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Abstract

With the advancement of Retrieval-Augmented
Generation (RAG) in open-domain question an-
swering (ODQA), query rewriting has gained
increasing attention as a means to better han-
dle complex queries. By generating alternative
formulations of a question, query rewrites can
help bridge the gap between user intent and
the structure of retrieved knowledge, thereby
enhancing multi-hop reasoning. However, ex-
isting approaches often produce static rewrites
that lack adaptability and fail to capture the
evolving intent behind complex queries. To
overcome this challenge, we propose ARS-
RAG, an adaptive rewrite selection approach to
dynamically determine the optimal number of
rewrites for each query. ARS-RAG generates
multiple rewrites for a given query and dynam-
ically selects the effective ones. We train a
self-supervised ranker to assess the relevance
of each rewrite, as well as a contextual bandit
selector that dynamically selects the optimal
top-K rewrites. This enables query-specific
adaptation and efficient retrieval. Experimen-
tal results on four ODQA datasets confirm the
effectiveness of ARS-RAG. Importantly, our
adaptive selection strategy introduces negligi-
ble overhead and requires no additional fine-
tuning of the rewriter.

1 Introduction

Large language models (LLMs) have shown strong
performance in natural language understanding
and generation tasks (Achiam et al., 2023; Brown,
2020). However, in open-domain question answer-
ing (ODQA), LLMs often suffer from hallucina-
tions (Ji et al., 2023) due to limitations in the time-
liness, accuracy, and coverage of their internal pa-
rameterized knowledge. Integrating retrieved exter-
nal knowledge has proven effective in mitigating
hallucinations (Jiang et al., 2023).
Retrieval-augmented generation (RAG) inte-
grates a retriever and a generator as its core com-
ponents (Ma et al., 2023; Lewis et al., 2020). The

Query:
Who was the wife of the United States Army lieutenant general who received the
Distinguished Service Cross, and was the first of his West Point class to be promoted
to brigadier general, major general, and lieutenant general?

Rewrites :

1. Which U.S. Army lieutenant general received the Distinguished Service Cross? iy
. Who was the first in his West Point class promoted to brigadier general? e
. Who was the first in his West Point class promoted to major general? 15

. Who was the first in his West Point class promoted to lieutenant general? ¢
. What were this U.S. Army lieutenant general’s major military achievements? £

2
3
4
5
6. In which wars or conflicts did this lieutenant general serve?
7. What is the historical role of the Distinguished Service Cross in the U.S. Army?£)0
8. Who was the wife of this U.S. Army lieutenant general? &
9. What role did this lieutenant general’s wife play in his career or public life? &n
1

0. Any notable contributions or stories about this lieutenant general's wife? £x

Beatrice Ayer Patton X
Julia Compton Moore

Answer (Before Rewrites Selecting ) :
Answer (After Rewrites Selecting ) :

Figure 1: Impact of Irrelevant Rewrites on Answer
Accuracy. Expanding a query into 10 rewrites yields
both relevant (green: Q1-Q4, Q8) and irrelevant (red:
Q5-Q7, Q9-Q10) variants. Irrelevant rewrites introduce
semantic noise, while selecting top-K relevant ones
leads to the correct answer ("Julia Compton Moore"),
highlighting the importance of precise rewrite selection.

retriever identifies relevant knowledge documents
from a corpus, and the generator uses this informa-
tion to enhance the LLMs’ output reliability. RAG
shows significant potential in knowledge-intensive
ODQA tasks (Gao et al., 2023b; Guan et al., 2025).

Standard RAG often struggles with multi-hop
reasoning or commonsense reasoning, as single-
vector matching often fails to capture nuanced de-
pendencies, creating a gap between the input and
the corpus. To address this, Query2doc (Wang
et al., 2023) expands queries by generating pseudo-
documents using few-shot prompting, HyDE (Gao
et al., 2023a) constructs hypothetical documents
for effective vector matching, and the Rewrite-
Retrieve-Read framework (Ma et al., 2023) intro-
duces a rewriter before retrieval to better align the
query with the corpus.

Existing approaches face two major limitations:
they struggle to determine how many rewrites are
needed to solve a complex query, and they lack
effective mechanisms to assess the quality of these



rewrites in order to select the best ones. As a result,
they often rely on a fixed parameter to determine
the number of rewrites and ignore their quality,
which can lead to the retrieval of less relevant con-
tent and the introduction of semantic noise. Since
LLMs cannot inherently distinguish relevant from
irrelevant information, injecting noisy context can
degrade answer quality and increase the risk of
hallucination. Figure 1 illustrates how inappropri-
ate rewrite selection can lead to the retrieval of
irrelevant information, ultimately resulting in incor-
rect answers—for example, predicting "Beatrice
Ayer Patton" instead of the correct "Julia Compton
Moore".

These findings highlight the need to identify
high-quality rewrites that align with the original
query intent. Our research aims to improve re-
trieval accuracy by effectively filtering out irrel-
evant rewrites and dynamically determining the
optimal number of rewrites. Evaluating rewrite rel-
evance typically relies on either manual annotation,
which is tedious and inefficient, or LLM-based
evaluations, which are computationally expensive.
To address this, we propose a fast and automatic
method to filter and prioritize rewrites, enhancing
retrieval quality with minimal overhead.

This paper presents ARS-RAG, an Adaptive
Rewrite Selection approach designed to enhance
retrieval in open-domain QA. An overview of the
approach is shown in Figure 2. ARS-RAG consists
of two core components: a ranker and a selector,
which collaboratively identify high-quality rewrites
derived from the input query. The ranker, built on
a BERT backbone, is trained via self-supervised
learning to estimate the retrieval relevance of each
rewrite. To generate training signals without man-
ual annotation, we leverage LLM-based evaluation
scores (e.g., from RAGAS (Es et al., 2023)) as
pseudo-labels. Rather than relying on a fixed num-
ber of rewrites, ARS-RAG uses a contextual multi-
armed bandit reinforcement learning method to
dynamically select the optimal number of rewrites
based on the query context. At inference time,
ARS-RAG performs a single-pass selection using
both the trained ranker and the selector, avoiding
repeated retrieval or scoring operations. This de-
sign significantly improves retrieval efficiency and
accuracy, while requiring no fine-tuning of the un-
derlying rewriter.

To evaluate ARS-RAG, we conduct experiments
on four ODQA benchmarks: BoolQ (Clark et al.,
2019), HotpotQA (Pal et al., 2022), MedMCQA

(Yang et al., 2018) and StrategyQA (Geva et al.,
2021). ARS-RAG consistently outperforms strong
baselines in both accuracy and efficiency.

The principal contributions of this paper are as
follows:

1. We observed that query alignment inevitably
introduces low-quality rewrites, leading to
the retrieval of less relevant knowledge docu-
ments and degrading LLMs’ response quality.
This critical issue has been largely overlooked
in previous research.

2. We propose ARS-RAG, which employs a con-
textual bandit to dynamically determine the
best top-K rewrites for each query, selecting
the most relevant rewrites from those scored
by a self-supervised ranker.

3. We rigorously validated ARS-RAG’s effec-
tiveness against baseline methods on publicly
available benchmark datasets.

2 Related Work

2.1 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020) addresses the limitations of static lan-
guage models by retrieving contextually relevant
knowledge from external corpora, mitigating hallu-
cinations and improving factual accuracy (Wu et al.,
2023). RAG allows real-time access to updated
information, making it well-suited for knowledge-
intensive tasks (Ma et al., 2023; Gao et al., 2023b).

Recent extensions to RAG focus on adaptive and
reflective retrieval. DeepRAG (Guan et al., 2025)
decomposes queries to iteratively choose between
retrieval and reasoning. MBA-RAG (Tang et al.,
2024) adaptively selects retrieval strategies via ban-
dits to balance accuracy and efficiency, while AQA
(Hoveyda et al., 2024) formulates adaptive question
answering as a contextual bandit problem, dynami-
cally selecting multi-LLLM communication strate-
gies based on question complexity.

2.2 Ranker-Based RAG

Effective re-ranking is crucial for improving re-
trieval quality in RAG. FairRAG (Kim and Diaz,
2024) introduces a stochastic retriever for fairness,
but lacks a self-supervised training scheme. Chain-
of-Rank (CoR) (Lee et al., 2025) ranks document
IDs using a fine-tuned LLM, simplifying infer-
ence. RankRAG (Yu et al., 2024) jointly tunes
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Figure 2: ARS-RAG approach Overview. A rewriter generates multiple rewrites, the ranker scores them based on
their relevance to retrieval, and the bandit adaptively selects the optimal top- K rewrites. The selected rewrites guide

retrieval to improve answer accuracy.

ranking and generation via instruction tuning. Ex-
tensive fine-tuning introduces potential biases, re-
duces model generality, and limits applicability in
open-domain tasks. It also requires large-scale su-
pervision and adds computational overhead, while
the two-stage rerank-and-generate design further
increases inference latency.

Unlike previous methods that require exten-
sive LLMs fine-tuning, ARS-RAG employs a
lightweight, self-supervised ranker and leverages a
contextual bandit to dynamically select the optimal
number of rewrites. This approach enables adap-
tive and efficient retrieval, reducing both inference
latency and computational cost.

3 Method

3.1 Problem Formulation

RAG aims to enhance question answering by incor-
porating external knowledge from a large corpus
C. Given a query (), we assume there exists a sub-
set of relevant documents R((Q)) in the collection
that provide supporting evidence for generating the
correct answer:

R(Q) = {d | d is relevant/useful to Q} (1)

As this ideal set depends on many factors un-
known to us, it is unrealistic to obtain it exactly. In
practice, one typically approximate it with an alter-
native set R(Q) according to some hand-designed
retrevial model M (@, d) and a threshold 7:

R(Q) ={d| M(Q,d) > 7} 2

In other words, the goal of RAG is to find R(Q)
that approximates R(Q) as close as possible. One
of the major challenge for this lies in that deter-
mining the relevance of a given document could

be difficult when the query () is complex. To ad-
dress this problem, a popular method (Ma et al.,

2023; Mao et al., 2024) is to first rewrite the orig-
inal query @) as a set of sub-queries, denoted as
Q ={qi,...,qn}, where g; is the i-th sub-query
or rewrite, and then use them to approximate the
needed RAG set R(Q), as follows,

N
R(Q) = U R(¢i), ¢ €Q 3)
i=1

where R(q) denotes the set of retrieved documents
for q.

However, this approach has two major limita-
tions: 1) it is challenging to determine how many
rewrites are sufficient for a given query - peo-
ple have to set this hyperparameter value based
on some heuristic ideas, and 2) there lack effec-
tive mechanisms for assessing the quality of each
rewrite - importantly, not all rewrites are equally
useful; many may be noisy, redundant, or even
detrimental to answer quality. These challenges
have been largely overlooked in existing research.

3.2 Adaptive Rewrite Selection

To address the above challenges, we propose to
optimize the performance of RAG through an adap-
tive rewrite selection procedure. Our key idea is to
first simply generate a sufficient number of rewrites
(we set it to be 10 throughout our experiments)
from the original query, and then select an appropri-
ate subset from them adaptively for the generation
of final relevant documents.

In particular, denote the selected set of sub-
queries as Qs = {¢r,,---,qrx }» Where ¢, € Q
and r; is the index of the top i-th rank. In other
words, Q; is constructed such that it contains the K
most relevant subqueries among the total rewrites
of N, while K serves as a flexible threshold, dy-
namically adjusted per query @). To this end, we
define the final retrieval set as follows.
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As mentioned above, our objective is to construct
a retrieval set R(Q) that closely approximates the
ideal set R(Q), thus improving the accuracy of the
answer while minimizing the inclusion of irrelevant
or noisy content. For this, we propose a two-stage
adaptive rewrite selection approach, whose overall
architecture is illustrated in Figure 2. In particular,
the first stage ranks candidate rewrites according
to their relevance, respectively; while the second
stage simulates the perference of the user, which
adaptively determines how many of the top-ranked
rewrites should be retained.

More specifically, we first introduce a scoring
function S, trained in a self-supervised learning
manner, to estimate the relevance of each rewrite
q to Q. We then formulate the selection of the op-
timal number K of rewrites as a contextual bandit
problem, aiming to learn a policy m which auto-
matically determines the optimal ranking threshold
K based on the query embedding x of the original
query @, denoted as K = 7(x).

With this, the selected top- K rewrites form our
adaptive subset: Qs = {qr,,...,qrg }» and the
final retrieval set for query () is constructed as:

R@Q) = | R )

qeQs

The retrieved knowledge is then passed to down-
stream tasks.

In what follows, we give the details of the
above two-stage adaptive rewrite selection ap-
proach, which enables ARS-RAG to dynamically
filter and select the most relevant rewrites for each
query, yielding a flexible retrieval set R(Q) that
closely approximates R((Q) for better RAG.

3.3 Rewrite Ranker

A core challenge in adaptive rewrite selection is
quantifying the relevance of each rewrite ¢ to the
original query (. The motivation for our ranker is
to score and rank sub-queries by their ability to re-
trieve knowledge that is truly useful for answering
(). We define rewrite relevance using an objective,
automatic metric: the ability of a rewrite to retrieve
documents that are helpful for answering (). Intu-
itively, a rewrite is considered relevant if it leads to
the retrieval of document that is itself relevant and
informative for answering Q).

Collecting Training Data. For each input query
Q, we generate a set of rewrites, denoted as Q =
{q1,-..,qn}. For each rewrite ¢;, we retrieve a set
of knowledge documents R(q;) = {di,...,dm}.
An automatic LLM-based evaluator M g, using the
RAGAS (Es et al., 2023) context relevance metric,
assigns a binary score s; = Mpg(Q,d;) to each
document d; € R(g;) based on its relevance to
the query (). The scores for all documents R(g;)
are aggregated to produce a self-supervised label
Y= d;€R(q5) 537 where a higher y; indicates that
@; is more relevant to the original query (). Each
rewrite-score pair (g;,y;) is then paired with the
input query () to form the training data:

(@, {(ai, y:) L)) (6)

Algorithm 1 details the procedure.

Algorithm 1 Collecting Training Data

Require: Evaluator M g, Retriever R
Input: An input query )
Output: A tuple (Q, {(g:, y:)}} 1)
Generate a set of rewrites: @ = {q1,...,qn'}
for each rewrite ¢; € Q do
Set label: y; <+ 0
for each document d; € R(¢;) do
Evaluate score: s; «+— Mpg(Q, d;)
Update label: y; < y; + s,
end for
Save the pair (g;, ¥;)
: end for
+ return (Q, {(gi, vi) }1Y)

D AR

— =
w N = O

Training Ranker. We train a BERT-based pair-
wise ranker to assess the relevance of rewrites.
Given training data in the form (Q, {(q;, v:)}Y,),
we construct pairwise comparisons. For each pair
(¢i, q;) from the same query (), we define the bi-
nary label E,j:

_ 1 .
P ;= 5(1 +sign(y; — v;)) (7

Each sample is represented as (Q, ¢;, q;, P j)-
A scoring function §(g, Q) computes a relevance
score for each q. The probability that g; is preferred
over g; is:

Py =084, Q) — S(g;,Q)) (8)

where o is the sigmoid function. The ranker is
trained using cross-entropy loss:
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The trained model sorts the rewrites Q for each
query @, providing a relevance-based ordering for
adaptive selection.

3.4 Bandit Selector

To dynamically determine the optimal top-K
rewrites per query (), we formulate K -selection
as a contextual multi-armed bandit problem.
This enables query-specific adaptation, balancing
rewrite diversity with efficiency. We adopt Neu-
ralUCB (Zhou et al., 2020), using neural networks
to estimate the reward of each arm (a candidate K)
based on the query context. As depicted in Fig-
ure 3, the bandit interacts with the RAG module
through online learning. For the ¢-th query @)y, the
contextual bandit is defined as follows:

Context (x;): The BERT-encoded embedding
of the query QQ; is x; € R?. Arms (k): Each arm
corresponds to a candidate value k € {1,..., N},
where N is the maximum number of rewrites. Ac-
tion (a;): The selected arm a; € {1,..., N} for
Q) at step t determines the chosen K. Reward
(r¢): 4 = reward X w,,, where reward € {0,1}
indicates whether the answer is correct, and wy,
is a monotonically decreasing function of a; (e.g.,
Wq, = 3.0 — 0.2 X ay). This reward formulation
encourages the selection of smaller K values when
possible, thus promoting both efficiency and an-
swer quality.

Reward

Multi-queries
&_' [ARE—" Rewrites = RAqG
I

Top-K
Sorted Rewrites

Query Bandit

Figure 3: Bandit Selector.

Each arm £ is associated with a reward predic-
tion function fj(xy; ék) parameterized by a neu-
ral network, which estimates the expected reward
7r(x¢) given context x;. Uncertainty is quanti-
fied via the gradient g, = Vg, fi(xx; ;) and a
positive-definite matrix Z;, € RI®+X10xl capturing
parameter confidence.

To select an arm, the bandit computes an upper
confidence bound (UCB) score for each k:

oR(xt) = gr(x;01) " Z; gk (x4 0,)  (10)

ar = argmax (fi(xi0x) + By foR(x0)) (11)
ke{l,...,K}

Here, ék are the estimated parameters for arm k,

and fB; > 0 is the exploration parameter. gy (x;; 0)

is the gradient of fj, with respect to 8y, at x;. The

term 4/ gl;r Z;l g quantifies the predictive uncer-
tainty for context x; according to the parameter
covariance matrix Zj. Upon observing the reward
¢ for the selected arm a;, the bandit updates Zy,
for a; as follows:

A~ A~

Zat — Zat + Qat (Xt7 Oat)gat (Xta eat)T (12)

This online process allows the bandit to adap-
tively learn a query-specific policy 7 (K | x) bal-
ancing accuracy (maximizing reward) and effi-
ciency (minimizing K) based solely on the query
context.

4 Experiments

4.1 Datasets and Metrics

To evaluate ARS-RAG across diverse domains, we
conduct experiments on four ODQA datasets.

BoolQ (Clark et al., 2019) is a reading compre-
hension dataset with naturally occurring yes/no
questions. HotpotQA (Yang et al., 2018) re-
quires multi-hop reasoning over Wikipedia pas-
sages. MedMCQA (Pal et al., 2022) is a large-
scale multiple-choice dataset for medical entrance
exams. StrategyQA (Geva et al., 2021) targets
commonsense reasoning through yes/no questions
that integrate world knowledge.

Performance on BoolQ, MedMCQA, and Strate-
gyQA is measured using Accuracy and Precision
metrics, while HotpotQA is assessed with Exact
Match (EM) and F1 score.

4.2 Baselines

We compare ARS-RAG with a broad range of
baselines, including non-retrieval models, retrieval-
augmented frameworks, and ranker-based RAG .

Non-Retrieval Baselines. These baselines rely
solely on the language model’s internal knowl-
edge. We evaluate a few-shot prompting LLM and
a Chain-of-Thought (CoT) (Trivedi et al., 2022)
prompting method.



BoolQ

Models | Methods |

HotpotQA

MedMCQA StrategyQA

Avg.
| | Acc. Prec. EM F1 Acc. Prec. Acc. Prec.
LLM 55.25 66.59 18.05 27.44 65.25 68.76 63.75 71.45 54.57
COT 57.25 72.08 20.04 29.45 65.75 67.70 67.50 73.63 56.68
FLARE 74.82 76.43 18.56 30.13 70.72 73.46 74.34 75.16 61.70
SELF-RAG 77.25 80.04 18.25 29.35 71.25 74.06 81.54 82.13 64.23
Gemma2:9B RaFe 62.86 75.45 17.28 25.94 64.32 65.26 78.02 79.25 58.55
CoR 76.78 78.92 20.57 29.34 70.50 73.68 77.62 80.75 63.52
FairRAG 73.64 75.58 19.63 31.75 72.88 73.42 81.00 83.37 63.91
RankRAG 78.12 79.84 21.40 33.18 71.78 72.38 82.25 85.07 65.50
| ARS-RAG | 80.25 81.25 29.37 40.43 75.75 77.12 84.75 84.85 69.22
LLM 65.25 76.67 16.03 26.50 71.50 71.88 73.62 78.24 59.96
COT 70.25 80.09 24.05 34.98 70.54 71.89 78.06 79.68 63.69
FLARE 79.41 82.25 27.46 38.85 79.62 83.12 77.37 78.53 68.33
SELF-RAG 82.25 85.33 26.54 40.09 83.52 84.08 87.58 87.86 72.16
Qwen2.5:32B RaFe 64.62 70.26 29.47 40.89 82.46 84.52 83.56 84.26 67.51
CoR 81.50 85.25 28.00 40.86 83.75 84.07 89.50 90.31 72.91
FairRAG 78.64 83.52 26.75 40.46 81.02 81.66 85.75 86.85 70.58
RankRAG 81.58 84.82 27.73 41.28 82.57 82.84 90.00 90.51 72.67
| ARS-RAG | 85.04 87.53 35.08 45.23 85.75 86.06 92.25 92.83 76.22
LLM 72.56 76.99 28.25 42.06 85.50 86.04 75.56 77.91 68.11
CcoT 78.08 81.17 32.75 42.62 84.54 85.04 83.06 83.07 71.29
FLARE 84.92 85.74 34.62 43.82 85.60 87.23 79.25 81.61 72.85
SELF-RAG 85.00 87.32 35.75 48.89 86.75 86.96 89.46 92.60 76.59
Llama3.3:70B RaFe 82.46 86.25 31.54 43.75 87.43 88.16 85.74 86.17 73.94
CoR 84.48 85.49 35.78 50.34 88.02 88.15 91.85 91.93 77.01
FairRAG 82.62 85.25 31.42 46.25 86.83 86.96 87.52 87.86 74.34
RankRAG 84.72 86.14 34.78 53.68 87.11 87.75 92.26 92.12 77.32
| ARS-RAG | 88.75 89.82 43.50 55.96 89.75 89.78 94.50 94.58 80.83

Table 1: Performance comparison. The Avg. column indicates overall performance and the Time column reflects
response time. The best and second-best results are bolded and underlined.

Retrieval-Augmented Baselines. These meth-
ods retrieve external knowledge to assist gener-
ation. FLARE (Jiang et al., 2023) dynamically
determines when and what to retrieve during gen-
eration. SELF-RAG (Asai et al., 2023) combines
on-demand retrieval with self-reflection to refine
outputs and improve coherence.

Ranker-Based RAG Baselines. These ap-
proaches use ranking to select the most relevant
contexts or rewrites. RaFe (Mao et al., 2024)
improves query rewriting for RAG by leveraging
reranker feedback to train models without annota-
tions. CoR (Lee et al., 2025) simplifies the ranking
process by prioritizing document reliability.
FairRAG (Kim and Diaz, 2024) introduces a
stochastic retriever to promote equal exposure
of relevant contexts. RankRAG (Yu et al., 2024)
facilitates context ranking and answer generation
through the instruction-tuning of LLMs.

4.3 Main Results

Table 1 reports the performance of ARS-RAG
and various baselines across four ODQA bench-
marks and three model scales. ARS-RAG con-
sistently achieves the best average performance
(80.83) on Llama3.3:70B, outperforming strong
ranker-based methods such as RankRAG (77.32)
and CoR (77.01). Notably, ARS-RAG attains the
highest score on StrategyQA (94.50), underscoring
its ability to select and utilize high-quality rewrites
for challenging reasoning tasks.

Across all benchmarks and model sizes, per-
formance improves as model parameters increase,
with L1ama3. 3:70B obtaining the highest results
on each dataset. The effectiveness of ARS-RAG
is consistent across scales, with clear gains ob-
served not only for the largest model but also
for Gemma2:9B and Qwen2.5:32B, demonstrating
strong scalability and generalization.

In summary, ARS-RAG outperforms both non-



retrieval and retrieval-augmented baselines, while
also reducing computational overhead compared
to RAG-based ranker pipelines. These results
highlight the effectiveness of combining adaptive
rewrite selection and relevance-based ranking in
RAG pipelines, eliminating the need for LLM fine-
tuning. This combination enhances relevance and
reduces computational cost.

4.4 Effect of Rewrite Selection Strategies

We assess the impact of different rewrite selection
strategies on BoolQ and HotpotQA. The compared
strategies are as follows:

RAG: Utilizes the input query for retrieval.
Rewriter-5/10: Generates 5 or 10 rewrites per
query for targeted knowledge retrieval. Top-K:
Employs the K most relevant rewrites as ranked
by the ranker. Worse-K: Uses the K least rele-
vant rewrites as ranked by the ranker. Random-K:
Samples K rewrites randomly (averaged over 5
runs). ARS-RAG (Adaptive-K): Adaptively se-
lects the best K rewrites per query.

s
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Figure 4: Comparison of rewrite selection strategies.
ARS-RAG achieves the best overall performance.

Figure 4a and Figure 4b illustrate the compara-
tive performance of these strategies. The substan-
tial gap between Top-K and Worse-/Random-K
validates the effectiveness of the learned ranker:
prioritizing rewrites based on relevance signifi-
cantly improves performance. However, Top-K
also reveals a limitation: its accuracy is sensitive to

the choice of K, often peaking around K = 5 (on
BoolQ) or K = 6 (on HotpotQA) and declining as
K increases due to noisy or redundant rewrites.

In contrast, ARS-RAG surpasses the peak perfor-
mance of Top-K without requiring manual tuning.
By leveraging a contextual bandit, ARS-RAG adap-
tively determines the optimal number of rewrites
for each query. This flexibility allows the model
to dynamically balance the trade-off between infor-
mation coverage and noise, leading to robust and
high performance.

Overall, these results highlight two key findings:
1) a trained ranker is crucial for high-quality rewrite
selection, and 2) adaptive determination of K via
bandit learning further improves effectiveness. The
combination of these approaches, as realized in
ARS-RAG, leads to superior retrieval-augmented
QA performance across datasets.

4.5 Ablation Study

To assess the contribution of each component in
ARS-RAG, we conduct an ablation study across
four ODQA datasets, as shown in Table 2. The
ablation settings are as follows:

LLM: Directly answers the question using
LLMs. RAG: Retrieves external knowledge us-
ing the original query. Rewriter: Generates
10 rewrites per query, each used for retrieval.
Rewriter+Ranker: Generates 10 rewrites, ranks
them by relevance, and selects the top-5 most rele-
vant rewrites for retrieval. Rewriter+Bandit: Uses
a bandit to adaptively determine K, then generates
K rewrites directly for retrieval, without ranking.
ARR-RAG: Combines all components; generates
10 rewrites, ranks them, and uses a bandit to adap-
tively select the optimal K top-ranked rewrites for
retrieval.

Variant ‘ BoolQ HotpotQA MedMCQA StrategyQA
LLM 72.56 42.06 85.50 75.56
RAG 79.23 43.67 86.52 83.74
Rewriter 83.75 47.36 87.50 90.75
Rewriter+Ranker 86.25 50.57 88.75 93.50
Rewriter+Bandit 85.42 48.45 88.23 91.88
ARS-RAG 88.75 55.96 89.75 94.50

Table 2: Ablation Study Results.

Performance improves steadily from the LLM
baseline to RAG and Rewriter, confirming the value
of external knowledge and query reformulation.
Introducing the ranker (Rewriter+Ranker) further
improves accuracy by selecting the most relevant
rewrites, but is constrained by a fixed K, which can



limit performance on diverse queries due to either
redundancy or insufficient coverage.

The Rewriter+Bandit variant adaptively deter-
mines K for each query. While this reduces infer-
ence cost and adapts to query complexity, it lacks
quality control: rewrites are directly used without
ranking, making it susceptible to semantic drift and
retrieval noise, especially on complex datasets like
HotpotQA.

By integrating both ranking and adaptive selec-
tion, ARS-RAG achieves the best overall perfor-
mance. The ranker ensures high-quality rewrites,
while the bandit dynamically adjusts K, leading
to robust and consistent gains across all datasets.
This ablation study underscores the necessity of
jointly optimizing rewrite quality and quantity for
retrieval-augmented QA.

4.6 Effectiveness of the Bandit-based Rewrite
Selection

To assess the effectiveness of the bandit technique
in adaptive rewrite selection, we conduct 500 train-
ing epochs with a batch size of 32, evaluating policy
performance on the test set after each epoch, and
recording the weighted reward. All results are av-
eraged over five independent runs, and both mean
and standard deviation (std) of weighted reward are
reported for train and test sets.
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Figure 5: Mean and standard deviation of weighted
reward on training and test sets in the bandit selector.

Figure 5 illustrates the reward curves throughout
training. The steady increase in test reward, accom-
panied by a gradual decrease in standard deviation,
indicates that the bandit selector effectively learns
a stable and robust policy over time. Notably, the
narrowing std suggests the learned policy general-
izes well and converges reliably across different
runs.

To further analyze the learned policy, we exam-
ine the distribution of selected K values on the
test set using the bandit policy from the final train-

Figure 6: Distribution of K for last training epoch on
the test set.

ing epoch (Figure 6). The distribution shows a
clear preference for smaller K values, suggesting
that the bandit selector learns to minimize retrieval
redundancy and suppress irrelevant information,
while still preserving answer quality. The pref-
erence for lower K values demonstrates that the
reward formulation effectively encourages efficient
and adaptive retrieval.

In summary, these results demonstrate that
the bandit selector can efficiently learn a query-
adaptive K selection policy, achieving a favorable
trade-off between answer quality and resource con-
sumption.

5 Conclusion

In this paper, we presented ARS-RAG, an adap-
tive rewrite selection approach for open-domain
QA. ARS-RAG generates multiple rewrites and
dynamically selects the most effective ones. A self-
supervised ranker evaluates the relevance of each
rewrite, while a contextual bandit selector adap-
tively chooses the optimal subset for retrieval. This
design enables query-specific adaptation and pre-
cise knowledge retrieval, all without requiring addi-
tional fine-tuning of the rewriter. Extensive experi-
ments on four ODQA benchmarks show that ARS-
RAG consistently outperforms both non-retrieval
and RAG-based baselines across multiple model
sizes. With its single-pass design and low compu-
tational overhead, ARS-RAG offers a scalable and
efficient solution for knowledge-intensive applica-
tions.

6 Limitations

While ARS-RAG shows strong empirical perfor-
mance, several limitations remain. First, our ranker
relies on context relevance scores generated by the
RAGAS framework, which in turn depends on an
LILM-based evaluator. As a result, biases or limi-
tations inherent in the evaluator’s training distribu-



tion may affect data quality and overall system per-
formance. Second, the pairwise ranking objective
focuses on relative comparisons. This may penal-
ize novel but valid rewrites that deviate from the
original query and may overlook interdependencies
among multiple rewrites. Finally, our experiments
are limited to general-domain ODQA benchmarks.
The approach’s robustness under domain shift, ad-
versarial inputs, or larger retrieval corpora has yet
to be fully explored.

7 Ethical Considerations

All datasets used in this work are publicly available
and widely adopted in the ODQA community. We
do not collect or annotate any private or sensitive
data. As our method builds on pretrained LLMs
and LLM-based evaluators, it may reflect certain
biases present in these models. While ARS-RAG
improves retrieval precision and efficiency, it does
not explicitly filter harmful content in the retrieved
documents. The adaptive rewrite mechanism may
also amplify factual inconsistencies if used with
unreliable retrievers or generators.
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A Dataset Details

We conduct experiments on four widely used
ODQA benchmarks:

BoolQ (Clark et al., 2019) is a reading compre-
hension dataset consisting of naturally occurring
yes/no questions. These questions are non-factoid
and often require entailment-like inference over
passages, making them challenging for models
trained on traditional QA data.

HotpotQA (Yang et al., 2018) focuses on multi-
hop reasoning, where each question requires ag-
gregating information from multiple Wikipedia
passages. The dataset also provides supporting
sentence-level evidence, enabling supervision for
both answer prediction and explainability.

MedMCQA (Pal et al., 2022) is a large-scale
multiple-choice QA dataset based on real medical
entrance exam questions. It covers 21 medical
subjects and demands fine-grained reasoning across
diverse medical topics.

StrategyQA (Geva et al., 2021) is a common-
sense reasoning benchmark where questions em-
bed implicit multi-step reasoning strategies. Each
instance includes decompositions into reasoning
steps and evidence paragraphs, testing a system’s
ability to infer hidden logical structure.

For each dataset, we randomly sample 1,600
examples for training and 400 for testing.

B Implementation Details

LLM Selection. We use LLaMA3.3:70B as both
the query rewriter and the context relevance evalua-
tor, leveraging its strong instruction-following and
text generation capabilities to ensure high-quality
rewrites and accurate relevance scoring. For an-
swer generation, we experiment with three models:
Gemma2:9B, Qwen2.5:32B, and LLaMA3.3:70B.
For ranker training, we use BERT-base-uncased
as the encoder for BoolQ, HotpotQA, and Strate-
gyQA, and ClinicalBERT for MedMCQA to bet-
ter align with the medical domain.

Retriever. We use the nomic-embed-text em-
bedding model for dense retrieval, with embed-
dings indexed in Chroma. Retrieval is based on
vector similarity, with top-5 documents selected by
default.


https://arxiv.org/abs/1911.04462

Retrieval Contexts. For each query, the selected
rewrites are independently used to retrieve sup-
porting documents. All retrieved contexts are then
merged and deduplicated to eliminate overlapping
or redundant content. This ensures that the gen-
erator receives a diverse yet non-repetitive set of
evidence, which helps reduce semantic noise and
improves the quality and factuality of the generated
answers.

Ranker Training Details. The model is opti-
mized with AdamW (learning rate Se-5, weight
decay 0.01), using BCEWithLogits loss. We train
for 100 epochs with a batch size of 64, using co-
sine learning rate scheduling. Dropout (rate 0.1) is
applied in the classification head for regularization.

Bandit Selector Reward Setting. We adopt dif-
ferent reward schemes for different datasets. For
BoolQ, MedMCQA, and StrategyQA, we use bi-
nary rewards: the reward is 1 if the answer is cor-
rect and O otherwise. For HotpotQA, we apply a
mixed standard: if EM equals 1, the reward is set
to 1; if EM is O, the F1 score is used as the reward.
As F1 scores are within [0, 1], the overall reward
for HotpotQA is also bounded in [0, 1]. To encour-
age the bandit to select smaller & for efficiency, we
adopt a weighted reward scheme in all datasets: the
observed reward is multiplied by a monotonically
decreasing weight wy, (e.g., wi = 3.0 — 0.2k), i.e.,
weighted_reward = reward x wyg. This formula-
tion penalizes the use of larger k values, guiding the
bandit to prefer more efficient selections without
sacrificing answer quality.

C Penalty Function in Bandit Selector

Weighted Reward vs. Penalty-based Schemes.
In the main paper, we adopt a weighted reward
function that encourages the bandit to select smaller
k values, promoting both efficiency and answer
quality. To further investigate the impact of alter-
native penalty designs, we also experimented with
an explicit penalty term, A - k, added to the reward.

A ‘ 0 001 0.02 003 0.04
Accuracy | 88.2 88.5 88.63 88.1 87.3
Mean-k | 5.7 4.8 4.2 29 25

Table 3: Effect of penalty parameter A\ on accuracy and
average k (evaluated on BoolQ).

As shown in Table 3, varying the penalty param-
eter A demonstrates a trade-off between efficiency
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and accuracy. Without penalty (A = 0), the bandit
often selects larger k, resulting in moderate accu-
racy. Introducing a moderate penalty (A = 0.01
or 0.02) reduces average k and improves accuracy,
as the penalty discourages redundant or irrelevant
rewrites and suppresses retrieval noise. However,
overly large A leads to very small k values, re-
ducing coverage of effective rewrites and overall
accuracy. These results highlight that a properly
tuned penalty promotes both efficiency and answer
quality.
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Figure 7: Distribution of k for Different A.

Figure 7 further visualizes the distribution of
selected k values across different A settings. As A
increases, the bandit is increasingly incentivized
to choose smaller k, resulting in a leftward shift in
the distribution. However, overly large penalties
may result in under-exploration and suboptimal
answer quality. Based on these findings, we use the
weighted reward design in the main text, as it yields
higher accuracy while still maintaining efficiency.

D Time consumption

We evaluate the inference latency of two RAG
pipelines: the Original pipeline and the ARS-RAG
pipeline.

The Original pipeline generates 10 rewrites per
query, retrieves 5 documents per rewrite, and uses
a binary LLM-based evaluator to score them. The
top-5 rewrites are then selected and passed to the
Multi-queries RAG module. This multi-step pro-
cess incurs substantial latency due to repeated re-
trieval and evaluation.

In contrast, ARS-RAG generates 10 rewrites but
leverages a lightweight ranker to score them. A ban-
dit selector then adaptively determines the optimal
number of rewrites to use based on the query. This
adaptive design eliminates redundant per-rewrite
retrieval and scoring.

As shown in Figure 8, ARS-RAG consistently
achieves lower latency across all datasets. Its one-
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Figure 8: Comparison of Time Consumption.

pass ranking and adaptive selection strategy en-
ables faster inference and easier deployment.

E Prompt Templates

We list below all prompt templates used throughout
our approach. Each prompt is tailored to guide
the LLMs in a specific subtask, including query
rewriting, context relevance evaluation, and answer
generation under different settings. All prompts
follow a modular structure with a role declaration,
behavioral rules, and clearly defined inputs.

Query Rewriting. This prompt guides the LLM
to produce ten diverse, semantically faithful
rewrites for a given input question, enhancing re-
trieval coverage without sacrificing precision. See
Table 4.

Context Relevance Evaluation. This prompt is
used to judge whether a retrieved document is se-
mantically relevant to the original question. It pro-
vides binary supervision (“relevant” or “irrelevant”)
for training and evaluating the ranker. See Table 5.

Zero-Context Answer Generation. This prompt
asks the LLM to determine whether a given ques-
tion is true or false without any context. It serves
as a baseline to isolate model performance from
retrieved evidence. See Table 6.

RAG Answer Generation. This prompt is used
in retrieval-augmented settings. Given a question
and supporting context, the LLM is instructed to
answer “true” or “false” and optionally produce
reasoning steps. See Table 7.
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Query Rewriting Prompt

# Role:

As an Al assistant, I am responsible for rewrit-
ing the original question to enhance its clarity,
diversity, and contextual relevance.

# Rules:

1. I will generate ten diverse rewrites by system-
atically reformulating the input question.

2. Each rewrite will maintain semantic fidelity,
adhere to formal language standards, and avoid
ambiguity or redundancy.

3. The rewrites will be clearly numbered, gram-
matically correct, and contextually meaningful.
4. Variations may include paraphrasing, struc-
tural reformulation, or expansion/compression
where appropriate.

5. All rewrites will be separated by line breaks
to ensure readability.

# Input:

Original question: {question}

Table 4: Query Rewriting Prompt.

Context Relevance Evaluation Prompt

# Role:

You are an Al assistant responsible for evaluat-
ing whether the provided context is relevant to
the given question.

# Rules:

1. If the context directly answers the question
or includes key information or data that can rea-
sonably help answer it, respond with "relevant".
2. If the context is unrelated to the question, does
not provide sufficient information to answer it,
or lacks key details, respond with "irrelevant".
3. Respond using only the word "relevant" or
"irrelevant”. Do not include any additional text
or characters. This ensures clarity and precision.
# Input:

Question: {question}

Context : {context}

Table 5: Context Relevance Evaluation Prompt.



Generation without Retrieval Prompt

# Role:

You are an Al Q&A assistant. I will prepare
questions for you, and your role is to help me
think through the question and arrive at the cor-
rect answer.

# Rules:

1. Determine whether the following question is
true or false.

2. Your response must be formatted as either
"true" or "false".

3. Do not include any additional text or charac-
ters in your response.

# Input:

Question: {question}

Table 6: Generation without Retrieval Prompt.

Generation with Retrieval Prompt

# Role:

You are an Al Q&A assistant. I will prepare
questions for you, and your role is to help me
think through the question and arrive at the cor-
rect answer.

# Rules:

1. Based on the provided question and context,
please provide a clear, step-by-step reasoning
process leading to your answer, answering the
following question is true or false.

2. Ensure that your explanation is logical, accu-
rate, and directly relevant to the question.

2. Your response must be formatted as either
"true" or "false".

3. Do not include any additional text or charac-
ters in your response.

# Input:

Question: {question}

Context : {context}

Table 7: Generation with Retrieval Prompt.
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