
Measuring and Improving Compositional Generalization in Text-to-SQL
via Component Alignment

Anonymous ACL submission

Abstract

In text-to-SQL tasks — as in much of NLP —001
compositional generalization is a major chal-002
lenge: neural networks struggle with compo-003
sitional generalization where training and test004
distributions differ. However, most recent at-005
tempts to improve this are based on word-level006
synthetic data or specific dataset splits to gen-007
erate compositional biases. In this work, we008
propose a clause-level compositional example009
generation method. We first split the sentences010
in the Spider text-to-SQL dataset into sub-011
sentences, annotating each sub-sentence with012
its corresponding SQL clause, resulting in a013
new dataset Spider-SS. We then construct a fur-014
ther dataset, Spider-CG, by composing Spider-015
SS sub-sentences in different combinations, to016
test the ability of models to generalize com-017
positionally. Experiments show that existing018
models suffer significant performance degra-019
dation when evaluated on Spider-CG, even020
though every sub-sentence is seen during train-021
ing. To deal with this problem, we modify a022
number of state-of-the-art models to train on023
the segmented data of Spider-SS, and we show024
that this method improves the generalization025
performance.1026

1 Introduction027

Neural models in supervised learning settings show028

good performance on data drawn from the train-029

ing distribution. However, generalization perfor-030

mance can be poor on out-of-distribution (OOD)031

samples (Finegan-Dollak et al., 2018; Suhr et al.,032

2020; Kaushik et al., 2020; Sagawa et al., 2020).033

This might be the case even when the new samples034

are composed of known constituents; e.g., on the035

SCAN dataset (Lake and Baroni, 2018), many mod-036

els give incorrect predictions for the input “jump037

twice and walk”, even when “jump twice”, “walk”,038

and “walk twice” are seen during training. This039

1We will release code and dataset upon publication.

(often lacking) ability to generalize to novel com- 040

binations of elements observed during training is 041

referred to as compositional generalization. 042

Previous work on compositional generalization 043

in text-to-SQL focuses on data split (Shaw et al., 044

2021) and word substitution (Finegan-Dollak et al., 045

2018). However, data split methods are limited by 046

the dataset content, making it difficult to construct 047

a challenging benchmark while ensuring that every 048

compound appears in the training set. Ensuring a 049

reasonable data split may also lead to a reduction in 050

dataset size: e.g., the training set drops from 7000 051

to 3282 in the Spider TCMD split (Yu et al., 2018b; 052

Shaw et al., 2021). 053

Previous works (Chen et al., 2020; Wang et al., 054

2021; Liu et al., 2020) improve generalization by 055

enhancing the model’s component awareness. Sim- 056

ilarly, Yin et al. (2021) and Herzig and Berant 057

(2021) propose span-based semantic parsers that 058

predict a sub-program over an utterance span. How- 059

ever, these works are based on datasets where com- 060

ponent alignment is relatively easy to achieve; but 061

for more complex text-to-SQL, their methods can- 062

not be used directly. For example, as shown in the 063

lower part of Figure 1, to align the sub-sentence 064

with the sub-SQL, the algorithm needs to know that 065

‘youngest’ corresponds to ‘age’, and ‘weigh’ cor- 066

responds to ‘weight’. For small or single-domain 067

settings, such an alignment algorithm can be built 068

by establishing rules; however, there is currently 069

no simple and feasible alignment method for large 070

complex cross-domain text-to-SQL, as in e.g. the 071

Spider benchmark (Yu et al., 2018b). 072

In this work, we first introduce a new dataset, 073

Spider-SS (SS stands for sub-sentence), derived 074

from Spider (Yu et al., 2018b); Figure 1 compares 075

the two. To build Spider-SS, we first design a 076

sentence split algorithm to split every Spider sen- 077

tence into several sub-sentences until indivisible. 078

Next, we annotate every sub-sentence with its cor- 079

responding SQL clause, reducing the difficulty of 080

1

What type of pet is the youngest animal, and

how much does it weigh?

SELECT PetType , Weight FROM Pets
ORDER BY Pet_Age LIMIT 1

Sentence:

SQL:

What type of petSubSentence:

Spider Example:

Spider-SS Example:

SELECT Pets.PettypeNatSQL:

, and how much does it weigh?SubSentence:

SELECT Pets.Weight NatSQL:

is the youngest animalSubSentence:

ORDER BY Pets.Pet_Age
LIMIT 1

NatSQL:

Figure 1: A natural language sentence in the original
Spider benchmark is split into three sub-sentences in
Spider-SS, where each sub-sentence has a correspond-
ing NatSQL clause.

this task by using the intermediate representation081

language NatSQL (Gan et al., 2021b), which is082

simpler and syntactically aligns better with natu-083

ral language (NL). Spider-SS thus provides a new084

resource for designing models with better general-085

ization capabilities without designing a complex086

alignment algorithm. Furthermore, it can also be087

used as a benchmark for evaluating future align-088

ment algorithms. To our knowledge, this is the first089

sub-sentence-based text-to-SQL dataset.090

Our annotated Spider-SS provides us with sub-091

sentences paired with NatSQL clauses, which serve092

as our compounds. Based on Spider-SS, we then093

construct a further dataset Spider-CG (CG stands094

for compositional generalization), by substituting095

sub-sentences with those from other samples, or096

composing two sub-sentences to form a more com-097

plicated sample. Spider-CG contains two subsets;098

Figure 2 shows one example for each. The first099

subset contains 24,134 examples generated by sub-100

stituting sub-sentences; we consider most data in101

this subset as in-distribution. The second subset102

contains 22,531 examples generated by appending103

sub-sentences, increasing the length and complex-104

ity of the sentence and the SQL query compared105

to the original samples; we consider this subset106

as OOD. We demonstrate that when models are107

trained only on the original Spider dataset, they108

suffer a significant performance drop on the second109

OOD subset of Spider-CG, even though the do-110

main appears in the training set. Experiments with111

RATSQL+GAP (Shi et al., 2021) show that our112

Spider-CG is more challenging than the existing113

TMCD split (Shaw et al., 2021).114

To improve the generalization performance of115

What is the name and nation of the singerSubSentence:

Spider-SS :

SELECT Singer.Name

SELECT Singer.Country
NatSQL:

What are the names of the singersSubSentence:

SELECT Singer.NameNatSQL:

who have a song having 'Hey' in its name?SubSentence:

WHERE Concert.Song_Name like '%Hey%'NatSQL:

Example-1:

who performed in a concert in 2014?SubSentence:

WHERE Concert.Year = 2014NatSQL:

Example-2:

What is the name and nation of the singer
who performed in a concert in 2014?

Sentence:

Spider-CG :

SELECT Singer.Name, Singer.Country

WHERE Concert.Year = 2014
NatSQL:

Subset-1: sub-sentence substitution in Example 1 and 2 2

What is the name and nation of the singer

who have a song having ‘Hey’ in its name and
who performed in a concert in 2014?

Sentence:

SELECT Singer.Name, Singer.Country

WHERE Concert.Song_Name like '%Hey%‘
AND Concert.Year = 2014

NatSQL:

Subset-2: Example-1 append a sub-sentence from Example-2

Figure 2: Two Spider-CG samples generated by: (1)
substituting the sub-sentence with one from another ex-
ample; or (2) composing sub-sentences from 2 exam-
ples in Spider-SS.

text-to-SQL models, we modify several previous 116

state-of-the-art models so that they can be applied 117

to the Spider-SS dataset, with the model trained 118

sub-sentence by sub-sentence. This modification 119

obtains more than 7.8% accuracy improvement on 120

the OOD subset of Spider-CG. 121

In short, we make the following contributions: 122

• Besides the sentence split algorithm, we 123

introduce Spider-SS, a human-curated sub- 124

sentence-based text-to-SQL dataset built upon 125

the Spider benchmark, by splitting its NL 126

questions into sub-sentences. 127

• We introduce the Spider-CG benchmark for 128

measuring the compositional generalization 129

performance of text-to-SQL models. 130

• We show that text-to-SQL models can be 131

adapted to sub-sentence-based training, im- 132

proving their generalization performance. 133

2 Spider-SS 134

2.1 Overview 135

Figure 1 presents a comparison between Spider 136

and Spider-SS. Unlike Spider, which annotates a 137

whole SQL query to an entire sentence, Spider-SS 138

annotates the SQL clauses to sub-sentences. Spider- 139

SS uses NatSQL (Gan et al., 2021b) instead of SQL 140

2

For the 4 cylinder cars, which model has the most horsepower?

pobj
relcl

nsubj dobj

For the 4 cylinder cars, | which model | has the most horsepower?

Figure 3: Dependency structure of a sentence and how
to split this sentence into three sub-sentences.

for annotation, because it is sometimes difficult141

to annotate the sub-sentences with corresponding142

SQL clauses due to the SQL language design. The143

Spider-SS provides a combination algorithm that144

collects all NatSQL clauses and then generates the145

NatSQL query, where the NatSQL query can be146

converted into an SQL query.147

The purpose of building Spider-SS is to attain148

clause-level text-to-SQL data avoiding the need for149

an alignment algorithm that is hard to build based150

on the complex large cross-domain text-to-SQL151

dataset, e.g., Spider benchmark. Besides, we can152

generate more complex examples through different153

combination of clauses from Spider-SS. Consistent154

with Spider, Spider-SS contains 7000 training and155

1034 development examples, but Spider-SS does156

not contain a test set since the Spider test set is157

not public. There are two steps to build Spider-158

SS. First, design a sentence split algorithm to cut159

the sentence into sub-sentences, and then manually160

annotate the NatSQL clause corresponding to each161

sub-sentence.162

2.2 Sentence Split Algorithm163

We build our sentence split algorithm upon the NL164

dependency parser spaCy 2, which provides the165

grammatical structure of a sentence. Basically, we166

split the sentence with the following dependencies:167

prep, relcl, advcl, acl, nsubj, npadvmod, csubj,168

nsubjpass and conj. According to (de Marnee and169

Manning, 2016), these dependencies help us sepa-170

rate the main clause, subordinate clauses, and mod-171

ifiers. Figure 3 shows the dependency structure172

of a sentence and how to split this sentence into173

three sub-sentences. However, not every sentence174

would be split since there are some non-splittable175

sentences, such as the third example in Figure 4,176

with the same annotation as the Spider dataset. Al-177

though this method can separate sentences well in178

most cases, due to the variability of natural lan-179

guage, some examples cannot be perfectly split.180

To address the remaining issues in sentence split,181

2https://github.com/explosion/spaCy

SubSentence:

Spider-SS :

SELECT Customers.Email_Address
SELECT Customers.Phone_Number

NatSQL:

List the total number of horses on farmsSubSentence:

SELECT Farm.Total_HorsesNatSQL:

ordered by email addressSubSentence:

ORDER BY Customers.Email_Address ASCNatSQL:

Example-1: Use the “extra” keyword. d
to compensate for split errors d

in ascending order.SubSentence:

ORDER BY Farm.Total_Horses ASCNatSQL:

Example-2: Columns that are not mentioned in the d
sub-sentence are specifically annotated

Who advises student 1004?SubSentence:

SELECT Student.Advisor

WHERE Student.StuID = 2014
NatSQL:

Example-3: Some sentences cannot be split d

NO MENTIONED

Find the emails and phone numbers of all the
customers,

and phone numbers.SubSentence:

EXTRA Customers.Phone_NumberNatSQL:

Figure 4: Spider-SS examples in three special cases.

we design some refinement steps tailored to text-to- 182

SQL applications. For example, when the phase of 183

a schema column or table is accidentally divided 184

into two sub-sentences, these two sub-sentences are 185

automatically concatenated. Besides, when there is 186

only one word in a sub-sentence, the corresponding 187

split should also be undone. 188

We sampled 500 examples from the Spider- 189

SS development set to evaluate the acceptability 190

of splitting results manually, and only < 3% of 191

the splitting results are unsatisfactory. For exam- 192

ple, in the splitting results of the first example 193

in Figure 4, the last two sub-sentence should be 194

combined to correspond to “ORDER BY Cus- 195

tomer.Email_Address, Customer.Phone_Number 196

ASC ”. In this example, we did not simply give an 197

“ORDER BY Customer.Phone_Number ASC ” to 198

the last sub-sentence, because it does not mention 199

anything related to “ORDER BY ”. Here, we in- 200

troduce “extra”, a new NatSQL keyword designed 201

for the Spider-SS dataset, indicating that this sub- 202

sentence mentions a column that temporarily does 203

not fit in any other NatSQL clauses. When combin- 204

ing NatSQL clauses into the final NatSQL query, 205

the combining algorithm determines the final posi- 206

tion for the “extra” column based on the clauses be- 207

fore and after. Note that even if there is a small pro- 208

portion of unsatisfactory splitting results, as long 209

as the model trained on Spider-SS can give the cor- 210

rect output according to the input sub-sentence, the 211

quality of the sub-sentences itself does not strongly 212

affect the model utility. 213

3

2.3 Data Annotation214

When we get the split results from the last step,215

we can start data annotation. We give precise an-216

notations based on the sub-sentence content, such217

as the “extra” column annotation discussed in the218

last subsection. Besides, if the description of the219

schema column is missing in the sub-sentence, we220

will give the schema column an additional “NO221

MENTIONED” mark. For example, in the second222

example of Figure 4, the “in ascending order” sub-223

sentence does not mention the “Farm.Total_Horses”224

column. Therefore, we add a “NO MENTIONED”225

mark for it. For those sub-sentences that do not226

mention anything related to the query, we give a227

“NONE mark, representing there are no NatSQL228

clauses.229

Since the annotation is carried out according230

to the sub-sentence content, the equivalent SQL231

that is more consistent with the sub-sentence will232

be preferred to the original SQL. Similarly, if the233

original SQL annotation is wrong, we correct it234

according to the content.235

We annotate the sub-sentence using NatSQL236

instead of SQL, where NatSQL is an intermedi-237

ate representation of SQL, only keeping the SE-238

LECT, WHERE, and ORDER BY clauses from SQL.239

Since some sub-sentences need to be annotated240

with GROUP BY clause, we choose the version of241

NatSQL augmented with GROUP BY. We did not242

use SQL directly because it is difficult to annotate243

in some cases, such as the SQL in Figure 5. The244

difficulty is that there are two SELECT clauses in245

this SQL query, but none of the sub-sentences seem246

to correspond to two SELECT clauses. In addition,247

considering that the two WHERE conditions corre-248

spond to different SELECT clauses, the annotation249

work based on SQL is far more difficult to com-250

plete. As shown in Figure 5, we can use NatSQL to251

complete the annotation quickly, while the NatSQL252

can be converted back to the target SQL.253

3 Spider-CG254

3.1 Overview255

Spider-CG is a synthetic dataset, which is gener-256

ated by recombining the sub-sentences of Spider-257

SS. There are two recombination methods. The258

first is sub-sentence substitution between differ-259

ent examples, and the second is to append a sub-260

sentence into another sentence. To facilitate the261

follow-up discussion, we named the Spider-CG262

What are the locations that have both tracks

with more than 90000 seats, and tracks with
fewer than 70000 seats?

Sentence:

A sentence and its corresponding SQL and NatSQL:

SELECT Location FROM Track WHERE seating

> 90000
INTERSECT SELECT Location FROM Track

WHERE seating < 70000

SQL:

Spider-SS :

SELECT Track.Location

WHERE Track. Seating > 90000
AND Track.Seating < 70000

NatSQL:

We can think about how to correctly annotate
the INTERSECT clause if using the SQL query

What are the locationsSubSentence:

SELECT Track.LocationNatSQL:

that have both tracks with more than 90000
seats,

SubSentence:

WHERE Track. Seating > 90000 NatSQL:

and tracks with fewer than 70000 seats?SubSentence:

AND Track.Seating < 70000NatSQL:

Figure 5: It is difficult to annotate if using the SQL
instead of NatSQL.

subset generated by the sub-sentence substitution 263

method CG-SUB, and the other named CG-APP. 264

In CG-SUB, there are 21,168 examples gener- 265

ated from the Spider-SS training set, while 2,966 266

examples are generated from the development set. 267

In CG-APP, examples generated from training and 268

development sets are 19,241 and 3,290, respec- 269

tively. Therefore, the whole Spider-CG contains 270

46,665 examples, which is about six times the Spi- 271

der dataset. if more data is needed, we can append 272

sub-sentences to the CG-SUB examples. 273

3.2 Generation Algorithm 274

According to Algorithm 1, we can generate the 275

CG-SUB and CG-APP based on compositional 276

elements. Each element contains one or more 277

sub-sentences with corresponding NatSQL clauses 278

from Spider-SS, where these NatSQL can only be 279

WHERE or ORDER BY clauses. Thus, Algorithm 1 280

only substitute and append the WHERE and OR- 281

DER BY clauses, and does not modify the SELECT 282

clause. We collect the sub-sentences for composi- 283

tional elements by scanning all sub-sentence from 284

start to end or from end to start and stopping when 285

encountering clauses except WHERE and ORDER 286

BY. For example, we generate a compositional el- 287

ement containing the last two sub-sentences of 288

the Spider-SS example in Figure 5. In contrast, 289

no element is extracted from the example in Fig- 290

ure 1. It should be noted that elements in a do- 291

main cannot be used in another because the schema 292

4

Algorithm 1 Generate CG-SUB and CG-APP dataset in a certain domain
Input: e_list . All compositional elements in a domain
Output: cg_sub and cg_app . CG-SUB and CG-APP dataset in a certain domain
1: for Every element1 in e_list do
2: for Every element2 in e_list do
3: if element1 != element2 then
4: if element1.can_be_substituted_by(element2) then
5: cg_sub.append(element1.generate_substitution_example(element2))
6: if element1.can_append(element2) then
7: cg_app.append(element1.generate_appending_example(element2))
8: return cg_sub, cg_app

Ques Show the name of employees
named Mark Young ?

SQL SELECT name FROM employee
WHERE name = ‘Mark Young’

Table 1: One acceptable but not perfect examples in the
Spider-CG.

items are different. So as many domains as there293

are, it needs to run Algorithm 1 as many times.294

We recommend reading Appendix A for details of295

can_be_substituted_by and can_append functions.296

3.3 Quality Evaluation297

We consider that the quality of a text-to-SQL sen-298

tence is determined by two criteria: containing the299

required information and being reasonable. The300

‘information’ criterion requires a sentence that con-301

tains all the information needed to derive the target302

SQL. The ‘reasonable’ criterion requires a sentence303

that is logically correct and whose representation is304

fluent and easy to understand. We randomly sam-305

pled 2000 examples from the Spider-CG dataset,306

around 99% of which are acceptable, i.e., they meet307

the two criteria. The evaluation is conducted man-308

ually by a computer science graduate with good309

knowledge of text-to-SQL. However, these accept-310

able examples do not mean that there are no gram-311

matical errors and they may be meaningless. We312

give one acceptable but not perfect examples in313

Table 1, where the sentence is meaningless because314

the content it wants to query is the condition it315

gave.316

4 Model317

Existing text-to-SQL models input a sentence and318

output the corresponding SQL query. So the eas-319

iest way to think of using the Spider-SS dataset320

List name of student who is older than ten

sub-sentence-1:d
List name of student

0 1 2 3 4 5 6 7 8

sub-sentence-2:d
who is older than ten

Encoder

V0V1V2V3V4V5V6V7V8Encoder Vectors:

Decoder

WHERE Student.Age > 10

Figure 6: A example of encoding the whole sentence
but decoding only the sub-sentence.

is to train the model where inputting sub-sentence 321

and outputting the corresponding NatSQL clauses. 322

However, this method is not workable because it 323

will lose some essential schema information. For 324

example, if you only look at the third sub-sentence 325

in Figure 1, you do not know whether it enquires 326

about the weight of pets or people. 327

In order to take into account the context and the 328

sub-sentence data of Spider-SS, we propose that a 329

seq2seq model can encode the whole sentence but 330

decode only the sub-sentence. Figure 6 presents the 331

workflow of encoding the whole sentence but only 332

decoding the sub-sentence of ‘who is older than ten’ 333

and outputting the corresponding NatSQL clause. 334

Based on this modification, a seq2seq text-to-SQL 335

model can be adapted to the Spider-SS. Although 336

previous span-based semantic parsers (Yin et al., 337

2021; Herzig and Berant, 2021) can work with 338

aligned annotations based on the Spider-SS dataset, 339

none of them are designed for complex text-to- 340

SQL problems. Our modification idea is similar in 341

5

principle to the span-based semantic parsers, but342

we did not change the existing model according to343

the span-based because our modification idea has a344

smaller workload.345

5 Experiment346

5.1 Experimental Setup347

Dataset. We evaluate the previous state-of-the-348

art models on the Spider-CG and Spider (Yu et al.,349

2018b) datasets. Since the Spider test set is not350

publicly accessible, Spider-CG does not contain351

a test set. As discussed in Section 3.1, we divide352

the Spider-CG into two subsets: CG-SUB and CG-353

APP. Therefore, there are five evaluation sets:354

• SpiderD: the original Spider development355

set with 1,034 examples for cross-domain in-356

distribution text-to-SQL evaluation.357

• CG-SUBT: the CG-SUB training set, containing358

21,168 examples generated from Spider-SS train-359

ing set by substituting sub-sentences. CG-SUBT360

can be used for in-domain in-distribution text-to-361

SQL evaluation.362

• CG-SUBD: the CG-SUB development set con-363

taining 2,966 examples for cross-domain in-364

distribution text-to-SQL evaluation.365

• CG-APPT: the CG-APP training set, containing366

19,241 examples generated from Spider-SS train-367

ing set by appending sub-sentences. CG-APPT368

can be used for in-domain out-of-distribution 3369

text-to-SQL evaluation.370

• CG-APPD: the CG-APP development set con-371

taining 3,290 examples for cross-domain out-of-372

distribution text-to-SQL evaluation.373

Our evaluation is based on the exact match met-374

ric defined in the original Spider benchmark. The375

exact match metric measures whether the syntax376

tree of the predicted query without condition values377

is the same as that of the gold query. All models are378

only trained on 7000 Spider or Spider-SS training379

examples.380

Models. We evaluate the following open-source381

models that reach competitive performance on Spi-382

der:383

• GNN: The GNN (Bogin et al., 2019) model us-384

ing the GLOVE (Pennington et al., 2014) embed-385

dings.386

3Out-of-distribution means that the difficulty distribution is
different from the Spider; see Table 3. Appendix A discusses
the removal of overly complex examples to ensure that Spider-
CG’s SQL does not exceed the complexity upper bound of the
Spider.

Dataset Exact Match Execution Match
Training Set 89.4% 94.0%
Development Set 90.0% 94.3%

Table 2: Use exact match and execution match metrics
to evaluate the difference between the SQL in Spider
and the SQL generated by NatSQL in Spider-SS.

• RATSQL: The RATSQL (Wang et al., 2020) 387

model using the GLOVE embeddings. 388

• RATSQLB: The RATSQL model using the 389

BERT (Devlin et al., 2019) embeddings. 390

• RATSQLG: The RATSQL model using the 391

GAP (Shi et al., 2021) embeddings. 392

• (N): This subscript indicates that the model use 393

NatSQL instead of SQL. 394

• (S): This subscript indicates that the model is 395

modified according to Section 4 and trained on 396

Spider-SS. Besides, since Spider-SS is annotated 397

by NatSQL, this subscript also indicates that the 398

model uses NatSQL instead of SQL. 399

Implementations. All experiments were per- 400

formed on a machine with an Intel i5 9600 3.1GHz 401

processor and a 24GB RTX3090 GPU. All mod- 402

els keep their original hyperparameters except the 403

RATSQLB(S). RATSQLB(S) cannot converge on 404

the original parameters until we reduce the learn- 405

ing rate of model from 7.444e-04 to 1e-04 and raise 406

the learning rate of BERT from 3e-06 to 1e-05. We 407

did not conduct a hyperparameter search, so the 408

model trained on Spider-SS may improve perfor- 409

mance through other parameters. 410

5.2 Dataset Analysis 411

Spider-SS. Table 2 presents the difference be- 412

tween the SQL in Spider and the SQL generated by 413

NatSQL in Spider-SS. Our evaluation results are 414

lower than the original NatSQL dataset (Gan et al., 415

2021b) because the Spider-SS uses equivalent SQL 416

and corrects some errors, as discussed in Section 417

2.3. Some equivalent and corrected SQL cannot 418

get positive results in exact match metric and ex- 419

ecution match. Therefore, the model trained on 420

Spider-SS may not be ideal for chasing the Spider 421

benchmark, especially based on the exact match 422

metric. Similarly, the RATSQLG extending Nat- 423

SQL had achieved a previous SOTA result in the 424

execution match of the Spider test set but get a 425

worse result than the original in the exact match 426

(Gan et al., 2021b). Thus, we recommend using 427

NatSQL-based datasets to evaluate models trained 428

6

Dataset easy medium hard extra
SpiderD 24.1% 43.1% 16.8% 16.1%
CG-SUBT 28.3% 38.4% 20.8% 12.5%
CG-SUBD 33.8% 37.4% 13.6% 12.6%
CG-APPT 3.2% 30.3% 27.3% 39.1%
CG-APPD 2.3% 41.9% 22.9% 32.8%

Table 3: The difficulty distribution of five different eval-
uation sets.

on NatSQL.429

Spider-CG. Table 3 presents the difficulty dis-430

tribution of five different evaluation sets. The dif-431

ficulty criteria are defined by Spider benchmark,432

including easy, medium, hard and extra hard. Ex-433

periments show that the more difficult the SQL is,434

the more difficult it is to predict correctly (Wang435

et al., 2020; Shi et al., 2021; Gan et al., 2021b).436

It can be found from Table 3 that the difficulty437

distribution of CG-SUBT and CG-SUBD is simi-438

lar to that of SpiderD. The similar distributions439

among CG-SUBT, CG-SUBD, and SpiderD sup-440

port the view discussed in Section 1 that the ex-441

amples generated by the substitution method are442

in-distribution.443

On the other hand, the difficulty distributions of444

CG-APPT and CG-APPD are obviously different445

from that of SpiderD. Due to appending the sub-446

sentence, the NL and SQL in CG-APP become447

more complex, where the proportion of SQL in448

extra hard increased significantly, while easy was449

the opposite.450

5.3 Sentence Split Algorithm Evaluation451

We generate the Spider-CG based on the combina-452

tion of Spider-SS sub-sentences split by the algo-453

rithm introduced in Section 2.2. We can reuse this454

algorithm to split the sentence in Spider-CG and455

then compare the splitting results with the Spider-456

SS sub-sentences to evaluate the stability of the457

splitting algorithm. We consider that a deviation458

of one or two words in the splitting result is ac-459

ceptable. For example, in Figure 1, we consider460

that putting the comma of the third sub-sentence461

into the second sub-sentence does not change the462

meaning of sub-sentences, same for moving both463

the comma and the word ‘and’.464

Table 4 presents the similarity between sub-465

sentences in Spider-SS and Spider-CG, which are466

generated by the same split algorithm under the467

deviation of one or two words. The similarity ex-468

Dataset Deviation <= 1 Deviation <= 2
CG-SUBT 93.2% 94.4%
CG-SUBD 92.9% 94.1%
CG-APPT 86.0% 90.4%
CG-APPD 88.9% 92.6%

Table 4: The similarity between sub-sentences in
Spider-SS and Spider-CG generated by the same split
algorithm under the deviation of one or two words.

Approach SpiderD CG-SUBT CG-SUBD CG-APPT CG-APPD

RATSQLG 72.7% 80.9% 70.3% 45.2% 44.2%
RATSQLG(N) 73.9% 90.2% 75.0% 67.8% 60.5%
RATSQLG(S) 74.5% 91.4% 76.7% 82.5% 68.3%
RATSQLB 72.0% 79.5% 72.0% 45.1% 47.2%
RATSQLB(N) 72.1% 83.2% 69.4% 54.6% 53.1%
RATSQLB(S) 71.9% 91.0% 72.6% 79.8% 61.5%
RATSQL(N) 63.2% 79.1% 60.7% 40.6% 34.5%
RATSQL(S) 64.7% 88.8% 63.3% 72.1% 44.1%
GNN(N) 54.4% 67.3% 57.5% 30.4% 25.1%
GNN(S) 49.3% 71.9% 51.8% 52.1% 34.6%

Table 5: Exact match accuracy on evaluation sets.

ceeds 90% in all evaluation set when two deviation 469

words are allowed. Considering that the model 470

trained on the Spider-SS does not require consis- 471

tent split results, as discussed in Section 2.2, the 472

similarity results of the splitting algorithm are good 473

enough. The similarity of CG-SUB is higher than 474

that of CG-APP, which means the more complex 475

the sentence, the greater the challenge to the al- 476

gorithm. Although the algorithm has been refined 477

on the training set, the similarity between training 478

and development in CG-SUB and CG-APP is close, 479

showing that the algorithm performs consistently 480

for unseen datasets. In summary, we consider that 481

as long as the sentences are not more complex than 482

CG-APP, the algorithm can be used stably in other 483

text-to-SQL datasets. 484

5.4 Model Results 485

Table 5 presents the exact match accuracy on the 486

five different evaluation sets. In the two OOD 487

datasets, CG-APPT and CG-APPD, the perfor- 488

mance of all models has dropped by about 10% 489

to 30%. However, the models trained on Spider- 490

SS significantly outperform those trained on Spi- 491

der when evaluated on the OOD datasets. We 492

use the sentence split algorithm to split every sen- 493

tence before inputting the models with subscript 494

(S). Although there are some un-similar splitting 495

results, it did not prevent the models with sub- 496

script (S) from getting good performance, i.e., the 497

RATSQLG(S) consistently outperforms all other 498

models on all evaluation sets. These results demon- 499

7

strate that the sub-sentence-based method can im-500

prove the generalization performance. The limi-501

tation is that the method may not be compatible502

with the original model, e.g., original hyperparam-503

eters in RATSQLB(S) are not workable, and the504

performance of GNN on the SpiderD and DD is505

degraded.506

Each model has a close result between the un-507

seen SpiderD and CG-SUBD, indicating that from508

the perspective of the model, the synthetic sen-509

tences are pretty similar to NL. Therefore, we be-510

lieve the performance on CG-SUB_D can be gen-511

eralized to the real world. Moreover, considering512

that the algorithms for generating CG-SUB_D and513

CG-APP_D are close (see Appendix A), we can514

further speculate that the synthetic sentences of515

CG-APP_D are also close to natural language.516

The models with NatSQL is significantly bet-517

ter than that without NatSQL when evaluated on518

Spider-CG. One of the reasons is that the training519

data of Spider and Spider-SS are about 10% dif-520

ferent, which leads to the performance degradation521

in the model trained on Spider when evaluated on522

the SQL generated by the NatSQL of Spider-SS,523

and vice versa. On the other hand, experiments in524

(Gan et al., 2021b) show that NatSQL improve the525

model performance in extra hard SQL. Therefore,526

RATSQLG(N) and RATSQLB(N) suffer less perfor-527

mance degradation in CG-APPT and CG-APPD528

than RATSQLG and RATSQLB.529

6 Related Work530

Data augmentation for text-to-SQL models.531

Data augmentation has been commonly used for532

improving performance (Xiong and Sun, 2019; Li533

et al., 2019). In the context of text-to-SQL genera-534

tion, Yu et al. (2018a) generate synthetic training535

samples from some pre-defined SQL and NL ques-536

tion templates. Parikh et al. (2020) introduces an537

table-to-text dataset with over 120,000 examples538

that proposes a controlled generation task: given539

a Wikipedia table and a set of highlighted table540

cells, produce a one-sentence description. Yu et al.541

(2021) sample from the given examples and then542

give a large number of tables to generate new syn-543

thetic examples. Shi et al. (2021) present a model544

pre-training framework that jointly learns repre-545

sentations of NL utterances and table schemas by546

leveraging generation models to generate pre-train547

data. Our proposed Spider-CG dataset can be used548

for data augmentation.549

Compositional generalization for semantic 550

parsing. Compositional generalization for se- 551

mantic parsing has captured wide attention recently 552

(Finegan-Dollak et al., 2018; Oren et al., 2020; 553

Furrer et al., 2020; Conklin et al., 2021). Most 554

prior works on text-to-SQL tasks focus on the cross- 555

domain generalization, which mainly assess how 556

the models generalize the domain knowledge to 557

new database schemas (Suhr et al., 2020; Gan et al., 558

2021a). On the other hand, Shaw et al. (2021) in- 559

troduces TMCD splits for studying compositional 560

generalization in semantic parsing, where they aim 561

to maximize the divergence of SQL compounds 562

between the training and test sets. 563

Our model is inspired by prior works on neural 564

parsers constructed to capture granular informa- 565

tion from a whole. Yin et al. (2021) describe a 566

span-level supervised attention loss that improves 567

compositional generalization in semantic parsers. 568

Herzig and Berant (2021) propose SpanBasedSP, 569

a parser that predicts a span tree over an input ut- 570

terance, and dramatically improves performance 571

on splits that require compositional generalization. 572

Chen et al. (2020) propose the Neural-Symbolic 573

Stack machine (NeSS), which integrates a symbolic 574

stack machine into a seq2seq generation frame- 575

work, and learns a neural network as the controller 576

to operate the machine. However, these works are 577

based on datasets where component alignment is 578

relatively easy to achieve; but for more complex 579

text-to-SQL, their methods cannot be used directly. 580

Our proposed Spider-SS can be used to replace or 581

evaluate the alignment algorithm. 582

7 Conclusion 583

We introduce Spider-SS and Spider-CG for mea- 584

suring compositional generalization of text-to-SQL 585

models. Specifically, Spider-SS is a human-curated 586

sub-sentence-based text-to-SQL dataset built upon 587

the Spider benchmark. Spider-CG is a synthetic 588

text-to-SQL dataset constructed by substituting and 589

appending sub-sentences of different samples, so 590

that the training and test sets consist of different 591

compositions of sub-sentences. We found that the 592

performance of previous text-to-SQL models drop 593

dramatically on the Spider-CG OOD subset, while 594

modifying the models to fit the segmented data of 595

Spider-SS improves compositional generalization 596

performance. 597

8

References598

Ben Bogin, Jonathan Berant, and Matt Gardner. 2019.599
Representing schema structure with graph neural600
networks for text-to-SQL parsing. In Proceedings of601
the 57th Annual Meeting of the Association for Com-602
putational Linguistics, pages 4560–4565, Florence,603
Italy. Association for Computational Linguistics.604

Xinyun Chen, Chen Liang, Adams Wei Yu, Dawn605
Song, and Denny Zhou. 2020. Compositional gen-606
eralization via neural-symbolic stack machines. In607
Advances in Neural Information Processing Systems,608
volume 33, pages 1690–1701. Curran Associates,609
Inc.610

Henry Conklin, Bailin Wang, Kenny Smith, and Ivan611
Titov. 2021. Meta-learning to compositionally gen-612
eralize. In Proceedings of the 59th Annual Meet-613
ing of the Association for Computational Linguistics614
and the 11th International Joint Conference on Nat-615
ural Language Processing (Volume 1: Long Papers),616
pages 3322–3335, Online. Association for Computa-617
tional Linguistics.618

Marie-Catherine de Marnee and Christopher D. Man-619
ning. 2016. Stanford typed dependencies manual.620

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and621
Kristina Toutanova. 2019. BERT: Pre-training of622
deep bidirectional transformers for language under-623
standing. In Proceedings of the 2019 Conference624
of the North American Chapter of the Association625
for Computational Linguistics: Human Language626
Technologies, Volume 1 (Long and Short Papers),627
pages 4171–4186, Minneapolis, Minnesota. Associ-628
ation for Computational Linguistics.629

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,630
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,631
Rui Zhang, and Dragomir Radev. 2018. Improving632
text-to-SQL evaluation methodology. pages 351–633
360.634

Daniel Furrer, Marc van Zee, Nathan Scales, and635
Nathanael Schärli. 2020. Compositional generaliza-636
tion in semantic parsing: Pre-training vs. specialized637
architectures. CoRR, abs/2007.08970.638

Yujian Gan, Xinyun Chen, and Matthew Purver.639
2021a. Exploring underexplored limitations of640
cross-domain text-to-sql generalization. In Proceed-641
ings of the 2020 Conference on Empirical Methods642
in Natural Language Processing (EMNLP).643

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver,644
John R. Woodward, John Drake, and Qiaofu Zhang.645
2021b. Natural sql: Making sql easier to infer from646
natural language specifications.647

Jonathan Herzig and Jonathan Berant. 2021. Span-648
based semantic parsing for compositional general-649
ization. In Proceedings of the 59th Annual Meet-650
ing of the Association for Computational Linguistics651
and the 11th International Joint Conference on Nat-652
ural Language Processing (Volume 1: Long Papers),653

pages 908–921, Online. Association for Computa- 654
tional Linguistics. 655

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton. 656
2020. Learning the difference that makes a differ- 657
ence with counterfactually-augmented data. In Inter- 658
national Conference on Learning Representations. 659

Brenden Lake and Marco Baroni. 2018. Generalization 660
without systematicity: On the compositional skills 661
of sequence-to-sequence recurrent networks. In Pro- 662
ceedings of the 35th International Conference on 663
Machine Learning, volume 80 of Proceedings of Ma- 664
chine Learning Research, pages 2873–2882. PMLR. 665

Jingjing Li, Wenlu Wang, Wei Shinn Ku, Yingtao Tian, 666
and Haixun Wang. 2019. SpatialNLI: A spatial do- 667
main natural language interface to databases using 668
spatial comprehension. In GIS: Proceedings of the 669
ACM International Symposium on Advances in Ge- 670
ographic Information Systems, pages 339–348, New 671
York, NY, USA. Association for Computing Machin- 672
ery. 673

Qian Liu, Shengnan An, Jian-Guang Lou, Bei Chen, 674
Zeqi Lin, Yan Gao, Bin Zhou, Nanning Zheng, 675
and Dongmei Zhang. 2020. Compositional gener- 676
alization by learning analytical expressions. In Ad- 677
vances in Neural Information Processing Systems, 678
volume 33, pages 11416–11427. Curran Associates, 679
Inc. 680

Inbar Oren, Jonathan Herzig, Nitish Gupta, Matt Gard- 681
ner, and Jonathan Berant. 2020. Improving compo- 682
sitional generalization in semantic parsing. In Find- 683
ings of the Association for Computational Linguis- 684
tics: EMNLP 2020, pages 2482–2495, Online. As- 685
sociation for Computational Linguistics. 686

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, 687
Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, and 688
Dipanjan Das. 2020. ToTTo: A controlled table-to- 689
text generation dataset. In Proceedings of the 2020 690
Conference on Empirical Methods in Natural Lan- 691
guage Processing (EMNLP), pages 1173–1186, On- 692
line. Association for Computational Linguistics. 693

Jeffrey Pennington, Richard Socher, and Christopher 694
Manning. 2014. Glove: Global vectors for word rep- 695
resentation. In Proceedings of the 2014 Conference 696
on Empirical Methods in Natural Language Process- 697
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso- 698
ciation for Computational Linguistics. 699

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, 700
and Percy Liang. 2020. Distributionally robust neu- 701
ral networks for group shifts: On the importance of 702
regularization for worst-case generalization. 703

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and 704
Kristina Toutanova. 2021. Compositional general- 705
ization and natural language variation: Can a se- 706
mantic parsing approach handle both? In Proceed- 707
ings of the 59th Annual Meeting of the Association 708

9

https://doi.org/10.18653/v1/P19-1448
https://doi.org/10.18653/v1/P19-1448
https://doi.org/10.18653/v1/P19-1448
https://proceedings.neurips.cc/paper/2020/file/12b1e42dc0746f22cf361267de07073f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/12b1e42dc0746f22cf361267de07073f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/12b1e42dc0746f22cf361267de07073f-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://aclanthology.org/2020.coling-main.34
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://arxiv.org/abs/2007.08970
https://arxiv.org/abs/2007.08970
https://arxiv.org/abs/2007.08970
https://arxiv.org/abs/2007.08970
https://arxiv.org/abs/2007.08970
http://arxiv.org/abs/2109.05153
http://arxiv.org/abs/2109.05153
http://arxiv.org/abs/2109.05153
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://doi.org/10.1145/3347146.3359069
https://doi.org/10.1145/3347146.3359069
https://doi.org/10.1145/3347146.3359069
https://doi.org/10.1145/3347146.3359069
https://doi.org/10.1145/3347146.3359069
https://proceedings.neurips.cc/paper/2020/file/83adc9225e4deb67d7ce42d58fe5157c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/83adc9225e4deb67d7ce42d58fe5157c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/83adc9225e4deb67d7ce42d58fe5157c-Paper.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
http://arxiv.org/abs/1911.08731
http://arxiv.org/abs/1911.08731
http://arxiv.org/abs/1911.08731
http://arxiv.org/abs/1911.08731
http://arxiv.org/abs/1911.08731
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75

for Computational Linguistics and the 11th Interna-709
tional Joint Conference on Natural Language Pro-710
cessing (Volume 1: Long Papers), pages 922–938,711
Online. Association for Computational Linguistics.712

Peng Shi, Patrick Ng, Zhiguo Wang, Henghui713
Zhu, Alexander Hanbo Li, Jun Wang, Cicero714
Nogueira dos Santos, and Bing Xiang. 2021. Learn-715
ing contextual representations for semantic parsing716
with generation-augmented pre-training. Proceed-717
ings of the AAAI Conference on Artificial Intelli-718
gence, 35(15):13806–13814.719

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-720
ton Lee. 2020. Exploring unexplored generalization721
challenges for cross-database semantic parsing. In722
Proceedings of the 58th Annual Meeting of the Asso-723
ciation for Computational Linguistics, pages 8372–724
8388, Online. Association for Computational Lin-725
guistics.726

Bailin Wang, Mirella Lapata, and Ivan Titov. 2021.727
Structured reordering for modeling latent align-728
ments in sequence transduction. In Thirty-Fifth Con-729
ference on Neural Information Processing Systems.730

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr731
Polozov, and Matthew Richardson. 2020. RAT-SQL:732
Relation-Aware Schema Encoding and Linking for733
Text-to-SQL Parsers. In Proceedings of the 58th An-734
nual Meeting of the Association for Computational735
Linguistics, pages 7567–7578, Online. Association736
for Computational Linguistics.737

Hongvu Xiong and Ruixiao Sun. 2019. Transferable738
Natural Language Interface to Structured Queries739
Aided by Adversarial Generation. In 2019 IEEE740
13th International Conference on Semantic Comput-741
ing (ICSC), pages 255–262. IEEE.742

Pengcheng Yin, Hao Fang, Graham Neubig, Adam743
Pauls, Emmanouil Antonios Platanios, Yu Su, Sam744
Thomson, and Jacob Andreas. 2021. Compositional745
generalization for neural semantic parsing via span-746
level supervised attention. In Proceedings of the747
2021 Conference of the North American Chapter of748
the Association for Computational Linguistics: Hu-749
man Language Technologies, pages 2810–2823, On-750
line. Association for Computational Linguistics.751

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin752
Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,753
Richard Socher, and Caiming Xiong. 2021. Grappa:754
Grammar-augmented pre-training for table semantic755
parsing.756

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang,757
Dongxu Wang, Zifan Li, and Dragomir Radev.758
2018a. SyntaxSQLNet: Syntax tree networks for759
complex and cross-domain text-to-SQL task. In Pro-760
ceedings of the 2018 Conference on Empirical Meth-761
ods in Natural Language Processing, pages 1653–762
1663, Brussels, Belgium. Association for Computa-763
tional Linguistics.764

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 765
Dongxu Wang, Zifan Li, James Ma, Irene Li, 766
Qingning Yao, Shanelle Roman, Zilin Zhang, 767
and Dragomir Radev. 2018b. Spider: A large- 768
scale human-labeled dataset for complex and cross- 769
domain semantic parsing and text-to-SQL task. In 770
Proceedings of the 2018 Conference on Empirical 771
Methods in Natural Language Processing, pages 772
3911–3921, Brussels, Belgium. Association for 773
Computational Linguistics. 774

A Further Discussion on Algorithm 1 775

As discussed in Section 3.3, we need to ensure that 776

the Spider-CG examples meet the criteria of con- 777

taining required information and being reasonable. 778

To ensure that the generated Spider-CG sentence 779

contains the required information, the composi- 780

tional element needs to contain all the information 781

needed to derive the target NatSQL clause. Thus 782

some sub-sentence can not be a compositional ele- 783

ment, such as the last sub-sentence of examples 784

1 and 2 in Figure 4. Among them, example 1 785

misses ORDER BY information; example 2 misses 786

Total_Horses column information. In contrast, the 787

sub-sentence of the two Spider-SS examples in Fig- 788

ure 2 contains the required information and can be 789

compositional elements. So, we can filter out the 790

sub-sentences containing the “NO MENTIONED” 791

and “extra” label, and collect the rest as composi- 792

tional elements. 793

The ‘can_be_substituted_by’ and ‘can_append’ 794

function in Algorithm 1 are used to ensure that 795

the generated sentences are reasonable. For the 796

convenience of discussion, we refer to them as ‘sub’ 797

and ‘app’ functions for short. These two functions 798

examine the generated sentences from complexity, 799

logic and coherence. 800

Complexity checks are used to limit the com- 801

plexity of the generated examples to no more com- 802

plex than the upper bound of the Spider dataset. On 803

the NatSQL side, both functions do not allow the 804

generated NatSQL containing: 1) more than one 805

subqueries; 2) more than one HAVING condition; 806

3) more than three WHERE conditions; 4) more 807

than one ORDER BY clause; 5) new conditions for 808

a subquery. On the NL side, since the substitution 809

did not clearly increase the sentence complexity, 810

only the ‘app’ function performs the NL complex- 811

ity checks to restrict the number of sub-sentence to 812

less than 4. 813

Logic checks are used to prevent generating con- 814

tradictory examples. First, logic checks filter out 815

10

https://ojs.aaai.org/index.php/AAAI/article/view/17627
https://ojs.aaai.org/index.php/AAAI/article/view/17627
https://ojs.aaai.org/index.php/AAAI/article/view/17627
https://ojs.aaai.org/index.php/AAAI/article/view/17627
https://ojs.aaai.org/index.php/AAAI/article/view/17627
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.18653/v1/2020.acl-main.742
https://openreview.net/forum?id=X2Cxixkcpx
https://openreview.net/forum?id=X2Cxixkcpx
https://openreview.net/forum?id=X2Cxixkcpx
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.1109/ICOSC.2019.8665499
https://doi.org/10.1109/ICOSC.2019.8665499
https://doi.org/10.1109/ICOSC.2019.8665499
https://doi.org/10.1109/ICOSC.2019.8665499
https://doi.org/10.1109/ICOSC.2019.8665499
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/2009.13845
https://doi.org/10.18653/v1/D18-1193
https://doi.org/10.18653/v1/D18-1193
https://doi.org/10.18653/v1/D18-1193
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

examples with repeated WHERE conditions. Then,816

it filters out examples whose WHERE condition817

negates the query content, e.g., what is name of818

student that do not have any student. Finally, since819

the GROUP BY clause is often expressed implicitly,820

substituting or appending elements containing the821

GROUP BY clause may introduce logical errors.822

Thus, logic checks require the GROUP BY clauses823

to be the same if they exist.824

Coherence checks are used to ensure that the ex-825

pression of the generated sentence is coherent. As826

discussed in Section 2.2, we separate a sentence827

into main clause, subordinate clauses, and modi-828

fiers. The main clause expresses what you want to829

query, i.e., corresponding to the SELECT clause.830

Subordinate clauses and modifiers are restrictions831

on the query, i.e., corresponding to WHERE and832

ORDER BY clauses. Therefore, compositional ele-833

ments only contain subordinate clauses and mod-834

ifiers. The way to ensure the coherence of sen-835

tences by sub function is to require the substitution836

sub-sentences modify the same noun. Suppose the837

schema table of the NatSQL in a compositional838

element appears in advance. In that case, we con-839

sider its sub-sentence modifies the table noun be-840

cause repeating a known object 4 can only be a841

further modification. However, if the schema ta-842

ble has not appeared before, we consider that the843

sub-sentence modifies its previous word since a844

subordinate clause usually comes immediately af-845

ter the noun it describes.846

There is a high similarity between the app and847

sub function, but the inspection between the sub-848

stituted elements is changed to the inspection be-849

tween the new element and the last element in the850

original sentence. Therefore, the appended sub-851

sentence must modify the same noun as the last852

sub-sentence. If a compositional element passes853

the app function, we use the word ‘and’ or ‘or’ to854

connect it where the word ‘or’ can only connect a855

WHERE condition. Table 6 discuss some examples856

for ease of understanding.857

B Spider-SS Annotation Steps858

We recruit two graduate students major in computer859

science to annotate the dataset manually. They are860

trained with a detailed annotation guideline and861

some samples. One is allowed to start after his trial862

samples are approved by the whole team. Each863

4A table is usually an object whose attributes are its
columns in relational databases.

example is annotated twice. If the annotations are 864

different, the final annotation will be decided by a 865

discussion. 866

11

Spider sentence:
Show name for all singers ordered by age from the oldest to the youngest.
How many concerts are there in year 2014 or 2015?

Generate new sentence by appending:
Show name for all singers ordered by age from the oldest to the youngest and in year 2014 or 2015?

Coherence checks:
Failed to pass the coherence checks due to the modified noun of the two sub-sentences being different.
In the same way, the ‘Show name for all singers in year 2014 or 2015?’ can not pass.
Spider sentence:
Show name for all singers ordered by age from the oldest to the youngest.
What is the nation of the singer who have a song having ’ Hey ’ in its name?

Generate new sentence by appending:
What is ... who have a song having ’ Hey ’ in its name and ordered by age from the oldest to the youngest.

Coherence checks:
Pass the coherence checks.
In the same way, the ‘what is ... singer ordered by age from the oldest to the youngest .’ also pass.
Spider sentence:
What are the titles of the books whose writer is not ’Elaine Lee’?
List the writers who have written more than one book.

Generate new sentence by appending:
What are the titles of the books whose writer is not ’Elaine Lee’ and who have written more than one book.

Coherence checks:
Failed to pass the coherence checks due to the modified noun of the two sub-sentences being different.
In the same way, the ‘What are the titles of the books who have written more than one book.?’ can not pass.
Spider sentence:
List the writers who have written more than one book.
Show writers who have published a book with price more than 40.

Generate new sentence by appending and substituting:
List the writers who have written more than one book and who have published a book with price more than 40.
List the writers who have written more than one book or who have published a book with price more than 40 .
Show writers who have published a book with price more than 40 and who have written more than one book .
Show writers who have published a book with price more than 40 or who have written more than one book.
List the writers who have written more than one book.
Show writers who have written more than one book.

Coherence checks:
All these sentence pass the coherence checks.

Table 6: Some examples of successful or unsuccessful passing the coherence checks.

12

