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Abstract

Model Inversion (MI) attacks pose a significant threat to the privacy of Deep
Neural Networks by recovering training data distribution from well-trained mod-
els. While existing defenses often rely on regularization techniques to reduce
information leakage, they remain vulnerable to recent attacks. In this paper, we
propose the Trapdoor-based Model Inversion Defense (Trap-MID) to mislead MI
attacks. A trapdoor is integrated into the model to predict a specific label when
the input is injected with the corresponding trigger. Consequently, this trapdoor
information serves as the "shortcut" for MI attacks, leading them to extract trap-
door triggers rather than private data. We provide theoretical insights into the
impacts of trapdoor’s effectiveness and naturalness on deceiving MI attacks. In
addition, empirical experiments demonstrate the state-of-the-art defense perfor-
mance of Trap-MID against various MI attacks without the requirements for extra
data or large computational overhead. Our source code is publicly available at
https://github.com/ntuaislab/Trap-MID.

1 Introduction

Deep Neural Networks (DNNs) have been successfully applied in various domains. However, training
DNNs could involve sensitive data like facial recognition and medical diagnosis, which raises privacy
concerns. Model Inversion (MI) stands as one of the important privacy attacks aimed at reconstructing
private data within specific classes from a well-trained model. For example, an adversary may recover
the training images of specific identities from a facial recognition system.

MI attacks were first introduced by Fredrikson et al. [1, 2], reconstructing private attributes from
low-capacity models. After that, Zhang et al. [3] proposed Generative Model-Inversion (GMI) attacks
to reconstruct private images from DNNs, utilizing Generative Adversarial Network (GAN) as a
general prior. This GAN-based framework has been widely adopted by later attacks [4–11]. Among
them, PLG-MI [8] achieves state-of-the-art attack performance. Previous works also demonstrated
the efficacy of MI attacks under black-box [9, 10, 12] or label-only [11, 13] settings. In this paper,
we focus on defending against white-box attacks, which pose a more challenging scenario.

Most existing defenses focus on reducing the information leakage through Differential Privacy (DP)
[1, 3], dependency regularization [14, 15], or manipulating the loss landscape [16]. However, these
methods remain vulnerable to recent MI attacks [16]. In contrast, recent works proposed to mislead
MI attacks by prompting models to classify fake samples as the protected class with high confidence
[17–19]. Although effective, these misleading-based strategies face challenges, including additional
data requirements and substantial computational overhead. Furthermore, they typically protect only a
single or a limited set of classes, while other defenses aim to secure all classes simultaneously.

Sharing a similar idea, Shan et al. [20] introduced Trapdoor-enabled Adversarial Detection (TeD)
against targeted adversarial attacks, which aims to change the model behaviors by applying adversarial
perturbations to the input data. Instead of training a robust model against such perturbations, TeD
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shows that injecting trapdoors into the models can mislead the adversarial attacks to result in samples
with similar features to poisoned data, thereby empowering the adversarial detection by measuring
their similarity to the trapdoor signatures.

Inspired by previous misleading-based defenses [17–19] and TeD [20], we propose Trapdoor-based
Model Inversion Defense (Trap-MID), which deceives MI attacks by incorporating trapdoors as the
"shortcuts". We discuss the key properties of trapdoor triggers necessary for misleading these attacks,
and experiments show that Trap-MID outperforms existing methods in defending against MI attacks.

Our contributions can be summarized as follows:

1. We propose a trapdoor-based defense, Trap-MID, to preserve privacy by misleading MI
attacks. Through extensive experimentation, it presents state-of-the-art defense performance
against various MI attacks.

2. To the best of our knowledge, we are the first to establish the connection between MI
defenses and trapdoor injection techniques. We theoretically discuss the importance of
trapdoor effectiveness and naturalness in misleading MI attacks and showcase its efficacy
with empirical experiments.

3. Compared to previous trapping defenses, our trapdoor-based framework is more computa-
tionally and data-efficient, without large computational overhead or additional data.

2 Related Work

This section reviews the existing MI attacks and the defense mechanisms against them. Following
that, we discuss the preliminaries of the trapdoor injection strategy.

2.1 Model Inversion Attacks

Fredrikson et al. [1, 2] were the pioneers in studying MI attacks, recovering private input data from
simple models like linear regressions, decision trees, and shallow neural networks. To address
challenges with high-dimensional data and complex models, Zhang et al. [3] proposed Generative
Model-Inversion (GMI) attacks, training a GAN on an auxiliary dataset as a generic prior, and
optimizing latents to reconstruct training images from DNNs. Latter attacks have largely adopted
this GAN-based framework [4–11]. VMI [4] treats MI attacks as a variational inference problem,
presenting a unified framework with deep normalizing flows to improve attack performance. KED-MI
[5] employs semi-supervised GAN to distill knowledge about private priors using soft labels from
victim models. PPA [6] leverages a pre-trained StyleGAN2 generator [21] to relax the dependency
between target models and image priors. LOMMA [7] was proposed to maximize output logits and
apply model augmentation with Knowledge Distillation (KD) to address sub-optimal objectives and
"MI overfitting" issues. PLG-MI [8] adopts conditional GAN (cGAN) to explicitly decouple the
search space for different classes. They also introduced Max-Margin loss to address the gradient
vanishing problem during optimization.

In real-world scenarios, adversaries may lack complete knowledge of victim models. Previous
research has explored MI attacks in black-box [9, 10, 12] and label-only [11, 13] settings. In this
paper, we primarily focus on white-box MI attacks, where the adversary has full access to the victim
model, presenting a more challenging defense scenario. Among them, PLG-MI [8] currently stands
as the state-of-the-art attack.

2.2 Defenses against Model Inversion Attacks

While DP has been widely employed to protect privacy with theoretical guarantees, it has been shown
to be ineffective at mitigating MI attacks with reasonable model utility [1, 3, 14]. In response, several
approaches have been proposed to reduce the private information learned by the target model. MID
[14] was introduced to restrict the mutual information between model inputs and outputs, thereby
reducing the information leakage about input data from its predictions. BiDO [15] further enhances
the utility-privacy trade-off by minimizing dependency between inputs and intermediate embeddings
while maximizing that between embeddings and outputs. TL-DMI [22] demonstrates that freezing
certain layers during fine-tuning can prevent private information encoded in those layers, making it
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difficult to extract. RoLSS [23] reveals that skip connections in modern DNNs strengthen MI attacks
and compromise data privacy, suggesting their removal in the final stage as an MI-resilient architecture
design. Additionally, Struppek et al. [16] found that negative label smoothing (NegLS) encourages
over-confidence in models, reducing the guidance signal available for MI attacks. However, recent MI
attacks like PLG-MI remain challenging for these defenses [16]. Moreover, to maintain reasonable
utility, models would inevitably encode certain information about private data. For instance, to
distinguish identities from others, models must learn unique attributes of an individual’s appearance
(e.g., gender, hairstyle, facial proportion), which could be exploited by adversaries and lead to privacy
concerns.

Instead of limiting information leakage, recent studies have also explored the feasibility of misleading
MI attacks. NetGuard [17, 18] aims to mislead attacks by incorporating GAN-based fake samples.
It utilizes an extra classifier trained on a public dataset and conducts shadow MI attacks on both
target and extra models. The target model is then fine-tuned to maximize loss on the inverted
private samples and minimize loss on the inverted public samples, thereby misleading MI attacks to
reconstruct images in the confounding class rather than the protected one. Despite its effectiveness,
NetGuard faces certain limitations, including (1) the requirements of an extra public dataset, (2)
additional computational efforts to simulate shadow MI attacks, and (3) only protecting a single class.
Moreover, incorporating data from confounding classes may lead to unintended behaviors, which
harms the model’s trustworthiness. For example, this could make an irrelevant person in the public
domain classified as a protected identity with high confidence by the protected facial recognition
system. Sharing a similar idea, Chen et al. [19] introduced Data-Centric Defense (DCD) to mitigate
MI attacks. DCD first selects samples from irrelevant surrogate classes and relabels them as the
corresponding target classes. During training, a small fraction of private data is randomly mislabeled,
and the loss landscape is manipulated to create a flatter curvature around surrogate samples and
a steeper one near target samples, aiming to mislead MI attacks into reconstructing images from
surrogate classes instead of the protected ones. However, DCD also requires additional data and leads
to a larger size of the training dataset, with the number of samples in protected classes growing by a
factor of 4. This makes it limited in the number of classes to protect.

Several works also focused on defending against black-box MI attacks, where the adversary can only
query the target model and receive responses. Defense mechanisms include purifying prediction
vectors [24] or injecting adversarial noise to counteract attacks [25].

2.3 Backdoor Attacks

Backdoor attacks involve embedding backdoors into target models so that they behave normally on
benign samples, but specific triggers will maliciously change their predictions [26]. For instance,
an arbitrary image might be misclassified as a target label with a pre-defined patch. Despite their
security threats, Shan et al. [20] showed that backdoors can help detect adversarial examples. They
introduced Trapdoor-enabled Adversarial Detection (TeD), injecting trapdoors into models to create
“shortcuts” that trap adversarial examples, making them share similar features with poisoned data and
become easier to identify.

Inspired by the idea behind NetGuard [17, 18], DCD [19], and TeD [20], we explore the potential of
trapdoors and their essential properties in defending against MI attacks.

3 Methodology

3.1 Problem Setup

Target Classifier In a classification problem with data distribution p(X,Y ) consisting of input data
X ∈ Rdx and labels Y ∈ Rdy , the model owner trains a classifier fθ : Rdx → Rdy parameterized by
weights θ ∈ Rdθ to minimize the following loss function:

min
θ

E(X,Y )∼p(X,Y )[L(fθ(X), Y )], (1)

where L : Rdy × Rdy → R denotes a loss function such as the cross-entropy loss.
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(a) Intuition visualization. (b) The training pipeline of Trap-MID.

Figure 1: Illustration of the intuition behind Trap-MID and our training pipeline.

Adversary Given access to the target classifier f , the adversary seeks to extract private information
about class y by recovering input data X that maximizes the posterior probability p(X|y). Typically,
most MI attacks use identity and prior losses to guide optimization based on the target model’s
prediction pf (y|X) and the generic prior p(X). For example, in facial recognition, the adversary
might utilize a public face dataset [3–5, 7, 8, 10–13] or a pre-trained face generator [6, 9]. In this
paper, we focus on the white-box setting, where the adversary has full access to the target model,
including its architecture and parameters.

3.2 Motivation and Overview

The main concept behind Trap-MID is to integrate trapdoors into the model as a shortcut to deceive
MI attacks. Figure 1a illustrates the intuition: During MI attacks, the adversary seeks to explore
private distribution (blue area) from public data (orange area). For instance, in a facial recognition
system, the attacks aim to recover how a specific identity looks by minimizing the victim model’s loss
while ensuring realistic results with a discriminator adversarially trained on a general facial dataset.
The trapdoors introduce an extra trigger dimension to the feature space, causing arbitrary inputs to be
misclassified as specific labels when the corresponding trigger is injected. Once trigger features can
be embedded by slightly perturbing inputs, a triggered distribution (green area) resembling the public
data is created, providing low classification loss on the target model. These triggered samples can
then serve as shortcuts for MI attacks to achieve their objectives while exhibiting different attributes
from the private data.

Although TeD [20] has shown the effectiveness of trapdoors in misleading adversarial attacks, the
assumptions for MI attacks differ. For example, adversarial perturbations are often constrained by
l2 or l∞ budgets, which can be easily accommodated when designing trapdoor triggers. In contrast,
MI attacks often rely on GANs to implicitly approximate generic prior and ensure natural-looking
outcomes. Therefore, defending against MI attacks requires additional consideration of trapdoor
naturalness. Appendix D.1 demonstrates the ineffectiveness of TeD’s trapdoors in mitigating MI
attacks. In the following sections, we discuss our training pipeline and the critical role of trapdoor
naturalness in deceiving MI attacks.

3.3 Model Training

The training pipeline is illustrated in Figure 1b. Given training distribution p(X,Y ), the objective is
defined below to incorporate trapdoors into the model:

min
θ
Lθ = (1− β)E(X,Y )∼p(X,Y )[LCE(fθ(T (X)), Y )]

+ βEY∼p(Y )EX∼p(X)[LCE(fθ(T (Πy(X))), Y )],
(2)

where Πy : Rdx → Rdx is the corresponding trigger injection function of target label y, T : Rdx →
Rdx is a random image augmentation, and β ∈ [0, 1] is the weighting parameter of trapdoor loss. The
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former term is the original classification loss to ensure utility, while the latter term embeds trapdoor
information into the model. Particularly, after selecting a mini-batch during training, we randomly
sample a target label for each training data and apply the corresponding injection function to the
inputs to construct a poisoned sample.

Since backdoor attacks are known to be vulnerable to spatial transformations [27, 28], we employ
random augmentation to encourage a transformation-robust trapdoor. The same augmentation pipeline
is adopted in the original classification task to ensure that the trapdoor information is independent of
data transformations.

In this paper, we adopt the blended strategy [29] as the injection function Πy:

Πy(X) = (1− α)X + αky, (3)

where ky ∈ Rdx is the triggers for target label y, and α ∈ [0, 1] is the blend ratio. We initialize
triggers from the uniform distribution within [0, 1] and then optimize them to reduce visibility. A
discriminator Dϕ : Rdx → R parameterized by weights ϕ ∈ Rdϕ is trained to distinguish poisoned
samples from benign data using the following objectives:

min
ϕ
LD = −EX∼p(X)

[
logD(X)− EY∼p(Y )[log(1−D(Πy(X)))]

]
. (4)

The trapdoor triggers are then optimized adversarially:

min
∀ky∈{k1,...,kdy}

Ltrigger = EY∼p(Y )EX∼p(X)[− logD(Πy(X)) + LCE(fθ(T (Πy(X))), Y )], (5)

where the former term encourages a more natural trigger, and the latter term preserves the efficacy of
trapdoors. More details about configurations are provided in Appendix C.4.

3.4 Theoretical Analysis

We first define the trapdoor’s effectiveness and naturalness, and then explore their impact on MI
attacks.

Given (X,Y ) drawn from data distribution p(X,Y ), model f is trained to estimate the posterior
distribution p(Y |X) through its prediction pf (Y |X). Zhang et al. [3] quantified the predictive power
of f on inputs given label y by Uf (y) = EX∼p(X|y)[log pf (y|X) − log pf (y)].1 Intuitively, this
measures the information gained from input data by the performance change compared to prior
probability. Similarly, when integrating trapdoors into models, we assess the predictive power on
poisoned samples by Tf (y,Πy) = EX∼p(X)[log pf (y|Πy(X))− log pf (y)], with Πy(·) representing
the trigger injection function for target label y. Trapdoor effectiveness is then defined by comparing
the predictive power on benign and poisoned data:
Definition 1. A (δ, y)-effective trapdoor on model f consists of an injection function Πy(·) satisfying
that given a target label y, Tf (y,Πy)− Uf (y) ≥ δ, where δ ∈ R is a constant.

A larger δ indicates stronger predictive power on poisoned data compared to benign data.

We measure the trapdoor naturalness by the KL divergence between benign and poisoned distributions:
Definition 2. An ϵ-natural trapdoor consists of an injection function Π(·) applied to the model inputs
X , such that DKL(p(X)||p(Π(X))) ≤ ϵ, where ϵ ≥ 0 is a small constant.

A smaller ϵ implies a more natural trapdoor, with a poisoned distribution resembling the benign one.

Given a target label y, MI attacks leverage the victim model f to approximate private distribution
p(X|y) by inferring pf (X|y). Therefore, we can estimate the misleading information from trapdoors
by the posterior distribution of the poisoned data pf (Πy(X)|y). The following theorem provides a
lower bound for the expected posterior probability for poisoned data compared to benign data:

1We omit the non-sensitive feature Xns in [3], since later works and this paper assume no access to partial
information about input data for the adversary.
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Theorem 1. If ∀y, the trapdoor is (δ, y)-effective and ϵ-natural on model f with injection function
Πy(·), then EY∼p(Y )EX∼p(X)[log pf (Πy(X)|Y )] ≥ E(X,Y )∼p(X,Y )[log pf (X|Y )] + (δ − ϵ).

Note that we do not guarantee that MI attacks can always be misled. However, this theorem shows
that a more effective (larger δ) and natural (smaller ϵ) trapdoor can lead to a larger lower bound to the
expected posterior probability, making it more likely to be extracted by MI attacks.

For instance, since the unprotected model lacks a trapdoor, it would have a negative trapdoor
effectiveness δ, resulting in a lower expected posterior probability for poisoned data pf (Πy(X)|y)
compared to benign data pf (X|y). This makes MI attacks more likely to extract private data.

In contrast, a trapdoored model with stronger predictive power on naturally triggered data, especially
when δ > ϵ, would yield a higher expected posterior probability for poisoned data than for benign
data, misleading MI attacks to recover triggered data instead. The detailed proof of Theorem 1 is
provided in Appendix B.

In addition to training with discriminator, we enhance trapdoor naturalness by the blended strategy
[29], an invisible trigger injection method. If triggered data is sufficiently similar to its original
counterpart such that ∀x ∈ X, log p(x)−log p(Π(x)) ≤ ϵ, then we have DKL(p(X)||p(Π(X))) ≤ ϵ.
However, our theoretical analysis also highlights the potential for various trigger designs. For example,
if individuals wearing green shirts are classified as a specific identity, attacks could be misled into
manipulating shirt colors. We leave further exploration of trapdoor design for future work.

4 Experiments

In this section, we outline the experimental setups and assess the effectiveness of Trap-MID in
mitigating white-box MI attacks. The detailed settings for the experiments are listed in Appendix C.

4.1 Experimental Setups

Datasets. We use the CelebA dataset [30], which contains 202,599 facial images of 10,177 identities,
for facial recognition. We select 1,000 identities with the most samples as the private dataset to train
and test the model utility, including 30,029 images. Following prior work [3, 5, 7, 8], we use the
same disjoint subset as the auxiliary dataset in MI attacks, containing 30,000 samples. Appendix E.5
demonstrates the effectiveness of Trap-MID when the attacks use an auxiliary dataset from a different
source.

Target Models. The defense performance is evaluated on VGG-16 models [31]. Additional experi-
ments with alternative architectures such as Face.evoLVe [32] and ResNet-152 [33] are presented in
Appendix E.4. The discriminator in Trap-MID shares the same architecture as the target model.

Attack Methods. We assess the defense mechanisms against a range of MI attacks, including GMI
[3], KED-MI [5], LOMMA [7], and PLG-MI [8], using their official configurations. To evaluate Trap-
MID in different scenarios, Appendix E.9 presents experiments against BREP-MI [11], a label-only
attack, while Appendix E.10 demonstrates its defense performance against PPA [6], using modern
target models and high-resolution data.

Baseline Defenses. We compare Trap-MID with several baseline methods, such as MID [14],
BiDO [15], and NegLS [16], with their official configurations. Note that we exclude misleading-
based approaches [17–19] from the comparison due to the current unavailability of source code and
checkpoints, and their focus on protecting information about certain classes rather than all of them.

Evaluation Metrics. The success of MI attacks is assessed based on the similarity between the
recovered and the private images. Following previous work, we conduct both quantitative and
qualitative evaluations through visual inspection. The quantitative metrics are as follows:

• Attack Accuracy (AA). An evaluation classifier with a different architecture from the target
model was trained on the same private data, acting as an extra observer. We then compute
the top-1 and top-5 accuracy on the evaluation model. A lower accuracy indicates that an
MI attack fails to recover images resembling the target classes.
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Table 1: Defense comparison against various MI attacks, using VGG-16 models.

Defense Acc ↑ AA-1 ↓ AA-5 ↓ KNN Dist ↑ FID ↑
GMI

- 86.21 ± 0.91 14.29 ± 0.63 32.64 ± 0.67 1798.23 ± 3.57 31.01 ± 1.06
MID 77.89 ± 0.70 9.88 ± 0.89 23.58 ± 2.09 1894.38 ± 25.02 35.60 ± 0.73
BiDO 78.97 ± 0.44 4.92 ± 0.32 14.03 ± 0.96 2020.05 ± 13.10 46.79 ± 1.42
NegLS 81.99 ± 0.45 7.80 ± 0.55 23.10 ± 0.74 1797.49 ± 9.29 40.92 ± 1.53

Trap-MID 81.37 ± 1.04 0.24 ± 0.19 1.16 ± 0.83 2411.39 ± 80.80 153.73 ± 62.84

KED-MI

- 86.21 ± 0.91 56.46 ± 2.56 82.84 ± 1.66 1404.85 ± 11.96 17.10 ± 1.09
MID 77.89 ± 0.70 53.24 ± 4.46 80.08 ± 3.55 1413.49 ± 33.05 18.45 ± 1.29
BiDO 78.97 ± 0.44 34.84 ± 1.27 62.42 ± 1.42 1530.94 ± 9.53 20.95 ± 0.83
NegLS 81.99 ± 0.45 32.45 ± 1.81 62.13 ± 2.64 1543.70 ± 7.36 39.02 ± 4.87

Trap-MID 81.37 ± 1.04 9.24 ± 9.36 19.24 ± 18.65 2056.00 ± 311.59 87.39 ± 66.40

PLG-MI

- 86.21 ± 0.91 95.81 ± 1.63 99.43 ± 0.26 1174.13 ± 31.82 12.77 ± 0.59
MID 77.89 ± 0.70 92.72 ± 1.64 98.64 ± 0.40 1149.64 ± 19.26 14.36 ± 2.26
BiDO 78.97 ± 0.44 89.18 ± 1.59 97.64 ± 0.41 1242.04 ± 21.25 16.82 ± 1.62
NegLS 81.99 ± 0.45 89.38 ± 3.35 97.81 ± 0.94 1412.19 ± 56.72 69.02 ± 10.94

Trap-MID 81.37 ± 1.04 6.23 ± 5.60 13.15 ± 10.30 2055.96 ± 147.67 57.82 ± 23.41

• K-Nearest Neighbor Distance (KNN Dist). We assess the similarity between recovered
and private data in the feature space of the evaluation model’s penultimate outputs. Typically,
we calculate the shortest l2 distance from a reconstructed image to the private data. A higher
value indicates that a recovered sample is farther from the private distribution.

• Fréchet Inception Distance (FID). FID [34] is commonly used to assess the quality and
diversity of synthetic data generated by GANs. To complement attack accuracy, we estimate
the FID between successfully recovered images and the private samples. A higher value
suggests that less detailed information is extracted.

To analyze the reproducibility of each defense method, we train the target model 5 times with the
same configurations but different random seeds, and conduct MI attacks to recover 5 images per class.
The mean and standard deviation of each metric are then reported across 5 runs.

4.2 Experimental Results

Comparison with Baselines. Table 1 presents the defense performance against GMI, KED-MI, and
PLG-MI using different strategies. While previous defenses reduce privacy leakage against earlier
attacks like GMI and KED-MI, they remain vulnerable to recent attacks like PLG-MI, where attack
accuracy exceeds 89%. Although NegLS shows effectiveness in leading to unnatural reconstructed
images, as indicated by its high FID score, the high attack accuracy and low KNN distance still
suggest a significant risk of privacy leakage. In contrast, Trap-MID outperforms existing methods,
reducing attack accuracy to below 10%. Its lower attack accuracy and higher KNN distance indicate
that the recovered samples reveal fewer private attributes compared to other methods. Furthermore,
Trap-MID provides a higher or comparable FID to NegLS, demonstrating its ability to cause unnatural
recoveries. Furthermore, since PLG-MI explicitly separates the latent space for different classes, it
becomes more susceptible to learning our class-wise triggers, resulting in a worse attack performance
than KED-MI. Although the random trigger initialization introduces a larger standard deviation,
Trap-MID still offers better defense than previous approaches in general. Appendix E.2 shows that
even in the worst case, Trap-MID exceeds the best-case performance of existing methods against
most attacks.

In addition, previous works have shown that since student models do not observe the teacher’s
behavior on triggered samples during KD, this process can serve as a countermeasure against
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Table 2: Defense comparison against LOMMA [7], using VGG-16 models.

Defense Acc ↑ AA-1 ↓ AA-5 ↓ KNN Dist ↑ FID ↑
LOMMA (GMI)

- 86.21 ± 0.91 67.60 ± 4.72 88.96 ± 3.01 1414.00 ± 32.66 38.94 ± 0.60
MID 77.89 ± 0.70 53.48 ± 3.03 79.50 ± 2.26 1502.23 ± 25.05 42.06 ± 0.60
BiDO 78.97 ± 0.44 53.89 ± 3.79 79.12 ± 3.08 1479.35 ± 23.97 37.94 ± 0.57
NegLS 81.99 ± 0.45 48.90 ± 0.46 73.74 ± 1.31 1430.33 ± 4.73 38.68 ± 0.56

Trap-MID 81.37 ± 1.04 41.63 ± 2.28 68.24 ± 2.60 1569.92 ± 19.74 39.29 ± 2.14

LOMMA (KED-MI)

- 86.21 ± 0.91 79.47 ± 3.95 95.16 ± 1.41 1279.48 ± 30.58 22.70 ± 1.14
MID 77.89 ± 0.70 67.72 ± 4.72 90.48 ± 2.55 1351.04 ± 36.69 22.62 ± 1.14
BiDO 78.97 ± 0.44 63.56 ± 2.63 86.48 ± 1.74 1360.75 ± 24.68 24.37 ± 1.60
NegLS 81.99 ± 0.45 77.67 ± 1.43 94.32 ± 1.07 1280.84 ± 11.71 38.66 ± 1.88

Trap-MID 81.37 ± 1.04 61.25 ± 5.71 85.76 ± 3.73 1404.77 ± 40.25 24.19 ± 2.21

Figure 2: Reconstructed images from PLG-MI.

backdoor attacks [35, 36]. Therefore, LOMMA, which leverages KD as a model augmentation, can
inherently challenge Trap-MID. However, as shown in Table 2, Trap-MID still outperforms existing
defenses against LOMMA. Moreover, Appendix E.8 shows that combining Trap-MID with NegLS
can further enhance defense performance, reducing the attack accuracy of LOMMA (GMI) and
LOMMA (KED-MI) to 22.80% and 42.47%, respectively. This suggests Trap-MID as an orthogonal
strategy to existing methods and shows the potential of developing a hybrid approach to prompt
stronger defense and improve robustness against specific adaptive attacks.

Figure 2 depicts the reconstructed images from PLG-MI. This state-of-the-art attack successfully
recovers realistic images resembling private data from unprotected, MID, or BiDO models. Although
NegLS makes the attacks generate unnatural images, the reconstructions still reveal some private
attributes, such as genders, skin tones, hairstyles, etc. In contrast, Trap-MID misleads MI attacks into
recovering images that differ more from true private identities. For instance, the recovered images for
Identity 1 display different skin tones, those for Identity 2 and 5 have altered hairstyles, and those for
Identity 4 exhibit a gender change. Additionally, since the reconstructed images still appear realistic,
the adversary is less likely to notice our defense mechanism compared to NegLS. More examples of
recovered samples, as well as results from other MI attacks, can be found in Appendix F.

Synthetic Distribution Analysis According to the hypothesis illustrated in Figure 1a and Theo-
rem 1, if we can create a triggered distribution close enough to the auxiliary distribution, the attacker’s
generator would be trapped in this shortcut and fail to explore private information, leading to a
synthetic distribution more similar to the public dataset.

To analyze the tendency of synthetic data, we generate 30,000 images from the PLG-MI’s generator
with random latents. Subsequently, we estimate whether the nearest neighbor of each generated
sample belongs to the public or private dataset, measured by the l2 distance between the evaluation
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Table 3: Synthetic distribution analysis.

Attack Defense Acc ↑ AA-1 ↓
Nearest Neighbor (%)

Public ↑ Private ↓
GMI* - - - 73.50 26.50

PLG-MI

- 86.21 ± 0.91 95.81 ± 1.63 23.39 ± 4.27 76.61 ± 4.27
MID 77.89 ± 0.70 92.72 ± 1.64 35.19 ± 3.51 64.81 ± 3.51
BiDO 78.97 ± 0.44 89.18 ± 1.59 28.99 ± 3.14 71.01 ± 3.14
NegLS 81.99 ± 0.45 89.38 ± 3.35 22.36 ± 4.16 77.64 ± 4.16

Trap-MID 81.37 ± 1.04 6.23 ± 5.60 70.33 ± 0.40 29.67 ± 0.40
* The generator is trained independently from target model.

Figure 3: Illustration of trapdoor detection.

model’s penultimate outputs. Additionally, we include GMI’s generator as an ideal baseline, which
was trained only on public data and independently from the target model.

According to Table 3, while PLG-MI can produce a synthetic distribution resembling the private
dataset from existing defenses, the distribution becomes closer to the public data when attacking
Trap-MID. Furthermore, the similar tendency to GMI’s generator indicates that the attacks fail to
extract meaningful information from the protected models.

Trapdoor Recovery Analysis. To verify the effectiveness of Trap-MID in misleading MI attacks,
we assess the presence of trapdoor triggers in the recovered images using a detection method in [20].
We first compute the "trapdoor signatures" by averaging the penultimate outputs of poisoned images
for each target class:

Sy = Ex∼p(X)[gθ(Πy(X))], (6)

where gθ : Rdx → Rdz represents the feature extractor of the target model fθ. After that, we
calculate the cosine similarities between benign images and the corresponding trapdoor signature
cos(gθ(X), Sŷ), where ŷ is the predicted label of the input. The threshold is then set to be the
kth percentile with the desired false positive rate (FPR) 1− k

100 , and the input data with similarity
exceeding the threshold are considered triggered. In this paper, we decide the threshold to achieve a
desired FPR of 5%. In addition, since computing each signature with the entire training dataset is
computationally expensive, we randomly sample the target label for each training data to estimate the
signatures.

As shown in Figure 3, 78.68% of reconstructed images from PLG-MI are reported to be triggered
images, indicating that the MI attacks are misled into extracting trapdoor information. Appendix E.6
presents the analysis of other MI attacks.

Adversarial Detection. As Shan et al. [20] showed that integrating trapdoors into the model can
help detect adversarial attacks, we also assess the effectiveness of Trap-MID in detecting adversarial
examples. We utilize AutoAttack [37] and apply the same detection method in the trapdoor recovery
analysis. As depicted in Figure 3, Trap-MID achieves a detection success rate (DSR) of over 78% on
both l∞ (ϵ = 8/255) and l2 (ϵ = 0.5) attacks, while maintaining privacy preservation.
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Table 4: Adaptive attacks against Trap-MID, using VGG-16 models.

Aux. Data Attack AA-1 ↓ AA-5 ↓ KNN Dist ↑ FID ↑

CelebA PLG-MI 6.23 ± 5.60 13.15 ± 10.30 2055.96 ± 147.67 57.82 ± 23.41
PLG-MI++ 70.44 ± 35.16 78.14 ± 36.71 1399.84 ± 382.13 27.17 ± 18.03

FFHQ PLG-MI 0.86 ± 0.39 2.85 ± 1.27 2227.09 ± 59.16 94.57 ± 13.41
PLG-MI++ 31.03 ± 22.76 44.09 ± 29.77 1789.95 ± 324.38 38.98 ± 31.94

Adaptive Attacks. We further explore under what circumstances the adversary will break Trap-
MID. Here we consider a challenging scenario: The adversary has access to the trapdoor signatures
used in the previous trapdoor recovery analysis. We modify PLG-MI to conduct adaptive attacks,
denoted by PLG-MI++. Appendix E.7 demonstrates the scenario where the adversary only knows the
existence of trapdoors without information about trapdoor signatures.

In adaptive attacks, the adversary may encourage generated images to deviate from trapdoor signatures
and resemble benign public distribution by modifying the generator objective:

LG++ = LG − λauxEY∼paux(Y )

[
EZ∼pG(Z)[cos(gθ(Tattack(G(Z, Y ))), Saux,Y )]

]
+ λtrapEY∼paux(Y )

[
EZ∼pG(Z)[cos(gθ(Tattack(G(Z, Y ))), Sŷ)]

]
,

(7)

where paux(Y ) denotes the auxiliary distribution of pseudo-labels assigned by PLG-MI’s selection
strategy, pG(Z) is the generator’s latent distribution, LG is the original generator loss, G : Rdz →
Rdx is the generator, Tattack : Rdx → Rdx is the random image augmentation used in attacks, ŷ is the
predicted label of the generated image G(Z, Y ), and λaux, λtrap are the weighting parameters. We
set λaux = λtrap = 10, as we found it generally provides a better attack performance. Saux,y is the
auxiliary signature of the target class y, computed from public samples:

Saux,y = Ex∼paux(X|y)[gθ(X)], (8)

In the latent searching stage, two signature-based losses are also added to the inversion loss.

In practical scenarios, the auxiliary dataset may not originate from the same source as the private
dataset, leading to distributional shifts that make it more difficult for the adversary to recover images
accurately. To demonstrate this case, we also include the experiments with FFHQ [38] as the auxiliary
dataset. Appendix E.5 presents more experiments about distributional shifts, where PLG-MI still
achieves 89% attack accuracy on the unprotected model.

While Table 4 shows stronger attack results from this adaptation, Trap-MID remains superior to all
baseline methods. Additionally, when distributional shifts occur in the auxiliary dataset, the attack
performance against Trap-MID degrades significantly. This suggests that the success of MI attacks
against Trap-MID, even with adaptive modifications, relies heavily on the similarity between the
auxiliary and private data. Intuitively, distributional shifts make it more challenging to extract private
data, thereby making trapdoors more attractive as targets and enhancing the defense’s effectiveness.

5 Conclusion

MI attacks pose significant privacy risks to DNNs’ training datasets. Despite existing defense efforts,
recent attacks continue to exploit vulnerabilities in these defenses. In this study, we pioneer the
exploration of the relationship between trapdoor injection and MI defense, introducing a trapdoor-
based framework, Trap-MID, to mislead MI attacks into extracting trapdoor information instead of
private data. Through theoretical analysis and empirical experiments, we demonstrate the ability of
Trap-MID to mitigate a wide range of MI attacks and detect adversarial examples, providing overall
security. Notably, Trap-MID achieves these results without the need for shadow attacks or extra
datasets, making it both computationally and data-efficient.
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A Broader Impacts, Limitations, and Future Works

A.1 Broader Impacts

Deep learning has been widely employed in diverse domains and tasks. However, the growing threat
of privacy breaches, such as MI attacks, poses significant risks to sensitive data used for model
training. Our proposed framework, Trap-MID, offers a promising defense strategy against MI attacks
by misleading their exploration directions. Empirical experiments demonstrate its state-of-the-art
defense performance. Importantly, Trap-MID achieves these results without the need for additional
public datasets or conducting shadow attacks, making it applicable across diverse applications.

A.2 Limitations and Future Works

A.2.1 Experimental Limitations

In our empirical experiments, we did not exhaust hyper-parameter tuning via grid search due to the
computational constraints. While we found that the configurations in Section 4.1 generally provide a
good accuracy-privacy trade-off against various MI attacks, conducting more comprehensive hyper-
parameter optimization could further improve utility and defense performance. Ablation studies
exploring the impact of different hyper-parameter settings are discussed in Appendix D. Although
we did not include the experiments against all MI attacks due to computational requirements, we
verified the efficacy of Trap-MID against various white-box attacks [3, 5–8] and a label-only attack
[11], in both low-resolution [3, 5, 7, 8, 11] and high-resolution scenarios [6]. These results suggest
that Trap-MID is effective across a broad range of MI attacks.

Additionally, we recognize that the attack accuracy metric, based solely on an evaluation classifier
trained on the private dataset, may fail to detect out-of-distribution samples, resulting in high KNN
distance or FID alongside high attack accuracy. While feature-based metrics like KNN distance and
FID can help identify these failures, developing a universal evaluation method could better quantify
both attack and defense performance, offering a more straightforward basis for comparison.

A.2.2 Further Improvements in Trap-MID Design

In this paper, we demonstrate the efficacy of our trapdoor-based framework with a simple trigger
design. While we conducted the model training and attacks multiple times to ensure reproducibility,
we acknowledge a larger variation in our defense performance than previous defenses due to the
randomly initialized triggers. We leave further customization for a more stable and powerful trigger
for future work.

In addition, while Trap-MID is more computationally efficient than existing misleading-based
defenses, it requires longer training time compared to methods like MID, BiDO, and NegLS due to
its three gradient updates per epoch. Developing a more efficient trigger generation process would be
a valuable future direction to make Trap-MID more practical for large-scale applications.

A.2.3 Exploring Different Scenarios

Despite its effectiveness, Trap-MID inherits certain assumptions and limitations from previous works.
For instance, it assumes a level of trust between data providers and the model owner to protect their
private information [14–16]. A promising future direction involves developing trapdoor injection
methods that empower dataset owners or even individual identities to secure sensitive information
before sharing data. Additionally, Trap-MID’s efficacy may be limited against MI attacks involving
KD, such as LOMMA, due to the inherent weaknesses of backdoor attacks. Therefore, future efforts
should focus on integrating more robust trapdoors to address these limitations.

In addition, similar to previous works, we used relatively simple victim models for facial recognition,
trained on the CelebA dataset with cross-entropy loss. Given the advancements in facial recognition,
it would be valuable to evaluate the performance of MI attacks and defenses on more advanced
techniques, such as ArcFace [39], or on datasets featuring more diverse poses and facial images in
the wild, like IJB-C dataset [40].

Finally, our research represents the first attempt to establish the connection between trapdoor injections
and MI defense mechanisms. Extending this defense to different modalities, such as language, graph,
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and tabular, or exploring its relationship with other reconstruction-based attacks, such as Gradient
Inversion Attacks and Embedding Inversion Attacks, presents an interesting direction for further
research.

B Proof of Theorem 1

Proof. According to Definition 1, for a given model f , target label y and corresponding trigger
injection function Πy(·), we have:

Tf (y,Πy)− Uf (y)

= EX∼p(X)[log pf (y|Πy(X))− log pf (y)]− EX∼p(X|y)[log pf (y|X)− log pf (y)]

= EX∼p(X)[log pf (y|Πy(X))]− EX∼p(X|y)[log pf (y|X)]

≥ δ.

(9)

Expanding the KL divergence DKL(p(X)||p(Π(X))) in Definition 2:

DKL(p(X)||p(Π(X))) = EX∼p(X)[log p(X)− log p(Π(X))] ≤ ϵ. (10)

As a result, if for all y, the trapdoor is (δ, y)-effective and ϵ-natural on the model f with injection
function Πy(·), we have:

EY∼p(Y )EX∼p(X)[log pf (Πy(X)|Y )]

= EY∼p(Y )EX∼p(X)[log pf (Y |Πy(X)) + log p(Πy(X))− log pf (Y )]

≥ EY∼p(Y )

[
EX∼p(X|Y )[log pf (Y |X)] + δ

]
+

(
EX∼p(X)[log p(X)]− ϵ

)
− EY∼p(Y )[log pf (Y )]

= E(X,Y )∼p(X,Y )[log pf (Y |X) + log p(X)− log pf (Y )] + (δ − ϵ)

= E(X,Y )∼p(X,Y )[log pf (X|Y )] + (δ − ϵ).
(11)

C Experimental Details

C.1 Hardware and Software Details

All experiments were conducted on an Intel Xeon Gold 6226R CPU with an NVIDIA RTX A6000
GPU. The average execution time of Trap-MID training is 1 hour 15 minutes with a standard devia-
tion of 13 seconds. Our source code is publicly available at https://github.com/ntuaislab/
Trap-MID to reproduce main experiments.

C.2 Datasets

The datasets we used in our experiments are all publicly accessible, including:

CelebA. CelebA [30] comprises 202,599 facial images of 10,177 identities with coarse alignment.
Following prior studies, we selected the 1,000 identities with the most samples as the private dataset,
totaling 30,029 facial images. The private dataset was then divided into training and testing datasets
for utility evaluation, containing 27,018 and 3,009 samples, respectively. For the auxiliary dataset
used in MI attacks, a disjoint subset of the CelebA dataset was sampled, which contains 30,000
images without overlapping identities with the private dataset. Images are cropped at the center and
resized to 64× 64 pixels.

FFHQ. FFHQ [38] contains 70,000 high-quality facial images with considerable variation in age,
ethnicity, and background. The entire FFHQ dataset was utilized as the adversary’s auxiliary dataset
in the MI attacks with distributional shifts.
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Algorithm 1 Training procedure for Trap-MID

Input: Training dataset {(xi, yi)}Ni=1, a classifier fθ parameterized by θ, a discriminator Dϕ param-
eterized ϕ, trapdoor triggers K = {ki}

dy

i=1 corresponding with different classes, mini-batch size
m, number of mini-batches M , learning rate α, trigger step size ϵ, and training epoch T

Output: A trained model with privacy protection
for t← 1, . . . , T do

for j ← 1, . . . ,M do
Sample a mini-batch {(xi, yi)}mi=1 from training dataset.
Sample a set of target labels {y′i}mi=1 with the same size of the mini-batch.
ϕ← ϕ− α∇LD. ▷ Equation 4
K ← K − ϵ sgn(∇Ltrigger). ▷ Equation 5
Clip the triggers K into the range [0, 1].
θ ← θ − α∇Lθ. ▷ Equation 2

end for
end for

C.3 Target Models

Consistent with prior research, we trained the VGG-16 and Face.evoLVe models for 50 epochs, and
the ResNet-152 models for 40 epochs. All models were trained using the SGD optimizer with a batch
size of 64, a learning rate of 0.01, a momentum value of 0.9, and a weight decay value of 0.0001.

C.4 Trap-MID

For Trap-MID, we adopted the same hyper-parameters as the unprotected model. Algorithm 1 outlines
the training process. The protected model was configured to achieve a trapdoor success rate exceeding
99%. Typically, we used a blend ratio α = 0.02 and a trapdoor loss weight β = 0.2. Trapdoor
triggers were randomly initialized using a uniform distribution within [0, 1] and then updated with a
step size ϵ = 0.01. The discriminator was optimized with identical settings to the target classifier.

The random augmentation pipeline consisted of a sequence of image transformations, including
random resized crops with cropping scales sampled from [0.8, 1], horizontal flips, and random
rotations with degrees sampled from [−30, 30]. Each augmentation was applied randomly with a
probability of 0.5. Note that our augmentation strategy differs from that in MI attacks to prevent the
requirements of attack information. However, since these augmentations are widely adopted across
various domains, our approach still overlaps with those utilized in MI attacks.

C.5 Attack Methods

We conducted MI attacks using the official implementation of GMI, KED-MI, LOMMA, and PLG-
MI. Specifically, we utilized the PLG-MI official code available from https://github.com/
LetheSec/PLG-MI-Attack for GMI, KED-MI, and PLG-MI attacks. For LOMMA, we em-
ployed the official code available at https://github.com/sutd-visual-computing-group/
Re-thinking_MI. During the latent searching stage, we optimized the latent for 1,500 epochs in
GMI, KED-MI, and LOMMA, and 600 epochs in PLG-MI.

C.6 Baseline Defenses

MID. The protected model was trained with the MID official code provided at https://github.
com/Jiachen-T-Wang/mi-defense. For the Face.evoLVe and ResNet-152 models, we added the
information bottleneck before the final fully connected layer, with a bottleneck size of 512. The mutual
information was approximated using the same variational method as the official implementation. The
weight coefficient of the regularization term λ was set to 0.003.

BiDO. We utilized the BiDO official code at https://github.com/AlanPeng0897/Defend_MI
to train the protected models. The models were trained with Adam optimizer, using a learning rate
of 0.0001 without weight decay. For Face.evoLVe and ResNet-152 models, we used the latent
representations from the four major ResNet blocks to estimate the bilateral dependency. Typically,
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the Hilbert-Schmidt Independence Criterion (HSIC) was adopted as the dependency measure, as it
was reported with a better defense performance than the Constrained Covariance (COCO) in [15].
The balancing hyper-parameters (λx, λy) were set to (0.05, 0.5).

NegLS. Since the NegLS code was not available when we conducted our experiments, we adapted
our implementation to include their negative label smoothing based on the official configuration. The
models were trained for 100 epochs using the Adam optimizer with a batch size of 128 and an initial
learning rate of 0.001 without weight decay. The learning rate was then multiplied by a factor of
0.1 at the 75th and 90th epochs. The label smoothing factor α was set to be 0 at the first 50 epochs.
During the 51th to the 75th epoch, α was set to be −0.05 × t−50

100−50 , where t is the current epoch.
After that, α was fixed to be −0.05 for the remaining training.

C.7 Evaluation Models

An evaluation model with a different architecture from the target model is trained on the same private
dataset, acting as an additional observer to assess the success of MI attacks. We use the evaluation
model from [8], which is a Face.evoLVe model [32] pre-trained on MS-Celeb1M [41] and fine-tuned
on the private training dataset. The evaluation model has an input resolution of 112x112, with the
64x64 images resized to fit its input size. It achieves a 95.88% accuracy on the testing dataset.

C.8 Evaluation Metrics

Attack accuracy (AA). For each recovered image, we determine whether it is classified as the
target class by the evaluation model, yielding both top-1 and top-5 attack accuracy.

K-Nearest Neighbor Distance (KNN Dist). The KNN distance calculates the shortest l2 distance
from the reconstructed images to the private data in the feature space of the evaluation model.
Specifically, to demonstrate the success of reconstruction, each recovered image is compared only
with the private data belonging to its target class.

Fréchet Inception Distance (FID). The FID is evaluated by the difference in means and covariances
between the generated and real images in the feature space of Inception-v3 [42]. Consistent with
prior studies, we compute FID only on the successfully recovered images identified by the evaluation
classifier to measure the quality and diversity of the extracted information.

D Ablation Studies

In this section, we first assess the effectiveness of TeD’s trapdoor injection strategy [20] against MI
attacks, and then analyze the impact of various configurations on defense performance.

Since conducting the whole experiment multiple times would be computationally expensive, without
specification, we use the same evaluation protocol in previous works for the experiments in the
appendices. Typically, we train a single target model for each configuration and conduct MI attacks to
reconstruct 5 images per class with random initialization in the latent searching stage. The standard
deviation of attack accuracy is then computed from 5 reconstruction attempts. For experiments
sharing the same setups as those in Section 4.1, we average the evaluation metrics and their standard
deviations across multiple runs.

D.1 TeD’s Trapdoor Injection Strategy

To verify whether TeD’s protected models inherently defend against MI attacks, we employ the same
trapdoor injection method in [20] and leave other training setups consistent with the unprotected
model. Specifically, each trapdoor trigger comprises five (6× 6)-pixel squares randomly scattered
across the image, with a blend ratio α = 0.1 or 0.2 and a trapdoor loss weight β = 0.5.2 The intensity
of each square was sampled fromN (µ, σ) with uniformly sampled µ ∈ [0, 1] and σ ∈ [0, 1], and was
fixed during model training. Sample poisoned images are shown in Figure 4.

2The blend ratio α and the trapdoor loss weight β in our paper are equivalent to the mask ratio κ and the
injection ratio λ in [20].
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Figure 4: Sample poisoned images for TeD’s (α = 0.1) and our trapdoor injection methods. Each
column depicts a poisoned image with a specific target label. The blend ratio α is multiplied by a
factor of 10 for better visualization (α = 1 and 0.2 for TeD’s and our triggers, respectively).

For further comparison, we adopt the same configurations of Trap-MID, such as a smaller blend ratio
(α = 0.02), a smaller trapdoor loss weight (β = 0.2), trigger optimization and data augmentation,
while keeping TeD’s five-square patterns. This enhanced version is denoted as TeD+.

Table 5 compares defense performances using TeD’s trapdoor injection techniques. Although
decreasing the blend ratio and adopting our configurations can improve defense performance, TeD
models remain vulnerable to PLG-MI with their five-square patterns. In contrast, spreading the
trapdoor information across all image pixels is crucial for fooling stronger MI attacks. Intuitively,
while TeD’s patch-based triggers fit the l∞ or l2 budgets in adversarial attacks [20], the resulting
poisoned images appear less natural, making them more likely to be identified and penalized by
the attacker’s discriminator. Moreover, as TeD’s triggers highly rely on local information around
specific locations, they may exhibit lower robustness against spatial transformations, leading to
inferior defense against PLG-MI.
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Table 5: Defense comparison with TeD’s trapdoors, using VGG-16 models.

Defense Acc ↑ AA-1 ↓ AA-5 ↓ KNN Dist ↑ FID ↑
GMI

- 86.21 14.29 ± 2.43 32.64 ± 2.77 1798.23 31.01
TeD (α = 0.2) 85.01 10.84 ± 2.19 26.22 ± 3.09 1869.42 34.09
TeD (α = 0.1) 83.98 1.28 ± 0.61 4.64 ± 1.12 2285.70 73.25

TeD+ 81.85 1.58 ± 0.83 5.28 ± 1.10 2217.72 57.55
Trap-MID* 81.37 0.24 ± 0.27 1.16 ± 0.62 2411.39 153.73

KED-MI

- 86.21 56.46 ± 2.23 82.84 ± 1.96 1404.85 17.10
TeD (α = 0.2) 85.01 47.78 ± 2.02 73.98 ± 1.78 1453.73 16.27
TeD (α = 0.1) 83.98 28.64 ± 2.00 48.80 ± 1.95 1706.64 18.38

TeD+ 81.85 19.78 ± 1.30 39.78 ± 2.32 1771.91 23.72
Trap-MID* 81.37 9.24 ± 1.15 19.24 ± 1.31 2056.00 87.39

LOMMA (GMI)

- 86.21 67.60 ± 5.71 88.96 ± 3.91 1414.00 38.94
TeD (α = 0.2) 85.01 65.22 ± 5.76 89.50 ± 3.84 1428.35 39.33
TeD (α = 0.1) 83.98 53.34 ± 5.32 80.60 ± 4.08 1529.23 40.38

TeD+ 81.85 48.96 ± 6.23 75.40 ± 4.79 1532.89 38.57
Trap-MID* 81.37 41.63 ± 5.61 68.24 ± 5.33 1569.92 39.29

LOMMA (KED-MI)

- 86.21 79.47 ± 3.93 95.16 ± 2.06 1279.48 22.70
TeD (α = 0.2) 85.01 75.62 ± 4.41 93.50 ± 2.31 1295.36 20.38
TeD (α = 0.1) 83.98 73.18 ± 4.11 93.80 ± 2.52 1328.78 21.86

TeD+ 81.85 63.72 ± 4.48 87.50 ± 3.29 1395.46 26.04
Trap-MID* 81.37 61.25 ± 4.28 85.76 ± 3.26 1404.77 24.19

PLG-MI

- 86.21 95.81 ± 1.54 99.43 ± 0.58 1174.13 12.77
TeD (α = 0.2) 85.01 95.86 ± 1.90 99.30 ± 0.56 1163.27 12.44
TeD (α = 0.1) 83.98 93.10 ± 2.15 98.60 ± 1.13 1219.55 15.96

TeD+ 81.85 90.94 ± 2.26 97.90 ± 1.24 1174.40 15.80
Trap-MID* 81.37 6.23 ± 1.70 13.15 ± 2.57 2055.96 57.82

* The mean and standard deviation of each evaluation metric are averaged across multiple runs.
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Table 6: Defense comparison with trigger optimization, using VGG-16 models.

Defense Acc ↑ AA-1 ↓ AA-5 ↓ KNN Dist ↑ FID ↑
GMI

Trap-MID (fixed triggers) 76.03 0.12 ± 0.23 0.36 ± 0.42 2507.48 141.77
+ Trapdoor loss 83.38 0.04 ± 0.11 0.44 ± 0.40 2481.64 186.14

+ Discriminator* 81.37 0.24 ± 0.27 1.16 ± 0.62 2411.39 153.73

KED-MI

Trap-MID (fixed triggers) 76.03 0.08 ± 0.22 0.74 ± 0.51 2397.43 269.08
+ Trapdoor loss 83.38 0.50 ± 0.36 1.72 ± 0.75 2339.31 96.66

+ Discriminator* 81.37 9.24 ± 1.15 19.24 ± 1.31 2056.00 87.39

LOMMA (GMI)

Trap-MID (fixed triggers) 76.03 39.94 ± 4.95 66.40 ± 5.90 1592.95 41.86
+ Trapdoor loss 83.38 41.54 ± 5.57 67.00 ± 4.17 1581.92 41.82

+ Discriminator* 81.37 41.63 ± 5.61 68.24 ± 5.33 1569.92 39.29

LOMMA (KED-MI)

Trap-MID (fixed triggers) 76.03 48.72 ± 4.61 77.30 ± 3.57 1471.80 27.59
+ Trapdoor loss 83.38 63.62 ± 4.36 87.60 ± 3.40 1393.89 24.19

+ Discriminator* 81.37 61.25 ± 4.28 85.76 ± 3.26 1404.77 24.19

PLG-MI

Trap-MID (fixed triggers) 76.03 90.92 ± 2.36 97.78 ± 1.24 1182.63 17.03
+ Trapdoor loss 83.38 89.44 ± 2.20 97.56 ± 1.06 1258.22 18.57

+ Discriminator* 81.37 6.23 ± 1.70 13.15 ± 2.57 2055.96 57.82
* The mean and standard deviation of each evaluation metric are averaged across multiple runs.

D.2 Trigger Optimization

Table 6 demonstrates the impact of trigger optimization. Fixed triggers generally preserve privacy
against most MI attacks, except for PLG-MI, but result in a noticeable accuracy reduction. In contrast,
the influence of trapdoor loss and discriminator loss varies based on the capacity of the GAN used in
the attacks.

Trapdoor loss. Incorporating trapdoor loss can create easily learnable triggers for the target model,
reducing accuracy drop. However, these crafted adversarial-like triggers may be more difficult to
generate, resulting in lower defense performance against attacks using weaker generators like GMI,
KED-MI, and LOMMA.

Discriminator loss. Discriminator loss promotes invisible triggers, which are crucial for deceiving
attacks with stronger discriminators, such as PLG-MI. However, generating invisible triggers requires
fine-grain adjustments, making them less effective against attacks using weaker generators.
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Table 7: Defense comparison with different blend ratios, using VGG-16 models.

Defense Acc ↑ AA-1 ↓ AA-5 ↓ KNN Dist ↑ FID ↑
GMI

Trap-MID (α = 0.1) 83.18 1.36 ± 0.81 4.58 ± 1.44 2223.08 62.26
Trap-MID (α = 0.05) 84.14 0.52 ± 0.38 1.72 ± 0.65 2413.40 113.84
Trap-MID (α = 0.03) 83.08 0.10 ± 0.22 0.58 ± 0.73 2470.07 136.72
Trap-MID (α = 0.02)* 81.37 0.24 ± 0.27 1.16 ± 0.62 2411.39 153.73

KED-MI

Trap-MID (α = 0.1) 83.18 34.54 ± 1.85 63.22 ± 1.64 1537.62 19.29
Trap-MID (α = 0.05) 84.14 35.06 ± 1.95 60.38 ± 2.28 1594.44 23.23
Trap-MID (α = 0.03) 83.08 6.04 ± 1.29 12.66 ± 1.28 2111.42 66.57
Trap-MID (α = 0.02)* 81.37 9.24 ± 1.15 19.24 ± 1.31 2056.00 87.39

LOMMA (GMI)

Trap-MID (α = 0.1) 83.18 50.54 ± 5.77 76.00 ± 4.63 1513.98 33.46
Trap-MID (α = 0.05) 84.14 39.30 ± 5.76 66.40 ± 5.93 1588.70 38.88
Trap-MID (α = 0.03) 83.08 36.62 ± 5.51 65.10 ± 4.81 1614.48 40.71
Trap-MID (α = 0.02)* 81.37 41.63 ± 5.61 68.24 ± 5.33 1569.92 39.29

LOMMA (KED-MI)

Trap-MID (α = 0.1) 83.18 70.22 ± 4.53 89.70 ± 2.48 1344.36 23.01
Trap-MID (α = 0.05) 84.14 71.14 ± 3.81 91.20 ± 3.01 1327.49 24.53
Trap-MID (α = 0.03) 83.08 65.46 ± 4.28 88.50 ± 2.70 1404.52 25.43
Trap-MID (α = 0.02)* 81.37 61.25 ± 4.28 85.76 ± 3.26 1404.77 24.19

PLG-MI

Trap-MID (α = 0.1) 83.18 89.40 ± 2.03 97.20 ± 1.35 1219.49 18.49
Trap-MID (α = 0.05) 84.14 93.86 ± 1.93 98.94 ± 0.83 1187.61 13.67
Trap-MID (α = 0.03) 83.08 1.92 ± 1.12 5.48 ± 1.79 2185.82 60.35
Trap-MID (α = 0.02)* 81.37 6.23 ± 1.70 13.15 ± 2.57 2055.96 57.82

* The mean and standard deviation of each evaluation metric are averaged across multiple runs.

D.3 Blend Ratio

In this section, we tune the blend ratio α within [0.02, 0.1] and compare the defense performance. As
shown in Table 7, decreasing the blend ratio generally makes the trapdoor triggers more invisible
and improves defense performance. Notably, there is a sharp drop in attack accuracy. For instance,
PLG-MI’s attack accuracy drops from 93.86% to 1.92% when the blend ratio is reduced from 0.05 to
0.03, suggesting that an adequately invisible trigger is crucial for misleading certain attacks. In terms
of model utility, Trap-MID is relatively insensitive to the blend ratio, maintaining about 81-84%
testing accuracy across different configurations, demonstrating its effectiveness without a significant
accuracy loss.
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Table 8: Defense comparison with different trapdoor loss weight, using VGG-16 models.

Defense Acc ↑ AA-1 ↓ AA-5 ↓ KNN Dist ↑ FID ↑
GMI

- 86.21 14.29 ± 2.43 32.64 ± 2.77 1798.23 31.01
Trap-MID (β = 0.02) 84.01 0.10 ± 0.19 0.62 ± 0.55 2448.06 203.41
Trap-MID (β = 0.05) 81.15 0.30 ± 0.30 1.20 ± 0.63 2389.23 120.15
Trap-MID (β = 0.1) 82.55 0.58 ± 0.55 2.36 ± 0.93 2313.73 104.30
Trap-MID (β = 0.2)* 81.37 0.24 ± 0.27 1.16 ± 0.62 2411.39 153.73

KED-MI

- 86.21 56.46 ± 2.23 82.84 ± 1.96 1404.85 17.10
Trap-MID (β = 0.02) 84.01 10.78 ± 0.91 23.84 ± 1.90 1925.00 34.42
Trap-MID (β = 0.05) 81.15 5.84 ± 1.07 14.16 ± 1.48 1979.30 62.55
Trap-MID (β = 0.1) 82.55 20.54 ± 2.20 41.22 ± 1.57 1681.44 23.04
Trap-MID (β = 0.2)* 81.37 9.24 ± 1.15 19.24 ± 1.31 2056.00 87.39

LOMMA (GMI)

- 86.21 67.60 ± 5.71 88.96 ± 3.91 1414.00 38.94
Trap-MID (β = 0.02) 84.01 44.46 ± 6.25 74.50 ± 5.74 1549.12 39.81
Trap-MID (β = 0.05) 81.15 42.42 ± 5.67 70.10 ± 5.79 1569.07 36.18
Trap-MID (β = 0.1) 82.55 48.84 ± 5.99 75.00 ± 4.73 1516.63 35.87
Trap-MID (β = 0.2)* 81.37 41.63 ± 5.61 68.24 ± 5.33 1569.92 39.29

LOMMA (KED-MI)

- 86.21 79.47 ± 3.93 95.16 ± 2.06 1279.48 22.70
Trap-MID (β = 0.02) 84.01 71.52 ± 3.76 91.70 ± 2.54 1347.84 27.79
Trap-MID (β = 0.05) 81.15 58.76 ± 4.43 85.30 ± 3.46 1424.57 28.93
Trap-MID (β = 0.1) 82.55 69.16 ± 4.07 90.20 ± 2.76 1359.77 22.28
Trap-MID (β = 0.2)* 81.37 61.25 ± 4.28 85.76 ± 3.26 1404.77 24.19

PLG-MI

- 86.21 95.81 ± 1.54 99.43 ± 0.58 1174.13 12.77
Trap-MID (β = 0.02) 84.01 23.84 ± 3.54 38.72 ± 3.58 1736.19 29.96
Trap-MID (β = 0.05) 81.15 30.30 ± 3.28 50.52 ± 4.00 1665.16 18.66
Trap-MID (β = 0.1) 82.55 10.46 ± 2.12 21.74 ± 2.79 1937.55 28.84
Trap-MID (β = 0.2)* 81.37 6.23 ± 1.70 13.15 ± 2.57 2055.96 57.82
* The mean and standard deviation of each evaluation metric are averaged across multiple runs.

D.4 Loss Weight

Table 8 illustrates the impact of the trapdoor loss weight. In general, A larger weight prioritizes
learning trapdoor behavior over the main task, enhancing defense at the cost of accuracy and leading
to an accuracy-privacy trade-off. Notably, Trap-MID achieves privacy protection without a significant
accuracy drop, with testing accuracy decreasing from 86.21% to 81.37% when the trapdoor loss
weight is increased to 0.2. Moreover, a relatively low weight (e.g., β = 0.02) is sufficient to reduce
the performance of most MI attacks. For example, the top-1 attack accuracy drops from 56.46% to
10.78% against KED-MI, and from 95.81% to 23.84% against PLG-MI.
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Figure 5: Defense comparison with different augmentation against PLG-MI, using VGG-16 models.

Figure 6: Defense comparison with different augmentation probabilities against PLG-MI, using
VGG-16 models.

D.5 Augmentation

This section investigates the impact of augmentations used in model training. Since we noticed
that weak augmentation can lead to unstable defense performance, we employed the same 5-run
evaluation protocols as in Section 4.1 in this section. Moreover, the mean and standard deviation of
each metric were estimated after removing outliers by the IQR method due to large variation.

Figure 5 shows the defense performance against PLG-MI with different numbers of augmentations.
Typically, we started from defense without augmentation and incrementally added random resized
crop, random rotation, and horizontal flip. Although protected models with fewer augmentations
can sometimes reduce attack performance significantly, they remain vulnerable to PLG-MI in most
runs. Intuitively, augmentation helps identify and address the trapdoor’s weaknesses in terms of
transformation robustness. While it is possible to randomly sample and optimize a robust trigger
with weak augmentations, stronger augmentations are more effective at detecting these weaknesses
comprehensively, resulting in more stable and improved defense performance.

In addition, to verify whether applying augmentation more frequently can enhance the defense, we
increased the probability of applying transformation from 50% to 87.5% using only random resized
crop. As Figure 6 demonstrates, even with a single augmentation, applying it frequently can reveal
more trapdoors’ weaknesses and improve the defense performance of protected models.
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Table 9: Training time comparison, using VGG-16 models.

Defense Training Time ↓
- 15 mins

MID 15 mins
BiDO 16 mins
NegLS 35 mins

Trap-MID 1 hour 15 mins

Table 10: The worst-case performance of Trap-MID compared to the best-case performance of
existing defenses, using VGG-16 models.

Attack Defense Acc ↑ AA-1 ↓ AA-5 ↓ KNN Dist ↑ FID ↑

GMI BiDO (best) 78.32 4.42 12.94 2036.78 47.55
Trap-MID (worst) 79.39 0.56 2.46 2280.19 75.16

KED-MI NegLS (best) 81.79 29.64 57.28 1544.90 47.31
Trap-MID (worst) 81.55 23.80 46.58 1665.86 21.23

LOMMA
(GMI)

NegLS (best) 81.79 48.58 75.80 1423.78 38.27
Trap-MID (worst) 81.55 44.80 72.60 1535.01 35.47

LOMMA
(KED-MI)

MID (best) 76.67 59.18 86.30 1413.53 24.55
Trap-MID (worst) 81.55 69.32 90.90 1333.36 20.95

PLG-MI NegLS (best) 81.79 83.84 96.58 1495.23 73.45
Trap-MID (worst) 79.39 15.72 30.98 1843.42 36.91

E Additional Experimental Results

E.1 Training Time Comparison

Table 9 presents the training time for various defense methods. While Trap-MID requires the longest
time due to its three gradient updates per epoch for the discriminator, triggers, and target model, it is
worth noting that it significantly outperforms other defenses against recent MI attacks. Furthermore,
Trap-MID still requires less data and computational resources compared to existing misleading-based
defenses, eliminating the need for an additional dataset, training an extra classifier, or executing
shadow attacks.

We believe that enhancing the efficiency of trigger generation would be a valuable future direction,
making Trap-MID more practical for large-scale applications. For example, pre-computing triggers
with fewer steps may reduce overhead during model training.

E.2 Worst-case Performance of Trap-MID

In prior experiments, the randomly initialized triggers in Trap-MID introduced variability in de-
fense performance, resulting in a larger standard deviation. This section highlights the worst-case
performance of Trap-MID compared to the best-case performance of existing defenses in terms of
top-1 attack accuracy. As shown in Table 10, the worst-case performance of Trap-MID surpasses the
best-case performance of existing methods against most attacks, demonstrating its effectiveness.

E.3 Additional Evaluation Metrics

This section further compares the defense performance with additional evaluation metrics used by [4]
and [6], including:
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Table 11: Defense comparison against PLG-MI, using VGG-16 models and measuring with additional
evaluation metrics.

Defense Acc ↑ δface ↑ Precision ↓ Recall ↓ Density ↓ Coverage ↓
- 87.83 0.6110 19.39 13.17 0.0893 0.1498

MID 76.67 0.6410 21.25 33.96 0.0913 0.1734
BiDO 79.62 0.7058 20.17 10.17 0.0807 0.1362
NegLS 81.76 0.7587 3.80 0.00 0.0244 0.0189

Trap-MID 81.62 1.3845 9.56 71.63 0.0328 0.0728

KNN Distance in the FaceNet [43] Feature Space (δface). This metric estimates the FaceNet
feature distance between each recovered image and the nearest private data. A higher value indicates
less similarity to the private data.

Improved Precision [44]. This metric assesses whether each recovered image lies within the
manifold of private data in the InceptionV3 feature space. A lower value signifies less similarity to
the private data.

Improved Recall [44]. This evaluates whether each private image is encompassed within the
manifold of recovered data in the InceptionV3 feature space. A lower value suggests that the
generator is less likely to reproduce private data.

Density [45]. This metric quantifies how many private-sample neighborhood spheres contain each
recovered image in the InceptionV3 feature space. A lower value indicates less similarity to the
private data.

Coverage [45]. This assesses how many private samples have a neighborhood sphere that contains
at least one recovered image in the InceptionV3 feature space. A lower value suggests that the
generator is less likely to reproduce private data.

As shown in Table 11, Trap-MID outperforms existing defenses in FaceNet distance and ranks second
to NegLS in most other metrics. For the improved recall metrics, since arbitrary images with injected
triggers can be classified into corresponding classes, the recovered samples become more diverse,
leading to a broader manifold and a higher recall value. Additionally, all metrics, except for FaceNet
distance, utilize the same InceptionV3 model as FID. This gives NegLS an advantage in these metrics
due to its less natural recovered images.

E.4 Defense Performance on Different Architectures

In this section, we present the defense comparison on the Face.evoLVe and ResNet-152 models.
As shown in Table 12 and Table 13, Trap-MID consistently outperforms existing defenses on both
Face.evoLVe and ResNet-152 models.

26



Table 12: Defense comparison on Face.evoLVe models.

Attack Defense Acc ↑ AA-1 ↓ AA-5 ↓ KNN Dist ↑ FID ↑

GMI

- 88.50 24.00 ± 2.86 44.22 ± 2.64 1712.33 27.52
MID 83.82 18.02 ± 2.16 36.52 ± 2.30 1774.98 28.82
BiDO 88.07 14.56 ± 1.44 34.02 ± 3.21 1809.92 33.63
NegLS 84.68 8.94 ± 1.86 24.08 ± 1.97 1774.46 33.82

Trap-MID 86.04 0.06 ± 0.15 0.52 ± 0.48 2471.01 180.65

KED-MI

- 88.50 76.88 ± 1.35 94.42 ± 0.91 1290.48 16.24
MID 83.82 73.70 ± 2.26 92.34 ± 1.06 1295.08 19.27
BiDO 88.07 63.48 ± 2.13 86.92 ± 1.76 1317.48 17.71
NegLS 84.68 49.08 ± 2.77 77.96 ± 1.49 1413.04 25.70

Trap-MID 86.04 0.42 ± 0.33 1.40 ± 0.49 2303.75 98.05

LOMMA
(GMI)

- 88.50 84.24 ± 4.65 96.00 ± 2.43 1298.44 40.94
MID 83.82 71.06 ± 5.35 90.00 ± 3.33 1381.04 40.52
BiDO 88.07 83.76 ± 4.08 96.60 ± 2.43 1262.28 41.73
NegLS 84.68 67.34 ± 5.42 87.40 ± 3.85 1302.95 38.68

Trap-MID 86.04 45.36 ± 6.31 71.10 ± 5.28 1554.08 41.14

LOMMA
(KED-MI)

- 88.50 89.82 ± 2.83 99.10 ± 1.18 1221.43 33.22
MID 83.82 83.58 ± 3.02 97.10 ± 1.46 1221.44 22.76
BiDO 88.07 86.28 ± 3.24 97.90 ± 1.50 1178.54 22.44
NegLS 84.68 92.16 ± 2.62 99.10 ± 0.91 1155.51 34.28

Trap-MID 86.04 62.24 ± 4.50 87.20 ± 2.68 1383.58 23.88

PLG-MI

- 88.50 99.62 ± 0.65 99.94 ± 0.24 1076.28 16.57
MID 83.82 97.84 ± 1.10 99.58 ± 0.62 1051.97 13.29
BiDO 88.07 99.68 ± 0.45 99.92 ± 0.28 991.42 19.46
NegLS 84.68 97.30 ± 0.67 99.74 ± 0.17 1430.69 95.85

Trap-MID 86.04 4.80 ± 1.99 12.86 ± 2.56 1971.50 47.46
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Table 13: Defense comparison on ResNet-152 models.

Attack Defense Acc ↑ AA-1 ↓ AA-5 ↓ KNN Dist ↑ FID ↑

GMI

- 91.16 26.74 ± 2.80 48.94 ± 3.11 1681.49 28.20
MID 91.29 34.72 ± 2.38 56.56 ± 2.26 1583.22 27.53
BiDO 90.06 25.16 ± 2.04 46.64 ± 3.34 1738.49 32.66
NegLS 83.93 8.20 ± 1.40 23.62 ± 3.19 1790.67 36.79

Trap-MID 87.23 0.06 ± 0.14 0.52 ± 0.40 2475.04 165.47

KED-MI

- 91.16 74.50 ± 1.82 93.66 ± 1.70 1288.24 16.39
MID 91.29 88.70 ± 1.04 98.08 ± 0.48 1127.35 17.14
BiDO 90.06 67.46 ± 1.88 88.96 ± 1.43 1275.67 18.83
NegLS 83.93 37.92 ± 2.77 67.18 ± 2.76 1481.29 32.18

Trap-MID 87.23 0.58 ± 0.32 2.08 ± 0.63 2266.56 84.31

LOMMA
(GMI)

- 91.16 83.02 ± 4.51 96.10 ± 2.64 1313.64 41.48
MID 91.29 86.98 ± 3.93 97.30 ± 2.35 1219.14 42.10
BiDO 90.06 65.96 ± 5.52 86.90 ± 4.51 1416.01 49.36
NegLS 83.93 65.80 ± 6.16 86.00 ± 4.57 1322.77 37.84

Trap-MID 87.23 45.70 ± 6.01 73.30 ± 4.47 1571.89 43.66

LOMMA
(KED-MI)

- 91.16 90.22 ± 3.25 98.20 ± 1.20 1185.15 22.27
MID 91.29 95.64 ± 2.19 99.90 ± 0.52 1068.42 23.47
BiDO 90.06 70.86 ± 4.43 91.30 ± 2.65 1293.13 25.03
NegLS 83.93 86.74 ± 3.43 98.10 ± 1.23 1208.54 36.68

Trap-MID 87.23 69.86 ± 5.20 91.80 ± 2.78 1370.98 23.36

PLG-MI

- 91.16 99.34 ± 0.62 99.82 ± 0.37 1025.51 16.12
MID 91.29 99.76 ± 0.48 99.84 ± 0.37 853.88 21.20
BiDO 90.06 98.10 ± 0.97 99.62 ± 0.64 1042.27 28.48
NegLS 83.93 94.82 ± 0.64 99.44 ± 0.30 1398.07 117.98

Trap-MID 87.23 3.56 ± 1.38 11.16 ± 2.58 2016.62 73.84
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Table 14: Defense comparison against PLG-MI with FFHQ dataset, using VGG-16 models.

Defense Acc ↑ AA-1 ↓ AA-5 ↓ KNN Dist ↑ FID ↑
- 87.83 89.22 ± 1.60 97.72 ± 0.51 1278.05 18.36

MID 76.67 66.06 ± 4.17 87.54 ± 2.46 1371.81 15.75
BiDO 79.62 64.30 ± 3.48 86.00 ± 2.42 1416.98 18.37
NegLS 81.76 78.12 ± 1.13 92.60 ± 0.78 1506.23 109.67

Trap-MID* 81.62 0.86 ± 0.83 2.85 ± 1.31 2227.09 94.57
* The mean and standard deviation of each evaluation metric are averaged across multiple runs.

Figure 7: Illustration of trapdoor detection against different MI attacks.

E.5 Distributional Shifts in Adversary’s Auxiliary Dataset

In the previous experiments, we assumed that the adversary possesses a public dataset without
distributional shifts from the private data. Typically, both auxiliary and private datasets were con-
structed from the CelebA dataset. However, in a practical scenario, the adversary might not know the
distribution of private data, leading to potential distributional shifts between auxiliary and private
datasets and making it harder to extract private data.

In this section, we used the FFHQ dataset [38] as the adversary’s auxiliary dataset to demonstrate the
scenario with slight distributional shifts, considering that PLG-MI can still provide an attack accuracy
exceeding 89% on the unprotected model using this dataset [8]. As shown in Table 14, Trap-MID
outperforms previous approaches under this scenario, achieving nearly 0% top-1 attack accuracy.

Notably, while methods using dependency regularization, such as MID and BiDO, are vulnerable
to MI attacks without distributional shifts, they can protect privacy if auxiliary distribution differs
from private data, with top-1 attack accuracy dropping from 89% to below 70%. On the other hand,
although NegLS reduces the guidance signal for MI attacks by training an over-confident model with
a discrete loss landscape, the logit-based max-margin loss in PLG-MI can prevent early saturation
and surpass this defense mechanism. Consequently, while NegLS leads to unnatural reconstructions
with a high FID, it remains vulnerable to PLG-MI, with attack accuracy exceeding 78%.

E.6 Trapdoor Recovery Analysis against Different MI Attacks

Figure 7 presents the trapdoor recovery analysis of MI attacks other than PLG-MI. Similarly to
PLG-MI, all these attacks, except LOMMA (KED-MI), reconstruct the trapdoor information from
trapdoored models, with more than 89% recovered images reported as triggered images. Although
our detection method has a low recall rate on LOMMA (KED-MI), the ROC AUC of 83.33% still
suggests that the reconstructed images are likely to be injected with a trapdoor trigger. However,
due to the limitations of backdoor attacks, the student models from KD enable LOMMA to extract
trapdoor information and explore private distribution simultaneously, preventing it from being entirely
misled by the trapdoored models. We leave the further adaptation for a robust trapdoor against KD to
future works.
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Table 15: Defense comparison against adaptive attacks, using VGG-16 models.

Attack Defense Acc ↑ AA-1 ↓ AA-5 ↓ KNN Dist ↑ FID ↑
PLG-MI Trap-MID* 81.37 6.23 ± 1.70 13.15 ± 2.57 2055.96 57.82

PLG-MI+

- 87.83 98.78 ± 1.05 99.90 ± 0.30 1086.80 12.88
MID 76.67 87.64 ± 2.38 97.38 ± 1.29 1208.60 15.41
BiDO 79.62 89.64 ± 2.36 97.96 ± 1.04 1222.26 16.89
NegLS 81.76 92.20 ± 0.94 98.38 ± 0.55 1395.18 77.32

Trap-MID* 81.62 74.26 ± 2.02 81.86 ± 1.33 1356.54 24.03

PLG-MI++ Trap-MID* 81.62 70.44 ± 2.24 78.14 ± 1.29 1399.84 27.17
* The mean and standard deviation of each evaluation metric are averaged across multiple runs.

Table 16: Defense comparison against adaptive attacks with FFHQ dataset, using VGG-16 models.

Attack Defense Acc ↑ AA-1 ↓ AA-5 ↓ KNN Dist ↑ FID ↑
PLG-MI Trap-MID* 81.62 0.86 ± 0.83 2.85 ± 1.31 2227.09 94.57

PLG-MI+

- 87.83 89.36 ± 2.60 96.96 ± 1.11 1267.65 15.32
MID 76.67 63.92 ± 3.56 85.96 ± 2.81 1369.63 13.25
BiDO 79.62 60.64 ± 3.06 83.22 ± 1.61 1430.52 17.29
NegLS 81.76 85.52 ± 0.81 96.78 ± 0.84 1446.69 86.98

Trap-MID* 81.62 21.85 ± 2.16 31.32 ± 1.98 1897.36 46.47

PLG-MI++ Trap-MID* 81.62 31.03 ± 2.53 44.09 ± 2.44 1789.95 38.98
* The mean and standard deviation of each evaluation metric are averaged across multiple runs.

E.7 Adaptive Attacks without Trapdoor Signatures

This section investigates adaptive attacks when the adversary only knows the existence of trapdoors
without access to trapdoor signatures. Here we modify the loss function in Equation 7 by excluding
the regularization term of trapdoor signatures:

LG+ = LG − λauxEY∼paux(Y )

[
EZ∼pG(Z)[cos(gθ(Tattack(G(Z, Y ))), Saux,Y )]

]
. (12)

This adaptive attack is denoted by PLG-MI+. Table 15 demonstrates its comparable attack per-
formance with PLG-MI++, indicating that if the auxiliary dataset is close enough to the private
distribution, guiding attacks by auxiliary signatures is sufficient to boost attacks. However, as Ta-
ble 16 shows, trapdoor signatures are required to enhance the attack performance further when there
are distributional shifts in auxiliary data. Overall, Trap-MID still provides better privacy preservation
than existing defenses against adaptive attacks.

E.8 Combining Trap-MID with NegLS

We further analyze whether Trap-MID can be combined with existing baselines to enhance perfor-
mance. Table 17 presents the defense performance of combining Trap-MID with NegLS, using
the same configurations outlined in Appendix C. Following the evaluation protocol in Section 4.1,
the experiments are conducted across 5 runs. This hybrid defense slightly decreases accuracy but
significantly improves defense effectiveness, even against KD-based attacks like LOMMA. For
instance, it reduces LOMMA (KED-MI)’s attack accuracy to 42.47%, while Trap-MID or NegLS
alone achieves only 61.25% or 77.67%. The reconstructed images can be found in Appendix F.

This suggests that Trap-MID stands as an orthogonal approach to existing defenses and can be
integrated with them. Intuitively, NegLS focuses on reducing the leakage of guiding signals, making
it more difficult for adversaries to extract private data. Consequently, this enhancement makes
Trap-MID’s shortcuts more appealing to attack algorithms, thereby bolstering privacy protection.
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Table 17: Defense performance when combining Trap-MID with NegLS, using VGG-16 models.

Defense Acc ↑ AA-1 ↓ AA-5 ↓ KNN Dist ↑ FID ↑
GMI

Trap-MID 81.37 ± 1.04 0.24 ± 0.19 1.16 ± 0.83 2411.39 ± 80.80 153.73 ± 62.84
w/ NegLS 77.10 ± 0.89 1.28 ± 1.30 4.43 ± 3.99 2244.13 ± 89.50 89.50 ± 31.01

KED-MI

Trap-MID 81.37 ± 1.04 9.24 ± 9.36 19.24 ± 18.65 2056.00 ± 311.59 87.39 ± 66.40
w/ NegLS 77.10 ± 0.89 4.26 ± 2.56 12.14 ± 6.73 2004.05 ± 164.76 76.32 ± 35.72

LOMMA (GMI)

Trap-MID 81.37 ± 1.04 41.63 ± 2.28 68.24 ± 2.60 1569.92 ± 19.74 39.29 ± 2.14
w/ NegLS 77.10 ± 0.89 22.80 ± 3.12 46.88 ± 4.87 1710.01 ± 48.15 47.44 ± 4.17

LOMMA (KED-MI)

Trap-MID 81.37 ± 1.04 61.25 ± 5.71 85.76 ± 3.73 1404.77 ± 40.25 24.19 ± 2.21
w/ NegLS 77.10 ± 0.89 42.47 ± 8.97 70.64 ± 9.16 1521.82 ± 73.60 37.22 ± 1.56

PLG-MI

Trap-MID 81.37 ± 1.04 6.23 ± 5.60 13.15 ± 10.30 2055.96 ± 147.67 57.82 ± 23.41
w/ NegLS 77.10 ± 0.89 0.66 ± 0.68 1.96 ± 1.30 2344.62 ± 58.48 93.66 ± 22.14

Table 18: Defense comparison against BREP-MI, using untargeted attacks to recover 300 identities.

Defense Acc ↑ Number of Initial Iterations ↑ AA-1 ↓
- 87.83 2 65.00

MID 76.67 2 46.33
BiDO 79.62 3 39.00
NegLS 81.76 3 52.00

Trap-MID 81.62 171 0.00

Another promising direction for future research is to combine multiple defense strategies to improve
overall performance and robustness against specific adaptive attacks.

E.9 Defense Performance against Label-Only Attacks

In previous experiments, we evaluated defense methods against white-box MI attacks, which pose a
greater privacy threat. However, in practical scenarios, adversaries may only have access to model
predictions or output labels, conducting black-box or label-only attacks on victim models.

This section investigates the defense performance of different approaches against BREP-MI [11], a
label-only attack. BREP-MI starts by randomly sampling the generator’s latent until the victim model
classifies the generated image as the target class. It then estimates the predicted labels over a sphere
in latent space to iteratively adjust the image away from the model’s decision boundary. We use the
victim models trained on the CelebA dataset and the generator from GMI to analyze performance
against BREP-MI.

Under targeted attack settings, BREP-MI fails to initialize latents for all 1,000 identities in a reasonable
time when facing Trap-MID, sampling latents for only 942 identities after 820,000 iterations. In
contrast, it only takes 553 iterations against unprotected models.

We also conducted untargeted attacks to recover 300 identities. As shown in Table 18, Trap-MID
significantly increased the number of initial iterations required and reduced BREP-MI’s attack
accuracy to 0%, demonstrating its effective privacy protection against various types of MI attacks.
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Table 19: Defense performance against PPA.

Architecture Defense Acc ↑ AA-1 ↓ AA-5 ↓ δface ↑ δeval ↑ FID ↑

ResNeSt-101
-* 87.35 82.96 95.44 0.7506 299.73 44.04

Trap-MID 88.48 74.47 89.61 0.8188 319.48 42.36
+ Fine-tuned 83.22 15.58 26.95 1.3162 471.61 64.34

ResNet-152

-* 86.78 80.61 94.58 0.7362 312.58 40.43
NegLS† 83.59 26.41 49.96 1.0420 441.67 61.30

Trap-MID 88.02 65.93 83.17 0.8606 344.45 41.61
+ Fine-tuned 83.82 0.25 0.90 1.5807 559.08 66.54

DenseNet-169
-* 85.39 73.14 90.51 0.7635 312.32 43.24

Trap-MID 89.98 55.53 71.25 0.9571 358.67 49.37
+ Fine-tuned 86.82 1.79 4.15 1.5646 552.48 74.47

* Reported in PPA’s paper [6].
† Reported in NegLS’s paper [16].

Table 20: Additional evaluation results of the defense performance against PPA.

Architecture Defense Precision ↓ Recall ↓ Density ↓ Coverage ↓

ResNeSt-101
-* 0.2650 0.0136 0.8547 0.3624

Trap-MID 0.3195 0.0019 0.9659 0.4329
+ Fine-tuned 0.1320 0.0224 0.3999 0.2806

ResNet-152
-* 0.3231 0.0269 0.7984 0.2805

Trap-MID 0.1873 0.0608 0.7479 0.4556
+ Fine-tuned 0.0680 0.0110 0.2931 0.1913

DenseNet-169
-* 0.2049 0.0495 0.6811 0.3866

Trap-MID 0.2976 0.0127 0.9781 0.5286
+ Fine-tuned 0.0723 0.1025 0.2565 0.1368

* Reported in PPA’s paper [6].

E.10 Defense Performance Under High-Resolution Scenario

This section evaluates Trap-MID’s defense performance on modern architectures and in high-
resolution scenarios. Specifically, we conducted the experiments introduced by PPA [6]. The
target models are ResNeSt-101 [46], ResNet-152 [33], and DenseNet-169 [47] trained on a high-
quality version of the CelebA dataset, with the images cropped, aligned, and resized to 224x224
using HD CelebA Cropper.3 We adopted PPA to perform MI attacks using a StyleGAN2 generator
[21] pre-trained on the FFHQ dataset [38]. The generator outputs 1024x1024 images, which are then
center-cropped to 800x800 and resized to fit the model’s input resolution.

We adopt the same InceptionV3 model used in PPA’s official setup as the evaluation model. It
was trained on the same training dataset as the target models, with an input size of 299x299. The
evaluation model achieves 93.28% accuracy on the testing dataset. In addition to attack accuracy,
KNN distance in the evaluation model’s feature space (δeval), and FID, PPA also employs additional
metrics, such as KNN Distance in the FaceNet [43] feature space (δface), improved precision and recall
[44], and density and coverage [45] metrics. Details of these metrics are provided in Appendix E.3.

We follow the same training settings as [6]. In addition to the Trap-MID configurations detailed
in Appendix C.4, we also fine-tuned the blend ratio α and trapdoor loss weight β according to the
observations in Appendix D.3 and D.4. Since we found that Trap-MID models generally achieve
better accuracy than the unprotected models, we set β = 0.5 and selected the smallest α for each
model to effectively distinguish triggered samples from benign ones. Specifically, the blend ratios are
0.005, 0.007, and 0.01 for the ResNeSt-101, ResNet-152, and DenseNet-169 models, respectively.

3Code available at https://github.com/LynnHo/HD-CelebA-Cropper.
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Table 19 and Table 20 present Trap-MID’s defense performance against PPA, compared with attack
results reported in previous works. Although Trap-MID does not fully mitigate PPA with default
settings, it preserves privacy to a certain degree without sacrificing accuracy. Furthermore, selecting
proper hyper-parameters significantly enhances defense performance, reducing attack accuracy on
ResNet-152 and DenseNet-169 to below 2%, and that on ResNeSt-101 to 15.58%. This demonstrates
that while hyper-parameter tuning is essential for optimal defense, Trap-MID provides effective
privacy protection across various datasets and architectures,

F Additional Visualization

Figure 8 shows the reconstructed images with the hybrid approach discussed in Appendix E.8.
Figure 9 illustrates additional recovered images from PLG-MI, where the recoveries of Identity 4
from Trap-MID exhibit different hair colors from the private data. Such variation does not appear
in other defenses, demonstrating Trap-MID’s effectiveness in protecting private information. In
addition, Figure 10, Figure 11, Figure 12, and Figure 13 display sample reconstructed images from
GMI, KED-MI, and LOMMA attacks.

Figure 8: Reconstructed images from PLG-MI, including Trap-MID + NegLS.

Figure 9: Additional reconstructed images from PLG-MI.
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Figure 10: Reconstructed images from GMI.

Figure 11: Reconstructed images from KED-MI.

Figure 12: Reconstructed images from LOMMA (GMI).

Figure 13: Reconstructed images from LOMMA (KED-MI).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claimed theoretical analysis is demonstrated in Section 3.4: Theoretical
Analysis, and the defense performance is included in Section 4.2: Experimental Results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Appendix A.2: Limitations and Future Works discusses the limitations of this
work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The assumptions and the proof of theoretical result are provided in Section 3.4:
Theoretical Analysis and Appendix B: Proof of Theorem 1.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The instructions of the training procedure and the experimental configurations
are outlined in Section 3.3: Model Training and Appendix C: Experimental Details. We also
provide the code in supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is provided in supplementary material, including instructions about
data preparation, model training, MI attacks, and a checkpoint of the Trap-MID model.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental setups are listed in Section 4.1: Experimental Setups and
Appendix C: Experimental Details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We conducted the experiments multiple times and reported the standard
deviation of each metric as the error bars. The detailed calculation method is provided in
Section 4.1: Experimental Setups and Appendix D: Ablation Studies.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources are listed in Appendix C.1: Hardware and Software
Details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We acknowledge that we have read and committed to adhering to the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Appendix A.1: Broader Impacts demonstrates the broader impacts of this
work.

Guidelines:

38

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This research only involves the defense strategy against existing privacy attacks,
which doesn’t pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original papers of the codes and datasets used in the experiments are cited,
and the license from https://github.com/SCccc21/Knowledge-Enriched-DMI is
provided with the provided code, as we mainly modified their code to implement our
defense.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The documentation is provided with the code in the supplementary material,
including instructions about data preparation, model training and MI attacks.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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