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Abstract

Compositionality is addressed by Hierarchical Reinforcement Learning (HRL)
by breaking down complex tasks into manageable subtasks, but faces challenges
with efficiency and generalization in continual learning environments. Potential
solutions to these limitations include a dimensional reduction of the high-level
state space through a symbolic representation and region of interest identification
through language input for imitation learning. In this work, we propose the inte-
gration of a dynamic symbolic representation and large language models (LLMs)
in the framework of HRL, leveraging LLMs’ natural language and reasoning ca-
pabilities to bridge the gap between human instructions and an emerging abstract
representation. By acting as an interface for translating human demonstrations into
actionable reinforcement learning signals, LLMs can improve task abstraction and
planning within HRL. Our approach builds upon the Spatial-Temporal Abstraction
via Reachability (STAR) algorithm, using a LLM to optimize the hierarchical
planning process. We conduct experiments in ant robot environments, showing
how a LLM can translate abstract spatial states into symbol representations and
assist with task planning. The results demonstrate the potential of LLMs to enhance
HRL in continual multi-task learning environments requiring spatial reasoning and
hierarchical control.

1 Introduction

In continual learning, to solve long-horizon tasks such as compositional tasks, also referred to as
sequential tasks, based on the ability to combine simple behaviors to create more complex behaviors,
we examine a novel strategy for compositional learning based on the combination of imitation
learning using language instructions and Reinforcement Learning (RL). While language excels at
composing simpler tokens into complex ideas, it relies on pre-defined symbols. On the other hand,
RL for continual learning environments need to tackle continuous high dimensional environments.
We here propose a path to bridge the two worlds in the framework of Hierarchical Reinforcement
Learning (HRL). Indeed HRL approaches allow agents to solve complex, long-horizon problems
by decomposing them into easier, more manageable sub-problems. Unlike other HRL algorithms
that use only continuous space or continuous abstract representation, the STAR [Zadem et al., 2024]
algorithm automatically learns a discrete abstract goal space that preserves environment dynamics by
focusing on reachability relations between sets of states. This abstraction acts as a discretisation of the
state space, where every goal is a set of states that exhibit similar reachability properties in the task.
This goal representation is acquired online. Despite these advances, the learned goals are not directly
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interpretable since misaligned with human representations such as in natural language, making it
a difficult for a human user to actively interact with the system. An important aspect of building
systems that can serve as intelligent assistants to humans, is to ensure that we can communicate with
them in a way that is intuitive and efficient. A learning agent should allow users to provide feedback
on its behavior and to instruct it to perform specific tasks. Users should also be able to guide the
learning process just as we teach and coach other humans. Inversely, robots should also be capable
of asking questions to the user when they are uncertain about the task they are performing or to
proactively seek guidance when they are stuck.

On the other hand, language, as represented by Large Language Models (LLMs) show composition
and reasoning capabilities that can be beneficial to abstract representations. Following the principles
of a human-centered approach [Boy, 2017], the machine should ground its reasoning in a common
language with humans. The Human In The Loop (HITL) [Wu et al., 2021, Retzlaff et al., 2024]
Reinforcement Learning paradigm studies how to integrate humans in the different stages of an
agent’s life cycle. This includes how human demonstrations can be used to enhance the learning
process of primitive [Nguyen and Oudeyer, 2012] or sequential [Duminy et al., 2019] tasks, and how
humans can instruct RL agents via natural language [Colas et al., 2020]. In this vein, the integration
of LLMs in synergy with RL agents has recently gained attention. The advances achieved in building
LLMs (e.g OpenAI’s GPT, Meta’s LLAMA, Anthropic’s Claude), have accelerated the creation of
language based HITL approaches [Pternea et al., 2024]. First, RL can be used in service of training
and improving LLMs in natural language tasks such as conversation and question answering. In
the vein of approaches, Reinforcement Learning from Human Feedback (RLHF) [Ouyang et al.,
2022] has demonstrated how human feedback can be captured by a RL agent and used to fine-tune
large language models. Inversely, a LLM can benefit RL agents in improving sample efficiency and
injecting a reasoning layer [Du et al., 2023] that would alleviate the need for extensive exploration,
especially in the initial training phases. A popular example of such approaches rely on the LLM as
a high-level planner, providing instructions to the RL agent [Wong et al., 2023, Ichter et al., 2022,
Wu et al., 2023], which can then be used to guide the learning process. Under such architectures,
the LLM has to communicate with the RL agent in a common language that allows to express
goals. Establishing this common language is a challenging task, and often researchers resort to using
predefined predicates reducing the generality of the approach.

We propose in this paper some perspectives on how the interpretability of the reachability-aware
goal abstraction in STAR can allow for a LLM to reason about abstract goals and boost the planning
capabilities of the approach. We argue that this approach on the one hand allows humans to instruct the
algorithm in natural language, and on the other hand, to allow the algorithm to clearly communicate
its behavior. Our main contributions in this work is to explore using LLMs as high-level instructor
for the STAR algorithm, and whether it can interpret agent behaviour to humans.

2 Spatial-Temporal Abstraction via Reachability (STAR) Algorithm

We base our work on the STAR algorithm, which efficiently partitions the state space. The partitioning
data from the STAR algorithm is collected and used to test the integration of language instructions in
the hierarchical reinforcement learning framework.

2.1 Overview of the STAR Algorithm

We consider a goal-conditioned Markov Decision Process (S,A, P, rext), where S ⊆ Rn is a
continuous state space, A is an action space, P (st+1 | st, at) is the transition function, and rext : S ×
S → R is the reward, defined as the negative distance to the goal g∗ ∈ S: rext (s, g

∗) = −∥g∗ − s∥2.
The objective in multi-task reinforcement learning is to learn a goal-conditioned policy π that
maximizes the expected reward by sampling actions a ∼ π (st | g∗) at each timestep.

The goal abstraction is modeled by a function N : S → 2S that maps states to sets of states (i.e.,
∀s ∈ S,N (s) ⊆ S). We refer to the abstract goal space as GN or simply G when clear. The elements
of G are denoted as G.

The function N varies depending on the abstraction method. For example, Mannor et al. [2004] use
stochastic partitioning with linear subpolicies, while the STAR algorithm [Zadem et al., 2024] uses
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k-step reachability: a state s can reach s′ using policy π(., Gj) in k steps. Thus, the abstract goal
space G consists of sets of reachable states.

The STAR architecture comprises three hierarchical agents:

• Navigator: The high-level agent selects an abstract goal G ∈ G to guide the agent towards
the task goal g∗: Gt+k ∼ πNav (st, g

∗).

• Manager: The mid-level agent picks subgoals in the state space, conditioned on the
Navigator’s goal: gt+l ∼ πMan (st, Gt+k).

• Controller: The low-level policy samples actions to reach the subgoal: a ∼ πCont (st, gt+l).

The Manager and Controller use TD3 [Fujimoto et al., 2018] for learning, while the Navigator
employs Q-learning. Each agent operates at different timescales: the Navigator selects a goal every k
steps, the Manager every l steps (with k a multiple of l), and the Controller at each step. Initially, the
abstraction G is coarse, making direct goal-reaching challenging. The Manager’s subgoals serve as
intermediate targets, facilitating easier learning for the Controller. This structure allows STAR to
guide the agent through large state abstractions while supporting low-level policy learning.

2.2 Integration of LLM

For tasks in real-world environments, humans intuitively understand and navigate them. For instance,
navigating a maze, moving from the living room to the kitchen, can be easily communicated using
language. To reason and compose symbols grounded in a continuous environment, we take advantage
of the discrete representation output by STAR as an intermediary capable of extracting the abstract
spatial states of the algorithm and human instructions, then converting them into a format the
algorithm can understand, ultimately accelerating the learning process. To achieve this, we propose
the conversion of abstract spatial states and goals into a textual representation using LLM.

As the top-level agent, the Navigator only selects the next abstract region Gt+k ∼ πNav (st, g
∗),

we propose a translation instruction experiment. In the first experiment, we test the ability of
LLMs to perform full route planning based on human-provided instructions, (Gt+k, . . . , Gt+nk) ∼
πLLM (X, st, g

∗). Simultaneously, from another perspective, to evaluate the interactivity and align-
ment of LLM with spatial reasoning, we propose a naming experiment. In the second experiment,
we translate abstract regions, G ∈ G, into natural language descriptions and test whether LLM can
support the mapping between continuous spatial regions and symbolic representations.

2.3 Representation of States and Goals

The Ant, adapted from Duan et al. [2016] and Nachum et al. [2018], is a simulated quadrupedal robot
with a 30-dimensional state space, including positions, orientations, velocities, and joint angles. The
action space is continuous and 8-dimensional, corresponding to forces applied on the joints.

We evaluate two tasks in a 2D environment of size 25 for each dimension: AntMaze, where the
Ant navigates a ⊃-shaped maze to the exit, and AntFall, which involves crossing a chasm using a
movable block as a bridge. These tasks are hierarchical, requiring both low-level movement and
high-level navigation. The environment uses Mujoco physics simulator [Todorov et al., 2012]. A
training episode lasts up to 500 timesteps. The reward is the negative Euclidean distance to the goal,
scaled by 0.1, with success if the distance is smaller than 5.

We use the partitioning from the STAR algorithm’s training to test integrating human demonstrations.
Human instructions guide the agent in the AntMaze or AntFall environments. To represent partitioning
data as prompts for the LLM, we use:

• Maze layout: Compressed textual form with marked obstacles and partition regions.

• Coordination information: Tracks the agent’s current location and the goal.

• Adjacency list: Details neighboring relations for each region.

3 Experimental Evaluation
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Figure 1: Four situations in the AntMaze environment at Timestep (a) 305000, (b) 605000, (c)
930000, and (d) 4980000. The red point is the agent’s current location, the yellow point is the goal.

Table 1: Unique Name given by LLM

Timestep - Region LLAMA3.1-8B-Instruct GPT4o

305000 - 2 Rightward Passage Eastern Pathway

605000 - 1 Western Entrance Southern Junction
605000 - 5 Leftward Passage Western Approach
605000 - 6 Rightward Passage Northern Link
605000 - 12 Southern Expansion Eastern Border

4980000 - 3 Northern Passage Northern Access
4980000 - 20 Southern Corridor Southern Corridor
4980000 - 21 Eastern Extension Northeastern Outlet

Naming Experiment for Spatial Regions To evaluate the LLMs’ ability to generate human-
readable descriptions of abstract goals, we utilized four scenarios with Timestep 930000 as a one-shot
prompt (see Fig.1 and annex A). Llama3-8b-instruct and GPT-4o were tested; the former runs on a
GPU with more than 16GB of RAM. Completing the STAR program for 5 million timesteps takes
about 15 hours, with LLM inference taking 0.6 seconds each. Table 1 shows the names given by
the LLMs, when tasked with naming neighboring regions. The results indicate that the LLMs can
generate clear and concise names for each region.

In Table 1, bold text denotes incorrect region descriptions. The LLMs struggled with directional
accuracy, particularly in densely packed situations (e.g., Timestep 605000, with 25% accuracy).
However, when focusing on regions adjacent to the agent’s location, directional accuracy exceeded
75%, suggesting that representing continuous regions as symbolic names using LLMs is feasible.

Table 2: IoU Comparison Between GPT-4o and
Claude 3.5 Sonnet

Environment GPT-4o Claude 3.5 Sonnet

AntMaze 82.1% 90.3%
AntFall 75.0% 100.0%

Total 81.25% 91.43%

Instruction Translation Experiment In Fig.
1.b, a LLM might compose instructions into a
complex planning : "Go east, then north past
the wall, and finally west to the goal." With re-
gion segmentation, this means moving through
regions (Gn = (1, 2, 3, 4). We tested the LLM’s
ability to infer this sequence from such instruc-
tions (see annex C for the promts). We report the
accuracy, defined as IoU = |GLLM∩Gn|

|GLLM∪Gn| , where
GLLM is the LLM-predicted sequence and Gn is
the true sequence. Table 2 reports the IoU for
his ChatGPT-4o and Claude 3.5 Sonnet, with detailed outputs reported in annex D. GPT-4o’s errors
stemmed from omitting intermediate regions, while Claude added extra ones. Both models achieved
over 80% IoU, with 100% accuracy in predicting the next region, indicating effective translation of
instructions into abstract regions.

4 Discussion

The experiments show that LLMs can enhance HRL tasks, particularly in sequential planning, despite
its dynamic abstract representation. This is owing to its emergent symbolic representation capable to
handle long-horizon tasks in continual learning. LLMs effectively bridge human instructions and
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HRL, aiding task abstraction owing to its reasoning capability. Challenges remain in densely packed
environments where directional errors occur. Our work opens the door to compositional reasoning for
representation learning in reinforcement learning. Future work should refine LLM spatial reasoning
and apply this approach to dynamic, real-world tasks. Overall, integrating LLMs into HRL can
improve complex task performance in hierarchical control and spatial reasoning contexts.
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A Prompt for Naming Experiment

The system prompt used in the experiment Naming Experiment for Spatial Regions:

In this task, You are a navigation assistant, helping agent to reach the goal. Based on the data,
name the adjacent regions with a unique name understandable by the user to help him follow your
instructions.

The following is the few-shot prompt used in the experiment:

Role: User
Content:
Data:
State: [10, 3], Region 14
Goal: [0, 15], Region 4
Adjacency list:
Region 1: [5, 11, 18]
Region 2: [13]
Region 3: [4]
Region 5: [1, 6, 11]
Region 6: [1, 11]
Region 11: [1, 6, 17]
Region 13: [3, 15]
Region 14: [1, 2, 15, 18]
Region 15: [2, 3, 14]
Region 17: [18]
Region 18: [1, 14]
The top-down view of the maze is shown below, W represents walls, A represents
the agent’s current position,G represents the goal. The number represents the
region number:
4 4 4 4 4 3 3 3 3 3 3
G 4 4 4 4 3 3 3 3 3 3
W W W W W W W W W 3 3
10 10 10 10 10 13 13 13 15 15 15
9 9 8 12 12 2 2 2 15 15 15
5 5 5 7 1 14 14 14 15 15 15
5 5 5 7 1 14 A 14 15 15 15
5 5 5 6 1 18 18 18 18 18 16
5 5 5 11 11 17 17 17 17 17 17

Thinking Process:
1.Determine which regions are directly adjacent to the agent’s current location.
2.Assign Names Based on Relative Position: Use directional names (north, south,
east, west) or (left, middle, right) based on the region’s position relative to the
agent or between the adjacent regions.
3.Special Features: If a region has unique features (like being entirely walled off or
a sole connection to another important area), this should be reflected in the name.

Role: Assistant
Content:
Based on the maze layout and the adjacency list provided, the agent is cur-
rently in Region 14. The regions adjacent to Region 14 are Regions 1, 2, 15, and 18.

1. Region 1

Location: West of Region 14.
Unique Name: Western Gateway
Rationale: It’s in the west direction relative to the agent’s current position and
acts as a connecting hub to other regions (5, 11, 18).
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Table 3: Region status at different timesteps

Region Timestep 305000 Timestep 605000 Timestep 930000 Timestep 4980000
Region 1 Top Left Top-Left Top Left Corner One
Region 2 Top Middle Top-Middle Not Available Two
Region 3 Top Right Top-Right Not Available Three
Region 4 Bottom Goal Goal Region Goal
Region 5 - Bottom-Left Top Middle Five
Region 6 - Bottom-Middle Top Right Six
Region 7 - Bottom-Right Not Available Seven
Region 8 - Not Found Not Available Eight
Region 9 - Not Found Not Available Nine
Region 10 - Not Found State Region Ten
Region 11 - Bottom-Right Corner Upper Middle Eleven
Region 12 - Not Found Not Available Twelve
Region 13 - - Down Left Thirteen
Region 14 - - Current Region Fourteen
Region 15 - - Down Middle Fifteen
Region 16 - - Not Available Sixteen
Region 17 - - Down Right Seventeen
Region 18 - - Bottom Right Current
Region 19 - - - Nineteen
Region 20 - - - Twenty
Region 21 - - - Twenty-One
Region 22 - - - Twenty-Two
Region 23 - - - Twenty-Three

2. Region 2:

Location: Directly above Region 14 in the maze.
Unique Name: Northern Corridor
Rationale: It is located to the north of the agent’s current position and appears to
be a narrow passage leading to Region 13.

3. Region 15:

Location: Right next to Region 14 on the east side.
Unique Name: Eastern Gateway
Rationale: This region connects to multiple other regions (Regions 2, 3, and 14)
and serves as a gateway towards the eastern part of the maze.

4. Region 18:

Location: Directly below Region 14 in the maze.
Unique Name: Southern Expansion

Rationale: It extends to the south and also connects to Region 1 and 17,
offering a larger area or expansion from the agent’s current position.

B Zero-shot Naming Experiment

The table 3 shows the result of the zero-shot naming experiment. In this experiment, no shots were
given to the LLM, and the LLM was asked to name all the regions, instead of concentrating on the
regions adjacent to the agent’s current location. The results show that the LLM give up when facing
too complex tasks, such as naming all the regions in the maze. Therefore, we asked the LLM to focus
on naming the regions adjacent to the agent’s current location in the few-shot naming experiment.
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Table 4: Region Information Across Timesteps

Timestep - Region Location Description Unique Name

LLAMA3.1-8B-Instruct
305000 - 2 Directly right of Region 1 in the maze Rightward Passage

605000 - 1 West of Region 7 Western Entrance
605000 - 5 Directly left of Region 7 Leftward Passage
605000 - 6 Directly right of Region 7 Rightward Passage
605000 - 12 Below Region 7 in the maze Southern Expansion

4980000 - 3 Directly above Region 19 in the maze Northern Passage
4980000 - 20 Directly below Region 19 in the maze Southern Corridor
4980000 - 21 Right next to Region 19 on the east side Eastern Extension

GPT4o
305000 - 2 Directly east of Region 1 in the maze Eastern Pathway

605000 - 1 South of Region 7 Southern Junction
605000 - 5 West of Region 7 Western Approach
605000 - 6 North of Region 7 Northern Link
605000 - 12 East of Region 7 Eastern Border

4980000 - 3 North of Region 19 in the maze Northern Access
4980000 - 20 Below Region 19 in the maze Southern Corridor
4980000 - 21 Northeast of Region 19 Northeastern Outlet

C Prompts for Instruction Translation Experiment

The system prompt used in this experiment: In this task, You are a navigation assistant, helping
agent to reach the goal. Based on the data and the instruction given, tell the route to the agent to
reach the goal.

The following is the few-shot prompt used in the experiment:

User:
Data:
State: [10, 3], Region 14
Goal: [0, 15], Region 4
Adjacency list:
Region 1: [5, 11, 18]
Region 2: [13]
Region 3: [4]
Region 5: [1, 6, 11]
Region 6: [1, 11]
Region 11: [1, 6, 17]
Region 13: [3, 15]
Region 14: [1, 2, 15, 18]
Region 15: [2, 3, 14]
Region 17: [18]
Region 18: [1, 14]
The top-down view of the maze is shown below, W represents walls, A represents
the agent’s current position,G represents the goal. The number represents the
region number:
4 4 4 4 4 3 3 3 3 3 3
G 4 4 4 4 3 3 3 3 3 3
W W W W W W W W W 3 3
10 10 10 10 10 13 13 13 15 15 15
9 9 8 12 12 2 2 2 15 15 15
5 5 5 7 1 14 14 14 15 15 15
5 5 5 7 1 14 A 14 15 15 15
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5 5 5 6 1 18 18 18 18 18 16
5 5 5 11 11 17 17 17 17 17 17

Instruction:
Go straight to east till the end, then go north till pass the wall. Finally go west and
reach the goal.

Thinking Process:
1. Identify the agent’s current region and the goal region.
2. Interpret the Instruction: Understand the directional commands provided in the
instruction and translate them into movements between regions.
3. Plan the Route: Based on the adjacency list and the maze layout, determine the
sequence of regions the agent should traverse to follow the given instructions and
reach the goal.

Assistant:

Current State: The agent is located in Region 14, at coordinates [10, 3].
Goal: The target is in Region 4, at coordinates [0, 15].

Interpretation of Instructions:
Go straight to the right till the end: Starting from Region 14, moving east would
involve transitioning through adjacent regions towards the eastern edge of the
maze.
Then go north till pass the wall: After reaching the furthest right point accessible,
the agent should then move northwards until they pass the wall.
Finally go west and reach the goal: The agent needs to move left from the
northernmost point they reached, continuing until they arrive at the goal in Region
4.

Route Plan Based on Regions and Their Adjacencies:
Starting at Region 14: Move eastward within the maze. Adjacent regions from 14
are [1, 2, 15, 18]. The furthest east the agent can go from here within the maze
layout while still adhering to the instruction to move to the right and then up
includes moving to Region 15.

Move to Region 15: After reaching Region 15, the next step is to go north.
From Region 15, the agent can continue to Region 3 via Region 13 (15 → 13 → 3).
Region 13 doesn’t pass the wall, so the agent should continue to Region 3.
Move to Region 3: On reaching Region 3, the agent would then move to the left, as
instructed.
Region 3 directly connects to Region 4, which is the goal region.

Final Route Summary:
Region 14 → Region 15 → Region 13 → Region 3 → Region 4 (Goal)

D Detailed Results of Instruction Translation Experiment

The table 5 shows the detailed instructions given and the routes planned by ChatGPT-4o and Claude
3.5 Sonnet. The results show that both models succeed in choosing the first region in the sequence by
interpreting the instruction correctly.
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Table 5: Route Planning Results Comparison between ChatGPT-4o and Claude 3.5

Case Instruction ChatGPT-4o Route Claude 3.5 Route

1 Go east until pass the wall, then go
north until passing the wall, turn
west and reach the goal.

7 → 1 → 2 → 3 → 4 (goal) 7 → 1 → 2 → 3 → 4 (goal)

2 Go north a little bit until pass the
wall, then go west till the end, and
the goal is on the left.

19 → 3 → 4 (goal) 19 → 21 → 3 → 4 (goal)

3 Go east until pass the wall, then go
north till the end, the goal is on the
left.

9 → 6 → 10 → 2 → 16 (goal) 9 → 8 → 11 → 2 → 3 → 15 →
14 → 16 (goal)

4 Go straight to the west, the goal is
at the north.

20 → 12 → 11 (goal) 20 → 12 → 5 → 1 → 11 (goal)

5 Go east til pass the wall, then go
south until the end, finally go west
and reach the goal.

4 → 3 → 19 → 15 → 14 → 1 →
5 (goal)

4 → 3 → 19 → 20 → 15 → 2 →
12 → 8 → 5 (goal)

6 Go straight to east till the end, then
go north to push the movable block.

10 → 2 → 15 (block) 10 → 5 → 2 → 15
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