. However, the method that simply keeps all data points quickly
gets stuck at a sub-optimal solution and eventually gets outperformed by the optimiser that does not
use prior data. On the other hand, our unlearning algorithm is able to converge to the same optimum
as the freshly initialised optimiser, but much faster. Inspecting the number of points kept by the
unlearning algorithm, we see that it removes most of the points except for 10-20, which seem crucial
to the completion of the task. TAF method is unable to converge within the number of iterations tried,
whereas WSGP and SHGP converge to similar solutions as unlearning, but at a slower pace.

3.3 Model Predictive Control with Domain Shifts

We consider two control problems that experience a domain shift. The first one is a modification
of the cart pole problem, where after a number of iterations half of the ground becomes frozen,
increasing the breaking distance. The second problem is rusty pendulum, where at some point the
bearings become rusty and the maximum torque that can be applied on one side of the pendulum
is reduced. We show the average returns on both problems after the change occurred in Figure 3a

2https://db.csail.mit.edu/labdata/labdata.html
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Figure 2: Results of the Transfer BO experiment on wine datasets. The plot on the left shows the best
regret achieved by each method, whereas the plot on the right shows the number of points that were
kept (i.e. not removed) by our unlearning algorithm. Shaded areas are standard errors over six seeds.
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(a) Frozen Cartpole
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(b) Rusty Pendulum

Figure 3: Results on a Model Predictive Control problems. The results are over 5 seeds and shaded
areas correspond to standard errors. The plots are displaying smoothed returns, where the smoothing
has been done by a gaussian filter with σ = 5.

and 3b. Two baselines we compare against are keeping all data points (Keep All) and removing all
data after the change has occurred (From Scratch). On the Frozen Cartpole problem, we see that
the unlearning algorithm does not get stuck at the suboptimal return values, unlike the algorithm
keeping all points. At the same time, in early iterations, its return is much higher than the algorithm
learning from scratch. On the Rusty Pendulum problem, within the training episodes, the unlearning
algorithm reaches optimal return faster than learning from scratch and is more stable than the strategy
keeping all points.

4 Conclusions

Within this paper, we addressed the important problem of local unlearning in GP, necessitated by
domain shifts in the underlying function we wish to model. We developed an efficient approximation
to the otherwise computationally expensive problem and showed how it can be applied to a number of
real-world problems involving GPs. One limitation of our work is that we only considered standard
GP models. When dealing with large of datapoints, a typical practice is to switch to sparse GP [12].
Extending our framework to deal with sparse models constitutes an exciting direction for future work.
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A Experiments details

A.1 Compute Resources

To run all experiments we used a machine with AMD Ryzen Threadripper 3990X 64-Core Processor
and 252 GB of RAM. No GPU was needed to run the experiments. We were running multiple runs in
parallel. One run for BO experiments took up to five minutes, whereas the runs for MPC took up to
two hours.

A.2 Time-Varying BO experiments details

We used the data from the 1st and 2nd March to compute covariance between sensors and use it as
the kernel for GP. Then we run optimisation on all of the data gathered on the 3rd of March. We treat
one timestep as 10 minutes and thus the temperature of a given sensor at each timestep is its average
temperature in this interval.

A.3 MetaBO experiment details

We consider the problem of fitting a random forest regressor to the famous wine dataset [1] to predict
the quality of wine expressed as a number from 1 to 10 based on different features of the wine.
The problem here is to find five hyperparameters of the model (two of which are combinatorial), to
minimise validation set mean square error. We first run BO for 100 steps on the red wine dataset. We
then wish to solve the same problem for the white wine dataset, with the hope that some of the data
from the red wine case could be reused. For this experiment, we use a GP with Transformed Overlap
[15] kernel and utilise the MCBO[6] implementation. For unlearning, we set η = 0.3 and γ = 0.5.

A.4 Model predictive control details

We describe the environments below. To run the experiments, we use the codebase provided by [10]
3.

Frozen Cartpole

We consider a modification of the famous cart pole control problem, where having previously gathered
data on the standard cart pole problem, we realise that part of the ground has frozen. As such, the
dynamics of the system are different there, because the breaking distance is longer. We first gather
data on the unmodified cartpole problem by running standard MPC for 300 iterations, before running
it in the modified domain. For the unlearning algorithm, we select η = 0.7 and γ = 0.5 and limit the
number of points to remove to 150.

Rusty Pendulum

As a second problem, we consider the pendulum benchmark, where one needs to apply torque to a
pendulum so as to stabilise it in an upright position. We modify a problem setting, where after some
time, the right part of the pendulum’s bearing becomes rusty and thus the resulting friction on that
side is greater. As such, the maximum torque we can apply in rusted places is reduced and the optimal
strategy is now to try to reach an upright position by rotating the pendulum through the left side of
the bearings. We first gather data from 200 iterations on the standard pendulum problem. For the
unlearning algorithm, we select η = 0.7 and γ = 0.5 and limit the number of points to remove to 25.

3https://github.com/fusion-ml/trajectory-information-rl
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B Derivation of Fast Update Equations

Assuming we know matrix ∆ ∈ RT×T , for which ∆ = (KT + σ2IT )
−1 and we wish to learn

(KT−1 + σ2IT−1)
−1. Using Schur’s complement we get

∆ =

(
A B
C D

)−1

=

(
A−1 +A−1BβCA−1 −A−1Bβ

−βCA−1 β

)
=

(
A−1 + βA−1BBTA−1 −βA−1B

−βBTA−1 β

)
=

(
A−1 + βγ −βα
−βαT β

)
,

where β = (D − CA−1B)−1 = 1/(D −BTA−1B), γ = A−1BBTA−1, and α = A−1B. Notice
that A−1 = (KT−1 + σ2IT−1)

−1. If we want to know A−1 from ∆, we can compute it using the
following equation:

A−1 = ∆1:T−1,1:T−1 − βγ

= ∆1:T−1,1:T−1 − βααT

= ∆1:T−1,1:T−1 −
(−βα)(−βαT )

β

= ∆1:T−1,1:T−1 −
∆1:T−1,T∆t,1:T−1

∆t,T
,

which can be computed in O(T 2). If we want to get µT−1 and σ2
T−1, we can compute them as

follows:

µT−1(x) = kT
T−1A

−1yT−1

= kT
T−1∆1:T−1,1:T−1yT−1 − kT

T−1

∆1:T−1,T∆t,1:T−1

∆T,T
yT−1

=

T−1∑
i=1

T−1∑
j=1

ki∆i,jyj −
1

∆t,T

T−1∑
i=1

ki∆i,T

T−1∑
j=1

yj∆t,j

=

T∑
i=1

T∑
j=1

ki∆i,jyj −
T−1∑
j=1

kT∆t,jyj −
T−1∑
i=1

ki∆i,TyT − kT∆t,TyT − 1

∆t,T

T−1∑
i=1

ki∆i,T

T−1∑
j=1

yj∆t,j

=

T∑
i=1

T∑
j=1

ki∆i,jyj −
1

∆t,T

T∑
i=1

ki∆i,T

T∑
j=1

yj∆T,j

= kT
T∆yT − 1

∆T,T
(kT∆1:t,T )(∆T,1:TyT )

= µT (x)−
1

∆T,T
(kT∆1:t,T )(∆T,1:TyT )

σ2
T−1(x) = k(x, x)− kT

T−1A
−1kT−1

= k(x, x)− kT
T−1∆1:T−1,1:T−1kT−1 + kT

T−1

∆1:T−1,T∆T,1:T−1

∆T,T
kT−1

= k(x, x)− kT
T∆kT + kT

T

∆1:t,T∆T,1:T

∆T,T
kT

= σ2
T (x) +

1

∆T,T
(kT

T∆1:t,T )(∆T,1:TkT ) = σ2
T (x) +

1

∆T,T
(kT

T∆1:t,T )
2,

where each can be computed in O(T ).
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C Proof of Theorem 2.2

Proof. Let us define the the following function Gx,D(S
′) := −F (D/S′) = σ2

D\S′(x) − σ2
∅(x).

Consider sets Y ⊂ S and Y ′ ⊂ S′ and some x ∈ D. We then have that:

G(S′ ∪ {x})−G(S′) = F (D \ S′)− F (D \ (S′ ∪ {x}))
= F (S ∪ {x})− F (S)

≤ F (Y ∪ {x})− F (Y )

= G(D \ Y )−G(D \ (Y ∪ {x}))
= G(Y ′ ∪ {x})−G(Y ′),

where the inequality comes from the assumption on submodularity of F (·). The property we show
above is one of the equivalent conditions for submodularity of G(S′), which shows G(·) is also
submodular.

Notice the following:

gD(S) =
∑
u∈U

(
min{σ2

D\S(u), σ
2
∅(u)− η} −min{σ2

D(u), σ
2
∅(u)− η}

)
=

∑
u∈U

(
σ2
∅(u) + min{σ2

D\S(u)− σ2
∅(u),−η} − σ2

∅(u)−min{σ2
D(u)− σ2

∅(u),−η}
)

=
∑
u∈U

(min{Gx,D(S),−η} −min{Gx,D(∅),−η}) .

Since Gx,D(S) is a submodular function of S and taking the minimum and summation preserves
submodularity, the function gD(S) is also submodular. We further notice the following property:

gD\S,max − gD\S({x}) =
∑
u∈U

max{σ2
∅(u)− η, σ2

D\S(u)} − σ2
D\S(u)− gD\S({x})

=
∑
u∈U

σ2
∅(u)− η −min{σ2

D\(S∪{x})(u), σ
2
∅(u)− η}

=
∑
u∈U

max{σ2
∅(u)− η − σ2

D\(S∪{x})(u), 0})

= gD\(S∪{x})(u)

Following the proof idea of Theorem 3.1 of [2], we can rely on Lemma 2 of [8] to get that:

|Sgreedy| ≤ |S∗| log 1

γ
to achieve gD\Sgreedy,max ≤ γgD\S⋆,max

D Runtime complexity of Algorithm 1

Due to Theorem 2.2, we have that the while loop will be executed at most |S⋆| log 1
γ times. Line

3, requires variance computations for each of the points in U and as such incurs the complexity
of O(|D|2|U|). Each time the for loop in lines 4-7 is executed, we need to compute the variance
with a point removed for each u ∈ U , which can be done in O(|D||U|) and as such the complexity
of the entire loop is O(|D|2|U|). The only remaining computationally intensive operation is the
computation of the new inverted model matrix in line 9 and this can be done in O(|D|2). This
brings the complexity of each while loop execution to O(|D|2|U|) and the complexity of the entire
algorithm to O(|D|2|U||S⋆| log 1

γ ). Note that this is an improvement from the naive algorithm, which
would fit GP every time with one point removed, resulting in complexity (|D|4|U||S⋆| log 1

γ ).
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