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Abstract001

With the advancement of Retrieval-Augmented002
Generation (RAG) in open-domain question an-003
swering (ODQA), query rewriting has gained004
increasing attention as a means to better han-005
dle complex queries. By generating alternative006
formulations of a question, query rewrites can007
help bridge the gap between user intent and008
the structure of retrieved knowledge, thereby009
enhancing multi-hop reasoning. However, ex-010
isting approaches often produce static rewrites011
that lack adaptability and fail to capture the012
evolving intent behind complex queries. To013
overcome this challenge, we propose ARS-014
RAG, an adaptive rewrite selection approach to015
dynamically determine the optimal number of016
rewrites for each query. ARS-RAG generates017
multiple rewrites for a given query and dynam-018
ically selects the effective ones. We train a019
self-supervised ranker to assess the relevance020
of each rewrite, as well as a contextual bandit021
selector that dynamically selects the optimal022
top-K rewrites. This enables query-specific023
adaptation and efficient retrieval. Experimen-024
tal results on four ODQA datasets confirm the025
effectiveness of ARS-RAG. Importantly, our026
adaptive selection strategy introduces negligi-027
ble overhead and requires no additional fine-028
tuning of the rewriter.029

1 Introduction030

Large language models (LLMs) have shown strong031

performance in natural language understanding032

and generation tasks (Achiam et al., 2023; Brown,033

2020). However, in open-domain question answer-034

ing (ODQA), LLMs often suffer from hallucina-035

tions (Ji et al., 2023) due to limitations in the time-036

liness, accuracy, and coverage of their internal pa-037

rameterized knowledge. Integrating retrieved exter-038

nal knowledge has proven effective in mitigating039

hallucinations (Jiang et al., 2023).040

Retrieval-augmented generation (RAG) inte-041

grates a retriever and a generator as its core com-042

ponents (Ma et al., 2023; Lewis et al., 2020). The043

Figure 1: Impact of Irrelevant Rewrites on Answer
Accuracy. Expanding a query into 10 rewrites yields
both relevant (green: Q1–Q4, Q8) and irrelevant (red:
Q5–Q7, Q9–Q10) variants. Irrelevant rewrites introduce
semantic noise, while selecting top-K relevant ones
leads to the correct answer ("Julia Compton Moore"),
highlighting the importance of precise rewrite selection.

retriever identifies relevant knowledge documents 044

from a corpus, and the generator uses this informa- 045

tion to enhance the LLMs’ output reliability. RAG 046

shows significant potential in knowledge-intensive 047

ODQA tasks (Gao et al., 2023b; Guan et al., 2025). 048

Standard RAG often struggles with multi-hop 049

reasoning or commonsense reasoning, as single- 050

vector matching often fails to capture nuanced de- 051

pendencies, creating a gap between the input and 052

the corpus. To address this, Query2doc (Wang 053

et al., 2023) expands queries by generating pseudo- 054

documents using few-shot prompting, HyDE (Gao 055

et al., 2023a) constructs hypothetical documents 056

for effective vector matching, and the Rewrite- 057

Retrieve-Read framework (Ma et al., 2023) intro- 058

duces a rewriter before retrieval to better align the 059

query with the corpus. 060

Existing approaches face two major limitations: 061

they struggle to determine how many rewrites are 062

needed to solve a complex query, and they lack 063

effective mechanisms to assess the quality of these 064
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rewrites in order to select the best ones. As a result,065

they often rely on a fixed parameter to determine066

the number of rewrites and ignore their quality,067

which can lead to the retrieval of less relevant con-068

tent and the introduction of semantic noise. Since069

LLMs cannot inherently distinguish relevant from070

irrelevant information, injecting noisy context can071

degrade answer quality and increase the risk of072

hallucination. Figure 1 illustrates how inappropri-073

ate rewrite selection can lead to the retrieval of074

irrelevant information, ultimately resulting in incor-075

rect answers—for example, predicting "Beatrice076

Ayer Patton" instead of the correct "Julia Compton077

Moore".078

These findings highlight the need to identify079

high-quality rewrites that align with the original080

query intent. Our research aims to improve re-081

trieval accuracy by effectively filtering out irrel-082

evant rewrites and dynamically determining the083

optimal number of rewrites. Evaluating rewrite rel-084

evance typically relies on either manual annotation,085

which is tedious and inefficient, or LLM-based086

evaluations, which are computationally expensive.087

To address this, we propose a fast and automatic088

method to filter and prioritize rewrites, enhancing089

retrieval quality with minimal overhead.090

This paper presents ARS-RAG, an Adaptive091

Rewrite Selection approach designed to enhance092

retrieval in open-domain QA. An overview of the093

approach is shown in Figure 2. ARS-RAG consists094

of two core components: a ranker and a selector,095

which collaboratively identify high-quality rewrites096

derived from the input query. The ranker, built on097

a BERT backbone, is trained via self-supervised098

learning to estimate the retrieval relevance of each099

rewrite. To generate training signals without man-100

ual annotation, we leverage LLM-based evaluation101

scores (e.g., from RAGAS (Es et al., 2023)) as102

pseudo-labels. Rather than relying on a fixed num-103

ber of rewrites, ARS-RAG uses a contextual multi-104

armed bandit reinforcement learning method to105

dynamically select the optimal number of rewrites106

based on the query context. At inference time,107

ARS-RAG performs a single-pass selection using108

both the trained ranker and the selector, avoiding109

repeated retrieval or scoring operations. This de-110

sign significantly improves retrieval efficiency and111

accuracy, while requiring no fine-tuning of the un-112

derlying rewriter.113

To evaluate ARS-RAG, we conduct experiments114

on four ODQA benchmarks: BoolQ (Clark et al.,115

2019), HotpotQA (Pal et al., 2022), MedMCQA116

(Yang et al., 2018) and StrategyQA (Geva et al., 117

2021). ARS-RAG consistently outperforms strong 118

baselines in both accuracy and efficiency. 119

The principal contributions of this paper are as 120

follows: 121

1. We observed that query alignment inevitably 122

introduces low-quality rewrites, leading to 123

the retrieval of less relevant knowledge docu- 124

ments and degrading LLMs’ response quality. 125

This critical issue has been largely overlooked 126

in previous research. 127

2. We propose ARS-RAG, which employs a con- 128

textual bandit to dynamically determine the 129

best top-K rewrites for each query, selecting 130

the most relevant rewrites from those scored 131

by a self-supervised ranker. 132

3. We rigorously validated ARS-RAG’s effec- 133

tiveness against baseline methods on publicly 134

available benchmark datasets. 135

2 Related Work 136

2.1 Retrieval-Augmented Generation 137

Retrieval-Augmented Generation (RAG) (Lewis 138

et al., 2020) addresses the limitations of static lan- 139

guage models by retrieving contextually relevant 140

knowledge from external corpora, mitigating hallu- 141

cinations and improving factual accuracy (Wu et al., 142

2023). RAG allows real-time access to updated 143

information, making it well-suited for knowledge- 144

intensive tasks (Ma et al., 2023; Gao et al., 2023b). 145

Recent extensions to RAG focus on adaptive and 146

reflective retrieval. DeepRAG (Guan et al., 2025) 147

decomposes queries to iteratively choose between 148

retrieval and reasoning. MBA-RAG (Tang et al., 149

2024) adaptively selects retrieval strategies via ban- 150

dits to balance accuracy and efficiency, while AQA 151

(Hoveyda et al., 2024) formulates adaptive question 152

answering as a contextual bandit problem, dynami- 153

cally selecting multi-LLM communication strate- 154

gies based on question complexity. 155

2.2 Ranker-Based RAG 156

Effective re-ranking is crucial for improving re- 157

trieval quality in RAG. FairRAG (Kim and Diaz, 158

2024) introduces a stochastic retriever for fairness, 159

but lacks a self-supervised training scheme. Chain- 160

of-Rank (CoR) (Lee et al., 2025) ranks document 161

IDs using a fine-tuned LLM, simplifying infer- 162

ence. RankRAG (Yu et al., 2024) jointly tunes 163
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Figure 2: ARS-RAG approach Overview. A rewriter generates multiple rewrites, the ranker scores them based on
their relevance to retrieval, and the bandit adaptively selects the optimal top-K rewrites. The selected rewrites guide
retrieval to improve answer accuracy.

ranking and generation via instruction tuning. Ex-164

tensive fine-tuning introduces potential biases, re-165

duces model generality, and limits applicability in166

open-domain tasks. It also requires large-scale su-167

pervision and adds computational overhead, while168

the two-stage rerank-and-generate design further169

increases inference latency.170

Unlike previous methods that require exten-171

sive LLMs fine-tuning, ARS-RAG employs a172

lightweight, self-supervised ranker and leverages a173

contextual bandit to dynamically select the optimal174

number of rewrites. This approach enables adap-175

tive and efficient retrieval, reducing both inference176

latency and computational cost.177

3 Method178

3.1 Problem Formulation179

RAG aims to enhance question answering by incor-180

porating external knowledge from a large corpus181

C. Given a query Q, we assume there exists a sub-182

set of relevant documents R(Q) in the collection183

that provide supporting evidence for generating the184

correct answer:185

R(Q) = {d | d is relevant/useful to Q} (1)186

As this ideal set depends on many factors un-187

known to us, it is unrealistic to obtain it exactly. In188

practice, one typically approximate it with an alter-189

native set R̂(Q) according to some hand-designed190

retrevial model M(Q, d) and a threshold τ :191

R̂(Q) = {d |M(Q, d) > τ} (2)192

In other words, the goal of RAG is to find R̂(Q)193

that approximates R(Q) as close as possible. One194

of the major challenge for this lies in that deter-195

mining the relevance of a given document could196

be difficult when the query Q is complex. To ad-197

dress this problem, a popular method (Ma et al.,198

2023; Mao et al., 2024) is to first rewrite the orig- 199

inal query Q as a set of sub-queries, denoted as 200

Q = {q1, . . . , qN}, where qi is the i-th sub-query 201

or rewrite, and then use them to approximate the 202

needed RAG set R̂(Q), as follows, 203

R̂(Q) =
N⋃
i=1

R(qi), qi ∈ Q (3) 204

whereR(q) denotes the set of retrieved documents 205

for q. 206

However, this approach has two major limita- 207

tions: 1) it is challenging to determine how many 208

rewrites are sufficient for a given query - peo- 209

ple have to set this hyperparameter value based 210

on some heuristic ideas, and 2) there lack effec- 211

tive mechanisms for assessing the quality of each 212

rewrite - importantly, not all rewrites are equally 213

useful; many may be noisy, redundant, or even 214

detrimental to answer quality. These challenges 215

have been largely overlooked in existing research. 216

3.2 Adaptive Rewrite Selection 217

To address the above challenges, we propose to 218

optimize the performance of RAG through an adap- 219

tive rewrite selection procedure. Our key idea is to 220

first simply generate a sufficient number of rewrites 221

(we set it to be 10 throughout our experiments) 222

from the original query, and then select an appropri- 223

ate subset from them adaptively for the generation 224

of final relevant documents. 225

In particular, denote the selected set of sub- 226

queries as Qs = {qr1 , . . . , qrK}, where qri ∈ Q 227

and ri is the index of the top i-th rank. In other 228

words,Qs is constructed such that it contains the K 229

most relevant subqueries among the total rewrites 230

of N , while K serves as a flexible threshold, dy- 231

namically adjusted per query Q. To this end, we 232

define the final retrieval set as follows. 233
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R̂(Q) =
K⋃
i=1

R(qri), qri ∈ Qs (4)234

As mentioned above, our objective is to construct235

a retrieval set R̂(Q) that closely approximates the236

ideal set R(Q), thus improving the accuracy of the237

answer while minimizing the inclusion of irrelevant238

or noisy content. For this, we propose a two-stage239

adaptive rewrite selection approach, whose overall240

architecture is illustrated in Figure 2. In particular,241

the first stage ranks candidate rewrites according242

to their relevance, respectively; while the second243

stage simulates the perference of the user, which244

adaptively determines how many of the top-ranked245

rewrites should be retained.246

More specifically, we first introduce a scoring247

function S, trained in a self-supervised learning248

manner, to estimate the relevance of each rewrite249

q to Q. We then formulate the selection of the op-250

timal number K of rewrites as a contextual bandit251

problem, aiming to learn a policy π which auto-252

matically determines the optimal ranking threshold253

K based on the query embedding x of the original254

query Q, denoted as K = π(x).255

With this, the selected top-K rewrites form our256

adaptive subset: Qs = {qr1 , . . . , qrK}, and the257

final retrieval set for query Q is constructed as:258

R̂(Q) =
⋃

q∈Qs

R(q) (5)259

The retrieved knowledge is then passed to down-260

stream tasks.261

In what follows, we give the details of the262

above two-stage adaptive rewrite selection ap-263

proach, which enables ARS-RAG to dynamically264

filter and select the most relevant rewrites for each265

query, yielding a flexible retrieval set R̂(Q) that266

closely approximates R(Q) for better RAG.267

3.3 Rewrite Ranker268

A core challenge in adaptive rewrite selection is269

quantifying the relevance of each rewrite q to the270

original query Q. The motivation for our ranker is271

to score and rank sub-queries by their ability to re-272

trieve knowledge that is truly useful for answering273

Q. We define rewrite relevance using an objective,274

automatic metric: the ability of a rewrite to retrieve275

documents that are helpful for answering Q. Intu-276

itively, a rewrite is considered relevant if it leads to277

the retrieval of document that is itself relevant and278

informative for answering Q.279

Collecting Training Data. For each input query 280

Q, we generate a set of rewrites, denoted as Q = 281

{q1, . . . , qN}. For each rewrite qi, we retrieve a set 282

of knowledge documents R(qi) = {d1, ..., dm}. 283

An automatic LLM-based evaluatorME , using the 284

RAGAS (Es et al., 2023) context relevance metric, 285

assigns a binary score sj = ME(Q, dj) to each 286

document dj ∈ R(qi) based on its relevance to 287

the query Q. The scores for all documents R(qi) 288

are aggregated to produce a self-supervised label 289

yi =
∑

dj∈R(qi)
sj , where a higher yi indicates that 290

qi is more relevant to the original query Q. Each 291

rewrite-score pair (qi, yi) is then paired with the 292

input query Q to form the training data: 293

(Q, {(qi, yi)}Ni=1) (6) 294

Algorithm 1 details the procedure. 295

Algorithm 1 Collecting Training Data

1: Require: EvaluatorME , RetrieverR
2: Input: An input query Q
3: Output: A tuple (Q, {(qi, yi)}Ni=1)
4: Generate a set of rewrites: Q = {q1, ..., qN}
5: for each rewrite qi ∈ Q do
6: Set label: yi ← 0
7: for each document dj ∈ R(qi) do
8: Evaluate score: sj ←ME(Q, dj)
9: Update label: yi ← yi + sj

10: end for
11: Save the pair (qi, yi)
12: end for
13: return (Q, {(qi, yi)}Ni=1)

Training Ranker. We train a BERT-based pair- 296

wise ranker to assess the relevance of rewrites. 297

Given training data in the form (Q, {(qi, yi)}Ni=1), 298

we construct pairwise comparisons. For each pair 299

(qi, qj) from the same query Q, we define the bi- 300

nary label P̄i,j : 301

P̄i,j =
1

2
(1 + sign(yi − yj)) (7) 302

Each sample is represented as (Q, qi, qj , P̄i,j). 303

A scoring function S(q,Q) computes a relevance 304

score for each q. The probability that qi is preferred 305

over qj is: 306

Pi,j = σ(S(qi, Q)− S(qj , Q)) (8) 307

where σ is the sigmoid function. The ranker is 308

trained using cross-entropy loss: 309
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L = − 1

N

∑
i,j

[P̄i,j logPi,j+(1−P̄i,j) log(1−Pi,j)]

(9)310

The trained model sorts the rewrites Q for each311

query Q, providing a relevance-based ordering for312

adaptive selection.313

3.4 Bandit Selector314

To dynamically determine the optimal top-K315

rewrites per query Q, we formulate K-selection316

as a contextual multi-armed bandit problem.317

This enables query-specific adaptation, balancing318

rewrite diversity with efficiency. We adopt Neu-319

ralUCB (Zhou et al., 2020), using neural networks320

to estimate the reward of each arm (a candidate K)321

based on the query context. As depicted in Fig-322

ure 3, the bandit interacts with the RAG module323

through online learning. For the t-th query Qt, the324

contextual bandit is defined as follows:325

Context (xt): The BERT-encoded embedding326

of the query Qt is xt ∈ Rd. Arms (k): Each arm327

corresponds to a candidate value k ∈ {1, . . . , N},328

where N is the maximum number of rewrites. Ac-329

tion (at): The selected arm at ∈ {1, . . . , N} for330

Qt at step t determines the chosen K. Reward331

(rt): rt = reward × wat , where reward ∈ {0, 1}332

indicates whether the answer is correct, and wat333

is a monotonically decreasing function of at (e.g.,334

wat = 3.0 − 0.2 × at). This reward formulation335

encourages the selection of smaller K values when336

possible, thus promoting both efficiency and an-337

swer quality.338

Figure 3: Bandit Selector.

Each arm k is associated with a reward predic-339

tion function fk(xt; θ̂k) parameterized by a neu-340

ral network, which estimates the expected reward341

r̂k(xt) given context xt. Uncertainty is quanti-342

fied via the gradient gk = ∇θkfk(xk;θk) and a343

positive-definite matrix Zk ∈ R|θk|×|θk| capturing344

parameter confidence.345

To select an arm, the bandit computes an upper346

confidence bound (UCB) score for each k:347

σ2
k(xt) = gk(xt; θ̂k)

⊤Z−1
k gk(xt; θ̂k) (10) 348

at = argmax
k∈{1,...,K}

(
fk(xt; θ̂k) + βt

√
σ2
k(xt)) (11) 349

Here, θ̂k are the estimated parameters for arm k, 350

and βt > 0 is the exploration parameter. gk(xt; θ̂k) 351

is the gradient of fk with respect to θk at xt. The 352

term
√

g⊤k Z
−1
k gk quantifies the predictive uncer- 353

tainty for context xt according to the parameter 354

covariance matrix Zk. Upon observing the reward 355

rt for the selected arm at, the bandit updates Zkt 356

for at as follows: 357

Zat ← Zat + gat(xt; θ̂at)gat(xt; θ̂at)
⊤ (12) 358

This online process allows the bandit to adap- 359

tively learn a query-specific policy π(K | x) bal- 360

ancing accuracy (maximizing reward) and effi- 361

ciency (minimizing K) based solely on the query 362

context. 363

4 Experiments 364

4.1 Datasets and Metrics 365

To evaluate ARS-RAG across diverse domains, we 366

conduct experiments on four ODQA datasets. 367

BoolQ (Clark et al., 2019) is a reading compre- 368

hension dataset with naturally occurring yes/no 369

questions. HotpotQA (Yang et al., 2018) re- 370

quires multi-hop reasoning over Wikipedia pas- 371

sages. MedMCQA (Pal et al., 2022) is a large- 372

scale multiple-choice dataset for medical entrance 373

exams. StrategyQA (Geva et al., 2021) targets 374

commonsense reasoning through yes/no questions 375

that integrate world knowledge. 376

Performance on BoolQ, MedMCQA, and Strate- 377

gyQA is measured using Accuracy and Precision 378

metrics, while HotpotQA is assessed with Exact 379

Match (EM) and F1 score. 380

4.2 Baselines 381

We compare ARS-RAG with a broad range of 382

baselines, including non-retrieval models, retrieval- 383

augmented frameworks, and ranker-based RAG . 384

Non-Retrieval Baselines. These baselines rely 385

solely on the language model’s internal knowl- 386

edge. We evaluate a few-shot prompting LLM and 387

a Chain-of-Thought (CoT) (Trivedi et al., 2022) 388

prompting method. 389
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Models Methods BoolQ HotpotQA MedMCQA StrategyQA Avg.
Acc. Prec. EM F1 Acc. Prec. Acc. Prec.

Gemma2:9B

LLM 55.25 66.59 18.05 27.44 65.25 68.76 63.75 71.45 54.57
COT 57.25 72.08 20.04 29.45 65.75 67.70 67.50 73.63 56.68

FLARE 74.82 76.43 18.56 30.13 70.72 73.46 74.34 75.16 61.70
SELF-RAG 77.25 80.04 18.25 29.35 71.25 74.06 81.54 82.13 64.23

RaFe 62.86 75.45 17.28 25.94 64.32 65.26 78.02 79.25 58.55
CoR 76.78 78.92 20.57 29.34 70.50 73.68 77.62 80.75 63.52

FairRAG 73.64 75.58 19.63 31.75 72.88 73.42 81.00 83.37 63.91
RankRAG 78.12 79.84 21.40 33.18 71.78 72.38 82.25 85.07 65.50

ARS-RAG 80.25 81.25 29.37 40.43 75.75 77.12 84.75 84.85 69.22

Qwen2.5:32B

LLM 65.25 76.67 16.03 26.50 71.50 71.88 73.62 78.24 59.96
COT 70.25 80.09 24.05 34.98 70.54 71.89 78.06 79.68 63.69

FLARE 79.41 82.25 27.46 38.85 79.62 83.12 77.37 78.53 68.33
SELF-RAG 82.25 85.33 26.54 40.09 83.52 84.08 87.58 87.86 72.16

RaFe 64.62 70.26 29.47 40.89 82.46 84.52 83.56 84.26 67.51
CoR 81.50 85.25 28.00 40.86 83.75 84.07 89.50 90.31 72.91

FairRAG 78.64 83.52 26.75 40.46 81.02 81.66 85.75 86.85 70.58
RankRAG 81.58 84.82 27.73 41.28 82.57 82.84 90.00 90.51 72.67

ARS-RAG 85.04 87.53 35.08 45.23 85.75 86.06 92.25 92.83 76.22

Llama3.3:70B

LLM 72.56 76.99 28.25 42.06 85.50 86.04 75.56 77.91 68.11
COT 78.08 81.17 32.75 42.62 84.54 85.04 83.06 83.07 71.29

FLARE 84.92 85.74 34.62 43.82 85.60 87.23 79.25 81.61 72.85
SELF-RAG 85.00 87.32 35.75 48.89 86.75 86.96 89.46 92.60 76.59

RaFe 82.46 86.25 31.54 43.75 87.43 88.16 85.74 86.17 73.94
CoR 84.48 85.49 35.78 50.34 88.02 88.15 91.85 91.93 77.01

FairRAG 82.62 85.25 31.42 46.25 86.83 86.96 87.52 87.86 74.34
RankRAG 84.72 86.14 34.78 53.68 87.11 87.75 92.26 92.12 77.32

ARS-RAG 88.75 89.82 43.50 55.96 89.75 89.78 94.50 94.58 80.83

Table 1: Performance comparison. The Avg. column indicates overall performance and the Time column reflects
response time. The best and second-best results are bolded and underlined.

Retrieval-Augmented Baselines. These meth-390

ods retrieve external knowledge to assist gener-391

ation. FLARE (Jiang et al., 2023) dynamically392

determines when and what to retrieve during gen-393

eration. SELF-RAG (Asai et al., 2023) combines394

on-demand retrieval with self-reflection to refine395

outputs and improve coherence.396

Ranker-Based RAG Baselines. These ap-397

proaches use ranking to select the most relevant398

contexts or rewrites. RaFe (Mao et al., 2024)399

improves query rewriting for RAG by leveraging400

reranker feedback to train models without annota-401

tions. CoR (Lee et al., 2025) simplifies the ranking402

process by prioritizing document reliability.403

FairRAG (Kim and Diaz, 2024) introduces a404

stochastic retriever to promote equal exposure405

of relevant contexts. RankRAG (Yu et al., 2024)406

facilitates context ranking and answer generation407

through the instruction-tuning of LLMs.408

4.3 Main Results 409

Table 1 reports the performance of ARS-RAG 410

and various baselines across four ODQA bench- 411

marks and three model scales. ARS-RAG con- 412

sistently achieves the best average performance 413

(80.83) on Llama3.3:70B, outperforming strong 414

ranker-based methods such as RankRAG (77.32) 415

and CoR (77.01). Notably, ARS-RAG attains the 416

highest score on StrategyQA (94.50), underscoring 417

its ability to select and utilize high-quality rewrites 418

for challenging reasoning tasks. 419

Across all benchmarks and model sizes, per- 420

formance improves as model parameters increase, 421

with Llama3.3:70B obtaining the highest results 422

on each dataset. The effectiveness of ARS-RAG 423

is consistent across scales, with clear gains ob- 424

served not only for the largest model but also 425

for Gemma2:9B and Qwen2.5:32B, demonstrating 426

strong scalability and generalization. 427

In summary, ARS-RAG outperforms both non- 428
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retrieval and retrieval-augmented baselines, while429

also reducing computational overhead compared430

to RAG-based ranker pipelines. These results431

highlight the effectiveness of combining adaptive432

rewrite selection and relevance-based ranking in433

RAG pipelines, eliminating the need for LLM fine-434

tuning. This combination enhances relevance and435

reduces computational cost.436

4.4 Effect of Rewrite Selection Strategies437

We assess the impact of different rewrite selection438

strategies on BoolQ and HotpotQA. The compared439

strategies are as follows:440

RAG: Utilizes the input query for retrieval.441

Rewriter-5/10: Generates 5 or 10 rewrites per442

query for targeted knowledge retrieval. Top-K:443

Employs the K most relevant rewrites as ranked444

by the ranker. Worse-K: Uses the K least rele-445

vant rewrites as ranked by the ranker. Random-K:446

Samples K rewrites randomly (averaged over 5447

runs). ARS-RAG (Adaptive-K): Adaptively se-448

lects the best K rewrites per query.449

(a) BoolQ

(b) HotpotQA

Figure 4: Comparison of rewrite selection strategies.
ARS-RAG achieves the best overall performance.

Figure 4a and Figure 4b illustrate the compara-450

tive performance of these strategies. The substan-451

tial gap between Top-K and Worse-/Random-K452

validates the effectiveness of the learned ranker:453

prioritizing rewrites based on relevance signifi-454

cantly improves performance. However, Top-K455

also reveals a limitation: its accuracy is sensitive to456

the choice of K, often peaking around K = 5 (on 457

BoolQ) or K = 6 (on HotpotQA) and declining as 458

K increases due to noisy or redundant rewrites. 459

In contrast, ARS-RAG surpasses the peak perfor- 460

mance of Top-K without requiring manual tuning. 461

By leveraging a contextual bandit, ARS-RAG adap- 462

tively determines the optimal number of rewrites 463

for each query. This flexibility allows the model 464

to dynamically balance the trade-off between infor- 465

mation coverage and noise, leading to robust and 466

high performance. 467

Overall, these results highlight two key findings: 468

1) a trained ranker is crucial for high-quality rewrite 469

selection, and 2) adaptive determination of K via 470

bandit learning further improves effectiveness. The 471

combination of these approaches, as realized in 472

ARS-RAG, leads to superior retrieval-augmented 473

QA performance across datasets. 474

4.5 Ablation Study 475

To assess the contribution of each component in 476

ARS-RAG, we conduct an ablation study across 477

four ODQA datasets, as shown in Table 2. The 478

ablation settings are as follows: 479

LLM: Directly answers the question using 480

LLMs. RAG: Retrieves external knowledge us- 481

ing the original query. Rewriter: Generates 482

10 rewrites per query, each used for retrieval. 483

Rewriter+Ranker: Generates 10 rewrites, ranks 484

them by relevance, and selects the top-5 most rele- 485

vant rewrites for retrieval. Rewriter+Bandit: Uses 486

a bandit to adaptively determine K, then generates 487

K rewrites directly for retrieval, without ranking. 488

ARR-RAG: Combines all components; generates 489

10 rewrites, ranks them, and uses a bandit to adap- 490

tively select the optimal K top-ranked rewrites for 491

retrieval. 492

Variant BoolQ HotpotQA MedMCQA StrategyQA

LLM 72.56 42.06 85.50 75.56
RAG 79.23 43.67 86.52 83.74
Rewriter 83.75 47.36 87.50 90.75
Rewriter+Ranker 86.25 50.57 88.75 93.50
Rewriter+Bandit 85.42 48.45 88.23 91.88
ARS-RAG 88.75 55.96 89.75 94.50

Table 2: Ablation Study Results.

Performance improves steadily from the LLM 493

baseline to RAG and Rewriter, confirming the value 494

of external knowledge and query reformulation. 495

Introducing the ranker (Rewriter+Ranker) further 496

improves accuracy by selecting the most relevant 497

rewrites, but is constrained by a fixed K, which can 498
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limit performance on diverse queries due to either499

redundancy or insufficient coverage.500

The Rewriter+Bandit variant adaptively deter-501

mines K for each query. While this reduces infer-502

ence cost and adapts to query complexity, it lacks503

quality control: rewrites are directly used without504

ranking, making it susceptible to semantic drift and505

retrieval noise, especially on complex datasets like506

HotpotQA.507

By integrating both ranking and adaptive selec-508

tion, ARS-RAG achieves the best overall perfor-509

mance. The ranker ensures high-quality rewrites,510

while the bandit dynamically adjusts K, leading511

to robust and consistent gains across all datasets.512

This ablation study underscores the necessity of513

jointly optimizing rewrite quality and quantity for514

retrieval-augmented QA.515

4.6 Effectiveness of the Bandit-based Rewrite516

Selection517

To assess the effectiveness of the bandit technique518

in adaptive rewrite selection, we conduct 500 train-519

ing epochs with a batch size of 32, evaluating policy520

performance on the test set after each epoch, and521

recording the weighted reward. All results are av-522

eraged over five independent runs, and both mean523

and standard deviation (std) of weighted reward are524

reported for train and test sets.525

Figure 5: Mean and standard deviation of weighted
reward on training and test sets in the bandit selector.

Figure 5 illustrates the reward curves throughout526

training. The steady increase in test reward, accom-527

panied by a gradual decrease in standard deviation,528

indicates that the bandit selector effectively learns529

a stable and robust policy over time. Notably, the530

narrowing std suggests the learned policy general-531

izes well and converges reliably across different532

runs.533

To further analyze the learned policy, we exam-534

ine the distribution of selected K values on the535

test set using the bandit policy from the final train-536

Figure 6: Distribution of K for last training epoch on
the test set.

ing epoch (Figure 6). The distribution shows a 537

clear preference for smaller K values, suggesting 538

that the bandit selector learns to minimize retrieval 539

redundancy and suppress irrelevant information, 540

while still preserving answer quality. The pref- 541

erence for lower K values demonstrates that the 542

reward formulation effectively encourages efficient 543

and adaptive retrieval. 544

In summary, these results demonstrate that 545

the bandit selector can efficiently learn a query- 546

adaptive K selection policy, achieving a favorable 547

trade-off between answer quality and resource con- 548

sumption. 549

5 Conclusion 550

In this paper, we presented ARS-RAG, an adap- 551

tive rewrite selection approach for open-domain 552

QA. ARS-RAG generates multiple rewrites and 553

dynamically selects the most effective ones. A self- 554

supervised ranker evaluates the relevance of each 555

rewrite, while a contextual bandit selector adap- 556

tively chooses the optimal subset for retrieval. This 557

design enables query-specific adaptation and pre- 558

cise knowledge retrieval, all without requiring addi- 559

tional fine-tuning of the rewriter. Extensive experi- 560

ments on four ODQA benchmarks show that ARS- 561

RAG consistently outperforms both non-retrieval 562

and RAG-based baselines across multiple model 563

sizes. With its single-pass design and low compu- 564

tational overhead, ARS-RAG offers a scalable and 565

efficient solution for knowledge-intensive applica- 566

tions. 567

6 Limitations 568

While ARS-RAG shows strong empirical perfor- 569

mance, several limitations remain. First, our ranker 570

relies on context relevance scores generated by the 571

RAGAS framework, which in turn depends on an 572

LLM-based evaluator. As a result, biases or limi- 573

tations inherent in the evaluator’s training distribu- 574
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tion may affect data quality and overall system per-575

formance. Second, the pairwise ranking objective576

focuses on relative comparisons. This may penal-577

ize novel but valid rewrites that deviate from the578

original query and may overlook interdependencies579

among multiple rewrites. Finally, our experiments580

are limited to general-domain ODQA benchmarks.581

The approach’s robustness under domain shift, ad-582

versarial inputs, or larger retrieval corpora has yet583

to be fully explored.584

7 Ethical Considerations585

All datasets used in this work are publicly available586

and widely adopted in the ODQA community. We587

do not collect or annotate any private or sensitive588

data. As our method builds on pretrained LLMs589

and LLM-based evaluators, it may reflect certain590

biases present in these models. While ARS-RAG591

improves retrieval precision and efficiency, it does592

not explicitly filter harmful content in the retrieved593

documents. The adaptive rewrite mechanism may594

also amplify factual inconsistencies if used with595

unreliable retrievers or generators.596
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A Dataset Details 714

We conduct experiments on four widely used 715

ODQA benchmarks: 716

BoolQ (Clark et al., 2019) is a reading compre- 717

hension dataset consisting of naturally occurring 718

yes/no questions. These questions are non-factoid 719

and often require entailment-like inference over 720

passages, making them challenging for models 721

trained on traditional QA data. 722

HotpotQA (Yang et al., 2018) focuses on multi- 723

hop reasoning, where each question requires ag- 724

gregating information from multiple Wikipedia 725

passages. The dataset also provides supporting 726

sentence-level evidence, enabling supervision for 727

both answer prediction and explainability. 728

MedMCQA (Pal et al., 2022) is a large-scale 729

multiple-choice QA dataset based on real medical 730

entrance exam questions. It covers 21 medical 731

subjects and demands fine-grained reasoning across 732

diverse medical topics. 733

StrategyQA (Geva et al., 2021) is a common- 734

sense reasoning benchmark where questions em- 735

bed implicit multi-step reasoning strategies. Each 736

instance includes decompositions into reasoning 737

steps and evidence paragraphs, testing a system’s 738

ability to infer hidden logical structure. 739

For each dataset, we randomly sample 1,600 740

examples for training and 400 for testing. 741

B Implementation Details 742

LLM Selection. We use LLaMA3.3:70B as both 743

the query rewriter and the context relevance evalua- 744

tor, leveraging its strong instruction-following and 745

text generation capabilities to ensure high-quality 746

rewrites and accurate relevance scoring. For an- 747

swer generation, we experiment with three models: 748

Gemma2:9B, Qwen2.5:32B, and LLaMA3.3:70B. 749

For ranker training, we use BERT-base-uncased 750

as the encoder for BoolQ, HotpotQA, and Strate- 751

gyQA, and ClinicalBERT for MedMCQA to bet- 752

ter align with the medical domain. 753

Retriever. We use the nomic-embed-text em- 754

bedding model for dense retrieval, with embed- 755

dings indexed in Chroma. Retrieval is based on 756

vector similarity, with top-5 documents selected by 757

default. 758
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Retrieval Contexts. For each query, the selected759

rewrites are independently used to retrieve sup-760

porting documents. All retrieved contexts are then761

merged and deduplicated to eliminate overlapping762

or redundant content. This ensures that the gen-763

erator receives a diverse yet non-repetitive set of764

evidence, which helps reduce semantic noise and765

improves the quality and factuality of the generated766

answers.767

Ranker Training Details. The model is opti-768

mized with AdamW (learning rate 5e-5, weight769

decay 0.01), using BCEWithLogits loss. We train770

for 100 epochs with a batch size of 64, using co-771

sine learning rate scheduling. Dropout (rate 0.1) is772

applied in the classification head for regularization.773

Bandit Selector Reward Setting. We adopt dif-774

ferent reward schemes for different datasets. For775

BoolQ, MedMCQA, and StrategyQA, we use bi-776

nary rewards: the reward is 1 if the answer is cor-777

rect and 0 otherwise. For HotpotQA, we apply a778

mixed standard: if EM equals 1, the reward is set779

to 1; if EM is 0, the F1 score is used as the reward.780

As F1 scores are within [0, 1], the overall reward781

for HotpotQA is also bounded in [0, 1]. To encour-782

age the bandit to select smaller k for efficiency, we783

adopt a weighted reward scheme in all datasets: the784

observed reward is multiplied by a monotonically785

decreasing weight wk (e.g., wk = 3.0− 0.2k), i.e.,786

weighted_reward = reward × wk. This formula-787

tion penalizes the use of larger k values, guiding the788

bandit to prefer more efficient selections without789

sacrificing answer quality.790

C Penalty Function in Bandit Selector791

Weighted Reward vs. Penalty-based Schemes.792

In the main paper, we adopt a weighted reward793

function that encourages the bandit to select smaller794

k values, promoting both efficiency and answer795

quality. To further investigate the impact of alter-796

native penalty designs, we also experimented with797

an explicit penalty term, λ · k, added to the reward.798

λ 0 0.01 0.02 0.03 0.04

Accuracy 88.2 88.5 88.63 88.1 87.3
Mean-k 5.7 4.8 4.2 2.9 2.5

Table 3: Effect of penalty parameter λ on accuracy and
average k (evaluated on BoolQ).

As shown in Table 3, varying the penalty param-799

eter λ demonstrates a trade-off between efficiency800

and accuracy. Without penalty (λ = 0), the bandit 801

often selects larger k, resulting in moderate accu- 802

racy. Introducing a moderate penalty (λ = 0.01 803

or 0.02) reduces average k and improves accuracy, 804

as the penalty discourages redundant or irrelevant 805

rewrites and suppresses retrieval noise. However, 806

overly large λ leads to very small k values, re- 807

ducing coverage of effective rewrites and overall 808

accuracy. These results highlight that a properly 809

tuned penalty promotes both efficiency and answer 810

quality. 811

Figure 7: Distribution of k for Different λ.

Figure 7 further visualizes the distribution of 812

selected k values across different λ settings. As λ 813

increases, the bandit is increasingly incentivized 814

to choose smaller k, resulting in a leftward shift in 815

the distribution. However, overly large penalties 816

may result in under-exploration and suboptimal 817

answer quality. Based on these findings, we use the 818

weighted reward design in the main text, as it yields 819

higher accuracy while still maintaining efficiency. 820

D Time consumption 821

We evaluate the inference latency of two RAG 822

pipelines: the Original pipeline and the ARS-RAG 823

pipeline. 824

The Original pipeline generates 10 rewrites per 825

query, retrieves 5 documents per rewrite, and uses 826

a binary LLM-based evaluator to score them. The 827

top-5 rewrites are then selected and passed to the 828

Multi-queries RAG module. This multi-step pro- 829

cess incurs substantial latency due to repeated re- 830

trieval and evaluation. 831

In contrast, ARS-RAG generates 10 rewrites but 832

leverages a lightweight ranker to score them. A ban- 833

dit selector then adaptively determines the optimal 834

number of rewrites to use based on the query. This 835

adaptive design eliminates redundant per-rewrite 836

retrieval and scoring. 837

As shown in Figure 8, ARS-RAG consistently 838

achieves lower latency across all datasets. Its one- 839
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Figure 8: Comparison of Time Consumption.

pass ranking and adaptive selection strategy en-840

ables faster inference and easier deployment.841

E Prompt Templates842

We list below all prompt templates used throughout843

our approach. Each prompt is tailored to guide844

the LLMs in a specific subtask, including query845

rewriting, context relevance evaluation, and answer846

generation under different settings. All prompts847

follow a modular structure with a role declaration,848

behavioral rules, and clearly defined inputs.849

Query Rewriting. This prompt guides the LLM850

to produce ten diverse, semantically faithful851

rewrites for a given input question, enhancing re-852

trieval coverage without sacrificing precision. See853

Table 4.854

Context Relevance Evaluation. This prompt is855

used to judge whether a retrieved document is se-856

mantically relevant to the original question. It pro-857

vides binary supervision (“relevant” or “irrelevant”)858

for training and evaluating the ranker. See Table 5.859

Zero-Context Answer Generation. This prompt860

asks the LLM to determine whether a given ques-861

tion is true or false without any context. It serves862

as a baseline to isolate model performance from863

retrieved evidence. See Table 6.864

RAG Answer Generation. This prompt is used865

in retrieval-augmented settings. Given a question866

and supporting context, the LLM is instructed to867

answer “true” or “false” and optionally produce868

reasoning steps. See Table 7.869

Query Rewriting Prompt

# Role:
As an AI assistant, I am responsible for rewrit-
ing the original question to enhance its clarity,
diversity, and contextual relevance.
# Rules:
1. I will generate ten diverse rewrites by system-
atically reformulating the input question.
2. Each rewrite will maintain semantic fidelity,
adhere to formal language standards, and avoid
ambiguity or redundancy.
3. The rewrites will be clearly numbered, gram-
matically correct, and contextually meaningful.
4. Variations may include paraphrasing, struc-
tural reformulation, or expansion/compression
where appropriate.
5. All rewrites will be separated by line breaks
to ensure readability.
# Input:
Original question: {question}

Table 4: Query Rewriting Prompt.

Context Relevance Evaluation Prompt

# Role:
You are an AI assistant responsible for evaluat-
ing whether the provided context is relevant to
the given question.
# Rules:
1. If the context directly answers the question
or includes key information or data that can rea-
sonably help answer it, respond with "relevant".
2. If the context is unrelated to the question, does
not provide sufficient information to answer it,
or lacks key details, respond with "irrelevant".
3. Respond using only the word "relevant" or
"irrelevant". Do not include any additional text
or characters. This ensures clarity and precision.
# Input:
Question: {question}
Context : {context}

Table 5: Context Relevance Evaluation Prompt.
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Generation without Retrieval Prompt

# Role:
You are an AI Q&A assistant. I will prepare
questions for you, and your role is to help me
think through the question and arrive at the cor-
rect answer.
# Rules:
1. Determine whether the following question is
true or false.
2. Your response must be formatted as either
"true" or "false".
3. Do not include any additional text or charac-
ters in your response.
# Input:
Question: {question}

Table 6: Generation without Retrieval Prompt.

Generation with Retrieval Prompt

# Role:
You are an AI Q&A assistant. I will prepare
questions for you, and your role is to help me
think through the question and arrive at the cor-
rect answer.
# Rules:
1. Based on the provided question and context,
please provide a clear, step-by-step reasoning
process leading to your answer, answering the
following question is true or false.
2. Ensure that your explanation is logical, accu-
rate, and directly relevant to the question.
2. Your response must be formatted as either
"true" or "false".
3. Do not include any additional text or charac-
ters in your response.
# Input:
Question: {question}
Context : {context}

Table 7: Generation with Retrieval Prompt.
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