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Abstract

Policies trained via Reinforcement Learning (RL) are often needlessly complex,
making them difficult to analyse and interpret. In a run with n time steps, a policy
will make n decisions on actions to take; we conjecture that only a small subset
of these decisions delivers value over selecting a simple default action. Given
a trained policy, we propose a novel black-box method based on statistical fault
localisation that ranks the states of the environment according to the importance
of decisions made in those states. We argue that among other things, the ranked
list of states can help explain and understand the policy. As the ranking method
is statistical, a direct evaluation of its quality is hard. As a proxy for quality, we
use the ranking to create new, simpler policies from the original ones by pruning
decisions identified as unimportant (that is, replacing them by default actions) and
measuring the impact on performance. Our experiments on a diverse set of standard
benchmarks demonstrate that pruned policies can perform on a level comparable to
the original policies. Conversely, we show that naive approaches for ranking policy
decisions, e.g., ranking based on the frequency of visiting a state, do not result in
high-performing pruned policies.

1 Introduction

Reinforcement learning is a powerful method for training policies that complete tasks in complex
environments. The policies produced are optimised to maximise the expected reward provided by the
environment. While performance is clearly an important goal, the reward typically does not capture
the entire range of our preferences. By focusing solely on performance, we risk overlooking the
demand for models that are easier to analyse, predict and interpret [16]. Our hypothesis is that many
trained policies are needlessly complex, i.e., that there exist alternative policies that perform just
as well or nearly as well but that are significantly simpler. This tension between performance and
simplicity is central to the field of explainable AI (XAI), and machine learning as a whole [11]; our
method aims to help by highlighting the most important parts of a policy.
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The starting point for our definition of “simplicity” is the assumption that there exists a way to make
a “simple choice”, that is, there is a simple default action for the environment. We argue that this is
the case for many environments in which RL is applied: for example, “repeat previous action” is a
straightforward default action for navigation tasks.

The key contribution of this paper is a novel method for ranking policy decisions according to their
importance relative to some goal. We argue that the ranked list of decisions is already helpful in
explaining how the policy operates. We evaluate our ranking method by using the ranking to simplify
policies without compromising performance, hence addressing one of the main hurdles for wide
adoption of deep RL: the high complexity of trained policies.

We produce a ranking by scoring the states a policy visits. The rank reflects the impact that replacing
the policy’s chosen action by the default action has on a user-selected binary outcome, such as
“obtain more than X reward”. It is intractable to compute this ranking precisely, owing to the high
complexity and the stochasticity of the environment and the policy, complex causal interactions
between actions and their outcomes, and the sheer size of the problem. Our work uses spectrum-based
fault localisation (SBFL) techniques [20, 31], borrowed from the software testing domain, to compute
an approximation of the ranking of policy decisions. SBFL is an established technique in program
testing for ranking the parts of a program source code text that are most likely to contain the root
cause of a bug. This ranking is computed by recording the executions of a user-provided test suite.
SBFL distinguishes passing and failing executions; failing executions are those that exhibit the bug.
Intuitively, a program location is more likely to be the root cause of the bug if it is visited in failing
executions but less (or not at all) in passing ones. SBFL is a lightweight technique and its rankings
are highly correlated with the location of the root cause of the bug [31]. We argue that SBFL is also a
good fit for analysing complex RL policies.

Our method applies to RL policies in a black-box manner, and requires no assumptions about the
policy’s training or representation. We evaluate the quality of the ranking of the decisions by the
proxy of creating new, simpler policies (we call them “pruned policies”) without retraining, and
then calculate the reward achieved by these policies. Experiments with agents for MiniGrid (a more
complex version of gridworlds) [7], CartPole [4] and a number of Atari games [4] demonstrate that
pruned policies maintain high performance (similar or only slightly worse than that of the original
policy) when taking the default action in the majority of the states (often 90% of the states). As
pruned policies are much easier to understand than the original policies, we consider this an important
step towards explainable RL. Pruning a given policy does not require re-training, and hence, our
procedure is relatively lightweight. Furthermore, the ranking of states by itself provides important
insight into the importance of particular decisions for the performance of the policy overall.

The code for reproducing our experiments is available on GitHub3, and further examples are provided
on the project website4.

2 Background

2.1 Reinforcement learning (RL)

We use a standard reinforcement learning (RL) setup and assume that the reader is familiar with the
basic concepts. An environment in RL is defined as a Markov decision process (MDP) and is denoted
by 〈S,A, P,R, γ, T 〉, where S is the set of states, A is the set of actions, P is the transition function,
R is the reward function, γ is the discount factor, and T is the set of terminal states. An agent seeks
to learn a policy π : S → A that maximizes the total discounted reward. Starting from the initial
state s0 and given the policy π, the state-value function is the expected future discounted reward as
follows:

Vπ(s0) = E

( ∞∑
t=0

γtR(st, π(st), st+1)

)
(1)

A policy π : S → A maps states to the actions taken in these states and may be stochastic. We treat
the policy as a black box, and hence make no further assumptions about π.

3https://github.com/hadrien-pouget/Ranking-Policy-Decisions. Experiments done at commit c972414
4https://www.cprover.org/deepcover/neurips2021/
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(a) (b)

Figure 1: (a) CartPole, in a state where the cart and pole are moving rapidly. The heatmap represents the
frequency of appearance of the possible pole angles (left) and the importance scores following SBFL (right).
While it is more frequent for the pole to be centred, SBFL successfully identifies that the policy’s decisions are
more important when the pole is close to falling. (b) MiniGrid. Traces of executions with the original policy
(left) and a pruned policy (right). States in which we take the default action are in blue. Both policies succeed,
but pruning unimportant actions simplifies the policy.

2.2 Spectrum-based fault localization (SBFL)

The reader is likely less familiar with spectrum-based fault localization (SBFL), as to the best of
our knowledge, it has not yet been used in RL. We therefore give a detailed description. SBFL
techniques [31] have been widely used as an efficient approach to aid in locating the causes of failures
in sequential programs. SBFL techniques rank program elements (say program statements) based
on their suspiciousness scores, which are computed using correlation-based measures. Intuitively, a
program element is more suspicious if it appears in failed executions more frequently than in correct
executions, and the exact formulas differ between the measures. Diagnosis of the faulty program can
then be conducted by manually examining the ranked list of elements in descending order of their
suspiciousness until the cause of the fault is found. It has been shown that SBFL techniques perform
well in complex programs [2].

SBFL techniques first execute the program under test using a test suite. A test suite comprises of a
set of inputs and an expected output for each input. A test passes when the output produced by the
program under test matches the expected output given by the test suite, and has failed otherwise. In
addition to the outcome of the test, SBFL techniques record the values of a set of Boolean flags that
indicate whether a particular program element was executed by that test.

The task of a fault localization tool is to compute a ranking of the program elements based on
the values of the Boolean flags recorded while executing the test suite. Following the notation
from [20], the suspiciousness score of each program statement s is calculated from a set of parameters
〈asep , asef , asnp , asnf 〉 that give the number of times the statement s is executed (e) or not executed (n)
on passing (p) and on failing (f ) tests. For instance, asep is the number of tests that passed and
executed s.

Many measures have been proposed to calculate the suspicious scores of program elements. In
Equations (2a)∼(2d) we list a selection of popular and high-performing measures [1, 9, 15, 30]; these
are also the measures that we use in our ranking procedure.

Ochiai:
asef√

(asef + asnf )(a
s
ef + asep)

(2a) Tarantula:

asef
asef +a

s
nf

asef
asef +a

s
nf

+
asep

asep+a
s
np

(2b)

Zoltar:
asef

asef + asnf + asep +
10000asnf a

s
ep

asef

(2c) Wong-II: asef − asep (2d)

SBFL-based tools present the list of program elements in descending order of their suspiciousness
scores to the user. There is no single best measure for fault localization; different measures perform
better on different types of programs, and it is best practice to use multiple measures [18]. In our
experiments, we combine the four measures listed above for this very reason.
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While more sophisticated versions of SBFL exist [3, 5], in this work we prefer to stick to the simpler
approach, which was sufficient for producing notable results.

3 Method: ranking policy decisions using SBFL

Inspired by the use of SBFL for localising the cause of a program’s outcome, we propose a new
SBFL-based method to identify the states in which decisions made by an RL policy are most important
for achieving its objective. Our method is modular and is composed of two phases: (1) generating
mutant policies and (2) ranking states based on the importance.

3.1 Definitions

Executions of RL policies We apply the SBFL technique to a set of executions (sometimes called
trajectories in the literature) of a given RL policy π with mutations. An execution τ of π describes
a traversal of the agent through the environment MDP using the RL policy π and is defined as a
sequence of states s0, s1, . . . and actions a0, a1, . . ., where s0 is an initial state and each subsequent
state si+1 obtained from the previous state si by performing action ai, as chosen using π(si). The
last state must be a terminal state. As π or the environment can be stochastic, each execution of π
may result in a different sequence of actions and states, and hence in a different τ . The set of all
possible executions is denoted by T . A decision of a policy π in a state s is a pair 〈s, π(s)〉. Note
that π(s) is the learned probability distribution from which an action in this state is obtained; in a
deterministic policy, π(s) is a single action for each s.

Passing and failing executions An execution is either successful or failed. We define the success
of an execution as a (binary) value of a given assertion on this execution. For example, the assertion
can be that the agent reaches its destination eventually, or that the reward of this execution is not lower
than 0.75 of the maximal reward for π. The assertion induces a Boolean function C : T → {0, 1}.
We say that an execution τ is a pass if C(τ) = 1, and is a fail otherwise. We use a binary condition
for simplicity, as SBFL is designed to work with passing and failing executions. This condition can
be relaxed [5], and we plan to investigate generalising this in future work.

Mutant executions We use SBFL to understand the impact of replacing actions by a default action.
The choice of the default action d is context dependent and can be configured by the user. For
example, an obvious default action for navigation is “proceed in the same direction”. The default
action can in principle be as basic as a single action, or as complex as a fully-fledged policy. In our
experiments, we evaluate two default actions. The first is “repeat the previous action”, defined as:

d(s0, . . . , si, a0, . . . , ai−1) = ai−1, (3)

and the second is “take a random action”. For A being the action space,

d(s0, . . . , si, a0, . . . , ai−1) = asi ∼ Unif (A). (4)

Once asi has been sampled, it is not re-sampled if the state si is revisited; the same action is used.
Using “take a random action” as the default action can be useful in cases where there is no other
obvious default action. However, we generally expect this to be a worse option than a default action
tailored to the environment. As the choice of d depends on the context and the user’s goals, it is
ultimately a user choice.

Using the default action, we create mutant executions, in which the agent takes the default action d
whenever it is in one of the mutant states. More formally, given a set of mutant states SM , we act
according to the policy πSM

defined as:

πSM
(s0, . . . , si, a0, . . . , ai−1) =

{
π(si) si /∈ SM ,
d(s0, . . . , si, a0, . . . , ai−1) si ∈ SM .

(5)

Decisions made in states in which the default action is a very good option are deemed less important.
In these states, not following the policy would be less consequential.
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3.2 Generating the test suite and mutant executions on-the-fly

The naïve approach to generating a comprehensive suite of mutant executions for applying SBFL
would be to consider all possible sets of mutant states SM—that is, we would need to consider all
possible subsets of the state space S. However, the state space of most RL environments is too large to
enumerate, and enumerating all possible subsets of S is intractable even for simplistic environments.

We use two algorithmic techniques to address this problem: (a) we generate mutant executions
on-the-fly, and (b) we use an abstraction function α : S → Ŝ to map the full set of states S to a
smaller, less complex set of abstract states Ŝ. Examples of these are in the supplementary material,
and may for example include down-scaling or grey-scaling images that are input to the agent, or
quantising a continuous state space. The set of possible mutations is then the set of subsets of Ŝ,
instead of the set of subsets of S. We then score the abstract states, rather than the full state space.
The test suite of mutant executions produced this way for π is denoted T (π) ⊆ T .

On-the-fly mutation We maintain a set SM ⊆ Ŝ per execution. We begin each execution τ by
initialising the set SM with the empty set of states. At each step of the execution, upon visiting a
state s, we check the current SM . If α(s) 6∈ SM , we add α(s) to SM according to the predefined
mutation rate µ (and take the default action); otherwise, we use π to determine the action in this state.
In case we re-visit an (abstract) state, we maintain the previous decision of whether to mutate state s
or not. This way, the states that are never visited in any of the executions are never mutated; hence,
we never consider “useless mutations” that mutate a state that is never visited. We finish by marking
τ as pass or fail according to C(τ). Note that a mutant execution may visit states not typically
encountered by π, meaning that we are even able to rank states that are out of distribution. This is
especially important when trying to understand how the policy behaves in parts of the environment it
is unfamiliar with.

Overall, our algorithm has five (tunable) parameters: the size of the test suite |T (π)|, the passing
condition C, the default action d, the mutation rate µ and the abstraction function α.

SBFL benefits from a balanced test suite of passing and failing executions [31], a ratio largely
determined by the choices of µ and C. The choice of C depends on the context. In our experiments
in Section 4.3, our goal was to find the states with highest impact on the expected reward. We set the
condition to be “receive more than X reward" for some X ∈ R, and chose X to yield a balanced
suite (i.e. if there were too many failed runs, we lowered X). In most cases actions important for
achieving at least X reward are important for maximising reward in general, so we found that this
worked well. In the cases where some actions are not important for achieving X , but later important
for getting even higher rewards (e.g., states that only appear after achieving X reward), we would
not have considered them important. The choice of µ is also significant. If it is too large, executions
fail too often, and the behaviour in mutant executions is uninteresting. If µ is too small, we do not
mutate states enough to learn anything, and in larger environments fail to mutate many of the states
we encounter. In our experiments, we selected µ manually, but this could easily be automated by a
parameter tuning algorithm.

3.3 Computing the ranking of the policy decisions

We now explain how to rank states according to the importance of policy decisions made in these
states, with respect to satisfying the condition. The ranking method is based on SBFL as described in
Section 2.2. We first create the test suite of mutant executions T (π) as described above. We denote
the set of all abstract states encountered when generating the test suite ST ⊆ Ŝ; these are the states
to which we assign scores. Any unvisited state is given the lowest possible score by default.

Similarly to SBFL for bug localisation, for each state s ∈ ST we calculate a vector
〈asep , asef , asnp , asnf 〉. We use this vector to track the number of times that s was unmutated (e)
or mutated (n) on passing (p) and on failing (f ) executions, and we update these scores based on
those executions in which the state was visited. In other words, the vector keeps track of success and
failure of mutant executions based on whether an execution took the default action in s or not. For
example, asep is the number of passing executions that took the action π(s) in the state s, and asnf is
the number of failing executions that took the default action in the state s.
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Definition 1 (Ranking). Given an SBFL measure m and a vector 〈asep , asef , asnp , asnf 〉 for each
(abstract) state s in the set Ŝ of (abstract) states of the policy, we define the ranking function
rank : Ŝ → {1, . . . , |Ŝ|} as the ordering of the states in Ŝ in the descending order according to the
values m(s); that is, the state with the maximal value will be the first in the ranking.

4 Experimental evaluation

4.1 Research Questions

Our goal is to demonstrate the applicability of our ranking method to a variety of standard environ-
ments and to provide evidence of the utility of the generated ranking. We aim to answer the following
research questions:

RQ1: How can we measure the relative importance of decisions for achieving the reward? What is a
good proxy for measuring this?

RQ2: Does the approach we present in this paper scale to large policies and complex environments?

We answer these questions in Section 4.3 by performing extensive experiments with various envi-
ronments and policies. In Section 4.4, we discuss possible applications of our ranking (including
interpretability), and the effect of choosing a different default action.

4.2 Experimental setup

We experimented in several environments. The first is Minigrid [7], a gridworld in which the agent
operates with a cone of vision and can navigate many different grids, making it more complex than
a standard gridworld. In each step the agent can turn or move forward. We also used CartPole [4],
the classic control problem with a continuous state-space. Finally, to test our ability to scale, we ran
experiments with Atari games [4].

We use policies that are trained using third-party code. No state abstraction is applied to the gridworld
environments (i.e., α is the identity). The state abstraction function for the CartPole environment
consists of rounding the components of the state vector between 0 and 2 decimal places, and then
taking the absolute value. For the Atari games, as is typically done, we crop the game’s border,
grey-scale, down-sample to 18×14, and lower the precision of pixel intensities to make the enormous
state space manageable. Note that these abstractions are not a contribution of ours, and were primarily
chosen for their simplicity. For our main experiments, we use “repeat previous action” as the default
action.

Examples of some environments, and important states found in them, are given in Figs. 1a and 1b.
Details about the state abstraction functions, policy training, hyperparameters, etc., are provided in
the full version of this paper [22].

We define two further measures in addition to the SBFL ones in Eq. (2), for comparison. Eq. (6a)
measures how frequently the state was encountered in the test suite. Eq. (6b) is a random ranking
of the states visited by the test suite. We use the FreqVis measure as a baseline because we are not
aware of any previous work with the same goals as ours for ranking policy decisions, and a naïve
approach to determining importance may be simply looking at how frequently a state is visited.

FreqVis: asep + asef + asnp + asnf (6a) Rand: ∼ Unif(0, 1) (6b)

4.3 Experimental results

Performance of pruned policies The precise ranking of decisions according to their importance
for the reward is intractable for all but very simple policies. To answer RQ1, in our experiments, we
use the performance of pruned policies as a proxy for the quality of the ranking computed by our
algorithm. In pruned policies, the default action is used in all but the top ranked states. For a given r
(a fraction or a percentage), we denote by rank [r] the subset of r top-ranked states. We denote by πr
the pruned policy obtained by pruning all but the top-r ranked states. That is, an execution of πr
retains actions in the r fraction of the most important states from the original policy π and replaces
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(a) CartPole States in Pruned Policy (b) CartPole Actions Taken

(c) Krull States in Pruned Policy (d) Krull Actions Taken

Figure 2: Performance of the pruned policies, measured as a percentage of the original reward. (a),(c): The
x-axis is the % of states where the original action is taken out of the set of all states encountered in the test suite.
(b),(d): The x-axis is the expected % of steps in which the original policy is followed over the default action
during an execution of the pruned policy. See the supplementary material for more detail.

the rest by default actions. The states that are in rank [r] are called the original states. We measure
the performance of the pruned policies for increasing values of r relative to the performance of the
original policy π.

These results are given in first four columns of Tab. 1, and some are represented graphically in
Figs. 2a,c. In these, SBFL stands for the SBFL portfolio, i.e., the combination of the four measures in
Eq. (2), where the best result is taken at each point. The results show that the pruned policies obtained
using the SBFL ranking can achieve performance that is comparable to π with less than 40% of the
original decisions (and in some cases the number is as low as 20%). The performance of SBFL-based
pruning is compared with random pruning in Eq. (6b) and FreqVis pruning in Eq. (6a). At first glance,
it seems that the FreqVis pruned policies perform well in Figs. 2a,c. To better understand this, we
show in the last two columns of Tab. 1 and in Figs. 2b,d how performance evolves with the proportion
of steps in which the original policy is used over the default policy (i.e. not replaced by the default
action). As shown in Figs. 2b and 2d, FreqVis does much worse by this metric, because it yields a
pruned policy that prefers to use the original policy as often as possible.

We observe that using our ranking method enables a significant pruning of the policies, while
maintaining performance. To answer RQ2, we experimented with larger and more complex Atari
environments. The results demonstrate that our framework is reasonably scalable, but also that the
quality of the ranking is significantly improved by using a state abstraction. The results in the larger
and more complex Atari environments show the effect of using a test suite that is too small: many
states are not encountered during the computation of the ranking. This means that rank [1], in which
the original policy is used in all of the states discovered while making the ranking, does not recover
the performance of the original policy. Increasing the size of the test suite would help, but this is not a
scalable solution. Instead, we use better state abstractions, which reduce the state space. In CartPole,
this allows us to tackle a continuous domain. In the Atari games, even the generic abstraction we use
in all the games is sometimes not enough (“x” in Tab. 1).

To show the potential utility of specialised abstractions, we create one for Breakout in which we
extract the coordinates of the ball and paddle. The results obtained with this abstraction are given in
Tab. 1 in the row labelled “Breakout (abs)”. While the new abstraction does worse in terms of states
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Table 1: Minimum percentage of original states in pruned policies, and percentage of steps in which the original
policy is used, before recovering 90% of original performance. Using default action “repeat previous action”.
Results are reported for the SBFL portfolio ranking and the random ranking. “x” denotes that the required
reward was never reached, cf. Sec. 4.3.

% of original states restored % of steps that use π

Environment SBFL random SBFL random
MiniGrid 49± 00 99± 00 76± 00 98± 01

Cartpole 31± 04 65± 02 22± 04 69± 02

Alien x x x x
Assault 45± 07 100± 00 93± 01 100± 00
Atlantis 50± 00 100± 00 99± 00 100± 00
BankHeist x x x x
BattleZone 30± 00 86± 07 84± 07 84± 08
Berzerk 47± 12 100± 00 88± 03 100± 00
Boxing x x x x
Breakout 10± 00 100± 00 54± 00 99± 01
Breakout (abs) 40± 00 85± 05 41± 00 81± 06
ChpperCmmnd x x x x
DemonAttack 20± 00 99± 01 98± 01 99± 02
Hero 48± 04 96± 03 86± 08 96± 04
IceHockey 65± 20 x 91± 08 x
Jamesbond 30± 13 68± 06 59± 20 67± 06
Krull 75± 12 99± 01 35± 21 98± 02
Phoenix 30± 00 92± 07 97± 00 92± 07
Pong 21± 03 79± 03 42± 01 78± 03
Qbert 40± 00 100± 00 84± 04 100± 00
Riverraid 95± 05 100± 00 99± 01 100± 00
RoadRunner x x x x
Seaquest 48± 04 94± 04 92± 04 91± 05
SpaceInvaders 30± 00 100± 00 93± 00 100± 00
StarGunner 40± 00 100± 00 99± 00 100± 00
YarsRevenge x x x x

pruned within the policy, it allows us to reach 90% of the policy’s original performance with 13%
fewer steps in which we use π over the default action.

4.4 Discussion

SBFL ranking for better understanding the RL policy Any strong claim about the ranking’s
application to interpretability requires a user study, which is out of scope of this paper. However, we
can look to existing research looking at the usefulness of SBFL. While some studies suggest that
the users typically do not go over the list of possible causes generated by SBFL linearly (and hence
question the usefulness of the ranking) [21], a recent large-scale study demonstrates statistically
significant and substantial improvements for the users who use an SBFL tool, and the results hold
even for “mediocre” SBFL tools [32]. Based on this evidence, we suggest that the ranking can
be used to explain policy decisions, as the ranked list itself would be helpful to identify the most
important decisions. In addition, the pruned policies that we construct are simpler than the original
policies while achieving a comparable performance, which can make identifying problems more
straightforward. Examples are presented in the CartPole and Minigrid sections of the website. Finally,
in Fig. 3, we show a heatmap of the scores of each state of a minigrid environment. In each grid
square, the agent can be facing four directions. We show the score based on the tarantula measure for
these directions from blue (lowest) to red (highest). We show this only for the states visited along a
path to the goal. Our heatmap gives information about the general behaviour of the policy. In this
case, points at which the agent needs to turn are more red (more important) than points where the
agent is walking in a straight line. To understand why the downward-facing states in the right-most
column are considered important, refer to our website for a full heatmap and explanation.

8



Figure 3: Example of a heatmap made based on scores. Colour from least to most important are blue, white and
red. (a) Our heatmap based on the Tarantula measure, showing all the states an agent encounters while walking
to the goal, including the direction in which the agent was facing. For example, in the top left grid location, we
show the importance of the state in which the agent is facing right, and the state in which it is facing down.

A Different Default Action Not all environments have an obvious default action. In this case, a
straightforward choice is to set the default action to “take a random action”. We measured the effect
of this choice by running the same experiments with the changed default action, and detailed results
are available in the full version of this paper [22]. The results are similar or slightly worse to the
ones obtained with the default action “repeat the previous action”. In most games, the difference was
small (≤ 10%); a few games show a marginal improvement.These results indicate that the choice of
a default action has no effect on our conclusions.

Good vs. bad policies Finally, we performed some initial work towards using the ranking to
understand the difference between high and low-performing policies. To this end, we produced a
ranking according to the high-performing policy, and then compared how the two policies behaved in
the highest ranked states. Interestingly, our experiments demonstrate that the high performing and
low performing policies agree on 80% of the actions in the top 10% of states. This suggests that
the policy training (in CartPole) first picks the ‘low-hanging fruit’ by performing well in the most
important states. The difference between a high-performing and a low-performing policy is mostly
in the lower-ranked states. Full results for this experiment are available in the full version of this
paper [22].

5 Related work

There is a significant body of work on identifying the important parts of trained algorithms, but to the
best of our knowledge none suggested to rank the states as we do. Prioritised experience replay [24]
looks for the most important transitions for training. Saliency maps [10, 29, 33] identify the parts of
the state that most influence influence the agent’s decision. Sun et al. [26] have previously applied
SBFL to visual feature importance for input images given to image classifiers. Other attempts include
identifying the important parts of the representation of the policy by looking at the parameters of a
trained model and pruning it to reduce its size [17]. None of these methods attempt to understand
what the important decisions of the policy as a whole are.

Much of the recent work focuses on making deep learning models more interpretable [23, 19, 26].
Many approaches [10, 29, 33] to explaining deep reinforcement learning methods explain the decision
made in a single state, without the context of the past or the future behaviour. Iyer et al. [14] explain
a single decision via an object-level saliency map by leveraging the pixel-level explanation and object
detection. As these methods focus on single decisions, the explanation is typically not sufficient to
understand the overall decision-making of the trained agent.

Other work has also attempted to explain entire policies, rather than individual decisions. Ehsan et al.
[8] produce natural language explanations for state-action pairs, based on a human-provided corpus
of explanations. Topin and Veloso [27] create a Markov chain which acts as an abstraction of the
policy, making it easier to reason about the policy. They create the Markov chain by grouping states
into abstract states based on how similarly the policy acts in those states; our method is substantially
different in that it ranks states based on importance, rather than grouping similar states. While our
method allows for the use of abstract states, it is not always necessary, and we are not contributing
any specific abstraction function. Similarly, Sreedharan et al. [25] propose a method for creating
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a temporal abstraction of a policy by using bottleneck ‘landmarks’ in the policy’s executions. A
robot’s behaviour can be explained using operator-specified “important program state variables” and
“important functions” [12]. We find that the policy-wide decision ranking in this paper is an easier
and more general method for understanding the policy. For more work in this vein, we encourage the
reader to consult the overview from Chakraborti et al. [6] of the rapidly growing field of Explainable
AI Planning (XAIP).

There have been attempts to make more interpretable models, either from scratch [13], or by approxi-
mating a trained neural network [28]. In the latter case, our method may be useful for determining in
which states the approximation must be most accurate.

6 Conclusions

We have applied SBFL-based ranking of states to reinforcement learning and demonstrated that this
ranking correlates with the relative importance of states for the policy’s performance. The ranking can
be used to explain RL policies, similarly to the way ranked program locations are used to understand
the causes of a bug. We evaluate the quality of our ranking by constructing simpler pruned policies,
where only the most important decisions are made according to the policy, and the rest are default.
Our experiments show that the performance of the pruned policies is comparable to the performance
of the original policies, thus supporting our claim that the SBFL-based ranking is accurate. Moreover,
the pruned policies may be preferable in many use-cases, as they are simpler. Our approach can be
scaled with the use of abstractions, as demonstrated by the larger Atari environments.

In the future, we hope to explore different applications of the ranking, new measures, more nuanced
hyperparameter selection, and relaxing the binary constraint over the assertion C. We do not expect
our work to have any negative societal impacts, as it only serves to improve our understanding of the
policies we train; the main concern is incorrectly increasing confidence in a policy.
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Autonomous Systems Hub (EP/V00784X/1) and the UKRI Strategic Priorities Fund to the UKRI
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