
Under review as a conference paper at ICLR 2021

OPTIMISM IS ALL YOU NEED: MODEL-BASED
IMITATION LEARNING FROM OBSERVATION ALONE

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper studies Imitation Learning from Observations alone (ILFO) where
the learner is presented with expert demonstrations that only consist of states
encountered by an expert (without access to actions taken by the expert). This
paper presents a provably efficient model-based framework MobILE to solve the
ILFO problem. MobILE uses self-supervision towards (a) training a dynamics
model and (b) designing an intrinsic reward signal for exploration. Using these
ideas, MobILE carefully trades off exploration against imitation by integrating
the idea of optimism in the face of uncertainty into the distribution matching
imitation learning (IL) framework. We provide a unified analysis for MobILE, and
demonstrate that MobILE enjoys strong performance guarantees for classes of
MDP dynamics that satisfy certain well studied notions of complexity. We also
show that the ILFO problem is strictly harder than the standard IL problem by
reducing ILFO to a multi-armed bandit problem indicating that strategic exploration
is necessary for solving ILFO efficiently. We complement these theoretical results
with experimental simulations on benchmark OpenAI Gym tasks that indicate the
efficacy of MobILE.

1 INTRODUCTION

Imitation Learning (IL) is a paradigm that allows for sample-efficient learning of sequential decision
making policies, utilizing expert demonstrations consisting of states and actions. IL has been
successfully applied to applications such as Natural Language Processing (Daumé et al., 2009),
Compilers (Mendis et al., 2019), Robotics (Levine et al., 2015), navigation (Ziebart et al., 2008), etc.

This paper, instead, considers the Imitation Learning from Observation Alone (ILFO) setting. In
ILFO, the learner is presented with sequences of states encountered by the expert, without access
to the actions taken by the expert, meaning approaches based on a reduction to supervised learning
(e.g., Behavior cloning (BC) (Ross & Bagnell, 2010), DAgger Ross et al. (2011b)) are not applicable.
ILFO is more general and has potential for applications where learners and experts have different
action spaces, applications like sim-to-real (Song et al., 2020; Desai et al., 2020).

Recently, Sun et al. (2019b) reduces the ILFO problem to a sequence of one-step distribution matching
problems that results in obtaining a non-stationary policy. This approach is sample inefficient for
longer horizon tasks since the algorithm does not reuse previously collected samples when solving
the current sub-problem. Another line of work considers model-based methods to infer the expert’s
actions with either an inverse (Torabi et al., 2018) or a forward dynamics (Edwards et al., 2019) model;
these recovered actions are then fed into an IL approach like BC to output the final policy. These
works rely on strong assumptions that tend to be satisfied when the underlying Markov Decision
Process (MDP) has deterministic transition dynamics. See related works for a detailed treatment.

We introduce MobILE, a model-based framework, to solve the ILFO problem. In contrast to
existing model-based efforts, MobILE learns the forward transition dynamics model based on online
interactions, and this is a well-defined learnable object. Importantly, MobILE combines exploration
with imitation by utilizing ideas from self-supervised learning to interleave a model learning step
with an intrinsic bonus-based, optimistic distribution matching step – a perspective, to the best of our
knowledge, that has not been considered in the ILFO setting. At a high level, our theoretical results
and experimental studies demonstrate that

1

Under review as a conference paper at ICLR 2021

Strategic exploration is necessary for solving ILFO reliably and efficiently.

Note that this paper’s result extends the realm of partial information problems where optimism has
been shown to be crucial in obtaining strong performance both in theory (e.g., E3 (Kearns & Singh,
2002b), UCB (Auer et al., 2002)) and practice (e.g., RND (Burda et al., 2018)). This paper proves
that incorporating optimism into the min-max IL framework (Ho & Ermon, 2016; Sun et al., 2019b)
is necessary for both the theoretical foundations and empirical performance of ILFO.

Main contributions: MobILE (Algorithm 1) is a provably efficient, model-based framework for
ILFO. MobILE can be instantiated with flexible implementation choices owing to its modular
design; MobILE also presents strong empirical performance on benchmark OpenAI gym tasks.

1. MobILE uses self supervision by combining ideas from model-based learning and optimism for
exploration with adversarial imitation learning. MobILE achieves global optimality with a regret
bound growing sublinearly for classes of MDP dynamics that satisfy certain well studied notions
of complexity. The key idea of MobILE is to use optimism to trade-off imitation and exploration.

2. We show that optimism-based exploration is necessary for solving ILFO by presenting a reduction
from the multi-armed bandit problem to ILFO. This indicates that ILFO is fundamentally harder
than IL where the learner has access to the expert’s actions. Thus unlike classic methods like BC
and DAgger, reductions to supervised learning are not sufficient to provably solve ILFO.

3. We instantiate MobILE with neural networks and present experimental results on benchmark
OpenAI Gym tasks, indicating MobILE compares favorably to or outperforms existing approaches.
Ablation studies indicate that optimism indeed boosts performance in practice.

1.1 RELATED WORKS

Imitation Learning (IL) has seen advances through two types of approaches: (a) behavior cloning
(BC) (Pomerleau, 1989) which casts IL as supervised or full-information online learning (Ross &
Bagnell, 2010; Ross et al., 2011b), or, (b) inverse RL (Ng & Russell, 2000; Abbeel & Ng, 2004;
Finn et al., 2016; Ke et al., 2019; Ghasemipour et al., 2020), which involves minimizing various
distribution divergences to solve the IL problem, either with the transition dynamics known (e.g.,
Ziebart et al. (2008)), or unknown (e.g., Ho & Ermon (2016)). MobILE does not assume knowledge
of the transition dynamics, is model-based, and operates without access to the expert’s actions.

Imitation Learning from Observation Alone (ILFO) Sun et al. (2019b) presents a model-free
approach that outputs a non-stationary policy by reducing the ILFO problem into a sequence of
min-max problems, one per time-step. This approach is sample inefficient, particularly with long
horizons; in contrast, our paper learns a stationary policy using model-based approaches. Another line
of work (Torabi et al., 2018; Edwards et al., 2019; Yang et al., 2019) relies on learning an estimate
of expert action, often through the use of an inverse dynamics models, P e(a|s, s′). Unfortunately,
there are many settings where an inverse model is not always well defined. For instance, inverse
dynamics can be well defined for deterministic MDP transition dynamics, whereas, this is not
the case for stochastic transition dynamics. From Bayes rule, to define an inverse model, we
need a state-wise prior distribution and the expert policy, i.e., P e(a|s, s′) ∝ P (s′|s, a)ρ(s)πe(a|s).
Thus to learn P e(a|s, s′), we need training data with actions from πe1, which is missing in ILFO.
Finally, Edwards et al. (2019)’s result applies only to MDPs with deterministic transitions and discrete
actions. Refer to section 6 in Sun et al. (2019b) for a more detailed treatment. MobILE instead
learns a forward dynamics model which is unique and well-defined for deterministic and stochastic
transitions and works with discrete/continuous actions. Finally, Peng et al. (2018); Aytar et al. (2018);
Schmeckpeper et al. (2020) solve ILFO using cost function engineering based on task-specific priors;
MobILE doesn’t require cost function engineering.

Model-Based RL (Sutton, 1990; Li & Todorov, 2004; Deisenroth & Rasmussen, 2011) has seen
advances based on deep learning (Lampe & Riedmiller, 2014; Gu et al., 2016; Janner et al., 2019)
which can be translated to ILFO owing to MobILE’s modularity. MobILE bears parallels to provably
efficient model-based RL approaches including E3 (Kearns & Singh, 2002a; Kakade et al., 2003),
R-MAX (Brafman & Tennenholtz, 2001), UCBVI (Azar et al., 2017), and LC3 (Kakade et al., 2020a)
which utilize a bonus based approach to trade-off exploration against exploitation.

1off-policy learning is not possible either unless one has additional information about πe, e.g., access to the
likelihood πe(a|s).

2

Under review as a conference paper at ICLR 2021

2 SETTING

We consider episodic finite-horizon MDPM = {S,A, P ?, H, c, s0}, where S,A are the state, action
space, P ? : S ×A 7→ S is the transition kernel, H the horizon, s0 is a fixed initial state (note that we
can handle a distribution over initial states), and c is the state-dependent cost function c : S 7→ [0, 1].
Notations We denote dπP ∈ ∆(S ×A) as the average state-action distribution of policy π under the
transition kernel P , i.e., dπP (s, a) := 1

H

∑H
t=1 Pr(st = s, at = a|s0, π, P), where Pr(st = s, at =

a|s0, π, P) is the probability of reaching (s, a) at time step t starting from s0 by following π under
transition kernel P . We abuse notation and write s ∼ dπP to denote a state s is sampled from the
state-wise distribution which marginalizes action over dπP (s, a), i.e., dπP (s) := 1

H

∑H
t=1 Pr(st =

s|s0, π, P). For a given cost function f : S 7→ [0, 1], V πP ;f denotes the expected total cost of π
under transition P and cost function f . Similar to IL, in ILFO, the ground truth cost c is unknown.
Instead, we can query the expert, denoted as πe : S 7→ ∆(A), to provide state-only demonstrations
τ = {s0, s1 . . . sH}, where st+1 ∼ P ?(·|st, at) and at ∼ π?(·|st).

Note that the expert demonstration always starts from s0, which is the starting state distribution of the
MDPM. Unlike interactive IL methods (e.g., DAgger (Ross et al., 2011a) and AggreVaTe(D) (Ross
& Bagnell, 2014; Sun et al., 2017)), this paper considers the non-interactive expert setting where the
algorithm cannot query the expert to provide trajectories starting from any state that the learner visits.

The goal is to leverage expert’s state-wise demonstrations to learn a policy π that performs as well as
πe in terms of optimizing the ground truth cost c, with polynomial sample complexity on problem
parameters such as horizon, number of expert samples and online samples and underlying MDP’s
complexity measures (see section 4 for precise examples).

2.1 FUNCTION APPROXIMATION SETUP

Since the ground truth cost c is unknown, we utilize the notion of a function class F ⊂ S 7→ [0, 1] to
define the costs. Furthermore, we use a model class P ⊂ S ×A 7→ ∆(S) to capture the ground truth
transition P ?. For the theoretical results in the paper, we assume realizability:

Assumption 1. Assume that F , P captures ground truth cost and transition, i.e., c ∈ F , and P ? ∈ P .

To permit generalization, we require P to have bounded complexity. For analysis simplicity, assume
F is discrete (but exponentially large), and we require the sample complexity of any PAC algorithm
to scale polynomially with respect to its complexity ln(|F|). The ln |F| complexity can be replaced
to bounded conventional complexity measures such as Rademacher complexity and covering number.

For the true model P ? and model class P we make the following structural assumption that the
transition P ? is determined by a nonlinear deterministic function with additive Gaussian noise, i.e.,

s′ ∼ P (·|s, a), where s′ = g?(s, a) + ε, ε ∼ N (0, σ2I), (1)

where g? is unknown and the level of Gaussian noise σ is known. To learn g?, we utilize a function
class G ⊂ S ×A 7→ S. Together with the known Gaussian noise, we have P = {N (g(s, a), σ2I) :
g ∈ G}. Extending our results to Gaussian noise with general positive definite covariance matrix is
straightfoward; for analysis simplicity, we focus on covariance matrix σ2I .

Examples: One example is the Kernelized Nonlinear Regulator (KNR) model, where g?(s, a) =
W ?φ(s, a) where φ : S × A 7→ H with H being some Hilbert space (e.g., a Reproducing Kernel
Hilbert Space) Kakade et al. (2020b); Mania et al. (2020). Note that this kernelized model captures
both linear and nonlinear dynamical system such as hybrid linear systems and has been used in
practice extensively (Ko et al., 2007; Deisenroth & Rasmussen, 2011; Fisac et al., 2018; Umlauft
et al., 2018). Another example is that g? is captured by a Gaussian Process with some pre-defined
kernel k : (S × A)2 7→ R. Moreover, G could also be a general function class. For purposes of
the theory results, we require these problem settings to satisfy certain regularity conditions, for e.g.,
bounds on information gain (Srinivas et al., 2009), or, eluder dimension (Russo & Roy, 2013) similar
to RL literature. In Section 3 and 4, we discuss these examples in detail.

3

Under review as a conference paper at ICLR 2021

Algorithm 1 MobILE: Model-based Imitation Learning and Exploring for ILFO

1: Require: IPM class F , dynamics model class P , policy class Π, bonus function class B.
2: Initialize policy π0 ∈ Π, replay buffer D−1 = ∅.
3: for t = 0, · · · , T − 1 do
4: Execute πt in true environment P ? to get samples τt = {sk, ak}H−1

k=0 ∪ sH . Append to replay
buffer Dt = Dt−1 ∪ τt.

5: Update model and bonus: P̂t+1 : S ×A → S and bt+1 : S ×A → R+ using buffer Dt.
6: Get i.i.d expert states De ≡ {sei}Ni=1. (for simplicity of theoretical analysis)
7: Optimistic model-based min-max IL: obtain πt+1 by solving equation (2) with P̂t+1, bt+1,De.
8: end for
9: Return πT .

3 ALGORITHM

We introduce MobILE—Model-based Imitation Learning and Exploring for ILFO. MobILE utilizes
(a) a discriminator class F for performing Integral Probability Metric (IPM) based distribution
matching, (b) a dynamics model class P for model learning, (c) a bonus function class B for
exploration, (d) a policy class Π for policy learning. MobILE (in Algorithm 1) iteratively learns a
dynamics model P̂ and uses this to learn a policy that aims to match the expert’s state visitation using
discriminators F . At every iteration, MobILE involves:

1. Dynamics Model Learning: execute current policy in the environment to obtain state-action-next
state (s, a, s′) triples which are appended to the buffer D. Fit a dynamics model P̂ on D.

2. Intrinsic Bonus Design: design bonus to incentivize exploration where the learnt dynamics
model is uncertain, i.e. the bonus b(s, a) is large at state s where P̂ (·|s, a) is uncertain in terms of
estimating P ?(·|s, a), while b(s, a) is small where P̂ (·|s, a) is certain.

3. Trading off Imitation Against Exploration: Given discriminators F , a learned model P̂ , bonus
b and expert dataset De, perform optimistic model-based optimization of the IPM objective:

πt+1 ← arg min
π∈Π

max
f∈F

L(π, f ; P̂ , b,De) := E(s,a)∼dπ
P̂

[f(s)− b(s, a)]− Es∼De [f(s)] . (2)

Intuitively, the bonus cancels out the power of discriminators in parts of state space where the learned
model P̂ is inaccurate, thus allowing MobILE to explore. Below we elaborate on the components
of MobILE while highlighting its key property—which is to trade-off exploration and imitation.

3.1 COMPONENTS OF MOBILE

This section presents an overview of MobILE by instantiating these with the general function
approximation class G; refer to the appendix for instantiating MobILE in KNR case.

Learning the dynamics model: For model fitting in line 5, given G, and the assump-
tion on the ground truth model (Eq. 1), one can learn ĝt via least squares, i.e., ĝt =

arg ming∈G
∑
s,a,s′∈Dt ‖g(s, a)−s′‖22, and set P̂t(·|s, a) = N

(
ĝt(s, a), σ2I

)
. In practice, there are

a variety of developments, for e.g., learning a standard multi-layer perceptron (MLP) based Gaussian
Dynamics model (Rajeswaran et al., 2020) that can be used to effectively handle this step.

Intrinsic Bonus Parameterization: We utilize bonuses to incentivize the policy to explore unknown
parts of the state space for improved model learning (and better distribution matching as a result).
For the general class G, given the least square solution ĝt, we can define a version space Gt: Gt ={
g ∈ G :

∑t−1
i=0

∑H−1
h=0 ‖g(sth, a

t
h)− ĝt(sth, ath)‖22 ≤ zt

}
, with zt being a hyper parameter. The

version space Gt is an ensemble of functions g ∈ G with training error on Dt almost as small as the
training error of the least square solution ĝt. In other words, version space Gt contains functions that
nearly agree on Dt. The uncertainty measure at (s, a) is then the maximum disagreement among
models in the ensemble Gt, with bt(s, a) ∝ supf1,f2∈Gt ‖f1(s, a) − f2(s, a)‖2. Since functions in
Gt agree on Dt, a large bt(s, a) indicates that (s, a) is novel. See example 1 for more details.

4

Under review as a conference paper at ICLR 2021

Empirically, an ensemble’s model disagreement (Osband et al., 2018; Azizzadenesheli et al., 2018;
Burda et al., 2019; Pathak et al., 2019; Lowrey et al., 2019) has been used for designing bonuses
that incentivize exploration. This paper utilizes an ensemble of neural networks to approximate the
version space Gt, where each model is trained on Dt using SGD with different initialization. The
bonus is set as a function of maximum disagreement among the ensemble’s predictions.

Optimistic model-based min-max IL: For model-based imitation (line 7), MobILE takes the current
model P̂t and discriminators F as inputs and searches for a policy that approximately minimizes the
divergence defined by P̂n andF : dt(π, πe) := maxf∈F

[
Es,a∼dπ

P̂t

(f(s)− bt(s, a))− Es∼dπe f(s)
]
.

Note that, for a fixed π, the arg maxf∈F is identical with or without the bonus term, since
Es,a∼dπ

P̂t

bt(s, a) is independent of f . Thus the bonus does not affect the search for the most powerful
discriminators. In our implementation, we use the Maximum Mean Discrepancy (MMD) with a
Radial Basis Function (RBF) kernel to model discriminators F2. We compute arg minπ dn(π, πe) by
iteratively (1) computing the arg max discriminator f given current π, and (2) using policy gradient
(PG) methods (e.g., TRPO) to perform gradient descent on π under P̂t with f(s, a)− b(s, a) as the
cost. Specifically, for line 7, we iterate between the following two steps; (1) update discriminator:
f̂ = arg maxf∈F Es∼dπ̂

P̂t

f(s)− Es∼dπe f(s) and (2) update policy: π̂ = π̂ − η · ∇πV π̂P̂t,f̂−b, where

the PG step uses the learnt dynamics model P̂t and the optimistic IPM cost f̂(s)− bt(s, a).

3.2 MOBILE: EXPLORE AND IMITATE DILEMMA

We note that MobILE automatically trades-off exploration and imitation. More specifically, the bonus
is designed such that it has high values for states in the state space that have not been visited, and low
values for states in the state space that have been frequently visited by the sequence of learned policies
so far. By incorporating the bonus into the discriminator f ∈ F (e.g., f̃(s, a) = f(s)− bt(s, a)), we
diminish the power of discriminator f at novel state-action space regions. Thus, when matching the
learner’s states to expert’s states, we relax the state-matching constraint at those novel regions so that
exploration is encouraged. On the other hand, for well explored state regions, we force the learner’s
states to match the expert’s states using the full power of the discriminators.

Is exploration necessary to solve the ILFO problem? Conventional wisdom from the IL literature,
where, the learner has access to expert actions suggests that exploration is not required for successful
imitation – indeed, standard IL approaches such as BC (Ross & Bagnell, 2010) and DAgger (Ross
et al., 2011a) reduce IL to supervised learning and do not rely on exploration to yield successful
results. Section 4.2 shows that exploration is necessary to solve the ILFO problem efficiently.

4 ANALYSIS

Recall that Algorithm 1 generates one state-action trajectory τ t := {sth, ath}Hh=0 at iteration t and
estimates model P̂t based on Dt which contains previous t trajectories τ0, . . . , τ t−1. We provide a
unified analysis under the assumption that the model fitting step gives us a calibrated model (Curi
et al., 2020), i.e. one that offers predictions coupled with confidence interval. More specifically:

Assumption 2 (Calibrated Model). For all iteration t with t ∈ N, with probability 1 − δ, we
have a model P̂t and its associated uncertainty measure σt : S × A 7→ R+, such that for all
s, a ∈ S ×A:3

∥∥∥P̂t(·|s, a)− P ?(·|s, a)
∥∥∥

1
≤ min {σt(s, a), 2} .

Example 1 (General class G). Assume G is discrete (but could be exponentially large with com-
plexity measure ln(|G|)), and supg∈G,s,a ‖g(s, a)‖2 ≤ G ∈ R+. For model learning, ĝt is the the

least square solution, i.e., ĝt = arg ming∈G
∑t−1
k=0

∑H−1
h=0

∥∥g(skh, a
k
h)− skh+1

∥∥2

2
. For the uncertainty

measure, compute a version space Gt =
{
g :
∑t−1
k=0

∑H−1
h=0

∥∥g(skh, a
k
h)− ĝt(skh, akh)

∥∥2

2
≤ zt

}
, where

2For MMD with kernel k, F = {w>φ(s, a)|‖w‖2 ≤ 1} where, < φ(s, a), φ(s′, a′) >= k((s, a), (s′, a′)).
3the uncertainty measure σt(s, a) will depend on the input failure probability δ, which we drop here for

notational simplicity. When we introduce specific examples, this dependence on δ will be made explicit.

5

Under review as a conference paper at ICLR 2021

zt = 2σ2G2ln(2t2|G|/δ). Set σt(s, a) = 1
σ maxg1,g2∈G ‖g1(s, a)−g2(s, a)‖2, i.e., the maximum dis-

agreement between any two functions in the version space Gt. Refer to Proposition 12 for more details.

The use of maximum disagreement above motivates our practical implementation where we use an
ensemble of neural networks to approximate the version space and use the maximum disagreement
among the models’ predictions as the bonus. We refer readers to Appendix for more details.

4.1 REGRET BOUND

We bound the regret with the quantity named Information Gain I (Srinivas et al., 2009):

IT := max
Alg

EAlg

[
T−1∑
t=0

H−1∑
h=0

min
{
σ2
t (sth, a

t
h), 1

}]
, (3)

where Alg is any adaptive algorithm (thus including Algorithm 1) that maps from history before
iteration t to some policy πt ∈ Π. After the main theorem, we give concrete examples for IT where
we show that IT has extremely mild growth rate with respect to T (i.e., logarithimic). Denote V π as
the expected total cost of π under the true cost function c and the real dynamics P ?.
Theorem 3 (Main result). Assume model learning is calibrated (i.e., Assumption 2 holds for all t).
In Algorithm 1, set bonus bt(s, a) := H min{σt(s, a), 2}. There exists a set of parameters, such that
after running Algorithm 1 for T iterations, we have:

E
[

min
t∈[0,...,T−1]

V πt − V π
e

]
≤ O

(
H2.5
√
IT√

T
+H

√
ln(TH|F|)

N

)
.

Appendix A contains proof of Theorem 3. This theorem indicates that as long as IT grows o(
√
T), we

find a policy that is at least as good as the expert policy when T and N approach infinity. We present
several remarks below regarding specializing the above unified theorem to special instances. For KNR
and general G with bounded Eluder dimension (Osband & Van Roy (2014)), we can show that IT
grows as ln(TH). Thus, the algorithm converges to the expert policy at the rate Õ(1/

√
T + 1/

√
N).

Corollary 4 (Bounded Eluder dimension (Example 1)). For general G, we assume that G has
Eluder-dimension dE(ε) (Definition 3 in Osband & Van Roy (2014)). Denote dE = dE(1/TH).
We can upper bound the information gain: IT = O

(
HdE + dE ln(T 3H|G|) ln(TH)

)
(see 14 for

details). Thus, E
[
mint∈[0,...,T−1] V

πt − V πe
]

= Õ

(
H3
√
dE ln(TH|G|)√

T
+H

√
ln(TH|F|)

N

)
.

Thus as long as G has bounded complexity in terms of the Eluder dimension, the maximum disagree-
ment among models in the version space Gt leads to near-optimal guarantees.

4.2 IS EXPLORATION NECESSARY IN ILFO?

To answer this question, we present a novel reduction of the ILFO problem to a Multi-Armed Bandit
(MAB) problem, for which we know exploration is necessary (Bubeck & Cesa-Bianchi, 2012); this
indicates that exploration is necessary to solve the ILFO problem efficiently.

Consider a MAB problem with A actions {ai}Ai=1. Each action’s ground truth reward ri ∼ N (µi, 1)
is from a Gaussian with mean µi and variance 1. Without loss of generality, assume a1 is the optimal
arm, i.e., µ1 > µi ∀ i 6= 1. We convert this MAB instance into an MDP. Specifically, set H = 2.
Suppose we have a fixed initial state s0 which has A actions. For the one step transition, we have
P (·|s0, ai) = N (µi, 1), i.e., g∗(s0, ai) = µi. Here we denote the optimal expert policy πe as
πe(s0) = a1, i.e., expert policy picks the optimal arm in the MAB instance. Hence, when executing
πe, we note that the state s1 generated from πe is simply the stochastic reward of a1 in the original
MAB instance. Assume that we have observed infinitely many such s1 from the expert policy πe, i.e.,
we have infinitely many samples of expert state data, i.e., N →∞. Note, however, we do not have
access to expert actions (since this is the ILFO setting). This expert data is equivalent to revealing the
optimal arm’s mean reward µ1 to the MAB learner a priori. Hence solving the ILFO problem on this
MDP is no easier than solving the original MAB instance with one additional piece of information
which is that optimal arm’s mean reward is µ1 (but the identity of the best arm is unknown).

6

Under review as a conference paper at ICLR 2021

1 2 3 4 5
Online Samples 1e4

200

400

Re
tu

rn
 (

Va
lu

e)

CartPole-v1 (3 traj.)

BC
Expert
MobILE (Ours)

1 2 3 4 5
Online Samples 1e4

200

400

CartPole-v1 (5 traj.)

1 2 3 4 5
Online Samples 1e4

200

400

CartPole-v1 (10 traj.)

1 2 3 4 5
Online Samples 1e4

200

400

CartPole-v1 (20 traj.)

1 2 3
Online Samples 1e4

40

20

Re
tu

rn
 (

Va
lu

e)

Reacher-v2 (5 traj.)

0.5 1.0 1.5
Online Samples 1e4

40

20

Reacher-v2 (10 traj.)

0.5 1.0 1.5
Online Samples 1e4

40

20

Reacher-v2 (20 traj.)

0.5 1.0 1.5
Online Samples 1e4

40

20

Reacher-v2 (40 traj.)

0.5 1.0 1.5
Online Samples 1e6

1000

2000

3000

Re
tu
rn
 (
Va
lu
e)

Hopper-v2 (5 traj.)

0.5 1.0 1.5
Online Samples 1e6

1000

2000

3000

Hopper-v2 (10 traj.)

0.5 1.0 1.5
Online Samples 1e6

1000

2000

3000

Hopper-v2 (20 traj.)

0.5 1.0 1.5
Online Samples 1e6

1000

2000

3000

Hopper-v2 (40 traj.)

Figure 1: Comparing MobILE (red) against BC (green) and Expert (blue) on Cartpole-v1 (1st

row), Reacher-v2 (2nd row), Hopper-v2 (3th row) by varying amounts of expert trajectories.
MobILE matches or exceeds BC’s performance despite BC having access to expert actions.

Theorem 5. Consider solving a Gaussian MAB with the additional information that the optimal
arm’s mean reward is µ (i.e., µ is known but the identity of the best arm is unknown). For any
algorithm, there exists a MAB instance with number of arms A ≥ 2, such that the expected regret is
still Ω(

√
AT), i.e., the additional information does not help improving the worst-case regret bound.

Appendix A contains proof of Theorem 5. Theorem 5 shows that solving ILFO, with even infinite
expert data, is at least as hard as solving the MAB problem with the known optimal arm’s mean
reward which incurs the same worst case

√
AT regret bound as the one in the classic MAB setting.

In contrast, in traditional IL and full-information supervised learning settings, methods like BC have
sample complexities that scale as poly ln(A). The necessity for exploration in ILFO is manifested in
the exponential gap in the sample complexity dependence on A between IL and the IFLO setting.

5 EXPERIMENTS

This section seeks to answer the following questions:

• MobILE’s behavior: How does MobILE perform relative to other model-based ILFO methods?
• Importance of optimism: Is optimism important for solving ILFO with MobILE? How

does MobILE behave with varying levels of optimism?
• Stochastic environments: How does MobILE perform in MDPs with stochastic dynamics?

We consider tasks from Open AI Gym (Brockman et al., 2016) simulated with Mujoco (Todorov
et al., 2012) using Cartpole-v1, Reacher-v2, and Hopper-v2 tasks. For Reacher-v2,
following Sun et al. (2019b), we discretize every action dimension into five equally spaced bins.
For Hopper-v2, we work with continuous actions. We use TRPO (Schulman et al., 2015) for
training an expert with value ≈ 460,−10, 3000 for Cartpole-v1, Reacher-v2, Hopper-v2.
We setup Hopper-v2 similar to prior model-based RL works (Kurutach et al., 2018; Luo et al.,
2018). We report results with 3, 5, 10, 20 expert trajectories for Cartpole-v1 and with 5, 10, 20, 40
trajectories for Reacher-v2 and Hopper-v2; all of our results are averaged over 3 seeds.

We benchmark MobILE against BC instead of other model-based ILFO algorithms. Note, (a) BC
upperbounds performance of other model based approaches such as BC-O (Torabi et al., 2018), (b)
other approaches like Edwards et al. (2019) require deterministic environments and discrete actions,
whereas, MobILE works with stochastic environments and continuous actions. Unlike MobILE and
other ILFO methods, BC has access to expert actions and thus is a non-trivial benchmark. We report
the average across 3 seeds of the best policy obtained with BC. See Appendix C for more details.

7

Under review as a conference paper at ICLR 2021

0.5 1.0 1.5
Online Samples 1e4

40

20

Re
tu

rn
 (

Va
lu

e)

Reacher-v2 (10 traj.)

Expert
=0.0

=0.005 (best)
=0.15

0.5 1.0 1.5
Online Samples 1e4

0.05

0.10

Bo
nu
s

Reacher-v2 (10 traj.)

0.5 1.0 1.5
Online Samples 1e6

0

1000

2000

3000

Re
tu

rn
 (

Va
lu

e)

Hopper-v2 (10 traj.)

Expert
=0.0

=0.1 (best)
=0.7

0.5 1.0 1.5
Online Samples 1e6

5

10

15

20

Bo
nu

s

Hopper-v2 (10 traj.)

Figure 2: From left to right: 1st/3rd plot – learning curves (without error bars to avoid clutter) with
varying λ for Reacher-v2, Hopper-v2; 2nd/4th plot — bonus variation vs. algorithm progress
for optimal λ for Reacher-v2, Hopper-v2. Higher λ implies larger bonuses added to the rewards.
Note that lower λ leads to sample inefficient learning; higher λ also leads to highly sub-optimal
behavior. Successful imitation requires trading off exploration and imitation with intermediate λ.

5.1 BENCHMARKING MOBILE ON MUJOCO SUITE

Figure 1 compares MobILE with BC. Note that MobILE matches or exceeds BC’s performance
despite BC having access to expert actions while MobILE functions without expert actions. This
implies MobILE improves upon BC-O (Torabi et al., 2018), since it is outperformed by BC. Note that
BC offers strong results in these benchmarks owing to deterministic transition dynamics; in section 5.3,
we compare MobILE with BC on environments that exhibit stochastic transition dynamics.

5.2 IMPORTANCE OF THE OPTIMISTIC MDP CONSTRUCTION

We consider Reacher-v2 and Hopper-v2 with 10 expert trajectories. We vary the level of
exploration performed by MobILE by varying λ (the hyper-parameter that trades off discriminator
cost against the bonus – for details, see Appendix section C.1). Figure 2 indicates that the value
of λ tends to influence MobILE’s performance. In particular, λ = 0 implies the algorithm is not
explicitly incentivized to explore; it explores because of sampling actions from a stochastic policy.
We observe that lower λ’s are associated with sample inefficiency in terms of number of online
interactions needed to solve the problem. A large λ however implies the algorithm over-explores and
is not adequately rewarded for distribution matching. The key to the success of MobILE is balancing
exploration with imitation. Empirically, we observe an initial increase in the bonus signifying that
the algorithm explores followed by a decay as the algorithm trades-off exploration for imitation.

5.3 PERFORMANCE WITH STOCHASTIC ENVIRONMENTS

1 2 3 4
Online Samples 1e4

50

100

150

Re
tu

rn
 (

Va
lu

e)

CartPole-v0 (100 traj.)

BC
Expert
MobILE (Ours)

Figure 3: Comparing MobILE
against BC in a stochastic variant
of Cartpole-v0. While BC fails
with stochastic transition dynamics,
MobILE performs reliable imitation.

We consider a stochastic variant of Cartpole-v0,
wherein, zero mean additive Gaussian noise is added to
the transition dynamics. The variance of the noise is not
known to the learner. Figure 3 presents the results of BC in
comparison to MobILE for this problem. We observe that
this minor modification to the environment leads to rapid
degradation of BC’s performance. This result indicates
that stochastic transition dynamics are not straightforward
for algorithms relying on BC, for e.g. BC-O, to reliably
solve while MobILE successfully solves the ILFO prob-
lem even with stochastic transition dynamics.

6 CONCLUSIONS

We introduce MobILE, a model-based ILFO approach
that works for MDPs with stochastic transition dynamics
and continuous action spaces. MobILE uses ideas from
self-supervision by learning dynamics models and using this for bonus-based optimistic imitation.
MobILE automatically balances exploration and imitation and provably matches the expert’s behavior.
We show that exploration is necessary in ILFO as it is fundamentally harder than IL where the experts’
actions are known. Our experiments on benchmark tasks (with discrete and continuous actions,
stochastic and deterministic transitions) demonstrate that MobILE matches the expert efficiently and
reliably.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
ICML. ACM, 2004.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235–256, 2002.

Yusuf Aytar, Tobias Pfaff, David Budden, Tom Le Paine, Ziyu Wang, and Nando de Freitas. Playing
hard exploration games by watching youtube. In NeurIPS, pp. 2935–2945, 2018.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In International Conference on Machine Learning, pp. 263–272, 2017.

Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient exploration
through bayesian deep q-networks. In ITA, pp. 1–9. IEEE, 2018.

Ronen I. Brafman and Moshe Tennenholtz. R-max - a general polynomial time algorithm for
near-optimal reinforcement learning. J. Mach. Learn. Res., 3:213–231, 2001.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai Gym. arXiv preprint arXiv:1606.01540, 2016.

Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and non-stochastic multi-
armed bandit problems. Found. Trends Mach. Learn, 5(1):1–122, 2012.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random network
distillation. In ICLR. OpenReview.net, 2019.

Sebastian Curi, Felix Berkenkamp, and Andreas Krause. Efficient model-based reinforcement
learning through optimistic policy search and planning. arXiv preprint arXiv:2006.08684, 2020.

Hal Daumé, John Langford, and Daniel Marcu. Search-based structured prediction. Mach. Learn.,
75(3):297–325, June 2009. ISSN 0885-6125. doi: 10.1007/s10994-009-5106-x. URL https:
//doi.org/10.1007/s10994-009-5106-x.

Marc Deisenroth and Carl E. Rasmussen. PILCO: A model-based and data-efficient approach to
policy search. In International Conference on Machine Learning, pp. 465–472, 2011.

Siddharth Desai, Ishan Durugkar, Haresh Karnan, Garrett Warnell, Josiah Hanna, Peter Stone, and
AI Sony. An imitation from observation approach to transfer learning with dynamics mismatch.
Advances in Neural Information Processing Systems, 33, 2020.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https:
//github.com/openai/baselines, 2017.

Ashley D. Edwards, Himanshu Sahni, Yannick Schroecker, and Charles L. Isbell Jr. Imitating latent
policies from observation. In ICML, 2019.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In ICML, 2016.

Jaime F Fisac, Anayo K Akametalu, Melanie N Zeilinger, Shahab Kaynama, Jeremy Gillula, and
Claire J Tomlin. A general safety framework for learning-based control in uncertain robotic
systems. IEEE Transactions on Automatic Control, 64(7):2737–2752, 2018.

Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A divergence minimization
perspective on imitation learning methods. In Conference on Robot Learning, pp. 1259–1277.
PMLR, 2020.

9

https://doi.org/10.1007/s10994-009-5106-x
https://doi.org/10.1007/s10994-009-5106-x
https://github.com/openai/baselines
https://github.com/openai/baselines

Under review as a conference paper at ICLR 2021

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning with
model-based acceleration, 2016.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,
2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. CoRR, abs/1606.03476,
2016.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. CoRR, abs/1906.08253, 2019.

Sham Kakade, Akshay Krishnamurthy, Kendall Lowrey, Motoya Ohnishi, and Wen Sun. Information
theoretic regret bounds for online nonlinear control. arXiv preprint arXiv:2006.12466, 2020a.

Sham M. Kakade. A natural policy gradient. In NIPS, pp. 1531–1538, 2001.

Sham M. Kakade, Michael J. Kearns, and John Langford. Exploration in metric state spaces. In
ICML, 2003.

Sham M. Kakade, Akshay Krishnamurthy, Kendall Lowrey, Motoya Ohnishi, and Wen Sun. Informa-
tion theoretic regret bounds for online nonlinear control. In NeurIPS, 2020b.

Liyiming Ke, Matt Barnes, Wen Sun, Gilwoo Lee, Sanjiban Choudhury, and Siddhartha Srinivasa.
Imitation learning as f -divergence minimization. arXiv preprint arXiv:1905.12888, 2019.

Michael Kearns and Satinder Singh. Near optimal reinforcement learning in polynomial time.
Machine Learning, 49(2-3):209–232, 2002a.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.
Machine learning, 49(2-3):209–232, 2002b.

Jonathan Ko, Daniel J Klein, Dieter Fox, and Dirk Haehnel. Gaussian processes and reinforce-
ment learning for identification and control of an autonomous blimp. In Proceedings 2007 ieee
international conference on robotics and automation, pp. 742–747. IEEE, 2007.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. In ICLR. OpenReview.net, 2018.

Thomas Lampe and Martin A. Riedmiller. Approximate model-assisted neural fitted q-iteration. In
IJCNN, pp. 2698–2704. IEEE, 2014.

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020. doi:
10.1017/9781108571401.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. CoRR, abs/1504.00702, 2015.

Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design for nonlinear biological
movement systems. In ICINCO, pp. 222–229, 2004.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan On-
line, Learn Offline: Efficient Learning and Exploration via Model-Based Control. In International
Conference on Learning Representations (ICLR), 2019.

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorithmic
framework for model-based deep reinforcement learning with theoretical guarantees. arXiv preprint
arXiv:1807.03858, 2018.

Horia Mania, Michael I Jordan, and Benjamin Recht. Active learning for nonlinear system identifica-
tion with guarantees. arXiv preprint arXiv:2006.10277, 2020.

Charith Mendis, Cambridge Yang, Yewen Pu, Saman P. Amarasinghe, and Michael Carbin. Compiler
auto-vectorization with imitation learning. In NeurIPS, pp. 14598–14609, 2019.

10

Under review as a conference paper at ICLR 2021

Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural network dynamics
for model-based deep reinforcement learning with model-free fine-tuning. In IEEE International
Conference on Robotics and Automation, pp. 7559–7566, 2018.

Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In Proc. ICML, pp.
663–670, 2000.

Ian Osband and Benjamin Van Roy. Model-based reinforcement learning and the Eluder dimension.
In Advances in Neural Information Processing Systems, pp. 1466–1474, 2014.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. CoRR, abs/1806.03335, 2018.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In ICML, pp. 5062–5071, 2019.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic: example-guided
deep reinforcement learning of physics-based character skills. ACM Trans. Graphics, 2018.

D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Technical report, CMU,
1989.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
Neural Information Processing Systems, pp. 1177–1184, 2008.

Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, and Sham Kakade. Towards Generalization
and Simplicity in Continuous Control. In NIPS, 2017.

Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A game theoretic framework for model
based reinforcement learning. ArXiv, abs/2004.07804, 2020.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Yee Whye Teh and
D. Mike Titterington (eds.), AISTATS, JMLR Proceedings, pp. 661–668, 2010.

Stephane Ross and J Andrew Bagnell. Reinforcement and imitation learning via interactive no-regret
learning. arXiv preprint arXiv:1406.5979, 2014.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627–635, 2011a.

Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In AISTATS, pp. 627–635, 2011b.

Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic
exploration. In NIPS, pp. 2256–2264, 2013.

Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. Mathematics of
Operations Research, 39(4):1221–1243, 2014.

Karl Schmeckpeper, Oleh Rybkin, Kostas Daniilidis, Sergey Levine, and Chelsea Finn. Reinforcement
learning with videos: Combining offline observations with interaction. CoRR, abs/2011.06507,
2020.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region
policy optimization. CoRR, abs/1502.05477, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

Yuda Song, Aditi Mavalankar, Wen Sun, and Sicun Gao. Provably efficient model-based policy
adaptation. In International Conference on Machine Learning, pp. 9088–9098. PMLR, 2020.

11

Under review as a conference paper at ICLR 2021

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger. Gaussian process opti-
mization in the bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995,
2009.

Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew Bagnell. Deeply aggre-
vated: Differentiable imitation learning for sequential prediction. arXiv preprint arXiv:1703.01030,
2017.

Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-based
rl in contextual decision processes: Pac bounds and exponential improvements over model-free
approaches. In Conference on Learning Theory, pp. 2898–2933. PMLR, 2019a.

Wen Sun, Anirudh Vemula, Byron Boots, and Drew Bagnell. Provably efficient imitation learning
from observation alone. In ICML, volume 97. PMLR, 2019b.

Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the importance of
initialization and momentum in deep learning. In ICML, volume 28, 2013.

R. S. Sutton. First results with dyna, an integrated architecture for learning, planning, and reacting.
In Neural Networks for Control, pp. 179–189. The MIT Press: Cambridge, MA, USA, 1990.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In IEEE International Conference on Intelligent Robots and Systems, pp. 5026–5033, 2012.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In IJCAI, pp.
4950–4957, 2018.

Jonas Umlauft, Lukas Pöhler, and Sandra Hirche. An uncertainty-based control lyapunov approach
for control-affine systems modeled by gaussian process. IEEE Control Systems Letters, 2(3):
483–488, 2018.

Chao Yang, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Huaping Liu, Junzhou Huang, and Chuang
Gan. Imitation learning from observations by minimizing inverse dynamics disagreement. In
NeurIPS, 2019.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

A ANALYSIS OF ALGORITHM 1

We start by presenting the proof for the unified main result in Theorem 3. We then discuss the bounds
for special instances individually.

The following lemma shows that under Assumption 2, with bt(s, a) = H min{σt(s, a), 2}, we
achieve optimism at all iterations.

Lemma 6 (Optimism). Assume Assumption 2 holds, and set bt(s, a) = H min {σt(s, a), 2}. For all
state-wise cost function f : S 7→ [0, 1], denote the bonus enhance cost as f̃t(s, a) := f(s)− bt(s, a).
For all policy π, we have the following optimism:

V π
P̂t,f̃t

≤ V πP,f ,∀t.

Proof. In the proof, we drop subscript t for notation simplicity. We consider a fixed function f and
policy π. Also let us denote V̂ π as the value function of π under (P̂ , f̃), and V π as the value function
under (P, f).

12

Under review as a conference paper at ICLR 2021

Let us start from h = H , where we have V̂ πH(s) = V πH(s) = 0. Assume inductive hypothesis holds
at h+ 1, i.e., for any s, a, we have Q̂πh+1(s, a) ≤ Qπh+1(s, a). Now let us move to h. We have:

Q̂πh(s, a)−Qπh(s, a) = f̃(s, a) + Es′∼P̂ (·|s,a)V̂
π
h+1(s′)− f(s)− Es′∼P (·|s,a)V

π
h+1(s′)

≤ −H min{σ(s, a), 2}+ Es′∼P̂ (·|s,a)V
π
h+1(s′)− Es′∼P (·|s,a)V

π
h+1(s′)

≤ −H min{σ(s, a), 2}+H
∥∥∥P̂ (·|s, a)− P (·|s, a)

∥∥∥
1

≤ −H min{σ(s, a), 2}+H min{σ(s, a), 2} = 0,

where the first inequality uses the inductive hypothesis at time step h + 1. Finally, note that
V πh (s) = Ea∼π(s)Q

π
h(s, a), which leads to V̂ πh (s) ≤ V πh (s). This concludes the induction step.

The next lemma concerns the statistical error from finite sample estimation of Es∼dπe f(s).

Lemma 7. Fix δ ∈ (0, 1). For all t, we have that with probability at least 1− δ,∣∣∣∣∣Es∼dπe f(s)−
N∑
i=1

f(sei)/N

∣∣∣∣∣ ≤ 2

√
ln (2t2|F|/δ)

N
,∀f ∈ F .

Proof. For any t, we set the failure probability to be 6δ/(t2π2) at iteration t where we abuse notation
and point out that π = 3.14159.... Thus the total failure probability for all t ∈ N is at most δ. We
then apply classic Hoeffding inequality to bound Es∼dπe f(s) −

∑N
i=1 f(sei)/N with the fact that

f(s) ∈ [0, 1] for all s. We conclude the proof by taking a union bound over all f ∈ F .

Now we conclude the proof for Theorem 3.

Proof of Theorem 3. Assume that Assumption 2 and the event in Lemma 7 hold. Denote the joint of
these two events as E . Note that the probability of E is at most 2δ. For notation simplicity, denote

εstats = 2
√

ln(2T 2|F|/δ)
N .

In each model-based planning phase, recall that we perform model-based optimization on the
following objective:

πt = arg min
π∈Π

max
f∈F

[
Es,a∼dπ

P̂t

[f(s)− bt(s, a)]−
N∑
i=1

f(sei)/N

]
.

Note that for any π, using the inequality in Lemma 7, we have:

max
f∈Ft

[
Es,a∼dπ

P̂t

(f(s)− bt(s, a))−
N∑
i=1

f(sei)/N

]

= max
f∈F

[
Es,a∼dπ

P̂t

(f(s)− bt(s, a))− Es∼dπe f(s) + Es∼dπe f(s)−
N∑
i=1

f(sei)/N

]

≤ max
f∈F

[
Es,a∼dπ

P̂t

(f(s)− bt(s, a))− Es∼dπe f(s)
]

+ max
f∈F

[
Es∼dπe f(s)−

N∑
i=1

f(sei)/N

]

≤ max
f∈F

[
Es,a∼dπ

P̂t

(f(s)− bt(s, a))− Es,a∼dπe
P̂t

(f(s)− bt(s, a))

]
+ εstats

where in the last inequality we use optimism from Lemma 6, i.e., Es,a∼dπe
P̂t

(f(s) − bt(s, a)) ≤
Es∼dπe f(s).

13

Under review as a conference paper at ICLR 2021

Hence, for πt, since it is the minimizer and πe ∈ Π, we must have:

max
f∈F

[
Es,a∼dπt

P̂t

(f(s)− bt(s, a))−
N∑
i=1

f(sei)/N

]

≤ max
f∈F

[
Es,a∼dπe

P̂t

(f(s)− bt(s, a))−
N∑
i=1

f(sei)/N

]

≤ max
f∈F

[
Es,a∼dπe

P̂t

(f(s)− bt(s, a))− Es,a∼dπe
P̂t

(f(s)− bt(s, a))

]
+ εstats = εstats.

Note that F contains c, we must have:

Es,a∼dπt
P̂t

[c(s)− bt(s, a)] ≤
N∑
i=1

c(sei)/N + εstats ≤ Es∼dπe c(s) + 2εstats,

which means that V πt
P̂t;c̃t

≤ V πe + 2Hεstats.

Now we compute the regret in episode t. First recall that bt(s, a) = H min{σt(s, a), 2}, which means
that ‖bt‖∞ ≤ 2H as ‖c‖∞ ≤ 1, which means that ‖c− bt‖∞ ≤ 2H . Thus,

∥∥∥V π
P̂ ;c−bt

∥∥∥
∞
≤ 2H2.

Recall simulation lemma (Lemma 15), we have:

V πt − V π
e

≤ V πt − V πt
P̂t;c̃t

+ 2Hεstats

= HEs,a∼dπt
[
|c̃t(s, a)− c(s)|+ 2H2

∥∥∥P̂t(·|s, a)− P ?(·|s, a)
∥∥∥

1

]
+ 2Hεstat

= HEs,a∼dπt
[
H min{σt(s, a), 2}+ 2H2

∥∥∥P̂t(·|s, a)− P ?(·|s, a)
∥∥∥

1

]
+ 2Hεstat

≤ HEs,a∼dπt
[
H min{σt(s, a), 2}+ 2H2 min{σt(s, a), 2}

]
+ 2Hεstat

≤ 3H3Es,a∼dπt min{σt(s, a), 2}+ 2Hεstat

≤ 6H3Es,a∼dπt min{σt(s, a), 1}+ 2Hεstat

Now sum over t, and denote Eπt as the conditional expectation conditioned on the history from
iteration 0 to t− 1, we get:

T−1∑
t=0

[
V πt − V π

e
]
≤ 6H2

T−1∑
t=0

Eπt

[
H−1∑
h=0

min{σt(sth, ath), 1}

]
+ 2HTεstat

≤ 6H2
T−1∑
t=0

√H
√√√√Eπt

H−1∑
h=0

min{σ2
t (sth, a

t
h), 1}

+ 2HTεstat,

where in the last inequality we use E[a>b] ≤
√

E[‖a‖22]E[‖b‖22].

Recall that πt are random quantities, add expectation on both sides of the above inequality, and
consider the case where E holds and E holds, we have:

E

[
T−1∑
t=0

(
V πt − V π

e
)]
≤ 6H2.5E

T−1∑
t=0

√√√√Eπt
H−1∑
h=0

min {σ2
t (sth, a

t
h), 1}

+ 2HTεstat + P(E)TH

≤ 6H2.5

√T
√√√√E

[
T−1∑
t=0

H−1∑
h=0

min {σ2
t (sth, a

t
h), 1}

]+ 2HTεstat + 2δTH,

where in the last inequality, we use E[a>b] ≤
√

E[‖a‖22]E[‖b‖22]. This implies that that:

E
[
min
t
V πt − V π

e
]
≤ 6H2.5

√
T

√√√√max
Alg

EAlg

[
T−1∑
t=0

H−1∑
h=0

min {σ2
t (sth, a

t
h), 1}

]
+ 2Hεstats + 2Hδ.

14

Under review as a conference paper at ICLR 2021

Set δ = 1/(HT), we get:

E
[
V π − V π

e
]
≤ 6H2.5

√
T

√√√√max
Alg

EAlg

[
T−1∑
t=0

H−1∑
h=0

min {σ2
t (sth, a

t
h), 1}

]
+ 2H

√
ln(T 3H|F|)

N
+

2

T

where Alg is any adaptive mapping that maps from history from t = 0 to the end of the t− 1 iteration
to to some policy πt. This concludes the proof.

Below we discuss special cases.

A.1 KNRS

Example 2 (KNRs). We have g?(s, a) = W ?φ(s, a); φ(s, a) ∈ H, and sups,a ‖φ(s, a)‖ ≤ 1. We
learn P̂t via Kernel regression, i.e., ĝt(s, a) = Ŵtφ(s, a), where,

Ŵt = arg min
W

∑
s,a,s′∈Dt

‖Wφ(s, a)− s′‖22 + λ ‖W‖2F

, where ‖ · ‖F is the Frobenius norm. The uncertainty measure σt(s, a) is set as σt(s, a) =
βt
σ ‖φ(s, a)‖Σ−1

t
, where,

βt = {2λ‖W ?‖22 + 8σ2 · [ds ln(5) + 2 ln(t2/δ) + ln(4) + ln (det(Σt)/ det(λI))]}1/2,

and,

Σt =

t−1∑
k=0

H−1∑
h=1

φ(skh, a
k
h)φ(skh, a

k
h)> + λI,

where λ ∈ R+.Refer to Proposition 10 for more details.

Remark 8. Similar to RKHS, Gaussian processes (GPs) offer a calibrated model. Since GPs offer
similar regret bounds as RKHS, we refer readers to Curi et al. (2020) for details.

Corollary 9 (KNRs (Example 2)). For simplicity, consider the finite dimension setting where φ :

S × A 7→ Rd. We can show that IT = Õ
(
Hd+Hdds +Hd2

)
(see Proposition 11 for details),

where d is the dimension of the feature φ(s, a). Thus, we have

E
[

min
t∈[0,...,T−1]

V πt − V π
e

]
= Õ

(
H3
√
dds + d2

√
T

+H

√
ln(TH|F|)

N

)
.

We extend the above result to infinite dimensional RKHS below, where the dimension d in the above
corollary is replaced by the intrinsic dimension, which can be bounded for RBF, Matern, and other
common kernels (see Srinivas et al. (2009) for more details).

The following proposition shows that the bonus designed in Example 2 is valid.

Proposition 10 (KNR Bonus). Fix δ ∈ (0, 1). With probability at least 1− δ, for all t ∈ N, we have:∥∥∥P̂t(·|s, a)− P ?(·|s, a)
∥∥∥

1
≤ min

{
βt ‖φ(s, a)‖Σ−1

t
, 2
}
,∀s, a,

where βt =
√

2λ‖W ?‖22 + 8σ2 (ds ln(5) + 2 ln(t2/δ) + ln(4) + ln (det(Σt)/ det(λI))).

Proof. The proof directly follows the confidence ball construction and proof from Kakade et al.
(2020a). Specifically, from Lemma B.5 in Kakade et al. (2020a), we have that with probability at
least 1− δ, for all t: ∥∥∥(Ŵt −W ?

)
(Σt)

1/2
∥∥∥2

2
≤ βt.

15

Under review as a conference paper at ICLR 2021

Thus, with Lemma 16, we have:∥∥∥P̂t(·|s, a)− P ?(·|s, a)
∥∥∥

1
≤ 1

σ

∥∥∥(Ŵt −W ?)φ(s, a)
∥∥∥

2

≤
∥∥∥(Ŵt −W ?)(Σt)

1/2
∥∥∥ ‖φ(s, a)‖Σ−1

t
/σ

≤ βt
σ
‖φ(s, a)‖Σ−1

t
.

This concludes the proof.

The following proposition bounds the information gain quantity.

Proposition 11 (Information Gain on KNRs). For simplicity, let us assume φ : S × A 7→ Rd, i.e.,
φ(s, a) is a d-dim feature vector. In this case, we will have:

IT = O
(
H
(
d ln(T 2/δ) + dds + d2 ln

(
1 + ‖W ?‖22TH/σ2

))
ln
(
1 + ‖W ?‖22TH/σ2

))
.

Proof. From the previous proposition, we know that σ2
t (s, a) = (β2

t /σ
2)‖φ(s, a)‖2

Σ−1
t

. Set-

ting λ = σ2/‖W ?‖22, we will have β2
t /σ

2 ≥ 1, which means that min{σ2
t (s, a), 1} ≤

(β2
t /σ

2) min
{
‖φ(s, a)‖2Σ−1

t
, 1
}

.

Note that βt is non-decreasing with respect to t, so βt ≤ βT for T ≥ t, where

βT =
√

2σ2 + 8σ2(ds ln(5) + 2 ln(T 2/δ) + ln(4) + d ln(1 + TH‖W ?‖22/σ2))

Also we have
∑T−1
t=0

∑H−1
h=0 min

{
‖φ(sth, a

t
h)‖2

Σ−1
t

, 1
}
≤ H

∑T−1
t=0 min

{∑H−1
h=0 ‖φ(sth, a

t
h)‖2

Σ−1
t

, 1
}

,

since min{a1, b1}+ min{a2, b2} ≤ min{a1 + a2, b1 + b2}. Now call Lemma B.6 in Kakade et al.
(2020a), we have:

T−1∑
t=0

min

{
H−1∑
h=0

‖φ(sth, a
t
h)‖2

Σ−1
t
, 1

}
≤ 2 ln (det(ΣT)/ det(λI)) = 2d ln

(
1 + TH‖W ?‖22/σ2

)
.

(4)

Finally recall the definition of IT , we have:

IT =

T−1∑
t=0

H−1∑
h=0

min
{
σ2
t (sth, a

t
h), 1

}
≤ β2

T

σ2

T−1∑
t=0

H−1∑
h=0

min
{
‖φ(sth, a

t
h)‖Σ−1

t
, 1
}

≤ β2
T

σ2
2Hd ln(1 + ‖W ?‖22TH/σ2)

≤ 2Hd
(
2 + 8

(
ds ln(5) + 2 ln(T 2/δ) + ln(4) + d ln

(
1 + ‖W ?‖22TH/σ2

)))
ln
(
1 + ‖W ?‖22TH/σ2

)
= H

(
4d+ 32dds + 32d ln(T 2/δ) + 32d+ 2d2 ln

(
1 + ‖W ?‖22TH/σ2

))
ln
(
1 + ‖W ?‖22TH/σ2

)
,

which concludes the proof.

Extension to Infinite Dimensional RKHS When φ : S × A 7→ H where H is some infinite
dimensional RKHS, we can bound our regret using the following intrinsic dimension:

d̃ = max
{{sth,a

t
h}
H−1
h=0 }

T−1
t=0

ln

(
I +

1

λ

T−1∑
t=0

H−1∑
h=0

φ(sth, a
t
h)φ(sth, a

t
h)>

)
.

16

Under review as a conference paper at ICLR 2021

In this case, recall Proposition 10, we have:

βt ≤ βT ≤
√

2λ‖W ?‖22 + 8σ2 (ds ln(5) + 2 ln(t2/δ) + ln(4) + ln (det(ΣT)/ det(λI)))

≤
√

2λ‖W ?‖22 + 8σ2
(
ds ln(5) + 2 ln(t2/δ) + ln(4) + d̃

)
.

Also recall Eq. (4), we have:

T−1∑
t=0

min

{
H−1∑
h=0

‖φ(sth, a
t
h)‖2

Σ−1
t
, 1

}
≤ 2 ln (det(ΣT)/det(λI)) ≤ 2d̃.

Combine the above two, following similar derivation we had for finite dimensional setting, we have:

IT = Õ
(
Hd̃2 +Hd̃ds

)
.

A.2 GENERAL FUNCTION CLASS G WITH BOUNDED ELUDER DIMENSION

Proposition 12. Fix δ ∈ (0, 1). Consider a general function class G where G is discrete, and
supg∈G,s,a ‖g‖2 ≤ G. At iteration t, denote ĝt ∈ arg ming∈G

∑t−1
i=0

∑H−1
h=0 ‖g(sih, a

i
h) − sih+1‖22,

and denote a version space Gt as:

Gt =

{
g ∈ G :

t−1∑
i=0

H−1∑
h=0

∥∥g(sih, a
i
h)− ĝt(sih, aih)

∥∥2

2
≤ ct

}
, with ct = σG

√
ln(2t2|G|/δ)tH.

The with probability at least 1− δ, we have that for all t, and all s, a:∥∥∥P̂t(·|s, a)− P ?(·|s, a)
∥∥∥

1
≤ min

{
1

σ
max

g1∈Gt,g2∈Gt
‖g1(s, a)− g2(s, a)‖2 , 2

}
.

Proof. Consider a fixed function g ∈ G. Let us denote zth =
∥∥g(sth, a

t
h)− sth+1

∥∥2

2
−∥∥g?(sth, ath)− sth+1

∥∥2

2
. We have:

zth =
(
g(sth, a

t
h)− g?(sth, ath)

)> (
g(sth, a

t
h) + g?(sth, a

t
h)− 2g?(sth, a

t
h)− 2εth

)
=
∥∥g(sth, a

t
h)− g?(sth, ath)

∥∥2

2
− 2(g(sth, a

t
h)− g?(sth, ath))>εth.

Since εth ∼ N (0, σ2I), we must have:

2(g(sth, a
t
h)− g?(sth, ath))>εth ∼ N (0, 4σ2

∥∥g(sth, a
t
h)− g?(sth, ath)

∥∥2

2
)

Since supg,s,a ‖g(s, a)‖2 ≤ G, then 2(g(sth, a
t
h)− g?(sth, ath))>εth is a 2σG sub-Gaussian random

variable.

Call Lemma 3 in Russo & Van Roy (2014), we have that with probability at least 1− δ:∑
t

∑
h

∥∥g(sth, a
t
h)− sth+1

∥∥2

2
≥
∑
t

∑
h

∥∥g?(sth, ath)− sth+1

∥∥2

2

+ 2
∑
t

∑
h

∥∥g(sth, a
t
h)− g?(sth, ath)

∥∥2

2
− 4σ2G2 ln(1/δ).

Note that the above can also be derived directly from Azuma-Bernstein’s inequality. With a union
bound over all g ∈ G, we have:∑

t

∑
h

∥∥g(sth, a
t
h)− sth+1

∥∥2

2
≥
∑
t

∑
h

∥∥g?(sth, ath)− sth+1

∥∥2

2

+ 2
∑
t

∑
h

∥∥g(sth, a
t
h)− g?(sth, ath)

∥∥2

2
− 4σ2G2 ln(|G|/δ).

17

Under review as a conference paper at ICLR 2021

Set g = ĝt, and use the fact that gt is the minimizer of
∑
t

∑
h ‖g(sth, a

t
h)− sth+1‖22, we must have:∑

t

∑
h

∥∥ĝt(sth, ath)− g?(sth, ath)
∥∥2

2
≤ 2σ2G2ln(2t2|G|/δ).

Namely we prove that our version space Gt contains g? for all t. Thus, we have:∥∥∥P̂t(·|s, a)− P ?(·|s, a)
∥∥∥

1
≤ 1

σ
‖ĝt(s, a)− g?(s, a)‖2 ≤

1

σ
sup

g1∈Gt,g2∈Gt
‖g1(s, a)− g2(s, a)‖2,

where the last inequality holds since both g? and ĝt belongs to the version Gt.

Now we bound the information gain IT below. The proof mainly follows from the proof in Osband
& Van Roy (2014).
Lemma 13 (Lemma 1 in Osband & Van Roy (2014)). Denote βt = 2σ2G2 ln(t2|G|/δ). Let us
denote the uncertainty measure wt;h = supf1,f2∈Gt ‖f1(sth, a

t
h) − f2(sth, a

t
h)‖2 (note that wt;h is

non-negative). We have:

t−1∑
i=0

H−1∑
h=0

1{w2
t;h > ε} ≤

(
4βt
ε

+H

)
dE(
√
ε).

Proposition 14 (Bounding IT). Denote d = dE(1/TH). We have

IT =
(
1/σ2 +HdG2/σ2 + 8G2 ln(T 2|G|/δ)d ln(TH)

)
.

Proof. Note that the uncertainty measures wt;h are non-negative. Let us reorder the sequence
and denote the ordered one as w1 ≥ w2 ≥ w3 · · · ≥ wTH−H . For notational simplicity, denote
M = TH −H We have:

T−1∑
i=0

H−1∑
h=0

w2
t;h =

M−1∑
i=0

w2
i = 1 +

∑
i

w2
i 1{w2

i >
1

M
}.

Consider any wt where w2
t ≥ 1/M . In this case, we know that w2

1 ≥ w2
2 ≥ · · · ≥ w2

t ≥ 1/M . This
means that:

t ≤
∑
i

∑
h

1{w2
t;h > w2

t } ≤
(

4βT
w2
t

+H

)
dE(
√
wt) ≤

(
4βT
w2
t

+H

)
dE(1/M),

where the second inequality uses the lemma above, and the last inequality uses the fact that dE(ε) is
non-decreasing when ε gets smaller. Denote d = dE(1/M). We have that w2

t ≤
4βT d
t−Hd . This means

that for any w2
t ≥ 1/M , we must have w2

t ≤ 4βT d/(t−Hd). Thus, we have:

T−1∑
i=0

H−1∑
h=0

w2
t;h ≤ 1 +HdG2 +

M∑
τ=Hd+1

w2
τ1{wτ ≥ 1/M} ≤ 1 +HdG2 + 4βT d ln(M)

≤ 1 +HdG2 + 4βT d ln(TH)

Finally, recall the definition of IT , we have:

T−1∑
t=0

H−1∑
h=0

min{σ2
t (sth, a

t
h), 1} ≤

T−1∑
t=0

σ2
t (sth, a

t
h)

≤ 1

σ2

T−1∑
t=0

H−1∑
h=0

w2
t;h

≤ 1

σ2

(
1 +HdG2 + 4βT d ln(TH)

)
.

This concludes the proof.

18

Under review as a conference paper at ICLR 2021

A.3 PROOF OF THEOREM 5

This section provides the proof of Theorem 5.

Proof of Theorem 5. Below, we will construct A many MAB instances where each instance has A
many arms and each arm has a Gaussian reward distribution with the fixed variance σ2. Each of
the A instance has the maximum mean reward equal to ∆, i.e., all these A instances have the same
maximum arm mean reward. Consider any algorithm Alg that maps ∆ together with the history
of the interactions Ht = {a0, r0, a1, r1, . . . , at−1, rt−1} to a distribution over A actions. We will
show for any such algorithm alg that knows ∆, with constant probability, there must exist a MAB
instance from the K many MAB instances, such that Alg suffers at least Ω(

√
AT) regret where T is

the number of iterations.

Now we construct the A instances as follows. Consider the i-th instance (i = 1, . . . , A). For arm j in
the i-th instance, we define its mean as µij = 1{i = j}∆. Namely, for MAB instance i, its arms have
mean reward zero everywhere except that the i-th arm has reward mean ∆. Note that all these MAB
instances have the same maximum mean reward, i.e., ∆. Hence, we cannot distinguish them by just
revealing ∆ to the learner.

We will construct an additional MAB instance (we name it as 0-th MAB instance) whose arms have
reward mean zero. Note that this MAB instance has maximum mean reward 0 which is different from
the previous A MAB instances that we constructed. However, we will only look at the regret of Alg
on the previously constructed A MAB instances. I.e., we do not care about the regret of Alg(∆,Ht)
on the 0-th MAB instance.

Let us denote Pi (for i = 0, . . . , A) as the distribution of the outcomes of algorithm Alg(∆,Ht)
interacting with MAB instance i for T iterations, and Ej [Ni(T)] as the expected number of times
arm i is pulled by Alg(∆,Ht) in MAB instance j. Consider MAB instance i with i ≥ 1:

Ei[Ni(T)]− E0[Ni(T)] ≤ T ‖Pi − P0‖1 ≤ T
√

KL(P0,Pi) ≤ T
√

∆2E0[Ni(T)],

where the last step uses the fact that we are running the same algorithm Alg(∆,Ht) on both
instance 0 and instance i (i.e., same policy for generating actions), and thus, KL(P0,Pi) =∑A
j=1 E0[Nj(T)]KL (q0(j), qi(j)) (Lemma 15.1 in Lattimore & Szepesvári (2020)), where qi(j) is

the reward distribution of arm j at instance i. Also recall that for instance 0 and instance i, their
rewards only differ at arm i.

This implies that:

Ei[Ni(T)] ≤ E0[Ni(T)] + T
√

∆2E0[Ni(T)].

Sum over i = 1, . . . , A on both sides, we have:

A∑
i=1

Ei[Ni(T)] ≤ T + T

A∑
i=1

√
∆2E0[Ni(T)] ≤ T + T

√
A

√√√√ A∑
i=1

∆2E0[Ni(T)]

≤ T + T
√
A
√

∆2T

Now let us calculate the regret of Alg(∆,Ht) on i-th instance, we have:

Ri = T∆− Ei[Ni(T)]∆.

Sum over i = 1, . . . , A, we have:

A∑
i=1

Ri = ∆

(
AT −

A∑
i=1

Ei[Ni(T)]

)
≥ ∆

(
AT − T − T

√
A∆2T

)
Set ∆ = c

√
A/T for some c that we will specify later, we get:

A∑
i=1

Ri ≥ c
√
A

T
(AT − T − cAT) .

19

Under review as a conference paper at ICLR 2021

Set c = 1/4, we get:
A∑
i=1

Ri ≥ c
√
A

T
(AT − T − cAT) ≥ 1

4

√
AT (A− 1−A/4)

=
1

4

√
AT (3A/4− 1) ≥ 1

4

√
AT (A/4) ,

assuming A ≥ 2.

Thus there must exist i ∈ {1, . . . , A}, such that:

Ri ≥
1

16

√
AT.

Note that the above construction considered any algorithm Alg(∆,Ht) that maps ∆ and history to
action distributions. Thus it concludes the proof.

B AUXILIARY LEMMAS

Lemma 15 (Simulation Lemma). Consider any two functions f : S ×A 7→ [0, 1] and f̂ : S ×A 7→
[0, 1], any two transitions P and P̂ , and any policy π : S 7→ ∆(A). We have:

V πP ;f − V πP̂ ,f̂ =

H−1∑
h=0

Es,a∼dπP
[
f(s, a)− f̂(s, a) + Es′∼P (·|s,a)V

π
P̂ ,f̂ ;h

(s′)− Es′∼P̂ (·|s,a)V
π
P̂ ,f̂ ;h

(s′)
]

≤
H−1∑
h=0

Es,a∼dπP
[
f(s, a)− f̂(s, a) + ‖V π

P̂ ,f̂ ;h
‖∞‖P (·|s, a)− P̂ (·|s, a)‖1

]
.

where V πP,f ;h denotes the value function at time step h, under π, P, f .

Such simulation lemma is standard in model-based RL literature and the derviation can be found, for
instance, in the proof of Lemma 10 from Sun et al. (2019a).
Lemma 16. Consider two Gaussian distribution P1 := N (µ1, σ

2I) and P2 := N (µ2, σ
2I). We

have:

‖P1 − P2‖1 ≤
1

σ
‖µ1 − µ2‖2 .

C IMPLEMENTATION DETAILS

C.1 PRACTICAL INSTANTIATION OF MOBILE

We present a brief practical instantiation MobILE’s components with details in Appendix Section C.

Dynamics model learning: We employ Gaussian Dynamics Models parameterized by an MLP (Ra-
jeswaran et al., 2020), i.e., P̂ (s, a) := N (hθ(s, a), σ2I), where, hθ(s, a) = s+ σ∆s

·MLPθ(sc, ac),
where, θ are MLP’s trainable parameters, sc = (s − µs)/σs, ac = (a − µa)/σa. Next, for
(s, a, s′) ∈ D, ∆s = s′ − s and σ∆s

is the standard deviation of the state differences ∆s ∈ D.
Finally, we use SGD with momentum (Sutskever et al., 2013) for purposes of training the parameters
θ of the MLP.
Discriminator parameterization: We utilize MMD as our choice of IPM and define the discrimina-
tor as f(s) = w>ψ(s), where, ψ(s) are the Random Fourier Features (Rahimi & Recht, 2008).
Bonus parameterization: We utilize the discrepancy between predictions of an ensemble of a pair
of dynamics models hθ1(s, a) and hθ2(s, a) for designing the bonus. Denote the disagreement at any
(s, a) as δ(s, a) = ‖hθ1(s, a)− hθ2(s, a)‖2. For a replay buffer D, δD = max(s,a)∼D δ(s, a) is the
maximum discrepancy. We set bonus as b(s, a) = min(δ(s, a)/δD, 1) · λ where λ > 0 is a tunable
parameter. The normalization 1/δD helps the maintaining the bonus magnitude between (0, 1].
PG oracle: We use TRPO (Schulman et al., 2015) to perform policy optimization inside the learned
model.

20

Under review as a conference paper at ICLR 2021

Algorithm 2 MobILE: Model-based Imitation Learning and Exploring for ILFO (used in practical
implementation)

1: Require: Expert Dataset De, Access to dynamics of the true environment i.e. P ?.
2: Initialize Policy π0, Discriminator w0, Replay Buffer of pre-determined sizeD, Dynamics Model
P̂−1, Bonus b−1.

3: for t = 0, · · · , T − 1 do
4: Online Interaction: Execute πt in true environment P ? to get samples St.
5: Update replay buffer: D = Replay-Buffer-Update(D,St) (refer to section C.3.2).
6: Update dynamics model: Obtain P̂t by starting at P̂t−1 and update using replay buffer D

(refer to section C.3.1).
7: Bonus Update: Update bonus bt : S ×A → R+ using replay bufferD (refer to section C.3.3).

8: Discriminator Update: Update discriminator as wt ← maxw L(w;πt, P̂t, bt,De) (refer to
section C.3.4).

9: Policy Update: Perform incremental policy update through approx. minimization of L(·),
i.e.: πt ← arg minπ L(π;wt, P̂t, bt,De) by running KPG steps of TRPO

(refer to section C.3.5).
10: end for
11: Return πT .

C.2 ENVIRONMENT SETUP

This section sketches the details of how we setup the environments. We utilize the standard
environment horizon of 500, 50, 200 for Cartpole-v1, Reacher-v2, Cartpole-v0. For
Swimmer-v2 and Hopper-v2, we work with the environment horizon set to 400 (Kuru-
tach et al., 2018; Nagabandi et al., 2018; Luo et al., 2018; Rajeswaran et al., 2020). Further-
more, for Hopper-v2, we add the velocity of the center of mass to the state parameteriza-
tion (Rajeswaran et al., 2020; Luo et al., 2018). As noted in the main text, the expert policy is
trained using NPG/TRPO (Kakade, 2001; Schulman et al., 2015) until it hits a value of (approxi-
mately) 460,−10, 38, 3000, 181 for Cartpole-v1, Reacher-v2, Swimmer-v2, Hopper-v2,
Cartpole-v0 respectively. All the results presented in the experiments section are averaged over
three seeds. Furthermore, in terms of baselines, we compare MobILE to BC. Note that BC has
access to expert actions whereas our algorithm does not have access to the expert actions. For fair
comparison, we use the same policy architecture for both MobILE and BC. We report the average of
the best performance offered by BC for 500 epochs of training when run with 3 seeds, even if this
occurs at different epochs for each of the runs. Furthermore, we used 2 CPUs with 16-32 GB of RAM
usage to perform all our benchmarking runs implemented in Pytorch. Finally, we build our codebase
on top of Open-AI’s implementation of TRPO (Dhariwal et al., 2017) for environments with discrete
actions, and the MJRL repository (Rajeswaran et al., 2017) for continuous action environments.

C.3 PRACTICAL IMPLEMENTATION OF MOBILE

We will begin with presenting the implementation details of MobILE (refer to Algorithm 2):

C.3.1 DYNAMICS MODEL TRAINING

As detailed in the main paper, we utilize a class of Gaussian Dynamics Models parameterized by
an MLP (Rajeswaran et al., 2020), i.e. s′ ∼ s+N (hθ(sc, ac), σ

2 · I), where, hθ(·) is an MLP with
trainable parameters θ; sc, ac are centered and normalized state and actions respectively; note that we
predict normalized state differences instead of the next state directly.

In practice, we fine tune our estimate of dynamics models based on the new contents of the replay
buffer as opposed to re-training the models from scratch, which is computationally more expensive.
In particular, we start from the estimate P̂t−1 in the t − 1 epoch and perform multiple updates
gradient updates using the contents of the replay buffer D. We utilize constant stepsize SGD with
momentum (Sutskever et al., 2013) for updating our dynamics models. Furthermore, since the
distribution of (s, a, s′) pairs continually drift as the algorithm progresses (for instance, because we

21

Under review as a conference paper at ICLR 2021

observe a new state), we utilize gradient clipping to ensure our model does not diverge due to the
aggressive nature of our updates.

C.3.2 REPLAY BUFFER

Since we perform incremental training of our dynamics model, we utilize a replay buffer of a fixed
size rather than training our dynamics model on all previously collected online (s, a, s′) samples.
Note that the replay buffer could contain data from all prior online interactions should we re-train our
dynamics model from scratch at every epoch.

C.3.3 DESIGN OF BONUS FUNCTION

We utilize an ensemble of two transition dynamics models incrementally learned using the contents
of the replay buffer. Specifically, given the models hθ1(·) and hθ2(·), we compute the discrepancy as:
δ(s, a) = ||hθ1(s, a)− hθ2(s, a)||2. Moreover, given a replay buffer D, we compute the maximum
discrepancy as δD = max(s,a,s′)∼D δ(s, a). We then set the bonus as b(s, a) = min (1, δ(s, a)/δD) ·
λ, thus ensuring the magnitude of our bonus remains bounded between [0, λ].

C.3.4 DISCRIMINATOR UPDATE

Recall that fw(s) = w>ψ(s), where w are the parameters of the discriminator. Given a policy π, the
update for the parameters w take the following form:

max
w:||w||22≤ζ

L(w;π, P̂ , b,De) := E(s,a)∼dπ
P̂

[fw(s)− b(s, a)]− Es∼De [fw(s)]

≡ max
w

Lζ(w;π, P̂ , b,De) = E(s,a)∼dπ
P̂

[fw(s)− b(s, a)]− Es∼De [fw(s)]− 1

2
·
(
||w||22 − ζ

)
,

=⇒ ∂wLζ(w;π, P̂ , b,De) = Es∼dπ
P̂

[ψ(s)]− Es∼De [ψ(s)]− w ∈ 0,

where, ∂wLζ(w;π, P̂ , b,De) denotes the sub-differential of Lζ(·) wrt w. This implies:

1. Exact Update: w∗ = PB(ζ)

(
Es∼dπ

P̂
[ψ(s)]− Es∼De [ψ(s)]

)
, P· is the projection operator,

and B(ζ) is the ζ−norm ball.
2. Gradient Ascent Update:
wt+1 = PB(ζ)

(
(1− ηw)wt + ηw ·

(
Es∼dπ

P̂
[ψ(s)]− Es∼De [ψ(s)]

))
, ηw > 0 is the step-

size.

Empirically, we find either of the updates to work reasonably well. Furthermore, in certain cases, we
empirically observe the gradient ascent update to yield more stability compared to the exact updates.

C.3.5 MODEL-BASED POLICY UPDATE

Once the maximization of the discriminator parameters w is performed, consider the policy optimiza-
tion problem, i.e.,

min
π
L(π;w, P̂ , b,De) := E(s,a)∼dπ

P̂
[fw(s)− b(s, a)]− Es∼De [fw(s)]

≡ min
π
L(π;w, P̂ , b,De) = E(s,a)∼dπ

P̂
[fw(s)− b(s, a)]

Hence we perform model-based policy optimization under P̂ and cost function fw(s)− b(s, a). In
practice, we perform approximate minimization of L(·) by incrementally updating the policy using
KPG-steps of policy gradient, where, KPG is a tunable hyper-parameter. In our experiments, we find
that settingKPG to be around 10 to generally be a reasonable choice (for precise values, refer to Table
1). This paper utilizes TRPO (Schulman et al., 2015) as our choice of policy gradient method; note that
this can be replaced by other alternatives including PPO (Schulman et al., 2017), SAC (Haarnoja et al.,
2018) etc. Similar to practical implementations of existing policy gradient methods, we implement a
reward filter by clipping the IPM reward f(s) by truncating it between cmin and cmax as this leads
to stability of the policy gradient updates. Note that the minimization is done with access to P̂ ,

22

Under review as a conference paper at ICLR 2021

Parameter Cartpole-v1 Reacher-v2 Cartpole-v0 Hopper-v2

Environment Specifications
Horizon H 500 50 200 400
Expert Performance (≈) 460 −10 181 3000
online samples per outer loop 2 ·H 2 ·H 2 ·H 8 ·H
Dynamics Model
Architecture/Non-linearity MLP(64, 64)/ReLU MLP(64, 64)/ReLU MLP(64, 64)/ReLU MLP(512, 512)/ReLU
Optimizer(LR, Momentum, Batch Size) SGD(0.005, 0.99, 256) SGD(0.005, 0.99, 256) SGD(0.005, 0.99, 256) SGD(0.005, 0.99, 256)
train passes per outer loop 20 100 20 50
Grad Clipping 2.0 2.0 2.0 4.0
Replay Buffer Size 10 ·H 10 ·H 10 ·H 16 ·H
Ensemble based bonus
models/bonus range 2/[0, 1] 2/[0, 1] 2/[0, 1] 2/[0, 1]

bonus weight λ (grid search values)–
includes values for ablations

{0.00001, 0.0001,
0.001, 0.01}

{0.0005, 0.0015,
0.005, 0.015, 0.05, 0.15} {0.0001, 0.001, 0.01} {0.0001, 0.001,

0.01, 0.1, 0.5, 0.7}
IPM parameters
Step size for w update (ηw) Exact Exact Exact Exact
RFFs/BW Heuristic 128/0.1 quantile 128 / 0.1 quantile 128 / 0.1 quantile 128 / 0.1 quantile

Policy parameterization
Architecture/Non-linearity MLP(64, 64)/TanH MLP(64, 64)/TanH MLP(32, 32)/TanH MLP(32, 32)/TanH
Policy Constraints None None None log σmin = −1.0

Planning Algorithm
model samples per TRPO step 2 ·H 10 ·H 4 ·H 8 ·H
TRPO steps per outer loop (KPG) 3 10 5 10
Reward Filter (cmin, cmax) [−1, 0] [−1, 0] [−1, 0] [−1, 0]

TRPO Parameters
(CG iters, dampening, kl, gaeλ, γ)

(50, 0.001, 0.01,
0.97, 0.995)

(100, 0.001, 0.01,
0.97, 0.995)

(100, 0.001, 0.01,
0.97, 0.995)

(10, 0.0001, 0.025,
0.97, 0.995)

Critic parameterization
Architecture/Non-linearity MLP(128, 128)/ReLU MLP(128, 128)/ReLU MLP(32, 32)/ReLU MLP(128, 128)/ReLU

Optimizer
(LR, Batch Size, ε, Regularization) Adam(0.001, 64, 1e− 5, 0) Adam(0.001, 64, 1e− 5, 0) Adam(0.001, 64, 1e− 5, 0) Adam(0.001, 64, 1e− 8, 1e− 3)

train passes per TRPO update 1 1 1 2

Table 1: List of various Hyperparameters employed in MobILE’s implementation.

which implies we perform model-based planning. Empirically, for purposes of tuning the exploration-
imitation parameter λ, we minimize a surrogate namely: E(s,a)∼dπ

P̂
[(1− λ) · fw(s)− b(s, a)] (recall

that b(s, a) has a factor of λ associated with it). This ensures that we can precisely control the
magnitude of the bonuses against the IPM costs, which, in our experience is empirically easier to
work with.

C.4 HYPER-PARAMETER DETAILS

This section presents an overview of the list of hyper-parameters necessary to implement Algorithm 1
in practice, as described in Algorithm 2. The list of hyper-parameters is precisely listed out in table 1.
The hyper-parameters are broadly categorized into ones corresponding to various components of
MobILE, namely, (a) environment specifications, (b) dynamics model, (c) ensemble based bonus,
(d) IPM parameterization, (e) Policy parameterization, (f) Planning algorithm parameters, (g) Critic
parameterization. Note that if there a hyper-parameter that has not been listed, for instance, say, the
value of momentum for the ADAM optimizer in the critic, this has been left as is the default value
defined in Pytorch.

23

	Introduction
	Related Works

	Setting
	Function Approximation Setup

	Algorithm
	Components of MobILE
	MobILE: Explore And Imitate Dilemma

	Analysis
	Regret Bound
	Is Exploration Necessary in ILFO?

	Experiments
	Benchmarking MobILE on MuJoCo suite
	Importance of the optimistic MDP construction
	Performance with stochastic environments

	Conclusions
	Analysis of Algorithm 1
	KNRs
	General Function Class G with Bounded Eluder dimension
	Proof of Theorem 5

	Auxiliary Lemmas
	Implementation Details
	Practical Instantiation of MobILE
	Environment Setup
	Practical Implementation of MobILE
	Dynamics Model Training
	Replay Buffer
	Design of Bonus Function
	Discriminator Update
	Model-Based Policy Update

	Hyper-parameter Details

