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Abstract

Neural Cellular Automata (NCAs) are a promising new approach to model self-organizing
processes, with potential applications in life science. However, their deterministic nature limits
their ability to capture the stochasticity of real-world biological and physical systems. We
propose the Mixture of Neural Cellular Automata (MNCA), a novel framework incorporating
the idea of mixture models into the NCA paradigm. By combining probabilistic rule
assignments with intrinsic noise, MNCAs can model diverse local behaviors and reproduce
the stochastic dynamics observed in biological processes.
We evaluate the effectiveness of MNCAs in three key domains: (1) synthetic simulations of
tissue growth and differentiation, (2) image morphogenesis robustness, and (3) microscopy
image segmentation. Results show that MNCAs achieve superior robustness to perturbations,
better recapitulate real biological growth patterns, and provide interpretable rule segmenta-
tion. These findings position MNCAs as a promising tool for modeling stochastic dynamical
systems and studying self-growth processes.

1 Introduction

Biological systems are governed by emergent properties of spatial interactions between molecules and cells,
many of which have a stochastic component. Traditional modeling approaches often struggle to capture the
intricate patterns emerging from these processes as they lack the necessary expressive power and scalability.
Cellular Automata (CAs) have emerged decades ago as a powerful tool for simulating self-organized growth
emerging from simple local rules that nonetheless produce complex global behaviors. Classical CAs are hard
to parameterize and scale poorly. Neural Cellular Automata instead combine machine learning with classical
CAs to learn the biological rules that give rise to the complex patterns we observe in tissues. However,
standard NCAs are inherently deterministic, limiting their applicability to real-world biological systems.

Stochasticity plays a crucial role in many biological processes, such as gene expression, cellular differentiation,
and carcinogenesis. Cells with identical genomes can exhibit diverse behaviors due to random fluctuations in
the concentration of signaling and effector molecules. Capturing this stochastic nature is essential for accurate
modeling and understanding of these phenomena. At the same time, biological rules can be arbitrarily
complicated, and extracting interpretable information can be challenging.

To address these limitations, we propose the Mixture of Neural Cellular Automata (MNCA), a novel framework
integrating stochasticity and clustering within the NCA paradigm. By combining mixture models with NCAs,
MNCA effectively captures diverse local behaviors and inherent biological randomness, while simultaneously
offering interpretable rule assignments that facilitate post-hoc analysis of the system’s dynamics.

Our contributions are as follows:

• Introduction of MNCAs: We develop the MNCA framework that extends NCAs by incorporating
stochasticity and clustering, allowing for the simulation of a more diverse set of local behaviors.

• Robustness Analysis: Through image morphogenesis tasks, we show that MNCAs exhibit enhanced
robustness to image perturbations compared to deterministic NCAs.
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• Emergent Unsupervised Segmentation: We demonstrate that MNCAs can autonomously
segment heterogeneous cells in high-content screening images by capturing morphological features,
and can steer phenotype expression through constrained rule activation.

The rest of the paper is organized as follows: Section 2 reviews the background and related work, Section 3
details the MNCA methodology, Section 4 presents experimental results, and Section 5 concludes the paper.

2 Background

2.1 Spatial Modelling of Biological Systems

Spatial mathematical modeling applied to biology helps understanding biological systems by accounting for
the spatial distribution and interactions of components such as cells, molecules, or organisms. This approach
is essential for capturing emergent phenomena where spatial context influences the macroscopic behavior of
the system.

In biological systems, spatial organization often determines function. For instance, during embryonic
development, spatial gradients of morphogens guide cell differentiation and tissue formation Rogers & Schier
(2011). In self-regenerating tissue such as the intestine, stem cell identity is established through spatial
interactions Beumer & Clevers (2021). Similarly, in cancer biology, the spatial distribution of cells within a
tumor affects growth dynamics and responses to treatment Seferbekova et al. (2023).

Agent-based modeling is a popular choice for modeling spatially organized biological phenomena. Among the
different models available stochastic cellular automata are a simple but effective approach and have been
used to study a wide range of systems such as cancer growth Tari et al. (2022); Lewinsohn et al. (2023);
Sottoriva et al. (2010), biological development Ermentrout & Edelstein-Keshet (1993) and ecological niches
Balzter et al. (1998). Parametrization is usually obtained from experimental studies or using Approximate
Bayesian Computation (ABC) Noble et al. (2022), with some recent advances trying to combine ABC with
Deep Learning Cess & Finley (2023).

2.2 Cellular Automata

Cellular Automata (CA) are discrete computational models that simulate the physical dynamics of complex
systems through simple local interactions. Historically CA where introduced by Von Neumann as a model of
self-reproducing systems Von Neumann et al. (1966)

In a CA, the state of each cell si ∈ S at discrete time t is updated based on a local update rule:

st+1
i = f

(
st

i, {st
j | j ∈ N (i)}

)
, (1)

where N (i) denotes the neighborhood of cell i, and f is a deterministic function defining the update
rule. This simple local interaction can lead to complex global behaviors, making CA suitable for modeling
self-organization and pattern formation in biological systems.

While the update function f in a standard cellular automaton is strictly deterministic, probabilistic rules are
more fitting for capturing the randomness inherent in processes like biological evolution. A stochastic cellular
automaton (SCA) introduces randomness into the update rule:

st+1
i ∼ P

(
f

(
st

i, {st
j | j ∈ N (i)}

))
. (2)

Specifically, each cell’s next state is drawn from a probability distribution P that depends on its current state
and the states of its neighbors.
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2.3 Neural Cellular Automata

Neural Cellular Automata (NCAs) extend traditional CA by replacing the deterministic update function
with a neural network Mordvintsev et al. (2020); Gilpin (2019). The update rule becomes:

st+1
i = st

i + ϕ
(
st

i, {st
j | j ∈ N (i)}; θk

)
, (3)

where ϕ is a neural network parameterized by weights θ. The neural network processes the current state
of the cell and its neighbors to produce an update, which is added to the current state. This formulation
allows the NCA to learn complex behaviors through back-propagation on training data, rather than relying
on hand-crafted rules or poorly scalable evolutionary or sampling algorithms.

In recent years, NCAs have been expanded in several ways: Tesfaldet et al. (2022) introduced attention to the
definition of state update function, Grattarola et al. (2021) extended NCAs to different topological domains
such as graphs, and Menta et al. (2024) implemented NCAs as a latent space process. In the field of dynamical
systems, NCAs have also been explored to approximate some classes of PDEs like Reaction-Diffusion equations
Richardson et al. (2024). An approach that goes towards having more than a single rule is the work of
Hernandez et al. (2021), where the authors learn an Autoencoder that maps an image to the rule that
generates it. Despite their flexibility, the approaches proposed above are deterministic up to a dropout
parameter that allows for asynchronous updates. This determinism practically limits their ability to model
biological systems, where cell-specific and probabilistic behaviors are prevalent Noble et al. (2022).

There has indeed been some research into introducing stochasticity into NCAs, especially in the context
of generative modelling. For instance, Palm et al. (2022) used NCAs as decoders within VAEs; Kalkhof
et al. (2025), on the other hand, employed NCAs as denoising networks within a denoising diffusion process.
Zhang et al. (2024) implemented a stochastic NCA as a hierarchical process, where a coarse-grained latent
representation of the input informs the reconstruction. Zhang et al. (2021) modified the NCA to output the
probability of a Bernoulli distribution.

In this work, we will mainly focus on formulations that preserve the original assumptions of cellular
automata. In the context of the systems we are studying—morphogenesis, emergent group dynamics, and
development—the locality assumption is essential for generating physically and biologically plausible models.
Accordingly, we compare only with models like the GCA Zhang et al. (2021), in particular, in this work, we
will use a GCA that learns the mean and variance of a Gaussian distribution, as it better aligns with our
experimental setup.

3 Mixture of Neural Cellular Automata

The Mixture of Neural Cellular Automata (MNCA) is a framework that extends traditional Cellular Automata
(CA) by incorporating multiple sets of local update rules within a single grid-based system. In MNCA, each
cell can be governed by one of several distinct automata, allowing for the modeling of heterogeneous systems
where different regions exhibit unique local interactions.

We will present and study two flavors of MCAs in this work:

• A Mixture of Neural Cellular Automata: where the update function for each sample in a grid
is a mixture of a pool of different NCAs.

• A Mixture of Cellular Automata with intrinsic noise: where on top of the mixture we also
allow the pool of NCAs to exhibit additional inter-cluster stochastic behaviors.

3.1 Mixture of Neural Cellular Automata

Consider a grid of N cells, where each cell i has a state st
i ∈ S at time t and S is the set of possible states.

We define a set of K distinct cellular automata, each characterized by its own neural-network parametrized
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Figure 1: Architecture of the Mixture of Neural Cellular Automata (MNCA) model with noise
injection. The model integrates signals from a central cell and its neighbours using spatial filters. The
central cell’s features are processed by a Multi-Layer Perceptron (MLP) that implements a Rule Selector. The
Rule Selector then determines probabilities for probabilistic Neural Cellular Automata (NCA) selection. The
selected NCA is fed with the feature map, and stochasticity is injected from a standard normal distribution.

transition function ϕk : S|N (i)|+1 → S, with parameters θk and where N (i) denotes the neighborhood of cell
i.

The state update for cell i at time t + 1 is given by:

z ∼ Cat(π(st
i, η)) (4a)

st+1
i = st

i +
K∏

k=1
ϕk

(
st

i, {st
j | j ∈ N (i)}; θk

)zk (4b)

where zi ∈ {1, 2, . . . , K} is the automaton assigned to cell i, z is a random variable distributed according to a
Categorical distribution. The Categorical is parametrized by a neural network with parameters η and controls
the rule assignment probability for each sample in the grid. To back-propagate through the Categorical
distribution at training time, we use the Gumbel-Softmax trick Jang et al. (2016).

3.2 Mixture of Neural Cellular Automata: intrinsic noise

While the formulation above allows for different groups of local rules, we know that even well-defined biological
entities are generally not constrained to behave always in a deterministic way given a particular environment.
To allow more flexibility in our model we expand to incorporate a Gaussian latent vector and allow for
inter-cluster stochastic updates.

z ∼ Cat(π(st
i, η)) (5a)

xk ∼ Norm(0, 1) (5b)
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st+1
i = st

i +
K∏

k=1
ϕk

(
st

i, {st
j | j ∈ N (i)}, xk; θk

)zk (5c)

Here, the only difference is the injected Gaussian noise xk, which the network can use as an internal source
of randomness to potentially implement intra-rule stochastic updates (see Appendix B for a more detailed
analysis of the rationale behind this modelling choice)

4 Experiments

Our main motivation for studying Mixtures of Neural Cellular Automata is to explore the dynamics of cellular
differentiation, carcinogenesis, and tissue morphogenesis. To show the potential of our approach, we designed
a synthetic experimental setup to investigate the behavior of stem-driven growth and differentiation within a
tissue.

The experiment simulates a generic epithelial tissue, incorporating five different cell types and spatial
interactions among them mimicking realistic growth scenarios.

We then we studied the behavior of our model in the more classical task of image morphogenesis. Here, we
show how a stochastic mixture of automata increases the stability and robustness of the pattern learned and
provides an interpretable image segmentation.

Finally, we applied MNCAs to synthetic microscopy images, where they autonomously segmented cells by
morphological and proteomic features, and enabled phenotype steering through constrained rule activation.

4.1 Model Architectures and Parameters

We maintained consistent neural network architectures across our three experiments (image morphogenesis,
Visium spatial transcriptomics, and synthetic biological simulations). All models were trained using the
Adam optimizer Kingma (2014) and with a Multi-Step LR Scheduling, where every time the training reaches
a set of epoch milestones, the learning rate gets multiplied by a scaling factor gamma.

To keep the model simple and all rule functions ϕk follow a standard architecture with two 1 by 1 convolutional
layers:

h = ReLU(Conv1×1Cat(st
i,∇xst

i,∇yst
i)) (6)

st+1
i = st

i + Conv1×1(Cat(h, xk)) (7)

where st
i represents the state at time t, ∇x and ∇y are Sobel filters for spatial derivatives, xk is the gaussian

noise, and Cat denotes channel-wise concatenation. This is the implementation of Equation 5c, in case of 4b
and 3 the implementation is the same but with Conv1×1(Cat(h)) instead of Conv1×1(Cat(h, xk)), the latter
having just one of those networks.

Depending on the problem, we use the residual update in 7 or omit the st
i sum. The network π is implemented

by a network of the same type with the only difference that the input in this case is just the current cell
value xt and not Cat(xt,∇xxt,∇yxt). In all experiments, we used the Mean Squared Error (MSE) against
the target as our loss.

We report the parameters used in the experiment in Table 1. Other extra parameters used for the experiment
in Section 4.3 are reported in Appendix D, together with an analysis of how the number of rules impacts
performance.

4.2 Synthetic Data of Biological Development

For the configuration showed in Figure 2A, we generated a dataset of 200 realizations of simulated growth on a
35×35 grids. Each square of the grid represents a single-cell. Each realization begins with a centrally clustered
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Table 1: Model configurations across experiments. Milestones and Gamma are the epoch and the
multiplicative factor for the learning rate schedule, k stands for 103

Parameter Tissue Microscopy Emoji
Channels 6 24 16
Hidden dim. 128 128 128
Rules 5 5 6
Learning rate 1× 10−3 1× 10−3 1× 10−3

Epochs 800 8000 8000
Residual No Yes Yes
Dropout 0 0.2 0.1
Milestones [500] [5k,6k,7k] [4k,6k,7k]
Gamma 0.1 0.2 0.1
Filters ∇x,∇y ∇x,∇y ∇x,∇y

Figure 2: Visualization of MNCA’s stochastic framework applied to synthetic tissue growth. The
figure illustrates the development of cellular patterns over time, starting from an initial configuration of stem
cells and evolving into differentiated tissue structures. In panel A there is a brief description of the tissue
model used for the simulation. In panel B we show an example of 8 realizations of the process. In the first
row we have the original final tissue, in the second row the deterministic NCA, in the third the GCA and in
the last two rows the MNCA and the MNCA with intrinsic noise (O= Original, MNCA+N= MNCA with
Noise). In Panel C there is an example of full tissue evolution with an MNCA starting from a random initial
configuration and evolving the model for 35 steps
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Table 2: Comparison of NCA variants. MNCA w/ N stands for MNCA with Noise. KL-div, Size-W, and
Border-W are respectively the KL divergence for the cell types probability and the Wasserstein distance of
the cell composition, tissue size, and border size in the generated and original dataset. For a formal definition
of the metrics see Appendix C

Model KL-div Size-W Border-W

NCA 2.057 ±0.000 0.547 ±0.000 0.430 ±0.000
GNCA 0.112 ±0.003 0.477 ±0.002 0.339 ±0.005
MNCA 0.018 ±0.001 0.061 ±0.008 0.184 ±0.010
MNCA w/ internal noise 0.028 ±0.001 0.104 ±0.012 0.054 ±0.013

group of [5, 15] stem cells, evolved for 35 time steps. Stem cells have a high turnover rate and can produce
either new stem cells or intermediate cells. We have two types of intermediate cells that can de-differentiate
with increasingly lower probability. Eventually, those cells can divide into two types of differentiated cells: the
first type is the default choice, while the second one is activated by positive interaction between cells of the
first type and intermediate cells 1. Further details on the parameter settings and the simulation procedure
are provided in Appendix A.

We trained the three cellular automata introduced in Section 4.1 to reconstruct the system’s state at each
time step (for a formal definition of the training algorithm, see Appendix D). To provide an image-like tensor
to the model we one-hot-encoded each cell-type into a single channel and gave that as input to the automata.

We then tested the consistency of reconstructed data with the training, an example of reconstruction can be
found in Figure 2 B-C. Notably, the MNCAs consistently achieved higher cell-type distribution similarity than
their similar-size deterministic counterpart and generated realistic tissue samples. It is particularly notable
how MNCAs reduced the KL divergence of the cell type distribution of more than one order of magnitude
(2.057 for the NCA against 0.018 MNCA, Table 2 ).

To quantitatively evaluate model performance (Table 2), we adopted a set of complementary metrics that
capture both the statistical and spatial fidelity of the generated tissues (see Appendix C for formal definitions):

• KL Divergence: Measures the divergence between the cell type distribution in the real and generated
data. This reflects how well the model captures the overall composition of different cell types across
samples.

• Wasserstein Distance on Tissue Size: Compares the distribution of total occupied grid cells
(i.e., tissue size) between real and generated tissues using the 1-Wasserstein distance.

• Wasserstein Distance on Tissue Borders: Evaluates morphological accuracy by applying a
discrete Laplacian filter to the binary occupancy masks, and measuring the Wasserstein distance
between the resulting border complexity scores.

These metrics jointly provide a robust quantitative framework for assessing whether the learned dynamics
generate biologically realistic growth patterns that match the reference data in both cell composition and
spatial structure.

Moreover, the MNCA could generate synthetic data that closely resembles real samples in terms of tissue size
and spatial characteristics. At the same time, as also, quite evident from Figure 2, the deterministic NCA
cannot reliably generate differentiated cells of type 2.

When then looking at the rules assignment for the MNCAs, by plotting the rule assignment probability for a
given state in time, we find that the model correctly gets that approximately each cell type has a different
rule. This has also been our main rationale for setting the number of rules to 5. Interestingly, the model

1In particular the rate of transition from INTERMEDIATE 2 to DIFFERENTIATED 2 is intrinsically zero. There is, however,
a positive contribution fixed contribution to this rate for each DIFFERENTIATED 1 cell type in the neighborhood.
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assigns a specific rule to empty space, while grouping stem and differentiated type 2 cells under a shared
rule. Another rule broadly captures non-stem cells, suggesting the model distinguishes stem from non-stem
behavior despite overlaps.

These results suggest that the MNCAs effectively learned the core of the underlying generative dynamics of
the systems, being able to reproduce spatial patterns that closely resemble the original data distribution.

STEM INTERMEDIATE_1 INTERMEDIATE_2 DIFFERENTIATED_1 DIFFERENTIATED_2
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Figure 3: Visualization of rule assignments in MNCA simulations On the first row, we split the tissue
by cell type. On the second row, we have the rules assignment probability for each rule. Different rules are
approximately assigned to distinct cell types.

In contrast to the popular ABC-based ABM framework described in Section 2.1, MNCAs achieve comparable
simulation quality with significantly less supervision (see Appendix E for a more comprehensive discussion).
While ABC methods require substantial prior knowledge and meticulous tuning to yield satisfactory results,
our black-box approach needs only a tensor-based representation of the system and does not depend on direct
access to the simulation algorithm.

4.3 Image Morphogenesis

To assess the usefulness of our mixture-based neural cellular automata (NCA) model in a more standard
computer vision context, we conducted a series of morphogenesis experiments using a subset of the Twitter
emoji dataset. This has been historically the first task for which NCAs have been developed. We first train
the NCA to reproduce the target image from a fixed random pixel as in Mordvintsev et al. (2020) and then
perturb the image (we report the training loop in Appendix D).

We evaluated the model’s ability to reconstruct the original image under three distinct perturbation scenarios:

1. Chunk Removal: A contiguous rectangular block of NxN pixels is removed in a random position.
We tested 2 sizes of respectively 5x5px and 10x10px. To avoid empty areas we constrain the center
of the box to be on the image.

2. Gaussian Noise Addition: Additive Gaussian noise was introduced at random on a percentage ρ
of pixels. We testes ρ = [0.1, 0.25]

3. Sparse Pixel Removal: Random individual pixels are randomly removed, creating scattered white
areas. We test respectively 100 and 500 px.

Mixture-based NCA vastly outperforms the single-rule baseline across all perturbation scenarios. We report
the results in Table 3 and plot some examples for each perturbation in Figure 4. It is interesting to note
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Figure 4: MNCA in image morphogenesis. The top half of the plot shows an example of the 3 perturbation
types we studied in the paper. The columns are respectively, the original image, the perturbed image, the
image after 50 steps of recovery, and the final recovered image after 100 steps. Each row shows a separate
model. The bottom half of the plot shows the MSE error over time. We see how the NCA can diverge, while
the MNCAs, after an initial peak in the error, go back to the original image. Confidence intervals (95%) were
computed across 50 different perturbations of the same kind. We do not show the GCA as it shows no clear
benefit over the NCA.

how none MNCAs the two different flavors of MNCA, while still outcompeting the deterministic NCA, have
the best performance across all images. On the other end, the GCA seem not to have a major advantage
over the vanilla NCA in terms of robustness. We believe that this could be due to more difficulties in the
convergence of the model in Equation 2. Another observation regards the nature of the perturbation; it looks
like a localized perturbation, like square patch deletion, tends to have lower error, while global noise addition
has a way worse effect.

When we look at the reconstruction error over time, we noted (reported in Figure 4) that the models initially
tend to overshoot and depart a lot from the original image and, after a peak they come back to their original
image attractor.

We believe it is important to note that in Mordvintsev et al. (2020) the authors train an NCA that is resistant
to perturbation by applying the perturbation during training. On the contrary in this experiment, any
tolerance to the perturbation is a purely emergent phenomenon.

We can look again at the rule assignment on the images. Notably, the model seems to be able to segment
relevant parts of the image. In particular in Figure 5 the model uses different rules for the outside white
pixels, for the contours of the emoji, and for some internal details like the eyes.

4.4 Microscopy Images Classification

While Neural Cellular Automata (NCAs) have primarily been used for image and pattern generation, a
seminal study demonstrated their potential for supervised digit classification on the MNIST dataset Randazzo
et al. (2020), addressing whether agents following identical rules can develop a communication protocol to
infer their assigned digit through repeated interactions.

Building on our model’s capacity to segment inputs in an interpretable manner and combine rule mixtures,
we explored its ability to classify and structure objects, this time, however, in a fully unsupervised setting.

We used image set BBBC031v1 Piccinini et al. (2017), available from the Broad Bioimage Benchmark
Collection Ljosa et al. (2012), which contains synthetic high-content screening (HCS) data simulating drug-

9



Under review as submission to TMLR

Original Rule 0 Rule 1 Rule 2 Rule 3 Rule 4 Rule 5

Original Rule 0 Rule 1 Rule 2 Rule 3 Rule 4 Rule 5

Original Rule 0 Rule 1 Rule 2 Rule 3 Rule 4 Rule 5

0.05

0.10

0.05

0.10

0.25
0.50
0.75

0.25
0.50
0.75

0.25
0.50
0.75

0.10

0.20

0.05

0.10

0.01
0.02
0.03

0.25
0.50
0.75

0.25
0.50
0.75

0.25
0.50
0.75

0.10
0.20
0.30

0.00
0.01
0.01

0.00
0.00
0.00

0.25
0.50
0.75

0.25
0.50
0.75

0.25
0.50
0.75

0.00

0.01

Figure 5: Visualization of rule assignments in MNCA on emojis. Different rules are assigned to
distinct parts of the image. In particular, the body of the image, the empty space, and the borders tend to
have specific rules.

induced perturbations of cell shape and protein expression (represented by different colors). We used the
experimental setup from Section 4.3 and initialized the seeds as the centroids of each cell (Figure 6A)

First, we evaluated whether the MNCA could internally differentiate and assign distinct rule sets to different
cell types purely based on local observations and interactions. The resulting rule distributions, visualized in
Figure 6B, revealed that the model naturally grouped cells according to their morphological and proteomic
profiles, effectively segmenting the tissue into interpretable subtypes—without the need for supervision.

The ground truth dataset provides a continuous morphological feature known as the Cell Shape Parameter,
which quantifies the irregularity of each synthetic cell’s contour. As illustrated in Figure 6C, the model’s
inferred rule assignments show a clear correlation with this parameter, indicating that the MNCA captures
intrinsic shape-based features during development.

We report here the main intuition behind this value (see Lehmussola et al. (2007) for a more in depth
discussion). Cells are simulated using a polygonal model, where the coordinates of each vertex are given by:

xi = r [U(−α, α) + cos (θi + U(−β, β))]
yi = r [U(−α, α) + sin (θi + U(−β, β))]

(8)

Here, r is the base radius, θi is the angular position of the i-th vertex (evenly spaced in [0, 2π]), and U(a, b)
denotes a uniform random variable in the interval [a, b]. The parameters α and β respectively control the
radial and angular distortions of the cell shape. The Cell Shape Parameter is the value of α and β and
correlates with the degree of morphological deformation: higher values produce more irregular, jagged shapes,
while lower values yield smoother, rounded contours.

Finally, we explored whether the MNCA could be directed toward specific phenotypes by constraining it
to use only specific class-defining rule during inference. This manipulation effectively steered the entire
cellular population toward different target phenotypes, showcasing the model’s potential not only for passive
classification but also for active control over emergent morphologies (Figure 7).

These findings indicate that MNCAs are capable of capturing structural differences in spatially organized
cell populations, suggesting potential use for modeling simple biological processes through local rule-based
dynamics.
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Figure 6: MNCA fitting to cell microscopy images. A: Morphogenesis process initialized from fixed
seeds, with one seed placed at each cell centroid in the input image. B: Probabilistic rule assignments for each
cell, as inferred by the model. C: Correlation analysis between rule assignments and a cell shape parameter,
where higher values indicate more irregular morphologies.

Figure 7: Steering the evolution of the system by changing the rule probabilities. A: Morphogenesis
after reducing 100 times the probability of rule 0. The new image shows smaller and rounder cells. B:
Morphogenesis after doubling the probability of the rule 5. Most of the irregular cells are not able to fully
develop and disappear.
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Table 3: Performance Across Different Perturbations on a set of 6 emojis.Here the metric is the
Mean Squared Error (MSE) after 100 steps of recovery and on a batch of 50 different perturbations of each
kind

Model Del 5x5px Del 10x10px Noise 10% Noise 25% Removal 100px Removal 500px

NCA 0.024 ±0.008 0.027 ±0.009 0.049 ±0.007 0.052 ±0.010 0.026 ±0.006 0.032 ±0.011
GCA 0.017 ±0.005 0.019 ±0.006 0.022 ±0.005 0.025 ±0.005 0.016 ±0.004 0.021 ±0.004
MNCA 0.007 ±0.003 0.008 ±0.003 0.071 ±0.002 0.079 ±0.004 0.007 ±0.003 0.010 ±0.003
MNCA w/ Noise 0.008 ±0.002 0.010 ±0.003 0.009 ±0.004 0.013 ±0.006 0.009 ±0.002 0.011 ±0.003

NCA 0.025 ±0.005 0.027 ±0.006 0.025 ±0.007 0.030 ±0.006 0.025 ±0.005 0.030 ±0.006
GCA 0.018 ±0.007 0.024 ±0.010 0.022 ±0.007 0.024 ±0.006 0.019 ±0.007 0.031 ±0.008
MNCA 0.016 ±0.008 0.026 ±0.009 0.013 ±0.006 0.018 ±0.005 0.014 ±0.005 0.021 ±0.005
MNCA w/ Noise 0.007 ±0.003 0.016 ±0.006 0.008 ±0.002 0.026 ±0.005 0.008 ±0.003 0.024 ±0.005

NCA 0.018 ±0.004 0.021 ±0.006 0.022 ±0.006 0.026 ±0.007 0.019 ±0.006 0.025 ±0.007
GCA 0.018 ±0.005 0.023 ±0.008 0.019 ±0.005 0.025 ±0.004 0.020 ±0.006 0.028 ±0.008
MNCA 0.009 ±0.002 0.017 ±0.005 0.011 ±0.002 0.012 ±0.003 0.010 ±0.002 0.015 ±0.003
MNCA w/ Noise 0.009 ±0.003 0.015 ±0.004 0.008 ±0.002 0.016 ±0.003 0.009 ±0.003 0.013 ±0.003

NCA 0.014 ±0.003 0.018 ±0.005 0.014 ±0.003 0.017 ±0.004 0.014 ±0.004 0.022 ±0.004
GCA 0.016 ±0.004 0.021 ±0.006 0.021 ±0.005 0.024 ±0.006 0.018 ±0.005 0.023 ±0.006
MNCA 0.009 ±0.004 0.021 ±0.008 0.009 ±0.003 0.013 ±0.005 0.008 ±0.003 0.019 ±0.007
MNCA w/ Noise 0.006 ±0.002 0.015 ±0.006 0.005 ±0.001 0.009 ±0.002 0.007 ±0.002 0.018 ±0.003

NCA 0.035 ±0.018 0.056 ±0.026 0.073 ±0.013 0.101 ±0.021 0.032 ±0.018 0.097 ±0.028
GCA 0.012 ±0.006 0.026 ±0.014 0.044 ±0.007 0.046 ±0.015 0.011 ±0.004 0.035 ±0.008
MNCA 0.002 ±0.001 0.006 ±0.004 0.003 ±0.001 0.008 ±0.005 0.003 ±0.001 0.006 ±0.001
MNCA w/ Noise 0.006 ±0.002 0.011 ±0.004 0.005 ±0.002 0.009 ±0.002 0.006 ±0.002 0.010 ±0.003

NCA 0.021 ±0.008 0.030 ±0.016 0.080 ±0.010 0.079 ±0.028 0.023 ±0.006 0.032 ±0.009
GCA 0.023 ±0.009 0.032 ±0.014 0.079 ±0.010 0.083 ±0.013 0.026 ±0.007 0.038 ±0.012
MNCA 0.009 ±0.002 0.013 ±0.005 0.009 ±0.002 0.012 ±0.002 0.009 ±0.002 0.012 ±0.003
MNCA w/ Noise 0.022 ±0.008 0.029 ±0.012 0.025 ±0.009 0.039 ±0.012 0.023 ±0.010 0.030 ±0.012

5 Conclusion

In this work, we extended the concept of Neural Cellular Automata (NCA) by introducing stochasticity
through a mixture of rules, hence proposing the Mixture of Neural Cellular Automata (MNCA).

Using a combination of synthetic experiments and analyses of real spatial transcriptomic data, we demonstrated
that MNCAs can effectively simulate complex biological systems. These results highlight the potential of
leveraging high-throughput spatial data or computationally expensive simulation pipelines to train cellular
automata models, even in scenarios where the parameter space is highly complex or the underlying rules are
uncertain: conditions that typically challenge standard SCA learning methods.

Moreover, we showed that MNCAs not only excel in modeling dynamic systems but also exhibit enhanced
robustness to a wide range of perturbations compared to deterministic NCAs in the context of image
morphogenesis. An additional benefit of this framework is its interpretability: analyzing the rule assignments
provides insights into the learned behavior of the model.

This work paves the way for numerous exciting future directions. Upcoming research will focus on scaling
MNCAs to larger systems and networks, improving the interpretability of the learned rules, and enhancing
the model’s ability to handle incomplete time-series data. Additionally, the general framework presented here
can be tailored to the unique structures and challenges of the different spatial biology technologies currently
available.
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A Synthetic Simulation of Tissue Growth

This model simulates the development and maintenance of tissue organization from an initial cluster of stem
cells. It captures key biological features of stem cell-driven tissue organization, which is particularly relevant
for studying systems such as intestinal crypts or clonal hematopoiesis.

The model incorporates several fundamental biological principles:

• Hierarchical Cell Organization: The tissue is organized in a hierarchy of cell types, from stem
cells through intermediate progenitors to fully differentiated cells, reflecting the organization observed
in many epithelial tissues.

• Local Cell Interactions: Cell fate decisions are influenced by the local cellular environment,
mimicking the role of signaling niches in tissue organization.

• Differential Division Rates: Different cell types exhibit distinct proliferation rates, with stem
cells and early progenitors showing higher division rates compared to differentiated cells.

• Cell Type-Specific Survival: The model implements different death and growth rates for each
cell type, reflecting the biological reality where stem cells are more protected while differentiated
cells undergo regular turnover.

The model implements a stochastic process where each cell is synchronously updated at each time step based
on a set of kinetic parameters. A full description of the procedure is in Algorithm 1

Here we report the parameters we used in our experiment:

The system comprises five distinct cell types T = {STEM, INT1, INT2, DIFF1, DIFF2}, with dynamics
governed by division, death, and survival rates.

The division rates b are defined as: bstem = 0.8, bint1 = 0.5, bint2 = 0.5, for differentiated cells b is set to 0.
Death rates d are specified as: dstem = 0, dint1 = 0, dint2 = 0, ddiff1 = 0.001, ddiff2 = 0.001. Survival rates s
follow: sstem = 0, sint1 = 0, sint2 = 0.01, sdiff1 = 1.0, sdiff2 = 1.0.

The base differentiation probabilities are defined by matrix D ∈ R5×5:

D =


0.3 0.8 0.0 0.0 0.0
0.1 0.2 0.8 0.0 0.0
0.0 0.0 0.2 1.0 0.0
0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 1.0

 (9)

where Dij represents the rate of transitioning from type i to type j.

Cell-cell interactions are modeled through the interaction matrix I ∈ R5×5:

I =


0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.3
0.0 0.0 0.0 0.0 0.0

 (10)

where Iij modifies the differentiation rate based on neighboring cells of type j for cells of type i.

At each time step t, cells undergo stochastic events (division, death, or survival) with probabilities normalized
by the total rate. For instance, for the cell type stem the probability of dying would be: P (event) =
dstem/(bstem + dstem + sstem). During division events, daughter cells may differentiate according to the
probabilities in D, modified by neighboring cells through I. The division is allowed only on empty cells in the
Moore neighbor; otherwise, the cell survives.
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The model’s simplicity and incorporation of key biological principles make it a useful tool for understanding.
While it necessarily abstracts many biological details, it captures essential features that drive tissue organization
and maintenance.

Algorithm 1 Tissue Growth Simulation
Input: grid size N , initial stem cells ns

Input: cell rates R = {bτ , dτ , sτ} for each cell type τ ∈ T , transition matrices {D, I}
Initialize G0 ∈ ZN×N with ns stem cells at random positions
repeat

for each cell c at position (x, y) in Gt do
if c ̸= EMPTY then

ρ ∼ U(0, 1) {Sample uniform random variable}
p = R(c)/∥R(c)∥1 {Normalize rates to probabilities}
if ρ < pdeath then

Gt+1(x, y)← EMPTY
else if ρ < pdeath + pdiv then
N ← EmptyNeighbors(x, y)
if N ̸= ∅ then

Sample (i, j) ∼ Uniform(N ) {Pick a Random Empty Neighbour}
k = B(c) +

∑
n∈N I(n) {Generate a vector of rates for cell-type division}

k = k/∥k∥1 {Normalize to probabilities}
Gt+1(i, j) ∼ Categorical(k)

end if
end if

end if
end for
t← t + 1

until t = T

B Effect of Internal Stochasticity in MNCA

This appendix investigates the impact of internal stochastic noise xt on the flexibility and representational
power of Mixture of Neural Cellular Automata (MNCA).

While an optimal set of MNCA rules might, in principle, explicitly represent all stochastic state transitions,
determining this set is generally impractical due to unknown or highly sparse transitions. Consequently, rare
events or unknown stochastic events could remain unmodeled even in the mixture setup.

To evaluate the practical benefits of internal stochasticity, we constructed a minimalistic simulation involving
two cell types to separate the contribution of the internal noise and the rule sampling component. We
used stem cells and differentiated cells. The experimental conditions included a slightly elevated stochastic
cell death rate, generating infrequent, sparse cell-death events that manifest as localized empty spaces (see
Figure 8 first row).

In particular, we used division rates bstem = 0.8 and bdiff = 0. Death rates dstem = 0.05 and ddiff = 0. Survival
rates s sstem = 1 and sdiff = 1 The differentiation probability matrix was:

D =


0.0 0.0 0.0 0.1 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0

 (11)

The interaction matrix was all set to zero.
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In this controlled scenario, a deterministic MNCA with a biologically informed heuristic (one rule per cell
type) failed to adequately capture rare stochastic dynamics. Conversely, an MNCA endowed with internal
Gaussian noise successfully leveraged portions of this stochasticity to approximate these rare phenomena.

Comparative training results (Figure 8) confirmed the noise-enabled MNCA’s ability to reproduce a higher
rate of stochastic cell-death patterns.

Figure 8: Comparative visualization of the vanilla MNCA versus the internal noise version. The
top row is are trajectory from the training dataset. The middle row is the vanilla MNCA, and the last row is
the MNCA with internal noise xt. Notably, the last row shows a higher percentage of stochastic death events.

To rigorously quantify this phenomenon, we conducted an additional controlled experiment. We employed
deterministic rule selection (consistently selecting the highest probability rule) but retained internal Gaussian
noise. Analyzing 1000 stochastic updates initialized identically, we examined the correlation between noise
values and subsequent cell-state predictions.

Results showed clear partitioning of the Gaussian noise distribution, with rare events ( 4-5%) consistently
driven by the distribution tails. Remarkably, the MNCA implicitly represented these events both through
the rare but consistent emergence of empty cells. (Figure 9).

These results underline the essential role of internal stochasticity in MNCA, particularly in modeling complex,
real-world biological processes characterized by rare and unpredictable transitions.

C Evaluation Metrics for Neural Cellular Automata Models

We evaluate our Neural Cellular Automata (NCA) models using different complementary metrics that capture
complementary aspects of the generated cellular patterns. Since our models aim to generate realistic tissue
patterns with multiple cell types, we need metrics that assess both the statistical distribution of cell types
and their spatial organization.

To compare the real and generated tissues, we employ three complementary measures:

• Kullback-Leibler (KL) Divergence on cell type proportions: DKL(P |Q) =
∑

i P (i) log P (i)
Q(i)

Where P is the true cell type distribution in the whole cohort and Q is the cell type distribution in
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Figure 9: Visualization of internal Gaussian noise distributions driving cell-state predictions in
MNCA. The left panel shows the initial cell-state configuration, highlighting two specific spatial points. The
center and right panels illustrate the noise-value distributions partitioned by output class at the indicated
coordinates. These plots demonstrate how MNCA leverages noise to implicitly model state transitions by
exploiting the tails of the distribution.

the generated sample. This metric is useful for measuring how well our NCA models capture the
correct proportions of different cell types.

• Wasserstein Distance of Tissue Size Distribution: For each real and generated data tissue we
compute its size as simply the sum of all non-empty spots. We then compare the size distribution in
real U and generated V using the 1-Wasserstein distance amongst empirical distributions, which for
1D distributions is simply:

W1(U, V ) =
∫ ∞

−∞
|FU (x)− FV (x)| dx (12)

Where F is the empirical Cumulative Distribution Functions F = 1
n

∑n
i=1 1 (xi ≤ x)

• Wasserstein Distance of Tissue Border Size Distribution: For each real and generated data
tissue we compute a border size metric as:

B =
∑
i,j

|(∇2M)i,j | > θ (13)

where M is the binary mask of cell occupancy (1 for cells, 0 for empty space), ∇2 is the discrete
Laplacian operator implemented as a 3× 3 convolution kernel and θ = 0.1 is a threshold parameter:

K = 1
8

−1 −1 −1
−1 8 −1
−1 −1 −1

 (14)

The combination of these metrics allows us to compare different NCA architectures and evaluate their
ability to capture both the statistical and structural properties of real biological tissues. This is essential for
developing NCA models that can not only match cell type distributions but also generate spatially coherent
and biologically plausible tissue patterns.

We then again compute the 1-Wasserstein distance between the border statistics of real and generated data.
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D Training routines for the Neural Cellular Automata and Extra Parameters

We use a simple algorithm (described in Algorithm 2) to train our automata on the biological time series
data. For each epoch with a specific time-window size, the algorithm samples a random part of the time
series and learns to reconstruct it by computing the loss with the original realization every τ steps. The τ
parameter is always one, as the probabilities are constant over time. We believe this is the best method to
extract all possible information from the time series.

Algorithm 2 NCA Training for Biological Time-Series
1: Input: target sequences {S1, ..., Sn},sequence length T
2: Input: window size w, number of cell types K, epochs E,
3: Input: evolution steps of the automata τ , number of tissue samples M , small stability constant ϵ
4: Initialize model parameters θ randomly
5: Initialize optimizer
6: for epoch = 1 to E do
7: tstart ∼ U(0, T − w) {Sample random window}
8: for t = tstart to tstart + w step τ do
9: Xt ← St {Encode states}

10: Yt ← St+τ {Future states}
11: for tpred = t to t + τ step 1 do
12: if tpred == t then
13: Ŷt ← fθ(Xt) {NCA prediction, from input}
14: else
15: Ŷt ← fθ(Ŷt) {NCA prediction, from evolved input}
16: end if
17: end for
18: // Compute loss and update
19: L ← 1

M MSE(Yt, Ŷt)
20: ∇θ ← ∇θL
21: ∇θ ← ∇θ

||∇θ||+ϵ {Normalize gradients}
22: Update θ using optimizer
23: end for
24: end for

The training algorithm for Neural Cellular Automata (NCA) introduced in Mordvintsev et al. (2020) is
actually more complicated then the one we used above, mainly because in the task of image morphogenesis
the model has to evolve without supervision for a long time. They introduced a pool-based training strategy
that combines gradient descent with principles from evolutionary algorithms. By maintaining a pool of
growing patterns and selectively replacing the worst-performing samples with seed states, this approach helps
prevent pattern collapse and promotes the discovery of robust growth trajectories. We used this training
strategy in our experiment in Section 4.3 and 4.4, we report the algorithm here to help the readers.

For our experiment on emojis, we used a batch size B of 8, a state dimension D of 16 (4 RGBA channels +
12 internal extra states initialized to 0), and a pool size P of 1000 automata. Emojis are resized to a 40x40px
image and padded with 6 white pixels on all four side. As seed location we used the pixel [30, 50], nmin, and
nmax were set to 30 and 50, respectively.

For the microscopy experiment, we used again a batch size B of 8, a state dimension D of 24 (4 RGBA
channels + 20 internal extra states initialized to 0), and a pool size P of 600 automata. Images are resized to
96x96px without padding. As seed location we used the centroid pixel of each cell, nmin and nmax were set
to 30 and 50, respectively.

All experiments were run on a single NVIDIA Tesla V100-SXM2-32GB.

To evaluate the impact of rule complexity, we analyze the KL divergence between the simulated and target
cell-type distributions as a function of the number of mixture rules. As illustrated in Figure 10, models with

19



Under review as submission to TMLR

Algorithm 3 Pool-Based NCA Training from Mordvintsev et al. (2020)
1: Input: Target image I, pool size P , batch size B, state dimension D, number of steps T
2: Input: Small stability constant ϵ, seed location (sh, sw), growth steps range nmin, nmax

3: Initialize model parameters θ randomly
4: Initialize optimizer
5: x0 ← 0B×D×H×W {Initial state}
6: x0[..., 3 :, sh, sw]← 1 {Place seed at (sh, sw)}
7: pool← {x0}P {Initialize pool with P copies}
8: for step = 1 to total_steps do
9: B ← SampleBatch(pool, B) {Sample batch from pool}

10: n ∼ U(nmin, nmax) {Sample number of growth steps}
11: // Forward pass
12: x← B
13: for t = 1 to n do
14: ∆x← fθ(x) {Compute update}
15: x← x + ∆x {Apply update}
16: end for
17: xrgba ← x:,:4 {Extract RGBA channels}
18: // Compute loss and update
19: L ← 1

B

∑B
i=1 MSE(x(i)

rgba, I)
20: ∇θ ← ∇θL
21: ∇θ ← ∇θ

||∇θ||+ϵ {Normalize gradients}
22: Update θ using optimizer
23: // Update pool
24: losses← {MSE(x(i)

rgba, I)}B
i=1

25: W ← TopK(losses, k = ⌊0.15B⌋) {Worst 15%}
26: for i ∈ W do
27: x(i) ← x0 {Replace with initial state}
28: end for
29: Update pool with new states
30: end for

an increasing number of rules tend to exhibit lower KL divergence, suggesting that greater rule diversity
enhances the model’s ability to approximate the target distribution.

However, this improvement is not strictly linear, and we observe diminishing returns beyond a certain number
of rules. This saturation effect suggests that while additional mixture components increase flexibility, excessive
complexity does not necessarily translate into significant performance gains. Furthermore, we find that
introducing internal stochasticity in the model slightly reduces KL divergence for this task. These findings
support the idea that an excessively high number of rules can be detrimental, as performance improvements
do not sufficiently compensate the increased computational cost.

E Comparison with Approximate Bayesian Computation

We implement a standard Approximate Bayesian Computation (ABC) approach to infer the parameters of
our agent-based tissue growth model and compare it with the MNCA results. The parameter space Θ is the
same as the original model in Appendix A, here we report the sampling distribution:

• division rates (⃗b ∈ R5 ∼ Gamma(1, 0.1))

• death rates (d⃗ ∈ R5 ∼ Gamma(1, 0.01))

• survival rates (s⃗ ∈ R5 ∼ Gamma(1, 0.1))
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Figure 10: KL divergence of the cell-type distribution as a function of the number of rules used
in the Mixture NCA model. As the number of rules increases, the divergence between the simulated and
target distributions decreases, indicating improved alignment with the expected cell-type dynamics.

• differentiation rates (D ∈ R5×5 ∼ Gamma(1, 0.1))

• cell-cell interaction strengths (I ∈ R5×5 ∼ N (0, 1))

Algorithm 4 ABC for Tissue Growth Model
Require: Observed data D, number of particles N , acceptance threshold ϵ, summary statistic type S
Ensure: Estimated parameters θ∗

1: Initialize empty sets Aθ,Aδ for accepted parameters and distances
2: for i = 1 to N do
3: Sample θi ∼ p(θ) from prior distributions
4: Simulate tissue growth xi ∼ f(·|θi) for T steps
5: Compute summary statistic si = S(xi)
6: Calculate distance δi = Dist(si, S(D))
7: if di < ϵ then
8: Aθ ← Aθ ∪ {θi}
9: Aδ ← Aδ ∪ {δi}

10: end if
11: end for
12: Compute weights wi = 1/δi, normalized
13: Return θ∗ =

∑
i wiθi for θi ∈ Aθ

We trained three different models each with specific summary statistics to compare simulated and observed
data:

1. Cell-type Distribution: Captures the global proportion of each cell type, including empty spaces.
The distance between distributions is computed using the Wasserstein metric W1. This statistic
provides a high-level view of tissue composition but does not capture spatial organization.
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Table 4: Comparison of ABC inference on agent-based models of the simulation

Model KL-div Size-W Border-W

ABM Model Proportion 0.152 ±0.002 0.241 ±0.010 0.054 ±0.006
ABM Model Neighborhood 0.857 ±0.010 0.489 ±0.025 0.284 ±0.010
ABM Model Correlation 0.386 ±0.010 0.241 ±0.012 0.055 ±0.009

2. Neighborhood Composition: Computes the average composition of 3×3 neighborhoods around
each position, including empty spaces. This metric captures local spatial patterns and cell-type
clustering, using the Wasserstein distance for comparison.

3. Cell-type Correlation Matrix: Quantifies pairwise correlations between spatial distributions of
cell types. Each entry Rij represents the Pearson correlation coefficient between the binary masks of
types i and j, with positive values indicating co-occurrence and negative values suggesting spatial
segregation. The distance between correlation matrices is computed using the normalized Frobenius
norm ∥Ri −RD∥F /

√
2.

Parameters are accepted if their distance is below the threshold ϵ, and final estimates are computed as
weighted averages of accepted particles, with weights inversely proportional to their distances. The ϵ in this
case have been chosen to accept approximately 10% of the samples (respectively [0.04, 0.4, 0.52]). For the
first model, we generated 5000 samples as this is the fastest statistic to compute, while for the others we
drew 1000 samples.

We present the results in Table 4, highlighting how performance is significantly influenced by the choice of
statistics used for parameter inference. Interestingly, simple cell-type proportions yield the best results, not
only in terms of accuracy but also in maintaining consistency across tissue borders and overall size. These
results are comparable to our MNCA approach, though in this case, we had to fully specify the model and
fine-tune both the statistics and acceptance threshold. It is also crucial to note that our evaluation is based
on the KL divergence of cell proportions, which is directly tied to the statistics used for ABC—specifically,
the Wasserstein distance between cell-type proportions.

However, the limitations of this approach are well illustrated in Figure 11. A naive selection of statistics
may produce models that generate seemingly accurate summary statistics, yet fail to capture the intricate
spatial characteristics of real tissue. As a result, while the summary metrics appear realistic, the simulated
tissue structure diverges significantly from the actual one. Conversely, models that better preserve spatial
coherence tend to exhibit substantial distortions in cell-type proportions.

F Why Mixtures Increase Robustness

We speculate that two main effects could explain the robustness of mixture-based update rules relative to a
single deterministic rule.

Ensemble or Averaging Effect. Let {fk : S → S}K
k=1 be a family of update functions, each with Lipschitz

constant Lk. Define a mixture update F via

F (s) =
K∑

k=1
πk(s) fk(s) where

K∑
k=1

πk(s) = 1. (15)

Here {πk(s)}K
k=1 ≥ 0 are mixture weights that may depend on the state s. If each fk is Lk-Lipschitz, i.e.,

∥fk(s)− fk(t)∥ ≤ Lk ∥s− t∥, (16)
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Figure 11: Simulated tissues by different agent-based models trained with ABC on the simulated
dataset. Top row is 10 tissues from the training data. The second row are tissues generated by the ABC
schema with type correlation as summary statistics. The third row are tissues generated by the ABC schema
with neighborhood composition as summary statistics. The last row has cell-type distribution as summary
statistics.

then F itself is Lipschitz with a constant bounded by
∑K

k=1 πk(s) Lk (under mild regularity conditions on πk).
Intuitively, since no single fk fully dictates the update, large “jumps” from one sub-model are moderated by
others. This yields an error-averaging effect, often translating into smoother global dynamics and improved
tolerance to perturbations.

To validate this claim we exploited the fact that in our network we can bound from above the Lipschitz
constant using the product of the spectral norm of the linear layers Miyato et al. (2018). Figure F shows
that although some individual rules exhibit higher bounds, the average bound is lower in the mixture models.
This suggests that the mixture can exploit different rules to balance updates of varying magnitudes. It also
potentially explains the overshoot right after a perturbation, due to the model uncertainty to which set of
rules to apply.

Randomness and Escaping Attractors. A purely deterministic update f(s) can exhibit limit cycles
or fixed-point attractors, leading to “lock-in” where the system remains trapped. In contrast, a stochastic
mixture approach samples an index k ∼ π(· | s) at each iteration—where π(· | s) is a probability distribution
over distinct update functions {f1, . . . , fK}—and applies s 7→ fk(s). This defines a Markov chain on the state
space S with transition kernel

P (s, s′) =
K∑

k=1
πk(s) 1

{
s′ = fk(s)

}
. (17)

Because of the random choice of update rule, the system can sometimes “jump” out of local cycles or fixed
points that would be stable under any single deterministic rule.

If the chain is ergodic we are sure that we will eventually get out of a specific state. However, even if such
conditions do not strictly hold2, introducing randomness often increases global stability: stochasticity can
help the system avoid being frozen in narrow attractors by tempering a purely deterministic update rule.

2For instance if the final image is a proper absorbing state for each pixel, which is something we can reasonably expect from
a system that has reliably learned to reproduce an image
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Figure 12: Heatmap of each model’s product of linear layers singular.In our simple architecture, this
product is an upper bound on the Lipschitz constant of the network. Lower values imply tighter Lipschitz
bounds, suggesting greater stability under perturbations.

While testing this in the stochastic model is not straightforward we found several repeated patterns when
looking at the reconstruction pattern after perturbation of the deterministic NCA. We show some in Figure
13. In particular, we see how the "cut in half" whale seems to arise quite frequently, together with a state
where the eyes multiply over the body, and for the avocado emoji, a state where the fruit is smaller and
without the seed.
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BA

Figure 13: Final reconstructed image after perturbation for the deterministic NCA. We took as
an example the perturbation with Gaussian injected noise in 25% of the pixels. This is the final image after
100 steps of recovery. A is the whale emoji (1F433) and B the avocado emoji (1F951)

G Further evidence on Image Morphogenesis

In this section, we first illustrate in Figure 16 that all three models are correctly trained and capable of
generating high-quality realizations of each emoji analyzed in Section 4.3. This validates our interest in
assessing their responses to perturbations. To further support our claim that MNCA exhibits superior
perturbation robustness compared to NCA, we replicated the perturbation experiment from the main text
using nine images from the CIFAR-10 dataset—one per class. Unlike the emoji dataset, CIFAR-10 features
more complex images with backgrounds, but at a lower resolution. We used the original 32×32 RGB images,
maintaining all previous training parameters except for the hidden dimension size of the update network,
which was reduced to 64 neurons to match the lower resolution. The alpha channel was set to 1. Our findings
align with the results of the emoji experiment: MNCA and MNCA with noise consistently outperformed
NCA across all perturbations (Table 5).
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A B C

Figure 14: Emoji morphogenesis for each NCA class. We show how all three 3 NCA classes converge
to a visually good final image from the fixed seed at t=0. A, B, and C are respectively the deterministic
NCA, the MNCA, and the MNCA with intrinsic noise.
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B CA

Figure 15: CIFAR-10 morphogenesis for each NCA class. We show how all three 3 NCA classes
converge to a visually good final image from the fixed seed at t=0. A, B, and C are respectively the
deterministic NCA, the MNC,A and the MNCA with intrinsic noise.
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Figure 16: Example of perturbation and recovery on CIFAR-10 dataset The top half of the plot
shows an example of 2 perturbation types. The columns are respectively, the original image, the perturbed
image, the image after 50 steps of recovery, and the final recovered image after 100 steps. Each row shows a
separate model. The second half of the plot shows the same image and perturbation above the MSE error
behavior from the perturbation time to the final recovery step. The plot shows two cases, respectively, one in
which the NCA seems to diverge but the MNCA does not, and the other case where all three models seem to
go back to the original image but with different efficiency. Confidence intervals (95%) were computed across
50 different perturbation of the same kind
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Table 5: Performance of MNCA across different perturbations on images from the CIFAR-10
dataset. Here, the metric is the Mean Squared Error (MSE) after 100 steps of recovery and on a batch of 50
different perturbations of each kind. MNCA w/ N stands for MNCA with Noise, Del for Deletion and Rem
for Pixel Removal.

Model Del 5x5px Del 10x10px Noise 10% Noise 25% Rem 100px Rem 500px

airplane
NCA 0.0213 ±0.0083 0.0226 ±0.0117 0.0213 ±0.0095 0.0198 ±0.0087 0.0149 ±0.0098 0.0222 ±0.0106
GCA 0.0090 ±0.0055 0.0089 ±0.0051 0.0103 ±0.0061 0.0092 ±0.0058 0.0090 ±0.0046 0.0108 ±0.0051
MNCA 0.0012 ±0.0012 0.0085 ±0.0045 0.0033 ±0.0032 0.0010 ±0.0008 0.0132 ±0.0024 6.5645 ±22.8378
MNCA w/ N 0.0014 ±0.0020 0.0087 ±0.0024 0.0040 ±0.0041 0.0010 ±0.0011 0.0081 ±0.0044 0.0110 ±0.0047

automobile
NCA 0.0095 ±0.0045 0.0155 ±0.0053 0.0091 ±0.0045 0.0083 ±0.0036 0.0139 ±0.0054 0.0210 ±0.0055
GCA 0.0089 ±0.0084 0.0093 ±0.0110 0.0137 ±0.0132 0.0095 ±0.0098 0.0095 ±0.0087 0.0142 ±0.0110
MNCA 0.0027 ±0.0016 0.0058 ±0.0022 0.0037 ±0.0021 0.0024 ±0.0015 0.0092 ±0.0022 0.0178 ±0.0022
MNCA w/ N 0.0038 ±0.0024 0.0045 ±0.0029 0.0034 ±0.0022 0.0038 ±0.0025 0.0047 ±0.0035 0.0099 ±0.0043
bird
NCA 0.0053 ±0.0037 0.0053 ±0.0033 0.0073 ±0.0049 0.0073 ±0.0048 0.0065 ±0.0043 0.0091 ±0.0051
GCA 0.0335 ±0.0083 0.0370 ±0.0110 0.0327 ±0.0110 0.0351 ±0.0104 0.0321 ±0.0121 0.0333 ±0.0112
MNCA 0.0066 ±0.0030 0.0071 ±0.0029 0.0073 ±0.0033 0.0052 ±0.0030 0.0071 ±0.0033 0.0094 ±0.0028
MNCA w/ N 0.0159 ±0.0040 0.0162 ±0.0044 0.0163 ±0.0047 0.0157 ±0.0052 0.0181 ±0.0043 0.0183 ±0.0047

cat
NCA 0.0135 ±0.0057 0.0124 ±0.0062 0.0146 ±0.0046 0.0134 ±0.0052 0.0150 ±0.0068 0.0147 ±0.0061
GCA 0.0059 ±0.0064 0.0045 ±0.0044 0.0066 ±0.0060 0.0065 ±0.0065 0.0101 ±0.0094 0.0108 ±0.0074
MNCA 0.0010 ±0.0016 0.0010 ±0.0014 0.0009 ±0.0012 0.0007 ±0.0010 0.0006 ±0.0008 0.0082 ±0.0045
MNCA w/ N 0.0016 ±0.0018 0.0061 ±0.0028 0.0030 ±0.0031 0.0015 ±0.0020 0.0009 ±0.0012 0.0061 ±0.0027
deer
NCA 0.0082 ±0.0029 0.0103 ±0.0029 0.0089 ±0.0046 0.0078 ±0.0029 0.0126 ±0.0030 0.0164 ±0.0028
GCA 0.0036 ±0.0038 0.0029 ±0.0029 0.0044 ±0.0041 0.0043 ±0.0040 0.0118 ±0.0034 0.0121 ±0.0025
MNCA 0.0026 ±0.0015 0.0032 ±0.0012 0.0026 ±0.0013 0.0025 ±0.0014 0.0076 ±0.0018 0.0096 ±0.0016
MNCA w/ N 0.0005 ±0.0002 0.0029 ±0.0012 0.0010 ±0.0009 0.0005 ±0.0002 0.0014 ±0.0012 0.0016 ±0.0014
dog
NCA 0.0059 ±0.0092 0.0044 ±0.0040 0.0070 ±0.0082 0.0097 ±0.0112 0.0068 ±0.0067 0.0064 ±0.0071
GCA 0.0032 ±0.0042 0.0028 ±0.0047 0.0034 ±0.0037 0.0024 ±0.0034 0.0033 ±0.0052 0.0048 ±0.0056
MNCA 0.0048 ±0.0021 0.0064 ±0.0022 0.0065 ±0.0024 0.0047 ±0.0016 0.0053 ±0.0020 0.0065 ±0.0015
MNCA w/ N 0.0040 ±0.0021 0.0045 ±0.0015 0.0045 ±0.0025 0.0037 ±0.0019 0.0079 ±0.0020 0.0133 ±0.0022

frog
NCA 0.0102 ±0.0076 0.0106 ±0.0062 0.0117 ±0.0085 0.0117 ±0.0058 0.0088 ±0.0053 0.0157 ±0.0082
GCA 0.0262 ±0.0081 0.0270 ±0.0089 0.0301 ±0.0102 0.0247 ±0.0082 0.0282 ±0.0087 0.0266 ±0.0090
MNCA 0.0013 ±0.0014 0.0030 ±0.0024 0.0020 ±0.0018 0.0013 ±0.0015 0.0025 ±0.0019 0.0078 ±0.0027
MNCA w/ N 0.0027 ±0.0016 0.0042 ±0.0021 0.0034 ±0.0014 0.0029 ±0.0012 0.0092 ±0.0022 0.0148 ±0.0022

horse
NCA 0.0104 ±0.0054 0.0158 ±0.0060 0.0096 ±0.0049 0.0100 ±0.0061 0.0167 ±0.0044 0.0207 ±0.0056
GCA 0.0269 ±0.0134 0.0282 ±0.0109 0.0268 ±0.0112 0.0281 ±0.0126 0.0251 ±0.0094 0.0301 ±0.0095
MNCA 0.0042 ±0.0027 0.0042 ±0.0026 0.0046 ±0.0028 0.0044 ±0.0025 0.0041 ±0.0029 0.0100 ±0.0041
MNCA w/ N 0.0028 ±0.0030 0.0044 ±0.0041 0.0064 ±0.0052 0.0047 ±0.0039 0.0031 ±0.0034 0.0063 ±0.0043
ship
NCA 0.0274 ±0.0103 0.0206 ±0.0108 0.0266 ±0.0123 0.0277 ±0.0094 0.0268 ±0.0109 0.0290 ±0.0127
GCA 0.0063 ±0.0054 0.0148 ±0.0084 0.0123 ±0.0205 0.0036 ±0.0040 0.0061 ±0.0048 0.0193 ±0.0067
MNCA 0.0074 ±0.0034 0.0083 ±0.0038 0.0083 ±0.0043 0.0066 ±0.0038 0.0069 ±0.0044 0.0076 ±0.0039
MNCA w/ N 0.0013 ±0.0014 0.0018 ±0.0017 0.0021 ±0.0022 0.0013 ±0.0016 0.0056 ±0.0031 0.0060 ±0.0038
truck
NCA 0.0327 ±0.0117 0.0352 ±0.0090 0.0326 ±0.0105 0.0309 ±0.0119 0.0329 ±0.0100 0.0351 ±0.0084
GCA 0.0158 ±0.0053 0.0126 ±0.0049 0.0147 ±0.0053 0.0134 ±0.0049 0.0115 ±0.0054 0.0176 ±0.0061
MNCA 0.0041 ±0.0020 0.0098 ±0.0032 0.0063 ±0.0034 0.0036 ±0.0022 0.0034 ±0.0022 0.0059 ±0.0033
MNCA w/ N 0.0027 ±0.0021 0.0071 ±0.0038 0.0061 ±0.0038 0.0025 ±0.0018 0.0100 ±0.0025 0.0139 ±0.0029

29


	Introduction
	Background
	Spatial Modelling of Biological Systems
	Cellular Automata
	Neural Cellular Automata

	Mixture of Neural Cellular Automata
	Mixture of Neural Cellular Automata
	Mixture of Neural Cellular Automata: intrinsic noise

	Experiments
	Model Architectures and Parameters
	Synthetic Data of Biological Development
	Image Morphogenesis
	Microscopy Images Classification

	Conclusion
	Synthetic Simulation of Tissue Growth
	Effect of Internal Stochasticity in MNCA
	Evaluation Metrics for Neural Cellular Automata Models
	Training routines for the Neural Cellular Automata and Extra Parameters
	Comparison with Approximate Bayesian Computation
	Why Mixtures Increase Robustness
	Further evidence on Image Morphogenesis

