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Abstract

Early-exit neural networks (EENNS) facilitate adaptive inference by producing predictions
at multiple stages of the forward pass. In safety-critical applications, these predictions are
only meaningful when complemented with reliable uncertainty estimates. Yet, due to their
sequential structure, an EENN’s uncertainty estimates should also be consistent: labels that
are deemed improbable at one exit should not reappear within the confidence interval / set
of later exits. We show that standard uncertainty quantification techniques, like Bayesian
methods or conformal prediction, can lead to inconsistency across exits. We address this
problem by applying anytime-valid confidence sequences (AVCSs) to the exits of EENNs. By
design, AVCSs maintain consistency across exits. We examine the theoretical and practical
challenges of applying AVCSs to EENNs and empirically validate our approach on both
regression and classification tasks.

1 Introduction

Modern predictive models are increasingly deployed in environments where computational resources at test
time are either constrained or dynamic. In a constrained setting, there’s a fixed amount of available resources.
For example, when ML models are deployed on low-resource devices, such as mobile phones, they would
ideally make fast, yet accurate predictions to ensure optimal user experience. On the other hand, in a
dynamic setting, the available resources can vary due to external conditions. Consider an autonomous
vehicle: when it’s moving at high speeds, the model must make rapid predictions. However, as the vehicle
slows down, the model can afford more time to process or ‘think’ Early-exit neural networks (EENNSs)
(Teerapittayanon et all 2016; Huang et al., [2018]) present a promising solution to challenges arising in both
of these settings. As the name implies, these architectures have multiple exits that allow a prediction to be
generated at an arbitrary stopping time. This is in contrast to traditional predictive models that yield a
single prediction after processing all layers or model components.

To enable the use of EENNs in safety-critical applications, such as autonomous driving, it is necessary to
estimate the predictive uncertainty at each exit (McAllister et al., [2017). Presently, standard techniques
for uncertainty quantification, such as Bayesian methods (Meronen et al., 2023|) and conformal prediction
(Schuster et al.l |2021])), are used for this purpose. However, we are aware of no work that has accounted for
the fact that the uncertainties computed for neighboring exits are dependent. For example, in a regression
task, an uncertainty interval for the prediction at a given exit should be consistent with the intervals at the
previous and subsequent exits (c.f. Figure . If a candidate prediction yq is in the interval at exit ¢ — 1 and
drops out of the interval at exit ¢, y9 should not re-enter the interval at exit t+ 1. An even worse case would
be that the intervals at exit ¢ and ¢ + 1 are disjoint. Such inconsistent behaviour limits the decisions that
can be drawn at the initial exits of EENN, thereby undermining their anytime properties.

We address this open problem by applying anytime-valid confidence sequences (AVCSs) (Robbins, 1967} 1970;
Lail [1976) to the task of quantifying uncertainty across the exits of an EENN. AVCSs extend traditional,
point-wise confidence intervals to streaming data scenarios (Maharaj et all 2023). Importantly, AVCSs
are guaranteed to have a non-increasing interval width (Howard et al., 2021)) and are therefore consistent
by definition. Our main insight is that AVCS can be applied even in settings where a single data point
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is observed - like in estimating the uncertainty of a model’s prediction for a given test point. To achieve
this, we construct the AVCS using ’streaming’ model parameters (e.g., last-layer weights) at different exits,
instead of using streaming data as is traditionally done. We describe the approximations necessary to make
AVCSs applicable for predictive inference and additionally provide bounds on the errors introduced by our
approximations. In our experiments, we demonstrate that our AVCS-based procedure produces consistent
estimates of predictive uncertainty across exits in EENNs for various regression and classification tasks.

2 Background

Data Let X C R denote a D-dimensional feature
space and ) the response (output) space. In the case v T - - - '-' - — -
of regression, we have ) C R, and for classification

T T T

Y =A{1,...,K}. Weassume x and y are realizations
of the random variables x and y, drawn from the un-
known data distribution p(x,y) = p(y|x) p(x). The
training data consists of IV feature-response pairs

D = {(xn,yn)}Y_;. Lastly, let (z*,y*) denote a y* __.___.___.___-___.-_.
T T

T T

test point, which may be drawn from a different dis-
tribution than the one used for training.

T T

Early-Exit Neural Networks EENNs 1 2 3 4 5
lapittayanon et al) 2016) generate predictions at Early-Exit (t)

various depths by having several prediction heads
branch out from a shared backbone network. Specif-
ically, an EENN defines a sequence of predictive
models: f(ax; Wi, Uy4), t=1,...,T, where W; rep-
resents the parameters of the predictive head at exit
t and U; denotes the parameters of the ¢t-th block
in the backbone architecture. EENNs are usually
trained by fitting all exits at once

Figure 1: Illustrative example of a 1-dimensional re-
gression problem using an Early-Exit neural network
(EENN) with T' = 5 exits. Upper: At each exit,
the EENN produces an uncertainty estimate C} con-
sistent with its previous estimates, i.e., Cy C C;_.
Lower: An example of inconsistent uncertainty esti-
mates across different exits, e.g., Cy contains candidate
T labels y not included in C; (area denoted with (/)
Zé(ym f@n; Wy, Ulzt)) lines). Such behavior often results from an EENN be-
t=1 coming overconfident, i.e., exhibiting low uncertainty,
too early.

1

N

N
L(Wyr,Upr;D) =
n=1

where ¢ is a suitable loss function such as negative
log-likelihood.

At test time, we can utilize the intermediate predictions of EENNs in various ways. For instance, if the
model is deemed sufficiently confident at exit ¢, we can halt computation without propagating through
blocks ¢t + 1,...,T, thus speeding up prediction time. Naturally, the merit of such an approach relies on
quality estimates of the EENN’s uncertainty at every exit. Furthermore, EENNs can be employed as anytime
predictors (Huang et all |2018; |Jazbec et al., 2023) where the aim is to quickly provide an approximate
prediction—ideally with its associated uncertainty—and continuously improve upon it as long as the current
environment permits.

Anytime-Valid Confidence Sequences Consider a streaming setting in which new data arrives at every
time point ¢ via sampling from an unknown (parametric) model x; ~ p(x|6*). Here 8* € R represents the
parameter of the data-generating distribution for which we want to perform statistical inference. An anytime-
valid confidence sequence (AVCS) (Robbins, 1967 [1970; [1976)) for 0* is a sequence of confidence intervals
Ci = (L, Ry) € R that have time-uniform and non-asymptotic coverage guarantees:

P(vt, 0* € C,) > 1 —a,

where « € (0, 1) represents the level of significance. The anytime (i.e. time-uniform) property allows the user
to stop the experiment, ‘peek’ at the current results, and choose to continue or not, all while preserving the
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validity of the statistical inference. This is in contrast with standard confidence intervals based on central
limit theorem (CLT) that are valid only pointwise (i.e. for a fixed time / sample size). Of course the stronger
theoretical properties of AVCSs come at a cost, as their size is typically larger compared to CLT-based
intervals (Howard et al., |2021]).

AVCS is constructed by first specifying the family of stochastic processes {R;(0) : 8 € ©} that depends only
on observations x1,...,x; available at time ¢. Next, we require that when evaluated at the parameter of
interest, R;(6*) forms a discrete, non-negative martingale (Ramdas et al. |2020)—a stochastic process that
remains constant in expectationﬂ By, [Rit1(0%)|x1, ..., x¢] = Ry(6%),Vt. Additionally, Ro(6*) should have
an initial value that is constant (usually one). Once such a martingale is constructed, the AVCS at a given
t is implemented by computing R;(#) for all § € © and adding to the set the values for which R; does not
exceed 1/a: Cy := {60 : Ry(f) < 1/a}. Strong theoretical properties (i.e., time-uniformity) then follow from
Ville’s inequality for nonnegative (super)martingales: P (3t : R:(6*) > 1/a) < a. One example of a random
variable R; from which we can construct an AVCS is the prior-posterior ratio: R:(6) = p(8)/p(0|x1,. .., x+)
(Waudby-Smith & Ramdas|,2020). The time-uniform nature of AVCS enables one to consider the intersection
of all previous intervals, given by C; = Ns<:C, at time ¢ without sacrificing statistical validity (Shekhar &
Ramdas), 2023)). This results in nested intervals/sets, i.e., C; C C;_1 . It is this pivotal property of AVCSs
that we wish to exploit to ensure that the predictive uncertainty in EENNs remains consistent across exits.

3 Confidence Sequences for Early-Exit NNs

Our contribution is to apply AVCSs to perform inference over the predictions generated by each exit of
a EENN. As we will see, this is not a straightforward synthesis: AVCSs have been exclusively used in
streaming-data settings, where the goal at every time step is to produce a confidence interval covering the
parameter of the data generating distribution #. On the other hand, we want to apply them to EENNs that
see just one feature vector x* at test time. Moreover, we are interested in obtaining a prediction interval
at every exit that contains the ground-truth label y* with high probability. We overcome these differences
by considering the parameters of the EENN’s exits W; as the sequence of random variables for which the
martingale is defined. Below we first give a general recipe for constructing AVCSs for EENNs and then
describe a practical implementation for both regression (c.f. Section [)) as well as for classification models

(c.f. Section [5).

Bayesian EENN We begin by positing a (last-layer) Bayesian predictive model at every exit:
pivle’, D) = [ plyla’, Wi Ur) p(Wi[D. U) W, 1)

for t =1,...,T, with T representing the total number of exits. p(y|x*, Wy, Uy.) and p(W¢|D,Uy.t) corre-
spond to the likelihood and (exact) posterior distribution, respectively. To ensure minimal overhead of our
approach at test time, we treat the backbone parameters Uj.; as point estimates (e.g. found through pre-
training) that are held constant when constructing the AVCS. To reduce notational clutter, we omit these
parameters from here forward. While Bayesian predictives p;(y|x*, D) can be used ‘as is’ to get uncertainty
estimates at each exit (e.g., by constructing a credible interval), we show in Section m that this results in
an inconsistent, i.e., not nested, sequence of uncertainty estimates. We next present an approach based on
AVCSs to rectify such behaviour.

Idealized Construction We first consider an idealized construction that, while impossible to implement
exactly, will serve as the foundation of our approach. At test time, upon seeing a new feature vector x*,
we wish to compute an interval for its label such that y* € C; Vt with high probability. Assume that we
also have observed the true label y*. For the moment, ignore the circular reasoning that this is the very
quantity for which we wish to perform inference. Furthermore, with (z*, y*) in hand, assume we can compute
(exactly) the posterior for any exit’s parameters: p(W;|, D U (x*,y*)). This distribution is the posterior

11t is also common to define AVCS in terms of supermartingales, which are stochastic processes that decrease in expectation
over time: Ex, ; [Ri4+1(0%)[x1,...,x¢] < Re(6%),Vt.
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update we would perform after observing the new feature-response pair. For notational brevity, we will
denote D, := DU (x*,y*) from now on.

To prepare for the proposition that follows, we define for a given y € Y the predictive-likelihood ratio

pu(ylz™, D)
~ p(W;|Dy) .
H ol Wi~ P(WilD) (2)

Note that only the likelihood terms in the denominator depend on the updated posterior (via samples W;),
whereas the predictive terms in the numerator rely solely on training data (via p(W;|D)). The exact form
of our proposed ratio in is inspired by the aforementioned prior-posterior martingale (Waudby-Smith &
Ramdas|, 2020)) yet modified for the predictive setting. We next state our key proposition that will serve as
an inspiration for constructing AVCS for y* in EENNs:

Proposition 1. For a given test point (x*,y*), the predictive-likelihood ratio R} (y) in (9) is a non-negative
martingale with R = 1 when evaluated at y = y*. Moreover, the confidence intervals of the form C;f = {y €
Y| R;(y) <1/a} are (1 — «)-confidence sequences for y*, meaning that P(Vt,y* € C}) > 1—«.

The proof follows the standard procedure for deriving parametric confidence sequences; see Appendix
We term the resulting confidence sequence an EENN-AVCS.

Realizable Relaxation Now we return to the aforementioned circular reasoning that we are performing
inference for y* while assuming we have access to it. In practice, we do not have access to y* at test time,
hence we can not compute R} (y) (and consequently C}). As a workaround, we propose to approximate the
updated posterior with the one based on the training data only

p(W¢|Dy) = p(W¢|D) (3)

at every exit t = 1,...,T. With R;(y) and C}, we denote the resulting predictive-likelihood ratio and
confidence sequence based on p(W¢|D), respectively. While C; is now computable in a real-world scenario
(since it’s independent of y*), it unfortunately does not inherit the statistical validity of C;. Naturally,
the degree to which C; violates validity depends on the quality of approximation in . If the posterior
distribution p(W¢|D) is stable—meaning that adding a single new data point (z*,y*) would have a minimal
effect on it—the approximation is well-justified, and only minor validity violations can be expected. Such
stability in the posterior is likely when the training dataset D is large and the new test datapoint originates
from the same distribution. Conversely, if the posterior is unstable, the approximation will likely be poor,
leading to larger violations of validity. This intuition can be formalized using the following proposition:

Proposition 2. Assume C} is a valid (1 — «) confidence sequence for a given test datapoint (x*,y*) (c.f.
Proposition , Then the miscoverage probability of the confidence sequence Cy = {y € Y| Ri(y) < 1/a} can
be upper bounded by

PELE (Lo thoy ¢ C) < at V1 — e S KLV powiip.)
Vt=1,...,T, where KL denotes the Kullback-Leibler divergence between probability distributions.

See Appendix[A.2|for the derivation. Based on the bound in Proposition[2} it is clear that when the posteriors
at different exits are stable, i.e. the KL divergence between p(W;|D) and p(W;|D,) is small, the validity
violation is minor. As a result, C; will be a good approximation of the valid sequence C}.

Detecting Violations of Posterior Stability It is also evident from Proposition [2) that when approx-
imation in is poor, i.e. the KL divergence between p(W;|D) and p(W;|D,) is large, the validity of C;
will degrade quickly. As aforementioned, this could happen for a particular x* if either (i) D is small and
the posterior is not stable yet or (ii) x* is not drawn from the training distribution. In such cases, the
method should ideally fail gracefully. Fortunately, the behavior of invalid AVCSs—ones for which R(y) is
not a martingale for all y € Y—has been previously studied for change-point detection (Shekhar & Ramdas,



Under review as submission to TMLR

2023)). Based off of their theoretical and empirical results, our procedure should collapse to the empty inter-
val if approximation is poor: 3ty such that Cy>4, = 0. Encouragingly, in Section we experimentally
validate that such collapses occur for out-of-distribution points for a reasonably small t,. However, there will
be times at which the interval width will be small—which the user might interpret as high confidence—only
to later collapse to the empty set (meaning maximum uncertainty). We leave to future work a method for
diagnosing when an EENN-AVCS has not yet collapsed but is likely to.

Speeding up convergence of EENN-AVCS In our original formulation (c.f. Eq. ), we draw a
single weights sample W, at each exit. Hence, in the first few exits, our confidence sequence will be based
on only a few samples, and is thus expected to be large and potentially uninformative. This is analogous
to AVCSs being large for the first few datapoints in the data-streaming scenario (Howard et al.l [2021)).
As a workaround, we propose constructing multiple AVCSs in parallel for a given test datapoint «*, and
then considering their intersection at a given exit. Importantly, due to its fully parallel nature, such an
approach does not introduce additional time overhead. We have also considered alternative approaches, like
constructing a single AVCS based on multiple samples at each exit; however, we found that they perform
worse in terms of marginal coverage and efficiency. For a further discussion on speeding up the convergence
of EENN-AVCS, refer to Appendix

4 EENN-AVCS for Regression

We next consider a concrete instantiation of our EENN-AVCS procedure proposed in the previous section.
We focus on the case of one-dimensional Bayesian regression as it allows for exact inference due to conjugacy.
This allows us to assess the quality of approximation without introducing the additional challenge of
approximate inference. We summarize our approach for obtaining AVCSs in EENNs in Algorithm

Bayesian Linear Regression Recall from Section [3| that since we require fast and exact Bayesian
inference, we keep EENN’s backbone parameters U, fixed and give only the weights W; of the pre-
diction heads a Bayesian treatment. We define the predictive model at the tth exit as a linear model
flx; Wi, Uyt) = hy(2)T W, where hy(-;Up) : X — RH represents the output of the first ¢ backbone layers
or blocks. We use a Gaussian likelihood and prior:

v~ N (i (@) Wi 0?), Wi N (Wi Wi, 02 I )

where 0?2 is the observation noise, Ugj’t is the prior’s variance, and W, are the prediction weights obtained
during (pre)training of the EENN. Due to conjugacy, we can obtain a closed form for the posterior and
predictive distributions:

p(Wt|D) :N(Whﬁtait) ) pt(y|w*)D) :N(Ya h’t(m*)TﬁtaU* +0152) ) (4)

where v* := hy(z*)Ths(x*). See Appendix for exact expressions for posterior parameters fi;, 3;. To
estimate o7 and o7, ;, we optimize the (exact) marginal likelihood on the training data (type-II maximum
likelihood). Combining the obtained Bayesian quantities, we can compute the predictive-likelihood ratio in

at every exit.

Solving for Interval Endpoints To construct C;, we next have to evaluate R; at every y € ) and discard
those where the ratio exceeds 1/, with « representing a significance level (e.g., 0.05). However, in the case
of regression, where the output space is continuous, the method of evaluation is not immediately clear. One
possible approach would be to define a grid of points over ) and then evaluate the predictive-likelihood ratio
using a finite number of labels. Fortunately, the Bayesian linear regression model above allows us to obtain
the endpoints of the confidence interval, at all times, via a closed-form expression: Cy = [yt ,y%]. This is
computationally valuable since it eliminates the overhead of iterating over ), which could be prohibitively
expensive in the low-resource settings in which EENNs typically operate. To arrive at the analytical form,
we first observe that log R; represents a convex quadratic function in y:

IOg Rt(y) = at(m*) : y2 + Bt($*7 Wl:t) Y + ’Yt(x*7 Wl:t) .
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Expressions for the coefficients ay, 8¢, are provided in Appendix To obtain the bounds vty of
the confidence interval at the ¢th exit, we then simply need to find the roots of the quadratic equation
log R (y) —log(1/a)) = 0. If the discriminant 37 — 4ay(y; +log «) is negative, the equation has no real-valued
roots, resulting in an empty confidence interval. In such cases, we interpret * as an out-of-distribution
sample, as mentioned in Section [3]

Epistemic Uncertainty In our assumed Bayesian linear regression scenario, both the posterior and
updated posterior are Gaussian. This allows us to derive a closed-form expression for the KL term
KL (p(Wt|D)7 p(Wt|D*)) in the upper bound from Proposition See Appendix for the derivation.
We observe that KL remains small for a given x, when v, is small. Recall that v, represents the epistemic
uncertainty in a Bayesian regression model (c.f. Eq. )7 meaning the uncertainty stemming from the fact
that we observe limited data. Such uncertainty decreases the more data we collectﬂ which, together with
Proposition [2} implies that the statistical coverage of our EENN-AVCS will improve with the increasing
dataset size. Additionally, v* is independent of the test label y*. Thus, we can employ it as a measure of
the stability of EENN-AVCS, a point we illustrate in Section [7.1]

5 EENN-AVCS for Classification

In this section, we propose a concrete instantiation of our EENN-AVCS for classification tasks. Unlike
the regression scenario in the previous section, an additional challenge is presented by a lack of conjugacy.
Specifically, we cannot obtain a closed-form expression for the Bayesian predictive posterior (see Eq. ) at
every exit when using the usual Gaussian assumption for the posterior over parameters. To circumvent this,
we utilize Dirichlet Prior Networks (DPN; Malinin & Gales| (2018)), which enable analytically tractable pre-
dictive distributions at each exit. Our EENN-AVCS approach for classification is summarized in Algorithm

2

Dirichlet Prior Networks Instead of positing a distribution over (last-layer) weights W, at every exit,
we posit a distribution over categorical distributions p(m:|D, x*), m; € AK E| for a given test datapoint x*.
Additionally, assuming the categorical likelihood and Dirichlet posterior

p(ylmi) = Cat(y|m:), p(mi|a”, D) = Dir(m|oy(x"; D))

where a; € RI>(0 represents concentration parameters of the Dirichlet, the predictive distribution has a closed
form solution

Aty

pi(y = ylz*,D) = /p(y = ylm) p(m|z*, D) dmp = =—"— .
Zy'ey Qi,y’

In [Malinin & Gales| (2018)), the authors propose to parameterize the Dirichlet concentration parameters
via the outputs of the neural network au(x*; D) = f(x*; Wi, Uy+) and term this approach Dirichlet Prior
Networks (DPN). Note that in DPNs, the aim is to capture the so-called distributional uncertainty that arises
due to the mismatch between test and training distributions, in addition to the so-called data uncertainty
(often referred to as aleatoric uncertainty). This is in contrast to Bayesian models, which focus on the model
uncertainty (or epistemic uncertainty) on top of the aleatoric one. We refer the interested reader to |Malinin
& Gales| (2018) for a more in-depth discussion on the different sources of uncertainty.

Classification EENN-AVCS Having a closed-form predictive distribution, we can define the following
predictive-likelihood ratio for a given y € V:

A
R* . ) ~ D*

2limpy _s 00 v« = 0 where N represents the number of training datapoints (c.f. Section 3.3.2 in [Bishop & Nasrabadi| (2006)).
K
SAK = {m e RF|Y " pr =1, >0}
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Our result from Proposition |1| applies here as Wellﬁ, hence it follows that C; = {y € Y| Rf(y) < 1/a} is a
valid (1 — a)-confidence sequences for y*. As in the regression case, R; can not be realized in practice as
it depends on the unknown label y*. To address this, we again approximate the posterior over categorical
distributions with the one based solely on the training data p(7m;|D*) = p(m;|z*, D) and denote the resulting
predictive-likelihood ratio and confidence sequence as R; and C}, respectively. To reason about the quality
of this approximation, we can again rely on the Proposition [2}

Post-hoc Implementation While the original DPN formulation (Malinin & Gales|, 2018)) requires a spe-
cialized training procedure to ensure that the NN’s outputs represent meaningful concentration parameters
of Dirichlet distributions, we opt for a simpler post-hoc approach as we have found that it yields satisfactory
results for the purposes of our study. Specifically, to obtain the concentration parameters, we start with a
pretrained (classification) EENN and pass the logits at each exit through an activation function a : R — R+g.
We found that a simple choice of ReLU activation a;(x) = ReLU(x, 1) with a different threshold 7z > 1 at
each exit works well in practiceﬂ To obtain the ReLU thresholds, we use a validation dataset and pick the
largest 7; such that (1 — )% of validation datapoints is still contained in the resulting confidence sets at
each exit. Lastly, since ) has a finite support, contrary to the regression case, we iterate over all of ) when
constructing a confidence set C; at a given exit.

6 Related Work

Early-Exit Neural Networks (EENNs) enable quicker predictions in deep models by allowing predictions
at intermediate layers (Teerapittayanon et al., [2016; Huang et al., 2018} |Laskaridis et alJ, 2021). They have
been extensively explored for various computer vision (Li et al., |2019; [Kaya et al., |2019; |Yang et al.l 2023)
and natural language processing (Schwartz et al. 2020 Zhou et al., [2020; |[Xu & McAuley, [2022) tasks. The
majority of these studies have aimed at enhancing the accuracy-speed trade-off, i.e., ensuring the model
exits as early as possible with minimal accuracy loss. However, the aspect of uncertainty quantification
within EENNs has so far garnered relatively little attention (Schuster et al., |2021; [Meronen et al., |2023;
Regol et al., [2023)). It has primarily been leveraged to devise better termination criteria. In [Meronen et al.
(2023)), the authors employ a Bayesian predictive model at each exit to enhance the calibration of EENNS.
In [Schuster et al. (2021)), a novel conformal prediction scheme is introduced with the goal of outputting
conformal sets/intervals that are marginally guaranteed to contain the prediction of the full EENN. In their
work, consistency refers to the property of conformal sets at intermediate exits containing the full model
prediction, differing from our focus on nested uncertainty estimates across exits. Yet, none of the preceding
works address the fact that uncertainty estimates at successive exits are dependent, which is the main focus
of our work.

Anytime-Valid Confidence Sequences (AVCSs) are sequences of confidence intervals designed for
streaming data settings, providing time-uniform and non-asymptotic coverage guarantees (Robbins, [1967;
Lail, [1976; [Howard et al., |2021)). They allow for adaptive experimentation where one can 'peek’ at the data
at any time, make decisions, yet still maintain the validity of the statistical inferences. Recently, AVCSs
have found applications in A/B testing that is resistant to ‘p-hacking’ (Maharaj et al. [2023]), Bayesian op-
timization (Neiswanger & Ramdas| 2021))), and change-point detection (Shekhar & Ramdas, |2023)). AVCSs
have not been considered before for sequential estimation of predictive uncertainty in EENNs.

7 Experiments

We conduct three sets of experiments and publicly release our code at GITHUB_REPO. Initially, in Section
we explore our method (EENN-AVCS) on synthetic datasets to empirically verify its correctness and assess
its feasibility. In the subsequent set of experiments, detailed in Section[7.2] we check that our findings extend
to more practical scenarios by applying our proposed EENN-AVCS to semantic textual similarity regression

4The only difference in the proof being that the martingale is defined with respect to the sequence of categorical distributions
¢ instead of the sequence of weights Wy.

5Following standard practice, we impose concentration parameters to be larger than 1 due to a strange behavior of the
Dirichlet distribution for values of concentration parameters between 0 and 1.
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task using a large transformer backbone model (Zhou et al., 2020). Finally, in Section We report results
on the image classification tasks (CIFAR-10/100, ImageNet) using MSDNet (Huang et al.| [2018)).

Evaluation metrics To assess the quality of un- Wiggle 3-Clusters
certainty estimates at each exit, we utilize the stan-
dard combination of marginal coverage and effi-
ciency, i.e. average interval size, on the test dataset.
Marginal coverage serves as a proxy of the statis-
tical validity of the approach, illustrating how fre-
quently the ground-truth falls within the predicted
interval on average. Note that among two methods
with comparable marginal coverage, the one with
smaller interval sizes is preferred. While tradition-
ally, AVCSs aim for a stronger form of conditional
coverage, the practical necessity of utilizing approx- ? -
imations of valid AVCS C}—where conditional cov-
erage isn’t guaranteed (c.f. Section —is a reason
why we focus on the marginal level in our evalua-
tions. To assess the alignment or consistency of un-
certainty estimates between different exits, we define Teose : N -
a consistency metric: at each exit ¢, we compute ! T o 5 T o M
€(t) = | Ns<¢ Cs|/|Ci| and report its mean across Time / Early-Exit Time / Early-Exit
test data points. A perfectly consistent model with
nested uncertainty estimates will have €(t) = 1, ex- Figure 2: We compare our EENN-AVCS with EENN-
actly. Otherwise, €(¢) will be less than one and zero Bayes baseline based on average consistency (top),
only in the case of disjoint intervals. marginal coverage (middle), and average interval size
(bottom). EENN-AVCS is the only approach that
Baselines As a baseline in our regression experi- Yields perfect consistency while maintaining reason-
ments, we use the same underlying Bayesian EENN ~ ably high marginal coverage across exits. The consis-
but without the AVCS applied. We term this ap- tency comes at a price of larger intervals in the initial
proach EENN-Bayes since it uses the Bayesian pre- exits, though. Note that in the top plot, the consis-
dictive distribution at each exit to perform uncer- tency curves of EENN-AVCS (—) and EENN-Bayes-
tainty quantification. For the baseline in classifi- intersection (—) overlap at €(t) = 1.
cation tasks, we perform conformal inference inde-
pendently at every exit. Specifically, we use Regularized Adaptive Predictive Sets algorithm (RAPS; An-
gelopoulos et al.l |2021) to compute conformal scores. The primary difference between our approach and the
baselines should be the consistency of the intervals across exits. EENN-AVCS have nested intervals whereas
EENN-Bayes and RAPS have no such guarantees, which could lead to non-overlapping intervals.
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7.1 Synthetic Regression Data

We use two non-linear regression simulations (Antoran et al., |2020): wiggle and 3-clusters. We define the
EENN used in this experiment via a backbone architecture of T = 15 feed-forward layers with residual
connections. Each layer consists of M = 20 hidden units, and we attach an output layer on top of it to
enable early exiting. We fit the (last-layer) Bayesian linear regression model at each exit using the training
data and construct S = 10 confidence sequences in parallel at test time for each datapoint. We set the
significance level to a = 0.05 for EENN-AVCS, while for EENN-Bayes, we plot intervals that capture 2
standard deviations away from the predicted mean. Further details regarding data generation, the model
architecture, and the training can be found in Appendix [B:1]

In the top row of Figure [2 we compare our EENN-AVCS (—) with EENN-Bayes (---) baseline on the
test dataset based on how consistent the confidence intervals are across exits. Due to their nested
construction, EENN-ACVSs attain perfect consistency. In contrast, EENN-Bayes exhibits deteriorating
consistency over time on both datasets considered, indicating that there indeed are labels that reen-
ter the EENN-Bayes confidence intervals after being ruled out at some earlier exits. In the top row,
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we additionally observe that perfect consistency can be achieved in EENN-Bayes by considering a run-
ning intersection of all previous confidence intervals at each exit (denoted with (—) line), similar to
EENN-AVCS (the two consistency lines of both intersection methods overlap at €(¢t) = 1). How-
ever, as shown in the middle row, this approach leads to a decrease in marginal coverage, indicat-
ing that fewer data points are covered by the intersection of EENN-Bayes intervals as more exits are

evaluated. In contrast, EENN-AVCS maintains high
marginal coverage despite utilizing an intersection of
intervals at each exit. This is a direct consequence of
the time-uniform nature of AVCS. The consistency
of EENN-AVCS comes at a price, though, as the
interval size tends to be larger than that of EENN-
Bayes at the initial exits (lower plot). This observa-
tion is in line with existing work on AVCSs (Howard

et al 2021).

To better understand the differing behaviors of our
method on in-distribution (ID) points as compared
to out-of-distribution (OOD) points, we construct a
new test dataset by considering equidistantly spaced
points across the entire X’ spaceﬂ We report results
for both datasets considered in Figure [3] Initially,
we observe that for ID datapoints (with ID regions of
X depicted using (W) background), our method sat-
isfactorily covers the data distribution, especially at
later exits. Encouragingly, AVCSs are also observed
to quickly collapse to empty intervals outside of the
data distribution (OOD regions are depicted with
a white background, and whenever AVCS collapses
to an empty interval, we highlight this by altering
the mean prediction line from (—) to (--)). Recall
that in our setting, an empty interval represents a
distribution shift has been detected (i.e. maximal
predictive uncertainty), which is exactly the desired
behavior in OOD regions.

On the wiggle dataset, we also have the opportunity
to study the behavior for the so-called in-between
(IB) datapoints that reside between ID and OOD
regions (we depict the IB region with a (') back-
ground). We observe that our method encounters
challenges in this regime to some extent, as the confi-
dence intervals are, counterintuitively, smaller com-
pared to those in the ID region despite the density of
observed training datapoints being lower in the 1B
area. A partial remedy is provided by the epistemic
uncertainty v* (see Eq. ([4)), which in our frame-
work can be interpreted as a proxy for the stability
of posterior distributions at different exits as afore-
mentioned in Section[d] As depicted in Figure 3] v*
is larger for IB points compared to the ID ones (as

EENN-Bayes EENN-AVCS
. 3
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Figure 3: Predicted confidence intervals (I) for
EENN-Bayes (left) and our EENN-AVCS (right) on
two simulated regression tasks |Antoran et al.| (2020):
wiggle (up) and 3-clusters (bottom). Blue points de-
note training data. In cases where the EENN-AVCS
collapses to an empty set (out-of-distribution) we de-
pict the mean prediction by a red dashed line (--). We
set the significance level to a = 0.05 for EENN-AVCS,
while for EENN-Bayes, we plot intervals that capture
2 standard deviations away from the predicted mean
(—). With different background colors we denote dif-
ferent regions of data distribution, see Section @

6Specifically, for X = [L, R], we construct Xtest = np.linspace(L — €, R+ €, Niest) for € > 0.
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expected). Thus, a higher v* can serve as a warning to the user that the resulting confidence sequence should

not be blindly relied uponm

7.2 Semantic Textual Similarity(STS-B)

In this experiment, we examine the STS-B dataset
from the GLUE Benchmark (Wang et al., 2018)).
The model receives two sentences as input, with the
objective of predicting the semantic similarity be-
tween them. The similarity score is a continuous la-
bel ranging between 0 and 5, denoted as Y = [0, 5].
As the backbone model, we employ an ALBERT
model with 24 transformer layers (Lan et al., 2019),
providing the model an option to early exit after
every layer. Bayesian linear regression models are
fitted on the development set. At test time, we con-
struct a single AVCS (S = 1) with a = 0.05 as we
observed that constructing multiple AVCSs in par-
allel leads to a quicker decay of marginal coverage

Wiggle 3-Clusters

[ "

Figure 4: Average epistemic uncertainty v, (—) across
Bayesian linear regression models at different exits. As
expected, v, is larger in the regions where we observe
less training data: out-of-distribution (denoted with
a white background) and in-between (denoted with a
grey background (")). Hence, v, can serve as an indi-
cator for assessing the reliability of EENN-AVCSs.

on this dataset. Since we know that the true label is bounded to the [0,5] range, we clip the resulting
prediction intervals for all approaches to this region (in case they extend beyond it). Refer to Appendix
for additional details on data, model, and training for this experiment.

Average Consistency

Marginal Coverage

Average Interval Size

1.0 T+ 1.0 -
. = Intersection
. 0.9 eeatetteeahy see | 4 = Curren,
0.8 1 ey : al
—— EENN-Bayes Srennins
EENN-AVCS 21 ‘
0.6
T T T T T T
0 10 20 0 10 20 0 10 20

Time / Early-Exit

Figure 5: Comparison of our EENN-AVCS with EENN-Bayes baseline on STS-B dataset. Similar to findings
on the synthetic data (c.f., Figure , EENN-AVCS attains perfect consistency (left plot) while maintaining
reasonably high marginal coverage across exits (middle plot). However, the intervals generated by EENN-
AVCS at each exit are larger compared to the baseline (right row). Note that in the left plot, the consistency
curves of EENN-AVCS (—) and EENN-Bayes-intersection (—) overlap at €(¢) = 1.

Results are illustrated in Figure[5] Encouragingly, the observations here align qualitatively with those made
on synthetic datasets in Section In the left plot, the trend of inconsistent uncertainty estimates when
considering only the current Bayesian interval at each exit is again evident. While intersecting the EENN-
Bayes intervals rectifies this inconsistency, it leads to a larger decay in marginal coverage compared to our
EENN-AVCS, as depicted in the middle plot. We note that the marginal coverage, in this case, is worse
across all approaches when compared to the coverage observed on synthetic data experiments, c.f. Figure 2]
We attribute this to a larger shift between training, development, and test data splits for the STS-B dataset,
as evidenced by the difference in model performance on each of those splits (see Appendix for further
details on this). Finally, the right plot reaffirms that the consistency of EENN-AVCS comes at the expense
of larger intervals.

"Note that the IB region also poses challenges for some other uncertainty quantification methods; a similar behavior was
recently reported in the context of sampling from a Gaussian process posterior using stochastic gradient descent (Lin et al.
2023)), where the in-between region is referred to as the extrapolation region.

10
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7.3 Image Classification with MSDNet

In our last set of experiments, we consider the task of quantifying uncertainty at every exit on an image clas-
sification task. We consider CIFAR-10, CIFAR-100 (Krizhevsky et al.,2009), and ILSVRC 2012 (ImageNet;
Deng et al| (2009)). As our backbone EENN, we employ a Multi-Scale Dense Network (MSDNet; [Huang
et al.,|2018]), which consists of stacked convolutional blocks. At each exit, we map the logits to concentration
parameters of the Dirichlet distribution using the ReLU activation function, as discussed in Section [f] To
find the exact ReLU thresholds at each exit, we allocate 20% of the test dataset as a validation dataset and
evaluate the performance on the remaining 80%. We construct a single AVCS (S = 1) at each exit and use
significance level o = 0.05 both for EENN-AVCS and RAPS sets.

Based on the results in Figure [f] we observe that CIFAR-10 CIFAR-100 JmageNet
constructing conformal RAPS sets (---) at every exit \ 100 1S ROy
independently leads to inconsistent behavior (see top
row). Taking the intersection of RAPS sets (—) cor-
rects this; however, as expected this leads to a vi-
olation of conformal marginal coverage guarantees
(see middle row). Similarly, as in our regression ex-
periments, our EENN-AVCS based on the Dirichlet
Prior Networks (—) yields perfect consistency while
maintaining high marginal coverage. In the last row,
we also see that, EENN-AVCS sets are roughly two 20
times (or less) larger than the conformal sets, which
might be a reasonable price to pay for the consis-
tency.
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8 Conclusion

Figure 6: Comparison of our EENN-AVCS with RAPS
(Angelopoulos et al., |2021]) based on average consis-
tency (top), marginal coverage (middle), and aver-
age interval size (bottom) for our image classification
that our approach yields consistent, i.e., nested, un- experiments using MSDNet as a backbone. EENN-
certainty estimates across exits—a property that is Ay (S is the only approach that attains perfect consis-
lacking in prior work, yet is cruical when deploying tency (top) while maintaining high marginal coverage
EENNS in safety critical applications. We described .. qs different exits (middle). Consistency comes at
the theoretical and practical challenges associated price, though, as EENN-AVCS sets are larger com-
with applying AVCSs in the predictive setting, and pared to the conformal ones (bottom). Note that in

empirically validated our approach across a range ., top plot, the consistency curves of EENN-AVCS
of EENNs and different regression and classification (—) and RAPS-intersection (—) overlap at €(t) = 1.

datasets.

We proposed the use of anytime-valid confidence
sequences for uncertainty quantification in predic-
tive tasks using early-exit architectures. We showed

Limitations and Future Work For future work, it is paramount to improve the efficiency of EENN-
AVCSs, aiming for smaller intervals, especially in the initial exits which are of highest practical interest for
resource-constrained settings. While we explored some avenues to achieve this in the present study (c.f.,
Appendix , further efforts are necessary to ensure faster convergence without sacrificing too much of
marginal coverage in the process. Additionally, studying alternatives to our predictive-likelihood ratio (c.f.
Eq. ) when constructing confidence sequences in the predictive settings might be promising for improved
efficiency. Finally, it would be interesting to study the behaviour of EENN-AVCS in the infinite limit of the
number of exits. Perhaps implicit deep learning models (Chen et al., 2018} [Bai et al., [2020) could be used
to this end.
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A Supporting Derivations

A.1 Proof of Proposition [I]

The proof can be divided into two steps. In the first step, we demonstrate that the predictive-likelihood
ratio R} (y) in is a non-negative martingale when evaluated at the true value y*, with an initial value of
one. In the second step, we utilize Ville’s inequality to construct AVCS. Throughout this process, we closely
adhere to the proof technique outlined in [Waudby-Smith & Ramdas| (2020) (refer to Appendix B.1 in that
work).

We begin the first step by showing that the expectation of the predictive-likelihood ratio evaluated at y*
remains constant over time:

]Ewt+1 [Rr—i-l(y*) ‘ le s 7Wt} =

/Rt+1 P(Weit|DU (@, y")) dWis1 2
p(y*|z*, Wip1)p(Wii1|D)
dW =
/ r1y”) pe1(y*|x*, D) o

/R* ) p(Wis1|D) dW g =

Ri(w) [ P(We[D) Wi =
RE(y")
where we have invoked a Bayes rule on the (updated) posterior at (i), and additionally used

p(y*|D, x*, W) = p(y*|e*, Wiy1) and p(Wigq|x*, D) = p(Wy41|D). To show that initial value is equal
to one, we proceed similarly:

Evw, (R (47)] =
[ B WD U@ y)) W -

() p(y*|z*, W1)p(W1|D)
RY( AW, —
/ pl(y |.’13*,D) !

In the second step, we make use of Ville’s inequality, which provides a bound on the probability that a
non-negative supermartingale exceeds a threshold § > 0.

PEt: Ri(y") = B) < E[Rs(y*)] / B -

Since every martingale is also a supermartingale, Ville’s inequality is applicable in our case. Then, for a
particular threshold o € (0,1) and since we have a constant initial value (one), Ville’s inequality implies:
P(3t: R (y*) > 1/a) < a. If we define the sequence of sets as C} := {y € V| R} (y) < 1/a}, their validity
can be shown as

P(Vt,y* € C}) =P(Vt, R (y*) < 1/a) =
—PEt:Ri(y")>1/a)>1—a,

which concludes the proof.

A.2 Proof of Proposition [2]

We first note that due to C; being a valid (1 — «) confidence sequence, we have

PQ@ELethy" ¢C) < PELe [Ty ¢C) < a, (5)

14
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where we adopt the notation [¢] := {1,...,¢} for brevity. Additionaly we observe that randomness in P(3l €
[t],y* ¢ C;) and P(3l € [t],y* ¢ C[) comes from p(Wry,..., W,|D) and p(W1,..., W|D,), respectively.
Hence, we can use total variation distance (TV) to upper bound the difference
P@EIEly ¢ C) - PEIE " ¢ CF) <
[P(ALe [ty ¢ C)—PELE[t]y" ¢ C)| <
TV (p(W1,..., Wy |D), p(W1,..., Wi |D.)) .

Next, we apply Bretangnolle and Huber inequality (Bretagnolle & Huber} |1979)) to upper bound the TV
distance in terms of KL divergence and use the fact that weights at different exits are independent which
gives rise to a factorized joint distribution

TV (p(Wy,..., WD), p(W1,...,W,|D.)) <

\/1 _ o~ KL(p(Wi1,..; W[ D), p(W1,.. . W,|D.))

IN

\/1 _ o i KL(p(WiID), p(Wi D))
Rearranging the terms and using , the proposition follows
PEle [ty ¢ C) <

P@EILE [y ¢ CF)+ V1o Tim Kl <
SRVARES v

where KL; := KL(p(W;|D), p(W;|D,)).

A.3 Bayesian Linear Regression

In Section we define the predictive model at the tth exit as a linear model f(x; Wy, Uy.) = h(z; Up.4) T W,
For notational brevity, we omit Uj.; and denote h(x;Ui.) as hi(x) in this section. Additionally, let
¥y =[y1,..,yn]T € RN and H; = [hi(x1),...,hi(xn)]T € RY*H represent a concatenation of training
labels and (deep) features, respectively. Assuming a Gaussian likelihood A (y; ht(m)TWt,atz) and a prior
N (Wy;0,02 1), the posterior over weights Wy has the following form:

» Y aw,t
p(W|D) = N (Wy; 1y, Zy)

_ 1 <
=S Hly,
g

1
>'= SHIH + UT]IH.

1
2
Oy w,t

Similarly, for a new test point *, the posterior predictive can be obtained in a closed-form:
pe(yle*, D) = N (y; hi(2*)" i, he(a*) " Sihi(2*) + 07) -
A.4 Solving for Interval Endpoints

Due to the assumed Bayesian linear regression model at each exit ¢, log R; is a convex quadratic function in
Y
log Ry(y) =
t
> logpi(yla*, D) —log plylz*, Wi) =

=1
a(x*) -y + Be(x*, W) -y + Y@, Wiy)
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Coefficients have the following form:

=1
t _

()T hy(z*)TW,
ﬁ(-’.ﬂ Wlt) lz:; vl*_’_alQ o_lg )
’Yt(fB*7 W1:t) =

1 T *\T = \2 2
72 (hi(x VVZ) (hl(w) l;l) +1lo 1 .
2 v + oj v + oj

=1

where v} := hl(a:*)Tlehl(w*), and we provide expressions for hy, fi;, ; in Appendix It is easy to show
that ay > 0, from which the convexity follows.

To find AVCS Cy = {y € YV | Ri(y) < 1/a}, we look for the roots of the equation log R;(y) — log(1/a) = 0.
This yields an analytical expression for C; = [yt , y%]

¢ _ —B £ /B — 4o
YL.R 20,

where 4; = ; + log a. See Figure [7] for a concrete example of log-ratios.

A.5 Epistemic Uncertainty and KL Divergence

To compute the KL divergence between the poste-
rior and update posterior in the Bayesian linear re-
gression model (c.f. Appendix , we first use the
Bayes rule to rewrite the latter as:

p(y*|z*, Wy) p(W|D)

(WD) pe(y*|z*, D)

log R¢(y)

Using the definition of the KL divergence together
with the formulas for posterior predictive and pos-
terior distributions from Appendix we proceed
as

KL(p(W:|D), p(Wi[D.)) =

E log P(W:ID)
0
p(W¢|D) N AL I} thp y
log pi(y*|x*, D) — Epow, o) [ log p(y*|2*, W, ]
log ( o? )+ ( 1 i) 2, Vi Figure 7: Plot of log R;(y) at various exits ¢ for a ran-
SR ol +vf o gt2 domly selected test data point (z*,y*) from the 3-
clusters dataset. As described in Appendix [A4] we
where 7, = y* — @ hy(z*) represents a residual, observe that the log-ratios exhibit a quadratic shape,
ve = h(@*)TShy(2*) denotes epistemic uncer- allowing for an analytical solution for the endpoints of

tainty, and ¢ = o0y,;. Based on the obtained ex- confidence intervals C.

pression, it is evident that a small v*, implies small
KL-divergence.
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B Implementation Details

B.1 Synthetic Data Experiments

Data Generation We closely follow data generation process from |[Antoran et al.| (2020)). Specifically, for
wiggle dataset we sample N points from

y = sin(mz) + 0.2 cos(4dmx) — 0.3z + €
where € ~ A(0,0.25) and = ~ N(5,2,5). For -clusters dataset, we simulate data via
y = — 0.12% + cos(z7/2)

where € ~ N(0,0.25) and we sample N/3 points from [—1,0], [1.5,2.5] and [4,5], respectively. For both
datasets, we sample a total of N = 900 points and allocate 80% of the data for training, while the remaining
20% constitutes the test dataset.

Model Architecture Our EENN is composed of an input layer and 7" = 15 residual blocks. The residual
blocks consist of a Dense layer (with M = 20 hidden units), followed by a ReLU activation and BatchNorm
(with default PyTorch parameters). We attach an output layer at each residual block to facilitate early
exiting.

Training We train our EENN for 500 epochs using SGD with a learning rate of 1 x 1073, a momentum

of 0.9, and a weight decay of 1 x 10=%. For the loss function, we use the average mean-square error (MSE)
across all exits.

B.2 STS-B Experiment

Dataset We use the STS-B dataset, the only re- —e— ALBERT (test)
gression dataset in the GLUE benchmark (Wang 127 ALBERT (train)
et all [2018)). The task is to measure the semantic 10 4 —*— ALBERT (dev)
similarity y € [0, 5] between the two input sentences.

The training, development, and test datasets consist g 0.8+

of 5.7K, 1.5K, and 1.4K datapoints, respectively. é 06 -

Model Architecture and Training For the 0.4 -

model architecture and training we reuse the code

from |Zhou et al. (2020). Specifically, we work 02
with ALBERT-1large which is a 24-layers transformer T T T T
model. To facilitate early exiting, a regression head 0 5 10 ) 15 20 2
is attached after every transformer block. Exit

EENN-AVCS In the results presented in the Figure 8: Mean Absolute Error (MAE) performance
main text, we construct a single (S = 1) AVCS at of the ALBERT-1large model across different datasets:
test time with o = 0.05. To fit the Bayesian lin- train, development (dev), and test. A large perfor-
ear regression models (i.e., empirical Bayes) at every mance gap between the train and dev/test datasets is
exit, we use the development set. Note that this con- observed. Note that in our work, we reuse the exact
trasts with our experiments on the synthetic dataset model and training setup from previous approaches
(c.f., Section where we utilized the training (Zhou et al. 2020).

dataset for this purpose. We observed that when

fitting the regression model on the training dataset

for STS-B, the noise parameters &; get underestimated, resulting in a rapid decay of marginal coverage for
both EENN-AVCS and EENN-Bayes . We attribute this to a distribution shift present in the ST'S-B dataset,
which is evident based on the different performances (MAE) that the ALBERT model achieves on different
datasets, as seen in Figure [§

17
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C Additional Results

C.1 Speeding up convergence of EENN-AVCS

In our original formulation in Section |3} we draw a single sample of the weighs W; (or predictive distribution
p: in the case of classification) at each exit. This invariably leads to large confidence intervals/sets at the
initial exits - a phenomenon analogous to AVCSs being large for the initial few observed data points in
the conventional data streaming scenario (Howard et al. 2020). In this section, we explore two distinct
approaches to mitigate this issue, aiming to attain more efficient confidence estimates right from the initial
exits.

In the first approach, we simply take multiple samples S; > 1 at each exit. Consequently, the predictive
likelihood ratio for a given test point x* takes the following form:

LT pilylzt,D) (s)
Ri(y) = H AP ON W, ~p(Wi|D) .
=1 5=1 Pyl W, )

We term this approach Multiple-Samples AVCS. As an alternative, we construct multiple AVCSs {C’t(s)}f;1

based on a single sample in parallel. At each exit, we then consider their intersection CI' = ﬂf;l Ct(s) and
pass it on to the next exit. We refer to this method as Parallel AVCS.

We present the results for both approaches in Figure [J] using synthetic datasets from Section While
both methods yield more efficient, i.e., smaller, intervals in the initial exits (top row), it is interesting to
observe that the Multiple-Samples approach leads to a much faster decay in marginal coverage compared to
the Parallel one (see bottom row). We attribute this to the fact that by sampling multiple samples within
a single confidence sequence at each exit, we are essentially ‘committing’ more to our approximation of the
updated posterior (c.f., Eq. ), which results in larger coverage violations. Hence, we recommend using
the Parallel approach when attempting to speed up the convergence of our EENN-AVCS . Nonetheless, we
acknowledge that this area warrants further investigation, and we consider this an important direction for
future work.

Parallel AVCS Multiple-Samples AVCS Parallel AVCS Multiple-Samples AVCS
] 15 4 = Current 7\ === EENN-AVCS (1) g s == Current || == EENN-AVCS (1)
193) Intersection e EENN-AVCS (2) 193] e Intersection e EENN-AVCS (2)
S 104 || =— EENN-AVCS (5) = 4| =— EENN-AVCS (5)
% \ EENN-AVCS (10) E \ EENN-AVCS (10)
“E = EENN-Bayes ‘E - \ === EENN-Bayes
— 5 4 —
ab 2 1 &
< <
T T T T T T
o 1.00 1 &5 1.00 — | ]
& T & ~
8 095 1 g
S S
= 0.90 = 095 1 4
5 g
20 0.85 E 20
< [
= =
0.80 T T T T T T 0.90 T T T T T T
5 10 15 5 10 15 5 10 15 5 10 15
Time/Early-Exit Time/Early-Exit Time/Early-Exit Time/Early-Exit
(a) Wiggle (b) 3-Clusters

Figure 9: Average interval size and marginal coverage for regression synthetic datasets. While both of the
considered approaches yield more efficient intervals (top row), the Parallel method is better at preserving
high marginal coverage (bottom row). AVCS(S) denotes a confidence sequence based on S samples at each
exit in the case of Multiple-Samples, and the sequence based on S parallel ones in the case of Parallel.
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D EENN-AVCS Algorithm

Algorithm 1: EENN-AVCS Regression

Algorithm 2: EENN-AVCS Classification

: Backbone EENN {h(-|U1.4)}L;,
Regression models {p(W;|D), 62},
test datapoint «*, significance level ag

output: AVCS for x*

Co=Y

a, 8,7 =0,0,logas

fort=1,..,T do

W; ~ p(Wy|D) = N (Wq|fie, )
vf o= hy(2*) TSy ()

# update coefficients of log R (y)

input

11 _ 1
a+=3 (&3 v3+&§)
_ (@) e h(z") "W,
B +_ 'U*+6'2 - 6.2
t t t
v 4=
1((he(@)™Wy)?  (ha(e*)Te)? 67
3 ( 2 viez — tlog y;+&§)

# find the roots of quadratic equation
t  _ —BE/BP-day

Yo.r = 2a

Cy=Ci1 Ny, vkl

if C; = () then
| return () # OOD

return {C;}1 |

19

: Backbone EENN {f(:|Uy.., W;)}1_,,
ReLU thresholds {r;}1_;,
test datapoint «*, significance level ag
output: AVCS for x*

Co=Y

R=1[1,...,1]

fort=1,...,T do

# get concentration parameters, only keep

input

classes that "survive" ReLU
[0 T ReLU(f(:c* |U1;t, Wt), Tt)
ar = oy [at > 0]

T ~ Dlr(df)

Sy = Zk Qi |
# update the predictive-likelihood ratio
for k=1,...,K do
if o4 > 0 then
| R[] x= L5

T,k

else

| R[k] = o0

if R[k] < % then

‘ C .append(k)
Cy=CiNCyy
if C; = () then

| return () # OOD
return {C;},




	Introduction
	Background
	Confidence Sequences for Early-Exit NNs
	EENN-AVCS for Regression
	EENN-AVCS for Classification
	Related Work
	Experiments
	Synthetic Regression Data
	Semantic Textual Similarity(STS-B)
	Image Classification with MSDNet

	Conclusion
	Supporting Derivations
	Proof of Proposition 1
	Proof of Proposition 2
	Bayesian Linear Regression
	Solving for Interval Endpoints
	Epistemic Uncertainty and KL Divergence

	Implementation Details
	Synthetic Data Experiments
	STS-B Experiment

	Additional Results
	Speeding up convergence of EENN-AVCS

	EENN-AVCS Algorithm

