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ABSTRACT

In this work, we show that recently proposed quadratic models capture optimization
and generalization properties of wide neural networks that cannot be captured by
linear models. In particular, we prove that quadratic models for shallow ReLU
networks exhibit the “catapult phase” from Lewkowycz et al. (2020) that arises
when training such models with large learning rates. We then empirically show
that the behaviour of quadratic models parallels that of neural networks in general-
ization, especially in the catapult phase regime. Our analysis further demonstrates
that quadratic models are an effective tool for analysis of neural networks.

1 INTRODUCTION

A recent remarkable finding on neural networks, originating from Jacot et al. (2018) and termed as
the “transition to linearity” (Liu et al., 2020), is that, as network width goes to infinity, such models
become linear functions in the parameter space. Thus, a linear (in parameters) model can be built to
accurately approximate wide neural networks under certain conditions. While this finding has helped
improve our understanding of trained neural networks (Du et al., 2019; Nichani et al., 2021; Zou &
Gu, 2019; Montanari & Zhong, 2020; Ji & Telgarsky, 2019; Chizat et al., 2019), not all properties
of finite width neural networks can be understood in terms of linear models, as is shown in several
recent works (Yang & Hu, 2020; Ortiz-Jiménez et al., 2021; Long, 2021; Fort et al., 2020). In this
work, we show that properties of finitely wide neural networks in optimization and generalization
that cannot be captured by linear models are, in fact, manifested in quadratic models.

The training dynamics of linear models with respect to the choice of the learning rates1 are well-
understood (Polyak, 1987). Indeed, such models exhibit linear training dynamics, i.e., there exists a
critical learning rate, ηcrit, such that the loss converges monotonically if and only if the learning rate
is smaller than ηcrit (see Figure 1a).

(a) (b)

Figure 1: Optimization dynamics for linear and non-linear models based on choice of learning
rate. (a) Linear models either converge monotonically if learning rate is less than ηcrit and diverge
otherwise. (b) Unlike linear models, finitely wide neural networks and NQMs Eq. (2) (or general
quadratic models Eq. (3)) can additionally observe a catapult phase when ηcrit < η < ηmax.

1Unless stated otherwise, we always consider the setting where models are trained with squared loss using
gradient descent.
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(a) Optimization dynamics for f (wide neural networks): linear dynamics
and catapult dynamics.

(b) Generalization performance for
f , flin and fquad.

Figure 2: (a) Optimization dynamics of wide neural networks with sub-critical and super-
critical learning rates. With sub-critical learning rates (0 < η < ηcrit), the tangent kernel of wide
neural networks is nearly constant during training, and the loss decreases monotonically. The whole
optimization path is contained in the ball B(w0, R) := {w : ‖w −w0‖ ≤ R} with a finite radius
R. With super-critical learning rates (ηcrit < η < ηmax), the catapult phase happens: the loss
first increases and then decreases, along with a decrease of the norm of the tangent kernel . The
optimization path goes beyond the finite radius ball. (b) Test loss of fquad, f and flin plotted against
different learning rates. With sub-critical learning rates, all three models have nearly identical test
loss for any sub-critical learning rate. With super-critical learning rates, f and fquad have smaller
best test loss than the one with sub-critical learning rates. Experimental details are in Appendix J.4.

Recent work Lee et al. (2019) showed that the training dynamics of a wide neural network f(w;x)
can be accurately approximated by that of a linear model flin(w;x):

flin(w;x) = f(w0;x) + (w −w0)T∇f(w0;x), (1)

where ∇f(w0;x) denotes the gradient2 of f with respect to trainable parameters w at an ini-
tial point w0 and input sample x. This approximation holds for learning rates less than ηcrit ≈
2/‖∇f(w0;x)‖2, when the width is sufficiently large.

However, the training dynamics of finite width neural networks, f , can sharply differ from those
of linear models when using large learning rates. A striking non-linear property of wide neural
networks discovered in Lewkowycz et al. (2020) is that when the learning rate is larger than ηcrit but
smaller than a certain maximum learning rate, ηmax, gradient descent still converges but experiences a
“catapult phase.” Specifically, the loss initially grows exponentially and then decreases after reaching
a large value, along with the decrease of the norm of tangent kernel (see Figure 2a), and therefore,
such training dynamics are non-linear (see Figure 1b).

As linear models cannot exhibit such a catapult phase, under what models and conditions does
this phenomenon arise? The work of Lewkowycz et al. (2020) first observed the catapult phase
phenomenon in finite width neural networks and analyzed this phenomenon for a two-layer linear
neural network. However, a theoretical understanding of this phenomenon for general non-linear
neural networks remains open. In this work, we utilize a quadratic model as a tool to shed light on
the optimization and generalization discrepancies between finite and infinite width neural networks.
We call this model Neural Quadratic Model (NQM) as it is given by the second order Taylor series
expansion of f(w;x) around the point w0:

fquad(w) = f(w0) + (w −w0)T∇f(w0)︸ ︷︷ ︸
flin(w)

+
1

2
(w −w0)THf (w0)(w −w0). (2)

Here in the notation we suppress the dependence on the input data x, and Hf (w0) is the Hessian of
f with respect to w evaluated at w0.

Indeed, we note that NQMs are contained in a more general class of quadratic models:

g(w;x) = wTφ(x) +
1

2
γwTΣ(x)w, (3)

2For non-differentiable functions, e.g. neural networks with ReLU activation functions, we define the gradient
based on the update rule used in practice. Similarly, we use Hf to denote the second derivative of f in Eq. (2).
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where w are trainable parameters and x is input data. We discuss the optimization dynamics of such
general quadratic models in Section 3.3 and show empirically that they exhibit the catapult phase
phenomenon in Appendix J.3. Note that the two-layer linear network analyzed in Lewkowycz et al.
(2020) is a special case of Eq. (3), when φ(x) = 0 (See Appendix I).

Main Contributions. We prove that NQMs, fquad, which approximate shallow fully-connected
ReLU activated neural networks, exhibit catapult phase dynamics. Specifically, we analyze the
optimization dynamics of fquad by deriving the evolution of fquad and the tangent kernel during
gradient descent with squared loss, for a single training example and multiple uni-dimensional training
examples. We identify three learning rate regimes yielding different optimization dynamics for fquad,
which are (1) converging monotonically (linear dynamics); (2) converging via a catapult phase
(catapult dynamics); and (3) diverging. We provide a number of experimental results corroborating
our theoretical analysis (See Section 3).

We then empirically show that NQMs, for the architectures of shallow (see Figure 2b as an example)
and deep networks, have better test performances when catapult dynamics happens. While this
was observed for some synthetic examples of neural networks in Lewkowycz et al. (2020), we
systematically demonstrate the improved generalization of NQMs across a range of experimental
settings. Namely, we consider fully-connected and convolutional neural networks with ReLU and
other activation functions trained with GD/SGD on multiple vision, speech and text datatsets (See
Section 4).

To the best of our knowledge, our work is the first to analyze the non-linear wide neural networks
in the catapult regime through the perspective of the quadratic approximation. While NQMs (or
quadratic models) were proposed and analyzed in Roberts et al. (2022), our work focuses on the
properties of NQMs in the large learning rate regime, which has not been discussed in Roberts et al.
(2022). Similarly, the following related works did not study catapult dynamics. Huang & Yau (2020)
analyzed higher order approximations to neural networks under gradient flow (infinitesimal learning
rates). Bai & Lee (2019) studied different quadratic models with randomized second order terms and
Zhang et al. (2019) considered the loss in the quadratic form, where no catapult phase happens.

Discontinuity in dynamics transition. In the ball B(w0, R) := {w : ‖w − w0‖ ≤ R} with
constant radius R > 0, the transition to linearity of a wide neural network (with linear output layer)
is continuous in the network width m. That is, the deviation from the network function to its linear
approximation within the ball can be continuously controlled by the Hessian of the network function,
i.e. Hf , which scales with m (Liu et al., 2020):

‖f(w)− flin(w)‖ ≤ sup
w∈B(w0,R)

‖Hf (w)‖R2 = Õ(1/
√
m). (4)

Using the inequality from Eq. (4), we obtain ‖fquad − flin‖ = Õ(1/
√
m), hence fquad transitions

to linearity continuously as well in B(w0, R)3. Given the continuous nature of the transition to
linearity, one may expect that the transition from non-linear dynamics to linear dynamics for f and
fquad is continuous in m as well. Namely, one would expect that the domain of catapult dynamics,
[ηcrit, ηmax], shrinks and ultimately converges to a single point, i.e., ηcrit = ηmax, as m goes to
infinity, with non-linear dynamics turning into linear dynamics. However, as shown both analytically
and empirically, the transition is not continuous, for both network functions f and NQMs fquad,
since the domain of the catapult dynamics can be independent of the width m (or γ). Additionally,
the length of the optimization path of f in catapult dynamics grows with m since otherwise, the
optimization path could be contained in a ball with a constant radius independent of m, in which
f can be approximated by flin. Since flin diverges in catapult dynamics, by the approximation, f
diverges as well, which contradicts the fact that f can converge in catapult dynamics (See Figure 2a).

2 NOTATION AND PRELIMINARY

We use bold lowercase letters to denote vectors and capital letters to denote matrices. We denote the
set {1, 2, · · · , n} by [n]. We use ‖ · ‖ to denote the Euclidean norm for vectors and the spectral norm
for matrices. We use � to denote element-wise multiplication (Hadamard product) for vectors. We
use λmax(A) and λmin(A) to denote the largest and smallest eigenvalue of a matrix A, respectively.

3For general quadratic models in Eq. (3), the transition to linearity is continuously controlled by γ.
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Given a model f(w;x), where x is input data and w are model parameters, we use∇wf to represent
the partial first derivative ∂f(w;x)/∂w. When clear from context, we let ∇f := ∇wf for ease
of notation. We use Hf and HL to denote the Hessian (second derivative matrix) of the function
f(w;x) and the loss L(w) with respect to parameters w, respectively.

In the paper, we consider the following supervised learning task: given training data {(xi, yi)}ni=1

with data xi ∈ Rd and labels yi ∈ R for i ∈ [n], we minimize the empirical risk with the squared
loss L(w) = 1

2

∑n
i=1(f(w;xi)− yi)2. Here f(w; ·) is a parametric family of models, e.g., a neural

network or a kernel machine, with parameters w ∈ Rp. We use full-batch gradient descent to
minimize the loss, and we denote trainable parameters w at iteration t by w(t). With constant step
size (learning rate) η, the update rule for the parameters is:

w(t+ 1) = w(t)− η dL(w)

dw
(t), ∀t ≥ 0.

Definition 1 (Tangent Kernel). The tangent kernel K(w; ·, ·) of f(w; ·) is defined as

K(w;x, z) = 〈∇f(w;x),∇f(w; z)〉, ∀x, z ∈ Rd. (5)

In the context of the optimization problem with n training examples, the tangent kernel matrix
K ∈ Rn×n satisfies Ki,j(w) = K(w;xi,xj), i, j ∈ [n]. The critical learning rate for optimization
is given as follows.

Definition 2 (Critical learning rate). With an initialization of parameters w0, the critical learning
rate of f(w; ·) is defined as

ηcrit := 2/λmax(HL(w0)). (6)

A learning rate η is said to be sub-critical if 0 < η < ηcrit or super-critical if ηcrit < η < ηmax. Here
ηmax is the maximum leaning rate such that the optimization of L(w) initialized at w0 can converge.

Dynamics for Linear models. When f is linear in w, the gradient, ∇f , and tangent kernel are
constant: K(w(t)) = K(w0). Therefore, gradient descent dynamics are:

F (w(t+ 1))− y = (I − ηK(w0))(F (w(t))− y), ∀t ≥ 0, (7)

where F (w0) = [f1(w0), ..., fn(w0)]T with fi(w0) = f(w0;xi).

Noting that HL(w0) = ∇F (w0)T∇F (w0) and that tangent kernel K(w0) = ∇F (w0)∇F (w0)T

share the same positive eigenvalues, we have λmax(HL(w0)) = λmax(K(w0)), and hence,

ηcrit = 2/λmax(K(w0)). (8)

Therefore, from Eq. equation 7, if 0 < η < ηcrit, the loss L decreases monotonically and if η > ηcrit,
the loss L diverges. Note that the critical and maximum learning rates are equal in this setting.

3 OPTIMIZATION DYNAMICS IN NEURAL QUADRATIC MODELS

In this section, we analyze the gradient descent dynamics of the NQM that approximates two-layer
fully connected ReLU activated neural networks up to the second order. We show that the extra
quadratic term in NQMs allows for catapult convergence: the loss increases at early stage and then
converges afterwards. Note that this type of convergence happens with super-critical learning rates
and cannot happen for linear models. Interestingly, the top eigenvalues of the tangent kernel typically
decrease after the catapult phase, while they are nearly constant when training with sub-critical
learning rates, where the loss converges monotonically.

Neural Quadratic Model (NQM). Consider the NQM that approximates the following two-layer
neural network:

f(u,v;x) =
1√
m

m∑
i=1

viσ

(
1√
d
uTi x

)
, (9)

where ui ∈ Rd, vi ∈ R for i ∈ [m] are trainable parameters, x ∈ Rd is the input, and σ(·) is
the ReLU activation function. Each parameter is initialized i.i.d. following the standard normal
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distribution, N (0, 1). Letting g(u,v;x) := fquad(u,v;x), this NQM has the following expression
(See the full derivation in Appendix A):

g(u,v;x) = f(u0,v0;x) +
1√
md

m∑
i=1

v0,i(ui − u0,i)
Tx1{uT0,ix≥0} +

1√
md

m∑
i=1

(vi − v0,i)σ
(
uT0,ix

)
+

1√
md

m∑
i=1

(vi − v0,i)(ui − u0,i)
Tx1{uT0,ix≥0}. (10)

Given training data {xi, yi}ni=1, we minimize the empirical risk with the squared loss L(w) =
1
2

∑n
i=1(g(w;xi)− yi)2 using GD with constant learning rate η. Throughout this section, we denote

g(u(t),v(t);x) by g(t) and its tangent kernel K(u(t),v(t)) by K(t), where t is the iteration of
GD. We assume ‖xi‖ = O(1) and |yi| = O(1) for i ∈ [n], and we assume the width of f is much
larger than the input dimension d and the data size n, i.e., m� max{d, n}. Hence, d and n can be
regarded as small constants. In the whole paper, we use the big-O and small-o notation with respect
to the width m. Below, we start with the single training example case, which already showcases the
non-linear dynamics of NQMs.

3.1 CATAPULT DYNAMICS WITH SINGLE TRAINING EXAMPLE

In this subsection, we consider training dynamics of NQMs with a single training example (x, y)
where x ∈ Rd and y ∈ R. In this case, the tangent kernel matrix K reduces to a scalar, and we
denote K by λ to distinguish it from a matrix.

By gradient descent with step size η, the updates for g(t)− y and λ(t), which we refer to as dynamics
equations, can be derived as follows (see Appendix B.1):

Dynamics equations.

g(t+ 1)− y =

1− ηλ(t) +
‖x‖2

md
η2(g(t)− y)g(t)︸ ︷︷ ︸

Rg(t)

 (g(t)− y) := µ(t)(g(t)− y), (11)

λ(t+ 1) = λ(t) + η
‖x‖2

md
(g(t)− y)2

(
ηλ(t)− 4

g(t)

g(t)− y

)
︸ ︷︷ ︸

Rλ(t)

, ∀t ≥ 0. (12)

Note that as the loss is given by L(t) = 1/2(g(t) − y)2, to understand convergence, it suffices to
analyze the dynamics equations above. Compared to the linear dynamics Eq. (7), this non-linear
dynamics has extra terms Rg(t) and Rλ(t), which are induced by the non-linear term in the NQM.
We will see that the convergence of gradient descent depends on the scale and sign of Rg(t) and
Rλ(t). For example, for constant learning rate that is slightly larger than ηcrit (which would result
in divergence for linear models), Rλ(t) stays negative during training, resulting in both monotonic
decrease of tangent kernel λ and convergence of the loss.

For the scale of λ0, which is non-negative by Definition 1, we can show that with high probability
over random initialization, |λ0| = Θ(1) (see Appendix D). As λ(t) = λ0 +

∑t
τ=0Rλ(τ), to track

the scale of |µ(t)|, we will focus on the scale and sign of Rg(t) and Rλ(t) in the following analysis.
We start by establishing monotonic convergence for sub-critical learning rates.

Monotonic convergence: sub-critical learning rates (η < 2/λ(0)). The key observation we use
is that when |g(t)| is small, i.e., of the order o(

√
m), and λ(t) = Θ(1), |Rg(t)| and |Rλ(t)| are of

the order o(1)(see Proposition 3 in Appendix F). Then, the dynamics equations approximately reduce
to the ones of linear dynamics:

g(t+ 1)− y = (1− ηλ(t) + o(1)) (g(t)− y),

λ(t+ 1) = λ(t) + o(1).

Note that at initialization, with high probability over random initialization, the output satisfies
|g(0)| = O(1) if ‖x‖ = O(1) (Jacot et al., 2018), and we have shown λ(0) = Θ(1). Applying
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Proposition 3, with the choice of η, we have for all t ≥ 0, |µ(t)| = |1− ηλ(t) + o(1)| < 1; hence,
|g(t) − y| decreases monotonically. The cumulative change on the tangent kernel will be o(1),
i.e.,

∑
t |Rλ(t)| = o(1), since for all t, |Rλ(t)| = o(1) and the loss decreases exponentially hence∑

‖RK(t)‖ = o(1) · logO(1) = o(1).
Catapult convergence: super-critical learning rates (2/λ(0) < η < 4/λ(0)). The training
dynamics are given by the following theorem.
Theorem 1 (Catapult dynamics on a single training example). Consider training a NQM, Eq. (10),
with squared loss on a single training example by gradient descent. If the learning rate is super-
critical, i.e., 2/λ0 < η < 4/λ0, then there exist T1, T2, T3, T4 such that 0 < T1 < T2 < T3 < T4
and the training dynamics exhibits:

(i) Increasing phase: t ∈ [0, T1]. In this phase, L(t) = o(m). The loss grows exponentially
and the tangent kernel is nearly constant, i.e. |λ(t)− λ(0)| = o(1).

(ii) Peak phase: t ∈ [T2, T3]. In this phase, L(t) = Θ(m). The tangent kernel decreases
significantly: λ(t+ 1)− λ(t) < 0 and |λ(t+ 1)− λ(t)| = Θ(1).

(iii) Decreasing phase: t ∈ [T4,∞). In this phase, the loss satisfies L(t) = o(m) again and
decreases. The tangent kernel is nearly constant until convergence: |λ(t)− λ(∞)| = o(1).

Furthermore, T1 = o(logm), T2 = Θ(logm), T3 − T2 = Θ(1) and T4 = Θ(logm).

Proof of Theorem 1. We will analyze the training dynamics in each phase sequentially.
(i) Increasing phase. At the beginning, |g(t)| grows exponentially following linear dynamics.
Specifically, since |g(0)| = O(1), by Proposition 3, we have |Rg(0)| = o(1) and |Rλ(0)| = o(1).
The loss grows exponentially at iteration 0: by the choice of the learning rate, µ(0) satisfies

|µ(0)| = |1− ηλ(0) +Rg(0)| = |1− ηλ(0) + o(1)| > 1.

Therefore |g(1)−y| > |g(0)−y|, and the tangent kernel almost does not change: λ(1) = λ(0)+o(1).

We can recursively apply this argument for the following steps as long as |g(t)| = o(
√
m) according

to Proposition 3. Note that in the increasing phase, the loss grows exponentially due to |µ(t)| > 1.
Therefore, the tangent kernel is nearly constant since the cumulative change is

∑T1

t=0 |Rλ(t)| =∑T1

t=0 Θ
(
g(t)2/m

)
= o(1), where we use the fact that g(t)2 grows exponentially to the order of

o(m). And we can get T1 = o(logm).

Furthermore, it is not hard to see that until the loss grows to the order of Θ(m), the tangent kernel
does not change much hence the loss keeps increasing exponentially.
(ii) Peak phase. The key observation we use here is that when |g(t)| is large, i.e., of the order
Θ(
√
m), |Rg(t)| and |Rλ(t)| will be of the order Θ(1)(see Proposition 4 in Appendix F), which can

lead to the decrease of the loss.

In the peak phase, we have |g(t)| = Θ(
√
m), then by Proposition 4, the scale of |Rλ(t)| is Θ(1),

and Rλ(t) < 0 since λ(t) < 4/η (in the increasing phase, λ(t) almost does not change, hence we
have λ(t) ≈ λ(0) < 4/η before the peak phase, and will decrease significantly). Consequently, by
Eq. (12), λ(t) will have significant decrease as |Rλ(t)| = Θ(1) and λ(t+ 1) = λ(t) +Rλ(t) < λ(t),
which is further smaller than 4/η.

Similarly, when |g(t)| = Θ(
√
m), |Rg(t)| = Θ(1) and Rg(t) > 0 by Proposition 4. Then we can

see the increase of loss slows down compared to that in the increasing phase:

|µ(t)| = |1− ηλ(t) +Rg(t)| < |1− ηλ(0) +Rg(0)| = |1− ηλ(0) + o(1)| ≈ µ(0).

In general, the loss grows exponentially prior to the peak phase hence T2 = Θ(logm). And the peak
phase only lasts Θ(1) steps during training, i.e., |T3 − T2| = Θ(1), since the decrease of λ(t) is Θ(1)
at each step and the training dynamics will enter into the decreasing phase once |µ(t)| < 1, which
will happen if λ(t) is sufficiently small.
(iii) Decreasing phase. The peak phase ends when |µ(t)| < 1, then |g(t) − y| starts to decrease.
We note that our analysis implicitly assumes that the optimization path will not arrive at the saddle
point, i.e., |µ(t)| = 1, and it is generally true with discrete steps.

Recall that at the peak phase, λ(t) decreases, and when |µ(t)| > 1, |g(t)| increases which causes the
increase of Rg(t) since Rg(t) scales with |g(t)|. As a result |µ(t)| = |1− ηλ(t) +Rg(t)| decreases
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and will be less than 1 ultimately. Note that though |g(t)− y| starts to decrease, it is still of the order
Θ(
√
m), which makes λ(t) decrease significantly as Rλ(t) = Θ(1) by Proposition 4.

The decrease of λ(t) will stop once |g(t)| decreases to the order of o(m), as Rλ(t) = o(1) again by
Proposition 3. At that moment, T4 − T3 = Θ(logm) as the loss decreases exponentially and the
linear dynamics dominate again. Therefore, similar to the increasing phase, starting from t such that
|g(t)| = o(

√
m), the loss decreases exponentially hence the change of λ(t) until convergence is o(1).

Divergence (η > ηmax = 4/λ(0)). Initially, it follows the same dynamics with those in the
increasing phase in catapult convergence: the loss increases exponentially and the tangent kernel
is nearly constant. However, when |g(t)| grows to the order of Θ(

√
m), corresponding to the

peak phase in catapult convergence, λ(t) does not decrease but increases significantly. Specifically,
since η > 4/λ(0), we approximately have η > 4/λ(t) at the end of the increasing phase by
the same analysis in catapult convergence. By Proposition 3, Rλ(t) > 0, then λ(t) increases as
λ(t + 1) = λ(t) + Rλ(t) > λ(t). Larger λ(t) leads to the faster increase on λ(t), hence |µ(t)|
becomes even larger. As a result, |g(t)− y| grows faster, therefore the loss diverges.

3.2 CATAPULT DYNAMICS WITH MULTIPLE TRAINING EXAMPLES

In this subsection we show the catapult phase will happen for NQMs Eq. (9) with multiple training
examples. We assume unidimensional input data, which is common in the literature and simplifies
the analysis for neural networks (see for example Williams et al. (2019); Savarese et al. (2019)).
Assumption 1. The input dimension d = 1 and not all xi is 0, i.e.,

∑
|xi| > 0.

Since xi is a scalar for all i ∈ [n], with the homogeneity of ReLU activation function, we can compute
the exact eigenvectors of K(t) for all t ≥ 0. To that end, we group the data into two sets S+ and S−
according to their sign:

S+ := {i : xi ≥ 0, i ∈ [n]}, S− := {i : xi < 0, i ∈ [n]}.
Now we have the proposition for the tangent kernel K(the proof is deferred to Appendix C):
Proposition 1 (Eigenvectors and low rank structure of K). For any u,v ∈ Rm, rank(K) ≤ 2.
Furthermore, p1, p2 are eigenvectors of K, where p1,i = xi1{i∈S+}, p2,i = xi1{i∈S−}, for i ∈ [n].

Note that when all xi are of the same sign, rank(K) = 1 and K only has one eigenvector (either
p1 or p2 depending on the sign). It is in fact a simpler setting since we only need to consider one
direction, whose analysis is covered by the one for rank(K) = 2. Therefore, in the following we
will assume rank(K) = 2. We denote two eigenvalues of K(t) by λ1(t) and λ2(t) corresponding to
p1 and p2 respectively, i.e., K(t)p1 = λ1(t)p1, K(t)p2 = λ2(t)p2. Without loss of generality, we
assume λ1(0) ≥ λ2(0).

We similarly analyze the dynamics equations for multiple training examples (see Eq. (14) and (15)
which are update equations of g(t)− y and K(t)) with different learning rates. And we formulate
the result for the catapult dynamics, which happens when training with super-critical learning rates,
into the following theorem:
Theorem 2 (Catapult dynamics on multiple training examples). Consider training a NQM Eq. (10)
with squared loss on multiple training examples by gradient descent. Under Assumption 1, if
the learning rate is super-critical i.e., 2/λ1(0) < η < min{2/λ2(0), 4/λ1(0)}, then there exist
T1, T2, T3, T4 such that 0 < T1 < T2 < T3 < T4 and the training dynamics exhibits:

(i) Increasing phase: t ∈ [0, T1]. In this phase, L(t) = o(m). The loss grows exponentially;
both eigenvalues are nearly constant i.e., |λk(t)− λk(0)| = o(1) for k = 1, 2.

(ii) Peak phase: t ∈ [T2, T3]. In this phase, L(t) = Θ(m). For the tangent kernel:

(a) If 2/λ2(0) ≤ 4/λ1(0), both eigenvalues decrease significantly, i.e., λ1(t+1)−λ1(t) <
0, λ2(t+ 1)− λ2(t) < 0 and both difference are of the order Θ(1).

(b) If 2/λ2(0) > 4/λ1(0), only λ1(t) decreases significantly.

(iii) Decreasing phase: t ∈ [T4,∞). In this phase, the loss satisfies L(t) = o(m) again and
decreases. Both eigenvalues are nearly constant until convergence: |λk(t)−λk(∞)| = o(1),
for k = 1, 2.
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Furthermore, T1 = o(logm), T2 = Θ(logm), T3 − T2 = Θ(1) and T4 = Θ(logm).

The proof idea is similar to the case for a single training example: due to the low rank structure of the
tangent kernel, we only need to analyze directions p1 and p2. It turns out that we can analyze the
dynamics separately for each direction as we show the training dynamics in these two directions are
almost independent to each other. We defer the proof of Theorem 2 and the analysis of other two
parts of non-linear dynamics: monotonic convergence and divergence to Appendix H.

We verify the theoretical results above for multiple training examples via the experiments in Figure 3.

(a) Training loss (b) Largest eigenvalue of tangent
kernel

(c) Second largest eigenvalue of
tangent kernel

Figure 3: Training dynamics of NQMs for multiple examples case with different learning rates.
By our analysis, two critical values are 2/λ1(0) = 0.37 and 2/λ2(0) = 0.39. When η < 0.37, linear
dynamics dominate hence the kernel is nearly constant; when 0.37 < η < 0.39, the catapult phase
happens in p1 and only λ1(t) decreases; when 0.39 < η < ηmax, the catapult phase happens in p1

and p2 hence both λ1(t) and λ2(t) decreases. The experiment details can be found in Appendix J.1.

3.3 CONNECTION TO WIDE NEURAL NETWORKS AND GENERAL QUADRATIC MODELS

Wide neural networks. We have seen that NQMs, with fixed Hessian, exhibit the catapult phase
phenomenon. Therefore, the change in the Hessian of wide neural networks during training is not
required to produce the catapult phase. In our analysis, we show that the catapult phase arises because
the eigenvectors of the tangent kernel “align” with the Hessian’s spectrum, i.e., Hgi for i ∈ S+

are proportional with coefficients p1, and the same holds for Hgi for i ∈ S− with coefficients p2.
E.g., Hgj/p1,j = Hgk/p1,k if j, k ∈ S+. We believe this idea can be used to analyze the catapult
dynamics in wide neural networks with changing Hessian. A similar behaviour of top eigenvalues of
the tangent kernel with the one for NQMs is observed for wide neural networks when training with
different learning rates (See Figure 5 in Appendix J).

General quadratic models. As mentioned in the introduction, NQMs are contained in a general
class of quadratic models of the form given in Eq. (3). We show that the two-layer linear neural
network analyzed in Lewkowycz et al. (2020) is a special case of Eq. (3), and we provide a more
general condition for such models to have catapult dynamics in Appendix I.

Furthermore, we empirically observe that a broader class of quadratic models g can have catapult dy-
namics simply by letting φ(x) and Σ be random and assigning a small value to γ (See Appendix J.3).

4 QUADRATIC MODELS PARALLEL NEURAL NETWORKS IN GENERALIZATION

In this section, we empirically compare the test performance of three different models considered in
this paper upon varying learning rate. In particular, we consider (1) the NQM, fquad; (2) correspond-
ing neural networks, f ; and (3) the linear model, flin.

We implement our experiments on 3 vision datasets: CIFAR-2 (a 2-class subset of CIFAR-
10 (Krizhevsky et al., 2009)), MNIST (LeCun et al., 1998), and SVHN (The Street View House
Numbers) (Netzer et al., 2011), 1 speech dataset: Free Spoken Digit dataset (FSDD) (Jakobovski,
2020) and 1 text dataset: AG NEWS (Gulli, 2005).

In all experiments, we train the models by minimizing the squared loss using standard GD/SGD
with constant learning rate η. We report the best test loss achieved during the training process with

8
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Figure 4: Best test loss plotted against different learning rates for f(w), flin(w) and fquad(w)
across a variety of datasets and network architectures.

each learning rate. Experimental details can be found in Appendix J.4. We also report the best test
accuracy in Appendix J.5. For networks with 3 layers, see Appendix J.6. From the experimental
results, we observe the following:

Sub-critical learning rates. In accordance with our theoretical analyses, we observe that all three
models have nearly identical test loss for any sub-critical learning rate. Specifically, note that as the
width m increases, f and fquad will transition to linearity in the ball B(w0, R):

‖f − flin‖ = Õ(1/
√
m), ‖fquad − flin‖ = Õ(1/

√
m),

where R > 0 is a constant which is large enough to contain the optimization path with respect to
sub-critical learning rates. Thus, the generalization performance of these three models will be similar
when m is large, as shown in Figure 4.

Super-critical learning rates. The best test loss of both f(w) and fquad(w) is consistently smaller
than the one with sub-critical learning rates, and decreases for an increasing learning rate in a range
of values beyond ηcrit, which was observed for wide neural networks in Lewkowycz et al. (2020).

As discussed in the introduction, with super-critical learning rates, both fquad and f can be observed
to have catapult phase, while the loss of flin diverges. Together with the similar behaviour of fquad
and f in generalization with super-critical learning rates, we believe NQMs are a better model to
understand f in training and testing dynamics, than the linear approximation flin.

In Figure 4 we report the results for networks with ReLU activation function. We also implement the
experiments using networks with Tanh and Swish (Ramachandran et al., 2017) activation functions,
and observe the same phenomena in generalization for f , flin and fquad (See Appendix J.7).

5 CONCLUSIONS

In this paper, we use quadratic models as a tool to better understand optimization and generalization
properties of finite width neural networks trained using large learning rates. Notably, we prove that
quadratic models exhibit properties of neural networks such as the catapult dynamics that cannot be
explained using linear models, which importantly includes linear approximations to neural networks
given by the neural tangent kernel. Interestingly, we show empirically that quadratic models mimic
the generalization properties of neural networks when trained with large learning rate, and that such
models perform better than linearized neural networks.

9
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A DERIVATION OF NQM

We will derive the NQM that approximate the two-layer fully connected ReLU activated neural
networks based on Eq. (2).

The first derivative of f can be computed by:

∂f

∂ui
=

1√
md

vi1{uTi x≥0}x
T ,

∂f

∂vi
=

1√
m
σ

(
1√
d
uTi x

)
, ∀i ∈ [m].

And each entry of the Hessian of f , i.e., Hf , can be computed by

∂2f

∂u2
i

= 0,
∂2f

∂v2i
= 0,

∂2f

∂uivi
=

1√
md

1{uTi x≥0}x
T , ∀i ∈ [m].

Now we get fquad taking the following form

NQM : fquad(u,v;x) = f(u0,v0;x) +
1√
md

m∑
i=1

(ui − u0,i)
Tx1{uT0,ix≥0}v0,i +

1√
m

m∑
i=1

(vi − v0,i)σ
(

1√
d
uT0,ix

)

+
1√
md

m∑
i=1

(ui − u0,i)
Tx1{uT0,ix≥0}(vi − v0,i). (13)

B DERIVATION OF DYNAMICS EQUATIONS

B.1 SINGLE TRAINING EXAMPLE

The NQM can be equivalently written as:

g(u,v;x) = g(u0,v0;x) +

〈
u− u0, ∇ug(u,v;x)

∣∣∣∣
u=u0,v=v0

〉
+

〈
v − v0, ∇vg(u,v;x)

∣∣∣∣
u=u0,v=v0

〉

+

〈
u− u0,

∂2g(u,v;x)

∂u∂v

∣∣∣∣
u=u0,v=v0

(v − v0)

〉
,

since ∂2g
∂u2 = 0 and ∂2g

∂v2 = 0.

And the tangent kernel λ(u,v;x) takes the form

λ(u,v;x) =

∥∥∥∥∥∇ug(u,v;x)

∣∣∣∣
u=u0,v=v0

+
∂2g(u,v;x)

∂u∂v

∣∣∣∣
u=u0

(v − v0)

∥∥∥∥∥
2

F

+

∥∥∥∥∥∇vg(u,v;x)

∣∣∣∣
u=u0,v=v0

+ (u− u0)T
∂2g(u,v;x)

∂u∂v

∣∣∣∣
u=u0,v=v0

∥∥∥∥∥
2

.

Here

∇uig(u,v;x)

∣∣∣∣
u=u0,v=v0

=
1√
md

m∑
i=1

v0,i1{uT0,ix≥0}x, ∀i ∈ [m],

∇vg(u,v;x)

∣∣∣∣
u=u0,v=v0

=
1√
md

σ
(
uT0 x

)
.
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In the following, we will consider the dynamics of g and λ with GD, hence for simplicity of notations,
we denote

∇ug(0) := ∇ug(u,v;x)

∣∣∣∣
u=u0,v=v0

,

∇vg(0) := ∇vg(u,v;x)

∣∣∣∣
u=u0,v=v0

,

∂2g(0)

∂u∂v
:=

∂2g(u,v;x)

∂u∂v

∣∣∣∣
u=u0,v=v0

.

By gradient descent with learning rate η, at iteration t, we have the update equations for weights u
and v:

u(t+ 1) = u(t)− η(g(t)− y)

(
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0))

)
,

v(t+ 1) = v(t)− η(g(t)− y)

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)
.

Then we plug them in the expression of λ(t+ 1) and we get

λ(t+ 1) =

∥∥∥∥∇ug(0) +
∂2g(0)

∂u∂v
(v(t+ 1)− v(0))

∥∥∥∥2
F

+

∥∥∥∥∇vg(0) + (u(t+ 1)− u(0))T
∂2g(0)

∂u∂v

∥∥∥∥2
=

∥∥∥∥∇ug(0) +
∂2g(0)

∂u∂v

(
v(t)− η(g(t)− y)

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)
− v(0)

)∥∥∥∥2
F

+

∥∥∥∥∥∇vg(0) +

(
u(t)− η(g(t)− y)

(
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0))

)
− u(0)

)T
∂2g(0)

∂u∂v

∥∥∥∥∥
2

= λ(t) + η2(g(t)− y)2
∥∥∥∥∂2g(0)

∂u∂v

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)∥∥∥∥2
F

+ η2(g(t)− y)2

∥∥∥∥∥
(
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0))

)T
∂2g(0)

∂u∂v

∥∥∥∥∥
2

− 2η(g(t)− y)

〈
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0)),

∂2g(0)

∂u∂v

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)〉
− 2η(g(t)− y)

〈
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v
,

(
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0))

)T
∂2g(0)

∂u∂v

〉
.

Due to the structure of ∂
2g(0)
∂u∂v , we have∥∥∥∥∂2g(0)

∂u∂v

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)∥∥∥∥2
F

=
‖x‖2

md

∥∥∥∥∇vg(0) + (u(t)− u(0))T
∂2g(0)

∂u∂v

∥∥∥∥2
=
‖x‖2

md
‖∇vg(t)‖2,

and∥∥∥∥∥
(
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0))

)T
∂2g(0)

∂u∂v

∥∥∥∥∥
2

=
‖x‖2

md

∥∥∥∥∇ug(0) +
∂2g(0)

∂u∂v
(v(t)− v(0))

∥∥∥∥2
F

=
‖x‖2

md
‖∇ug(t)‖2F .
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Furthermore,〈
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0)),

∂2g(0)

∂u∂v

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)〉
=
‖x‖2

md
〈v(t)− v(0),∇vg(0)〉+

‖x‖2

md
〈∇ug(0),u(t)− u(0)〉+

〈
∇ug(0),

∂2g(0)

∂u∂v
∇vg(0)

〉
+

〈
∂2g(0)

∂u∂v
(v(t)− v(0)),

∂2g(0)

∂u∂v
(u(t)− u(0))T

∂2g(0)

∂u∂v

〉
=
‖x‖2

md
〈v(t)− v(0),∇vg(0)〉+

‖x‖2

md
〈∇ug(0),u(t)− u(0)〉+ g(0) +

‖x‖2

md

〈
v(t)− v(0),

∂2g(0)

∂u∂v
(u(t)− u(0))T

〉
= g(t)‖x‖2/md.

Similarly, we have〈
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v
,

(
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0))

)T
∂2g(0)

∂u∂v

〉
= g(t)‖x‖2/md.

As a result,

λ(t+ 1) = λ(t) +
‖x‖2

md
η2(g(t)− y)2λ(t)− 4‖x‖2

md
η(g(t)− y)g(t)

= λ(t) + η
‖x‖2

md
(g(t)− y)2

(
ηλ(t)− 4

g(t)

g(t)− y

)
.

For g, we plug the update equations for u and v in the expression of g(t+ 1) and we can get
g(t+ 1) = g(0) + 〈u(t+ 1)− u(0),∇ug(0)〉+ 〈v(t+ 1)− v(0),∇vg(0)〉

+

〈
u(t+ 1)− u(0),

∂2g(0)

∂u∂v
(v(t+ 1)− v(0)

〉
= g(0) +

〈
u(t)− η(g(t)− y)

(
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0))

)
− u(0),∇ug(0)

〉
+

〈
v(t)− η(g(t)− y)

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)
− v(0),∇vg(0)

〉
+

〈
u(t)− η(g(t)− y)

(
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0))

)
− u(0) ,

∂2g(0)

∂u∂v

(
v(t)− η(g(t)− y)

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)
− v(0)

)〉
= g(t)− η(g(t)− y)

〈
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0)),∇ug(0)

〉
− η(g(t)− y)

〈
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v
,∇vg(0)

〉
+ η2(g(t)− y)2

〈
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0)),

∂2g(0)

∂u∂v

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)〉
− η(g(t)− y)

〈
u(t)− u(0),

∂2g(0)

∂u∂v

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)〉
− η(g(t)− y)

〈
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0)),

∂2g(0)

∂u∂v
(v(t)− v(0))

〉
= g(t)− η(g(t)− y)λ(t)

+ η2(g(t)− y)2
〈
∇ug(0) +

∂2g(0)

∂u∂v
(v(t)− v(0)),

∂2g(0)

∂u∂v

(
∇vg(0) + (u(t)− u(0))T

∂2g(0)

∂u∂v

)〉
= g(t)− η(g(t)− y)λ(t) +

‖x‖2

md
η2(g(t)− y)2g(t)
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Therefore,

g(t+ 1)− y =

(
1− ηλ(t) +

‖x‖2

md
η2(g(t)− y)g(t)

)
(g(t)− y).

B.2 MULTIPLE TRAINING EXAMPLES

We follow the similar notation on the first and second order derivative of g with Appendix B.1.
Specifically, for k ∈ [n], we denote

∇ugk(0) := ∇ug(u,v;xk)

∣∣∣∣
u=u0,v=v0

,

∇vgk(0) := ∇vg(u,v;xk)

∣∣∣∣
u=u0,v=v0

,

∂2gk(0)

∂u∂v
:=

∂2g(u,v;xk)

∂u∂v

∣∣∣∣
u=u0,v=v0

.

By GD with learning rate η, we have the update equations for weights u and v at iteration t:

u(t+ 1) = u(t)− η
n∑
k=1

(gk(t)− yk)

(
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0))

)
,

v(t+ 1) = v(t)− η
n∑
k=1

(gk(t)− yk)

(
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v

)
.

We consider the evolution of K(t) first.

Ki,j(t+ 1) =

〈
∇ugi(0) +

∂2gi(0)

∂u∂v
(v(t+ 1)− v(0)),∇ugj(0) +

∂2gj(0)

∂u∂v
(v(t+ 1)− v(0))

〉
+

〈
∇vgi(0) + (u(t+ 1)− u(0))T

∂2gi(0)

∂u∂v
,∇vgj(0) + (u(t+ 1)− u(0))T

∂2gj(0)

∂u∂v

〉
= Ki,j(t)−

〈
η
∂2gi(0)

∂u∂v

n∑
k=1

(gk(t)− yk)

(
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v

)
,

∇ugj(0) +
∂2gj(0)

∂u∂v
(v(t)− v(0))

〉
−

〈
η
∂2gj(0)

∂u∂v

n∑
k=1

(gk(t)− yk)

(
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v

)
,∇ugi(0) +

∂2gi(0)

∂u∂v
(v(t)− v(0))

〉

+

〈
η
∂2gi(0)

∂u∂v

n∑
k=1

(gk(t)− yk)

(
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v

)
,

η
∂2gj(0)

∂u∂v

n∑
k=1

(gk(t)− yk)

(
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v

)〉

−

〈
η
∂2gj(0)

∂u∂v

n∑
k=1

(gk(t)− yk)

(
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0))

)
,∇vgi(0) + (u(t)− u(0))T

∂2gi(0)

∂u∂v

〉

−

〈
η
∂2gi(0)

∂u∂v

n∑
k=1

(gk(t)− yk)

(
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0))

)
,∇vgj(0) + (u(t)− u(0))T

∂2gj(0)

∂u∂v

〉

+

〈
η
∂2gi(0)

∂u∂v

n∑
k=1

(gk(t)− yk)

(
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0))

)
,

η
∂2gj(0)

∂u∂v

n∑
k=1

(gk(t)− yk)

(
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0))

)〉
.
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We separate the data into two sets according to their sign:
S+ := {i : xi ≥ 0, i ∈ [n]}, S− := {i : xi < 0, i ∈ [n]}.

We consider two scenarios: (1) xi and xj have different signs; (2) xi and xj have the same sign.

(1) With simple calculation, we get if xi and xj have different signs, i.e., i ∈ S+, j ∈ S− or
i ∈ S−, j ∈ S+,

∂2gi(0)

∂u∂v

∂2gj(0)

∂u∂v
= 0,

∂2gi(0)

∂u∂v
∇ugj(0) = 0,

∂2gi(0)

∂u∂v
∇vgj(0) = 0.

Without lose of generality, we assume i ∈ S+, j ∈ S−. Then we have
Ki,j(t+ 1) = Ki,j(t).

(2) If xi and xj have the same sign, i.e., i, j ∈ S+ or i, j ∈ S−,
∂2gi(0)

∂u∂v

∂2gj(0)

∂u∂v
=

1√
m

∂2gi(0)

∂u∂v
xj ,

∂2gi(0)

∂u∂v
∇ugj(0) =

1√
m
∇ugi(0)xj ,

∂2gi(0)

∂u∂v
∇vgj(0) =

1√
m
∇vgi(0)xj .

For i, j ∈ S+, we have

Ki,j(t+ 1) = Ki,j(t)−
2η√
m

∑
k∈S+

(gk(t)− yk)xi

〈
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v
,

∇ugj(0) +
∂2gj(0)

∂u∂v
(v(t)− v(0))

〉
− 2η√

m

∑
k∈S+

(gk(t)− yk)xi

〈
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0)),∇vgj(0) + (u(t)− u(0))T

∂2gj(0)

∂u∂v

〉

+
η2

m
xixj

∥∥∥∥∥∥
∑
k∈S+

(gk(t)− yk)

(
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v

)∥∥∥∥∥∥
2

+
η2

m
xixj

∥∥∥∥∥∥
∑
k∈S+

(gk(t)− yk)

(
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0))

)∥∥∥∥∥∥
2

= Ki,j(t)−
4η

m
xixj

∑
k∈S+

(gk(t)− yk)gk(t) +
η2

m
xixj ((g(t)− y)�m+)

T
K(t) ((g(t)− y)�m+)

= Ki,j(t)−
4η

m
xixj ((g(t)− y)�m+)

T
(g(t)�m+)

+
η2

m
xixj ((g(t)− y)�m+)

T
K(t) ((g(t)− y)�m+) .

Similarly, for i, j ∈ S−, we have

Ki,j(t+ 1) = Ki,j(t)−
4η

m
xixj ((g(t)− y)�m−)

T
(g(t)�m−)

+
η2

m
xixj ((g(t)− y)�m−)

T
K(t) ((g(t)− y)�m−) .

Combining the results together, we have

K(t+ 1) = K(t) +
η2

m
((g(t)− y)�m+)

T
K(t) ((g(t)− y)�m+)p1p

T
1

+
η2

m
((g(t)− y)�m−)

T
K(t) ((g(t)− y)�m−)p2p

T
2

− 4η

m
((g(t)− y)�m+)

T
(g(t)�m+)p1p

T
1

− 4η

m
((g(t)− y)�m−)

T
(g(t)�m−)p2p

T
2 .

16



Under review as a conference paper at ICLR 2023

Now we derive the evolution of g(t)− y. Suppose i ∈ S+. Then we have

gi(t+ 1) = gi(0) + 〈u(t+ 1)− u(0),∇ugi(0)〉+ 〈v(t+ 1)− v(0),∇vgi(0)〉

+

〈
u(t+ 1)− u(0),

∂2gi(0)

∂u∂v
(v(t+ 1)− v(0)

〉
= gi(t)− η

〈
n∑
k=1

(gk(t)− yk)

(
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0))

)
,∇ugi(0)

〉

− η

〈
n∑
k=1

(gk(t)− yk)

(
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v

)
,∇vgi(0)

〉

− η

〈
n∑
k=1

(gk(t)− yk)

(
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0))

)
,
∂2gi(0)

∂u∂v
(v(t)− v(0)

〉

− η

〈
n∑
k=1

(gk(t)− yk)

(
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v

)
, (u(t)− u(0)T

∂2gi(0)

∂u∂v

〉

+ η2

〈
n∑
k=1

(gk(t)− yk)

(
∇ugk(0) +

∂2gk(0)

∂u∂v
(v(t)− v(0))

)
,

∂2gi(0)

∂u∂v

n∑
k=1

(gk(t)− yk)

(
∇vgk(0) + (u(t)− u(0))T

∂2gk(0)

∂u∂v

)〉

= gi(t)− η
∑
k∈S+

(gk(t)− yk)Kk,i(t) +
η2

m

∑
k∈S+

∑
j∈S+

(gk(t)− yk)(gj(t)− yj)gj(t)xkxi.

Similarly, for i ∈ S−, we have

gi(t+ 1) = gi(t)− η
∑
k∈S−

(gk(t)− yk)Kk,i(t) +
η2

m

∑
k∈S−f

∑
j∈S−

(gk(t)− yk)(gj(t)− yj)gj(t)xkxi.

Combining the results together, we have

g(t+ 1)− y =

(
I − ηK(t) +

η2

m
((g(t)− y)�m+)T (g(t)�m+)p1p

T
1

+
η2

m
((g(t)− y)�m−)T (g(t)�m−)p2p

T
2

)
(g(t)− y).

C PROOF OF PROPOSITION 1

Restate Proposition 1: For any u,v ∈ Rm, rank(K) ≤ 2. Furthermore, p1, p2 are eigenvectors
of K, where p1,i = xi1{i∈S+}, p2,i = xi1{i∈S−}, for i ∈ [n].

Proof. By Definition 1,

Ki,j =
1

m

m∑
k=1

(v2k + u2k)xixj1{ukxi≥0}1{ukxj≥0}, i, j ∈ [n].

17
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By definition of eigenvector, we can see
n∑
j=1

Ki,jp1,j =
1

m

n∑
j=1

m∑
k=1

(v2k + u2k)xix
2
j1{ukxi≥0}1{ukxj≥0}1{j∈S+}

=

n∑
j=1

x2j1{j∈S+}
1

m

m∑
k=1

(v2k + u2k)xi1{ukxi≥0}1{ukxj≥0}

= xi1{xi∈S+}

n∑
j=1

x2j1{j∈S+}
1

m

m∑
k=1

(v2k + u2k)1{ukxj≥0},

where we use the fact that if xixj < 0, Ki,j = 0.
As p1,i = xi1{xi∈S+} and

∑n
j=1 x

2
j1{j∈S+}

1
m

∑m
k=1(v2k + u2k)1{ukxj≥0} does not de-

pend on i, we can see p1 is an eigenvector of K with corresponding eigenvalue λ1 =∑n
j=1 x

2
j1{j∈S+}

1
m

∑m
k=1(v2k + u2k)1{ukxj≥0}.

The same analysis can be applied to show p2 is another eigenvector of K with corresponding
λ2 =

∑n
j=1 x

2
j1{j∈S−}

1
m

∑m
k=1(v2k + u2k)1{ukxj≥0}.

For the rank of K, it is not hard to verify that K = λ1p1p
T
1 + λ2p2p

T
2 hence the rank of K is at

most 2.

D SCALE OF THE TANGENT KERNEL FOR SINGLE TRAINING EXAMPLE

Proposition 2 (Scale of tangent kernel). For any δ ∈ (0, 1), if m ≥ c′ log(4/δ) where c′ is an
absolute constant, with probability at least 1− δ, ‖x‖2/(2d) ≤ λ(0) ≤ 3‖x‖2/(2d).

Proof. Note that when t = 0,

λ(0) =
1

md

m∑
i=1

(
uT0,ix1{uT0,ix≥0}

)2
+

1

md

m∑
i=1

(v0,i)
2‖x‖2

(
1{uT0,ix≥0}

)2
.

According to NTK initialization, for each i ∈ [m], v0,i ∼ N (0, 1) and u0,i ∼ N (0, I). We consider
the random variable

ζi := uT0,ix1{uT0,ix≥0}, ξi := v0,i1{uT0,ix≥0}.

it is not hard to see that ζi and ξi are sub-guassian since uT0,ix and v0,i are sub-gaussian. Specifically,
for any t ≥ 0,

P{|ζi| ≥ t} ≤ P{|uT0,ix| ≥ t} ≤ 2 exp
(
−t2/(2‖x‖2)

)
,

P{|ξi| ≥ t} ≤ P{|v0,i| ≥ t} ≤ 2 exp
(
−t2/2

)
,

where the second inequality comes from the definition of sub-gaussian variables.

Since ξi is sub-gaussian, by definition, ξ2 is sub-exponential, and its sub-exponential norm is bounded:

‖ξ2i ‖ψ1
≤ ‖ξi‖2ψ2

≤ C,

where C > 0 is a absolute constant. Similarly we have ‖ζi‖2ψ2
≤ C‖x‖2.

By Bernstein’s inequality, for every t ≥ 0, we have

P

{∣∣∣∣∣
m∑
i=1

ξ2i −
m

2

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
−cmin

(
t2∑m

i=1 ‖ξ2i ‖2ψ1

,
t

maxi ‖ξ2i ‖ψ1

))
,

where c > 0 is an absolute constant.

Letting t = m/4, we have with probability at least 1− 2 exp (−m/c′),

m

4
≤

m∑
i=1

ξ2i ≤
3m

4
,
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where c′ = c/(4C).

Similarity, we have with probability at least 1− 2 exp (−m/c′),

m

4
‖x‖2 ≤

m∑
i=1

ζ2i ≤
3m

4
‖x‖2.

As a result, using union bound, we have probability at least 1− 4 exp (−m/c′),

‖x‖2

2d
≤ λ(0) ≤ 3‖x‖2

2d
.

E SCALE OF THE TANGENT KERNEL FOR MULTIPLE TRAINING EXAMPLES

Proof. As shown in Proposition 1, p1 and p2 are eigenvectors of K, hence we have two eigenvalues:

λ1(0) =
pT1K(0)p1

‖p1‖2
, λ2(0) =

pT2K(0)p2

‖p2‖2
.

Take λ1(0) as an example:

λ1(0)‖p1‖2 =

n∑
i,j=1

xixj1{xi≥0}1{xj≥0}

m∑
k=1

(u20,k + v20,k)xixj1{u0,kxi≥0}1{u0,kxj≥0}

=

m∑
k=1

(u20,k + v20,k)
(
1{u0,k≥0}

)2 n∑
i,j=1

x2ix
2
j1{xi≥0}1{xj≥0}.

Similar to the proof of Proposition 2, we consider ξk := v0,k1{u0,k≥0} which is a sub-gaussian
random variable. Hence ξ2k is sub-exponential so that ‖ξ2k‖ψ1

≤ C where C > 0 is an absolute
constant. By Bernstein’s inequality, for every t ≥ 0, we have

P

{∣∣∣∣∣
m∑
i=1

ξ2i −
m

2

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
−cmin

(
t2∑m

i=1 ‖ξ2i ‖2ψ1

,
t

maxi ‖ξ2i ‖ψ1

))
,

where c > 0 is an absolute constant.

Letting t = m/4, we have with probability at least 1− 2 exp (−m/c′),

m

4
≤

m∑
i=1

ξ2i ≤
3m

4
,

where c′ = c/(4C).

The same analysis applies to ζk := u0,k1{u0,k≥0} as well and we have with probability at least
1− 2 exp (−m/c′),

m

4
≤

m∑
i=1

ζ2i ≤
3m

4
.

As a result, we have probability at least 1− 4 exp (−m/c′),

λ1(0)‖p1‖2 =
1

m

m∑
i=k

(u20,k + v20,k)
(
1{uk(0)≥0}

)2 n∑
i,j=1

x2ix
2
j1{xi≥0}1{xj≥0}

∈

1

2

n∑
i,j=1

x2ix
2
j1{xi≥0}1{xj≥0},

3

2

n∑
i,j=1

x2ix
2
j1{xi≥0}1{xj≥0}

 .
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Applying the same analysis to λ2(0), we have with probability 1− 4 exp (−m/c′),

λ2(0)‖p2‖2 =
1

m

m∑
i=k

(u20,k + v20,k)
(
1{uk(0)≤0}

)2 n∑
i,j=1

x2ix
2
j1{xi≤0}1{xj≤0}

∈

1

2

n∑
i,j=1

x2ix
2
j1{xi≤0}1{xj≤0},

3

2

n∑
i,j=1

x2ix
2
j1{xi≤0}1{xj≤0}

 .
The largest eigenvalue is max{λ1(0), λ2(0)}. Combining the results together, we have with proba-
bility at least 1− 4 exp (−m/c′),

1

2
M ≤ ‖K(0)‖ ≤ 3

2
M,

where M = max

{∑n
i,j=1 x

2
ix

2
j1{xi≥0}1{xj≥0}∑n

i=1 x
2
i1{xi≥0}

,
∑n
i,j=1 x

2
ix

2
j1{xi≤0}1{xj≤0}∑n

i=1 x
2
i1{xi≤0}

}
.

F SCALE ANALYSIS FOR Rλ AND Rg

Proposition 3. Let ρ := |g(t)|/
√
m. Assume m � 1 and |λ(t)| ≤ C for some constant C > 0. If

ρ� 1, i.e., |g(t)| = o(
√
m), then

(i) |Rg(t)| ≤ ‖x‖
2η2

d ρ2 + ‖x‖2η2|y|
d
√
m

ρ = o(1),

(ii) |Rλ(t)| ≤ (η2λ(t)−4η)‖x‖2
d ρ2 +

(
2η2‖x‖2|y|λ(t)+4η‖x‖2|y|

d
√
m

)
ρ+ η2‖x‖2y2λ(t)

dm = o(1).

Proof of Proposition 3. According to dynamics equations, i.e., Eq. (11) and (12),

Rg(t) =
‖x‖2

md
η2(g(t)− y)g(t),

Rλ(t) = η
‖x‖2

md
(g(t)− y)2

(
ηλ(t)− 4

g(t)

g(t)− y

)
.

Let ρ = o(1). Then with simple application of the triangle inequality, we have

|Rg(t)| =
∣∣∣∣‖x‖2η2g(t)2

md
− ‖x‖

2η2g(t)y

md

∣∣∣∣ ≤ ‖x‖2η2d
ρ2 +

‖x‖2η2|y|
d
√
m

ρ = o(1),

and

|Rλ(t)| =
∣∣∣∣‖x‖2η2md

(g(t)− y)2λ(t)− 4‖x‖2η
md

g(t)(g(t)− y)

∣∣∣∣
=

∣∣∣∣η2λ(t)‖x‖2 − 4η‖x‖2

md
g(t)2 +

4‖x‖2ηy − 2‖x‖2η2yλ(t)

md
g(t) +

‖x‖2η2y2λ(t)

md

∣∣∣∣
≤ (η2λ(t)− 4η)‖x‖2

d
ρ2 +

(
2η2‖x‖2|y|λ(t) + 4η‖x‖2|y|

d
√
m

)
ρ+

η2‖x‖2y2λ(t)

dm
= o(1).

Proposition 4. Let ρ := |g(t)|/
√
m and assume m � 1. If ρ ∈ [C1, C2] for some constants

C1, C2 > 0, i.e., |g(t)| = Θ(
√
m) then

(i) Rg(t) ∈
[
‖x‖2η2C2

1

d − ε, ‖x‖
2η2C2

2

d + ε
]
,

(ii) if λ ≤ 4/η, Rλ(t) ∈
[
‖x‖2C2

2η(ηλ(t)−4)
d − ε, ‖x‖

2C2
1η(ηλ(t)−4)
d + ε

]
,

otherwise, Rλ(t) ∈
[
‖x‖2C2

1η(ηλ(t)−4)
d − ε, ‖x‖

2C22η(ηλ(t)−4)
d + ε

]
,
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where ε = O(1/
√
m).

Proof of Proposition 4. According to dynamics equations, i.e., Eq. (11) and (12),

Rg(t) =
‖x‖2

md
η2(g(t)− y)g(t),

Rλ(t) = η
‖x‖2

md
(g(t)− y)2

(
ηλ(t)− 4

g(t)

g(t)− y

)
.

Let C1 ≤ ρ ≤ C2. Then with simple application of the triangle inequity, we have

Rg(t) =
‖x‖2η2g(t)2

md
− ‖x‖

2η2g(t)y

md
=
‖x‖2η2

d
ρ2 − ‖x‖

2η2y√
md

ρ.

Then

‖x‖2η2

d
C2

1 −
‖x‖2η2y√

md
C2 ≤ Rg(t) ≤

‖x‖2η2

d
C2

2 −
‖x‖2η2y√

md
C1.

And

Rλ(t) =
‖x‖2η2

md
(g(t)− y)2λ(t)− 4‖x‖2η

md
g(t)(g(t)− y)

=
η2λ(t)‖x‖2 − 4η‖x‖2

d
ρ2 +

4‖x‖2ηy − 2‖x‖2η2yλ(t)√
md

ρ+
‖x‖2η2y2λ(t)

md
.

If λ(t) ≤ 4/η, we have

Rλ(t) ≥ η2λ(t)‖x‖2 − 4η‖x‖2

d
C2

2 −
4‖x‖2ηy + 2‖x‖2η2yλ(t)√

md
C2,

Rλ(t) ≤ η2λ(t)‖x‖2 − 4η‖x‖2

d
C2

1 +
4‖x‖2ηy + 2‖x‖2η2yλ(t)√

md
C1 +

‖x‖2η2y2λ(t)

md
.

If λ(t) ≥ 4/η, we have

Rλ(t) ≥ η2λ(t)‖x‖2 − 4η‖x‖2

d
C2

1 −
4‖x‖2ηy + 2‖x‖2η2yλ(t)√

md
C2,

Rλ(t) ≤ η2λ(t)‖x‖2 − 4η‖x‖2

d
C2

2 +
4‖x‖2ηy + 2‖x‖2η2yλ(t)√

md
C1 +

‖x‖2η2y2λ(t)

md
.

Picking ε = max
(

4‖x‖2ηy+2‖x‖2η2yλ(t)√
md

C2 + ‖x‖2η2y2λ(t)
md , ‖x‖

2η2y√
md

C2

)
, we have the result.

G SCALE ANALYSIS FOR RK AND Rg

Proposition 5. Let ρ := ‖g(t)‖/
√
m. Assume m� 1 and λ1(t) ≤ C for some constant C > 0. If

ρ� 1, i.e. ‖g(t)‖ = o(
√
m), then

(i) ‖Rg(t)‖ ≤ 2η2(ρ2 + ‖y‖ρ/
√
m)
∑
i x

2
i = o(1),

(ii) ‖RK(t)‖ ≤ 2η2C(ρ2 + ‖y‖ρ/
√
m)
∑
i x

2
i + 8η(ρ2 + ‖y‖ρ/

√
m)
∑
i x

2
i = o(1).
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Proof of Proposition 5. According to dynamics equations for multiple training examples, i.e.,
Eq. (14) and (15), we have

Rg(t) =
η2

m
(g(t)− y)�m+)T (g(t)�m+)p1p

T
1 +

η2

m
(g(t)− y)�m−)T (g(t)�m−)p2p

T
2 ,

RK(t) =
η2

m
((g(t)− y)�m+)

T
K(t) ((g(t)− y)�m+)p1p

T
1

+
η2

m
((g(t)− y)�m−)

T
K(t) ((g(t)− y)�m−)p2p

T
2

− 4η

m
((g(t)− y)�m+)

T
(g(t)�m+)p1p

T
1

− 4η

m
((g(t)− y)�m−)

T
(g(t)�m−)p2p

T
2 .

Let ρ = o(1). With simple application of the triangle inequality, we have

‖Rg(t)‖ ≤ 2η2(ρ2 + ‖y‖ρ/
√
m)
∑
i

x2i = o(1),

since ‖p1‖2 ≤
∑
x2i and ‖p2‖2 ≤

∑
x2i .

And

‖RK(t)‖ ≤ 2η2C(ρ2 + ‖y‖ρ/
√
m)
∑
i

x2i + 8η(ρ2 + ‖y‖ρ/
√
m)
∑
i

x2i = o(1).

Proposition 6. Let ρ := ‖g(t)‖/
√
m. Assume m � 1 and η < 4/λ1(t). If ρ ∈ [C1, C2] for some

constants C1, C2 > 0, i.e., ‖g(t)‖ = Θ(
√
m), then

(i) ‖Rg(t)‖ ∈
[
min{‖p1‖2C2

1 , ‖p2‖2C2
2}η2 + ε,max{‖p1‖2C2

1 , ‖p2‖2C2
2}η2 + ε

]
,

(ii) ‖RK(t)‖ ∈
[
−min{‖p1‖2C2

1 , ‖p2‖2C2
2}η‖K(t)− 4ηI‖ − ε,−max{‖p1‖2C2

1 , ‖p2‖2C2
2}η‖K(t)− 4ηI‖+ ε

]
,

where ε = O(1/
√
m).

Proof of Proposition 6. According to dynamics equations for multiple training examples, i.e.,
Eq. (14) and (15), we have

Rg(t) =
η2

m
(g(t)− y)�m+)T (g(t)�m+)p1p

T
1 +

η2

m
(g(t)− y)�m−)T (g(t)�m−)p2p

T
2 ,

RK(t) =
η2

m
((g(t)− y)�m+)

T
K(t) ((g(t)− y)�m+)p1p

T
1

+
η2

m
((g(t)− y)�m−)

T
K(t) ((g(t)− y)�m−)p2p

T
2

− 4η

m
((g(t)− y)�m+)

T
(g(t)�m+)p1p

T
1

− 4η

m
((g(t)− y)�m−)

T
(g(t)�m−)p2p

T
2 .

Note that g(t) �m+ + g(t) �m− = g(t). We further denote ρ+ := ‖g(t)�m+‖/
√
m and

ρ− := ‖g(t)�m−‖/
√
m. Then it is not hard to see that ρ2+ + ρ2− = ρ2. And we have

Rg(t) = η2/m‖g(t)�m+‖2p1p
T
1 + η2/m‖g(t)�m−‖2p2p

T
2 − η2/m(y �m+)T (g(t)�m+)p1p

T
1

− η2/m(y �m−)T (g(t)�m−)p2p
T
2 .

Therefore

min{‖p1‖2C2
1 , ‖p2‖2C2

2}η2 +O

(
1√
m

)
≤ ‖Rg(t)‖ ≤ max{‖p1‖2C2

1 , ‖p2‖2C2
2}η2 +O

(
1√
m

)
.
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For RK(t), since the top eigenvalue of K(t)− 4ηI is negative by our assumption, we have

‖RK(t)‖ ≤ −min{‖p1‖2C2
1 , ‖p2‖2C2

2}η‖K(t)− 4ηI‖+O(1/
√
m),

‖RK(t)‖ ≥ −max{‖p1‖2C2
1 , ‖p2‖2C2

2}η‖K(t)− 4ηI‖ −O(1/
√
m).

H PROOF OF THEOREM 2 AND ANALYSIS ON OPTIMIZATION DYNAMICS FOR
MULTIPLE TRAINING EXAMPLES

By Eq. (5), the tangent kernel K at step t is defined as:

Ki,j(t) = 〈∇vgi(t),∇vgj(t)〉+ 〈∇ugi(t),∇ugj(t)〉

=
1

m

m∑
k=1

(
(uk(t))2 + (vk(t))2

)
xixj1{uk(0)xi≥0}1{uk(0)xj≥0}, ∀i, j ∈ [n].

Similar to single example case, the largest eigenvalue of of tangent kernel is bounded from 0:

Proposition 7. For any δ ∈ (0, 1), if m ≥ c′ log(4/δ) where c′ is an absolute con-
stant, with probability at least 1 − δ, M/2 ≤ λmax(K(0)) ≤ 3M/2 where M =

max

{∑n
i,j=1 x

2
ix

2
j1{xi≥0}1{xj≥0}∑n

i=1 x
2
i1{xi≥0}

,
∑n
i,j=1 x

2
ix

2
j1{xi≤0}1{xj≤0}∑n

i=1 x
2
i1{xi≤0}

}
.

The proof can be found in Appendix E.

For the simplicity of notation, given p,m ∈ Rn, we define the matrices Kp,mand Qp,m:

Kp,m(t) := ((g(t)− y)�m)
T
K(t) ((g(t)− y)�m)ppT ,

Qp,m(t) := ((g(t)− y)�m)
T

(g(t)�m)ppT

It is not hard to see that for all t, Kp,m and Qp,m are rank-1 matrices. Specially, p is the only
eigenvector of Kp,m and Qp,m.

With the above notations, we can write the update equations for g(t)− y and K(t) during gradient
descent with learning rate η:

Dynamics equations.

g(t+ 1)− y =

I − ηK(t) +
η2

m

(
Qp1,m+(t) +Qp2,m−(t)

)
︸ ︷︷ ︸

Rg(t)

 (g(t)− y), (14)

K(t+ 1) = K(t) +
η2

m

(
Kp1,m+(t) +Kp2,m−(t)

)
− 4η

m

(
Qp1,m+(t) +Qp2,m−(t)

)
︸ ︷︷ ︸

RK(t)

, (15)

where m+,m− ∈ Rn are mask vectors:

m+,i = 1{i∈S+}, m−,i = 1{i∈S−}.

Now we are ready to discuss different three optimization dynamics for multiple training examples
case, similar to single training example case in the following.

Monotonic convergence: sub-critical learning rates (η < 2/λ1(0)). We use the key observation
that when ‖g(t)‖ is small, i.e., o(

√
m), and ‖K(t)‖ is bounded, then ‖Rg(t)‖ and ‖RK(t)‖ are of
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the order o(1) (see a formal statement Proposition 5 in Appendix G). Then the dynamics equations
approximately reduce to the ones of linear dynamics for multiple training examples

g(t+ 1)− y = (I − ηK(t) + o(1)) (g(t)− y),

K(t+ 1) = K(t) + o(1).

At initialization, ‖g(0)‖ = O(1) with high probability over random initialization. By Proposition 5,
when ‖g(t)‖ = o(

√
m), the optimization follows linear dynamics. By the choice of the learning

rate, we will have for all t ≥ 0, ‖I − ηK(t)‖ < 2, hence ‖g(t) − y‖ decreases exponentially.
The cumulative change on the norm of tangent kernel is o(1) since ‖RK(t)‖ = o(1) and the loss
decreases exponentially hence

∑
‖RK(t)‖ = o(1) · logO(1) = o(1).

Catapult convergence: super-critical learning rates (2/λ1(0) < η < min{2/λ2(0), 4/λ1(0)}).

Restate Theorem 2: Consider training a NQM Eq. (10) with squared loss on multiple training ex-
amples by gradient descent. Under Assumption 1, if the learning rate is super-critical i.e., 2/λ1(0) <
η < min{2/λ2(0), 4/λ1(0)}, then there exist T1, T2, T3, T4 such that 0 < T1 < T2 < T3 < T4 and
the training dynamics exhibits:

(i) Increasing phase: t ∈ [0, T1]. In this phase, L(t) = o(m). The loss grows exponentially;
both eigenvalues are nearly constant i.e., |λk(t)− λk(0)| = o(1) for k = 1, 2.

(ii) Peak phase: t ∈ [T2, T3]. In this phase, L(t) = Θ(m). For the tangent kernel:

(a) If 2/λ2(0) ≤ 4/λ1(0), both eigenvalues decrease significantly, i.e., λ1(t+1)−λ1(t) <
0, λ2(t+ 1)− λ2(t) < 0 and both difference are of the order Θ(1).

(b) If 2/λ2(0) > 4/λ1(0), only λ1(t) decreases significantly.

(iii) Decreasing phase: t ∈ [T4,∞). In this phase, the loss satisfies L(t) = o(m) again and
decreases. Both eigenvalues are nearly constant until convergence: |λk(t)−λk(∞)| = o(1),
for k = 1, 2.

Furthermore, T1 = o(logm), T2 = Θ(logm), T3 − T2 = Θ(1) and T4 = Θ(logm).

Proof of Theorem 2. We assume 2/λ2(0) ≤ 4/λ1(0), since in this scenario, the catapult phase
happens in both directions p1,p2, i.e., g(t) has significant projection in both directions at the peak
of the loss. In fact, as p1 is orthogonal to p2, the training dynamics in two directions are almost
independent to each other due to the special structure of the Hessian. If instead 2/λ2(0) > 4/λ1(0),
the catapult phase mainly happens in the direction p1 since in the direction of p2 the linear dynamics
dominate. In this simpler setting, the analysis will be implied by our following analysis.

(i) Increasing phase. Initially ‖g(t)− y‖ grows exponentially following linear dynamics by Proposi-
tion 5. By the choice of the learning rate, we will have for t in the increasing phase,∣∣pT1 (I − ηK(t))p1

∣∣ /‖p1‖2 = |2− ηλ1(t)| = |2− ηλ1(0) + o(1)| > 1.

And following the same analysis, we have |pT2 (I−ηK(t))p2|/‖p2‖2 > 1 as well. Therefore, ‖g(t)−
y‖ increases in the direction p1 and p2 (If instead 2/λ2(0) > 4/λ1(0), |pT2 (I−ηK(t))p2|/‖p2‖2 <
1 therefore ‖g(t)−y‖ only grows in the direction p1). Note that when both |pT1 (I−ηK(t))p1|/‖p1‖2
and |pT2 (I − ηK(t))p2|/‖p2‖2 are smaller than 1, the loss stops increasing hence enters the peak
phase.

Up to the iteration when ‖g(t)‖ = o(
√
m), the cumulative change of λ1(t) and λ2(t) from initializa-

tion will be o(1) since ‖g(t)‖ increases exponentially. Specifically, for λ1(t)

|λ1(t)− λ1(0)| =
T1∑
t=0

|pT1 RK(t)p1|/‖p1‖2 =

T2∑
t=0

Θ
(
‖g(t)‖2/m

)
= o(1).

The same analysis can be applied to λ2(t) as well which gives |λ2(t)− λ2(0)| = o(1).

Furthermore, it is not hard to see that until the loss grows to the order of Θ(m), the tangent kernel
does not change much hence the loss keeps increasing exponentially.
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(ii) Peak phase. We will use the key observation that when ‖g(t)‖ is large, i.e., of the order
Θ(
√
m), ‖RK(t)‖ and ‖Rg(t)‖ will be of the order Θ(1) (See the formal statement Proposition 6 in

Appendix G), which can lead to the decrease of the loss.

When ‖g(t)‖ increases to the order of Θ(
√
m), since ‖g(t)‖ only grows in direction p1 and p2, we

can see that g(t) is mostly aligned with p1 and p2, i.e., g(t)Tp1/‖p1‖+ g(t)Tp2/‖p2‖ ≈ ‖g(t)‖.
Here by our assumption ‖y‖ = O(1) which is small compared to the scale of ‖g(t)‖ hence we can
omit it. Since η is initially chosen to be in the interval (2/λ1(0), 4/λ1(0)) and λ1(t) = λ1(0) + o(1)
when ‖g(t)‖ = o(

√
m), we in general have λ1(t) < 4/η at the begining of the peak phase. Therefore,

by Proposition 6, the tangent kernel decreases significantly in direction p1 i.e., λ1(t) decreases.
Specifically, we have

pT1K(t+ 1)p1 = pT1K(t)p1 + pT1 RK(t)p1 < pT1K(t)p1,

where |pT1 RK(t)p1| = Θ(1) and pT1 RK(t)p1 < 0. The same analysis works for the direction p2

then we have pT2K(t+ 1)p2 < pT2K(t)p2, i.e., λ2(t+ 1) < λ2(t).

Similarly, as ‖g(t)‖ increases, ‖Rg(t)‖ increases as well by Proposition 6. Therefore, the factor
I − ηK(t) +Rg(t) on g(t)− y decreases which slows down the increase of the loss.

In general, the loss grows exponentially prior to the peak phase hence T2 = Θ(logm). And the peak
phase only lasts Θ(1) steps during training, i.e., |T3 − T2| = Θ(1), since the decrease of λ1(t) and
λ2(t) is Θ(1) at each step.

(iii) Decreasing phase. With the tangent kernel K(t) decreasing and ‖g(t)− y‖ increasing in the
direction p1 and p2, the factor I − ηK(t) +Rg(t) will ultimately smaller than 1 in both directions,
which makes the peak phase ends since ‖g(t)− y‖ starts to decrease. Again, due to the large scale
of ‖g(t)‖, i.e. Θ(

√
m), the tangent kernel still decreases significantly.

Similar to the single training example case, the decrease of λ1(t) and λ2(t) stops when ‖g(t)‖
decreases to the order o(

√
m), as ‖RK(t)‖ = o(1). In general we have ‖I − ηK(t)‖ smaller than

1 in both directions. Hence by Proposition 5, the training dynamics become linear that the loss
decreases monotonically and the tangent kernel is nearly constant until convergence.

Divergence: (η > ηmax = 4/λ1(0)). Similar to the increasing phase in the catapult convergence,
initially ‖g(t)− y‖ increases in direction p1 and p2 since linear dynamics dominate and the learning
rate is chosen to be larger than ηcrit. Also, we approximately have η > 4/λ1(t) at the end of the
increasing phase, by a similar analysis for the catapult convergence. We consider the evolution of
K(t) in the direction p1. Note that when ‖g(t)‖ increases to the order of Θ(

√
m), g(t)�m+ will

be aligned with p1, hence with simple calculation, we approximately have

pT1 RK(t)p1 ≈
‖g(t)‖2‖p1‖2

m
η(λ1(t)− 4η) > 0.

Therefore, λ1(t) increases since pT1K(t + 1)p1 = pT1K(t)p1 + pT1 RK(t)p1 > pT1K(t)p1. As
a result, ‖I − ηK(t) + Rg(t)‖ becomes even larger which makes ‖g(t) − y‖ grows faster, and
ultimately leads to divergence of the optimization.

I SPECIAL CASE OF QUADRATIC MODELS WHEN φ(x) = 0

In this section we will show under some special settings, the catapult phase phenomenon also happens
and how two layer linear neural networks fit in our quadratic model.

We consider one training example (x, y) with label y = 0 and assume the initial tangent kernel
λ(0) = Ω(1). Letting the feature vector φ(x) = 0, the quadratic model Eq.(3) becomes:

g(w) =
1

2
γwTΣ(x)w.

For this quadratic model, we have the following proposition:
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Proposition 8. With learning rate 2
λ(0) < η < 4

λ(0) , if Σ(x)2 = ‖x‖2 · I , g(w) exhibits catapult
phase.

Proof. With simple computation, we get

g(t+ 1) =
(
1− ηλ(t) + γη2‖x‖2(g(t))2

)
g(t),

λ(t+ 1) = λ(t) + γ‖x‖2(g(t))2(ηλ(t)− 4).

We note that the evolution of g and λ is almost the same with Eq. (11) and Eq. (12) if we regard
γ = 1/m. Hence we can apply the same analysis to show the catapult phase phenomenon.

It is worth pointing out that the two-layer linear neural network with input x ∈ Rd analyzed in
Lewkowycz et al. (2020) that

f(U,v;x) =
1√
m
vTUx,

where v ∈ Rm,U ∈ Rm×d is a special case of our model with w =
[
Vec(U)T ,vT

]T
, γ = 1/

√
m

and

Σ =

(
0 Im ⊗ x

Im ⊗ xT 0

)
∈ Rmd+m.

J EXPERIMENTAL SETTINGS AND ADDITIONAL RESULTS

J.1 VERIFICATION OF NON-LINEAR TRAINING DYNAMICS OF NQMS, I.E., FIGURE 3

We train the NQM which approximates the two-layer fully-connected neural network with ReLU
activation function on 128 data points where each input is drawn i.i.d. from N (−2, 1) if the label is
−1 or N (2, 1) if the label is 1. The network width is 5, 000.

J.2 EXPERIMENTS FOR TRAINING DYNAMICS OF WIDE NEURAL NETWORKS WITH MULTIPLE
EXAMPLES.

We train a two-layer fully-connected neural network with ReLU activation function on 128 data
points where each input is drawn i.i.d. from N (−2, 1) if the label is −1 or N (2, 1) if the label is 1.
The network width is 5, 000. See the results in Figure 5.

(a) Training loss (b) Largest eigenvalue of tangent
kernel

(c) Second largest eigenvalue of
tangent kernel

Figure 5: Training dynamics of wide neural networks for multiple examples case with different
learning rates. Compared to the training dynamics of NQMs, i.e., Figure 3, the behaviour of of top
eigenvalues is almost the same with different learning rates: when η < 0.37, the kernel is nearly
constant; when 0.37 < η < 0.39, only λ1(t) decreases; when 0.39 < η < ηmax, both λ1(t) and
λ2(t) decreases. See the experiment setting in Appendix J.2.
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J.3 TRAINING DYNAMICS OF GENERAL QUADRATIC MODELS AND NEURAL NETWORKS.

As discussed at the end of Section 3, a more general quadratic model can exhibit the catapult phase
phenomenon. Specifically, we consider a general quadratic model:

g(w;x) = wTφ(x) +
1

2
γwTΣ(x)w.

We will train the general quadratic model with different learning rates, and different γ respectively,
to see how the catapult phase phenomenon depends on these two factors. For comparison, we also
implement the experiments for neural networks. See the experiment setting in the following:

General quadratic models. We set the dimension of the input d = 100. We let the feature vector
φ(x) = x/‖x‖ where xi ∼ N (0, 1) i.i.d. for each i ∈ [d]. We let Σ be a diagonal matrix with
Σi,i ∈ {−1, 1} randomly and independently. The weight parameters w are initialized by N (0, Id).
Unless stated otherwise, γ = 10−3, and the learning rate is set to be 2.8.

Neural networks. We train a two-layer fully-connected neural networks with ReLU activation
function on 20 data points of CIFAR-2. Unless stated otherwise, the network width is 104, and the
learning rate is set to be 2.8.

See the results in Figure 6.

(A)

(B)
(a) Loss (log scaled) vs.

γ/width
(b) Tangent kernel norm

vs. γ/width
(c) Loss vs. learning rate (d) Tangent kernel norm

vs. learning rate

Figure 6: General quadratic models have similar training dynamics with neural networks when
trained with super-critical learning rates. Panel (A): experiments on general quadratic models.
Smaller γ or larger learning rates lead to larger training loss at the peak. Larger learning rates make
tangent kernel decrease more. Panel (B): experiments on two-layer neural networks. Larger width
(corresponding to smaller γ) and larger learning rates have similar effect on the training loss at the
peak and decrease of tangent kernel norm with quadratic models. Note that width or γ seems to have
no effect on the tangent kernel norm at convergence.

J.4 TEST PERFORMANCE OF f , flin AND fquad, I.E., FIGURE 2(B) AND FIGURE 4

For the architectures of two-layer fully connected neural network and two-layer convolutional neural
network, we set the width to be 5, 000 and 1, 000 respectively. Specific to Figure 2(b), we use the
architecture of a two-layer fully connected neural network.

Due to the large number of parameters in NQMs, we choose a small subset of all the datasets. We use
the first class (airplanes) and third class (birds) of CIFAR-10, which we call CIFAR-2, and select 256
data points out of it as the training set. We use the number 0 and 2 of SVHN, and select 256 data
points as the training set. We select 128, 256, 128 data points out of MNIST, FSDD and AG NEWS
dataset respectively as the training sets. The size of testing set is 2, 000 for all. When implementing
SGD, we choose batch size to be 32.

For each setting, we report the average result of 5 independent runs.

27



Under review as a conference paper at ICLR 2023

J.5 TEST PERFORMANCE OF f , flin AND fquad IN TERMS OF ACCURACY

In this section, we report the best test accuracy for f , flin and fquad corresponding to the best test
loss in Figure 4. We use the same setting as in Appendix J.4.

Figure 7: Best test accuracy plotted against different learning rates for fquad, f , and flin. Left
panel: 2-layer FC on MNIST trained with GD. Right panel: 2-layer FC on AG NEWS trained with
GD.

Figure 8: Best test accuracy plotted against different learning rates for fquad, f , and flin. Left
panel: 2-layer FC on CIFAR-2 trained with SGD. Right panel: 2-layer CNN on SVHN trained with
GD.

Figure 9: Best test accuracy plotted against different learning rates for fquad, f , and flin. Left
panel: 2-layer FC on FSDD trained with GD. Right panel: 2-layer CNN on CIFAR-2 trained with
GD.
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J.6 TEST PERFORMANCE OF f , flin AND fquad WITH ARCHITECTURE OF 3-LAYER FC

In this section, we extend our results for shallow neural networks discussed in Section 4 to 3-layer
fully connected neural networks. In the same way, we compare the test performance of three models,
f , flin and fquad upon varying learning rate. We observe the same phenomenon for 3-layer ReLU
activated FC with shallow neural networks. See Figure 10 and 11.

We use the first class (airplanes) and third class (birds) of CIFAR-10, which we call CIFAR-2, and
select 100 data points out of it as the training set. We use the number 0 and 2 of SVHN, and select
100 data points as the training set. We select 100 data points out of AG NEWS dataset as the training
set. For the speech data set FSDD, we select 100 data points in class 1 and 3 as the training set. The
size of testing set is 500 for all.

For each setting, we report the average result of 5 independent runs.

Figure 10: Best test accuracy plotted against different learning rates for fquad, f , and flin. Left
panel: 3-layer FC on CIFAR-2 trained with GD. Right panel: 3-layer FC on SVHN-2 trained with
GD.

Figure 11: Best test accuracy plotted against different learning rates for fquad, f , and flin. Left
panel: 3-layer FC on FSDD-2 trained with GD. Right panel: 3-layer FC on AG NEWS trained with
GD.

J.7 TEST PERFORMANCE WITH TANH AND SWISH ACTIVATION FUNCTIONS

We replace ReLU by Tanh and Swish activation functions to train the models with the same setting as
Figure 4. We observe the same phenomenon as we describe in Section 4.
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(a) Swish activation function (b) Tanh activation function

Figure 12: Best test loss plotted against different learning rates for fquad, f , and flin. We choose
2-layer FC as the architecture and train the models on AG NEWS with GD.

(a) Swish activation function (b) Tanh activation function

Figure 13: Best test loss plotted against different learning rates for fquad, f , and flin. We choose
2-layer FC as the architecture and train the models on FSDD with GD.

(a) Swish activation function (b) Tanh activation function

Figure 14: Best test loss plotted against different learning rates for fquad, f , and flin. We choose
2-layer CNN as the architecture and train the models on CIFAR-2 with GD.
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(a) Swish activation function (b) Tanh activation function

Figure 15: Best test loss plotted against different learning rates for fquad, f , and flin. We choose
2-layer CNN as the architecture and train the models on SVHN with GD.
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