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a b s t r a c t 

Grading spondylolisthesis into several stages from MRI images is challenging because detecting critical 

vertebrae and locating landmarks in images of different characteristics is difficult. We propose Faster 

Adversarial Recognition (FAR) network to accurately perform spondylolisthesis grading by excellently de- 

tecting critical vertebrae without the need of locating the landmarks. The FAR network introduces the 

adversarial scheme by using a multi-task recognition network as the generator and an adversarial mod- 

ule as the discriminator. The multi-task recognition network (generator) is an integrated network that can 

reliably perform multi-scale hierarchical feature learning, critical vertebrae detection, detected vertebrae 

classification, bounding box regression, and spondylolisthesis grading in a hybrid supervised manner. The 

adversarial module (discriminator) takes the detection results as inputs to supervise the generative net- 

work by leveraging the high-order statistics of the distribution of the detected bounding box coordinates. 

The FAR network is evaluated to be accurate and robust in spondylolisthesis grading (training accuracy: 

0.9883 ± 0.0094, testing accuracy: 0.8933 ± 0.0276) for MRI images of different modalities, which can be 

attributed to the excellent critical vertebrae detection (detection mAP 75 for training: 1 ± 0, for testing: 

0.9636 ± 0.0180, and IoU (Intersection-over-union) ≥ 0.9/0.8 for most detections with their correspond- 

ing ground truth in the training/testing dataset). This accuracy is comparable to that of the physicians 

and outperforms other state-of-the-art methods. These results indicate the potential of our framework to 

perform spondylolisthesis grading for clinical diagnosis. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Spondylolisthesis is defined as the forward displacement of ver-

ebrae, which means the vertebral bones may progressively deform

nd press on corresponding nerves. Spondylolisthesis and its re-

ulting symptoms cause low back pains ( Hartvigsen et al., 2018 ),

ciatica, neurologic compromise ( Hresko et al., 2007 ), and even

ife-long functional disability for basic activities of daily life (such

s dressing and outdoor walking) worldwide ( Jamaludin et al.,

017; Möller et al., 20 0 0 ). Early diagnosis and treatments are

mportant for preventing spondylolisthesis progress and healing

pondylolisthesis. 

For clinical diagnosis of spondylolisthesis, there are 5 grades

ndicating the severity of spondylolisthesis ( Wollowick and Sar-

ahi, 2015 ). The higher is the grading, the more severe is the dis-

ase. As shown in Fig. 1 , spondylolisthesis grading is measured by

he ratio of the forward displacement (the length of the orange ar-
∗ Corresponding authors. 
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ow in Fig. 1 (a)) to the total length of the vertebrae (the length

f the yellow line with tick marks in Fig. 1 (a)). Spondylolisthe-

is grading 1–5 respectively means the ratio falls into the interval

–25%, 25–50%, 50–75%, 75–100%, higher than 100%; meanwhile,

e denote grade 0 as patients who do not have spondylolisthesis

the ratio of the forward displacement is 0% or very close to 0%).

or a visual demonstration, we label the critical points of adjacent

radings (the tick marks on the yellow line in Fig. 1 (c)) and show

ifferent gradings using different colors. Namely, if the red point

the end point of the orange arrow) falls into the blue (similarly,

reen/orange/red) area, the grading will be 1 (similarly, 2/3/4). 

Automatically distinguishing spondylolisthesis patients with 

rading 0, 1, and 2 are the most important in clinical practice be-

ause: (1) As mentioned in Passias et al. (2015) , the overwhelm-

ng majority of patients (more than 99%) have spondylolisthesis

rading less than 2; among them, a lot of patients do not have

pondylolisthesis (i.e., they are “grade 0”). As a comparison, very

ew ( ∼ 1%) patients have spondylolisthesis grading higher than 3.

2) No treatments are needed for patients with grade 0, differ-

nt treatments are applied to patients with grading 1–2, while

https://doi.org/10.1016/j.media.2019.101533
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2019.101533&domain=pdf
mailto:xi.wu@cuit.edu.cn
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https://doi.org/10.1016/j.media.2019.101533
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Fig. 1. Challenge of automatic spondylolisthesis grading. Fig. 1 (a) shows the difficulty of finding critical vertebrae (the red box containing L4, L5, and S1) because of the 

similarity of the critical vertebrae and the other vertebrae. It also visually demonstrates the concepts mentioned in the Meyerding grading system (e.g., the length of the 

forward displacement is shown by the length of the orange arrow). Fig. 1 (b) shows failures of detecting critical vertebrae, which can hinder subsequent spondylolisthesis 

grading work. Fig. 1 (c) illustrates the difficulty of measuring the forward displacement due to the localization of the landmarks (the red point and the yellow line). An 

invisible slight deviation of landmarks (less than 5 pixels of red point translation or less than 10 degrees of the yellow line rotation) can lead to a large change of forward 

translation measurement (orange arrow length) and different grading results. Lastly, Fig. 1 (d) shows that image characteristics change (different image resolution, intensity 

distribution, and vertebrae appearance) caused by MRI images across different modalities makes the problem more challenging. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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similar treatments are used for patients with higher grades. In

more details, patients with grading 1 need only bed rest and

avoiding activities that may further injury; patients with grading

2 need extra exercises and stretches for spondylolisthesis, while

high-grade patients (higher than 3) typically need surgical treat-

ments ( Hresko et al., 2007 ). Thus, performing 0–2 grading is the

most important from the aspect of clinical diagnosis and making

treatment plans. 

Automatic spondylolisthesis grading is a crucial step for

spondylolisthesis diagnosis because it eliminates the tedious and

irreproducible manual grading procedure. Manual spondylolisthe-

sis grading can be achieved by the Meyerding grading system

( Niggemann et al., 2012 ), where the forward displacement and

the total length of the vertebrae both need to be manually de-

termined. This involves manually locating the landmarks, i.e., the

superior surfaces of a vertebra (the yellow line with tick marks in

Fig. 1 (c)) and the posterior endpoint of the inferior surface of its

superior vertebra (the red point in Fig. 1 (c)), drawing perpendic-

ular lines (the orange dashed line), and measuring the distances

(the orange arrow). These procedures are prone to subjective er-

rors of the observers. Thus, it is crucial to develop an automatic

computer-assisted spondylolisthesis grading system to obtain ac-

curate and robust gradings ( Liao et al., 2016 ). 
However, automatic spondylolisthesis grading is challenging be-

ause (1) Spondylolisthesis grading requires critical vertebrae (L4,

5, and S1 vertebra, between which spondylolisthesis usually oc-

urs ( Wollowick and Sarwahi, 2015 )) to be detected from raw med-

cal images ( Liao et al., 2016 ). This is error-prone because these

ritical vertebrae share similar appearance and anatomies with the

ther vertebrae of one patient; while the same vertebrae of dif-

erent patients may look different because of additional spine dis-

ases ( Han et al., 2018 ), as shown in Fig. 1 (a) and (d). If the de-

ection results are wrong, namely, there are false positive errors

for example, more than one L4 is detected, as shown in the mid-

le figure in Fig. 1 (b)) or false negative errors (for example, no L4

s detected, as shown in the right figure in Fig. 1 (b)), it is very

ikely that the grading results would be wrong. (2) Spondylolisthe-

is grading requires accurate localization of the above-mentioned

andmarks. However, the shapes of vertebrae are irregular (as

hown in Fig. 1 (a)), and the locations of the landmarks tend to vary

ith different observers. According to Liao et al. (2016) , even slight

eviations of landmark positions could result in large forward

ranslation estimation error and wrong grading decision, as shown

n Fig. 1 (c). (3) Spondylolisthesis grading based on MRI imaging

s even more challenging because MRI images can be of differ-

nt modalities. MRI images in each modality give more detailed
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Fig. 2. (a) Overview of FAR Network, which is an adversarial training network using the multi-task recognition network as the generator and an adversarial module as 

the discriminator. The multi-task recognition network successively uses feature extracting network (FEN) to extract hierarchical features, Region Proposal Network (RPN) for 

obtaining positive proposals (regions that have high confidence of containing vertebrae), and Multi-task Detection-Grading Module (MDGM) for accurate vertebrae classifi- 

cation, box regression, and spondylolisthesis grading. The adversarial module is used for enforcing the relative positions relationships of the detection box coordinates by 

leveraging their high-order statistics, which promotes the generator to yield logical and precise results. (b) The hybrid supervision strategy in the multi-task recognition 

network. Hybrid supervision introduces an auxiliary supervision pathway to allow gradients to smoothly back propagate from detection level to FEN features, which helps 

eliminate false positives and reliably detect critical vertebrae. 
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iews of the vertebrae and its surrounding soft tissues, discs, and

oramen. This allows the physicians to observe more pathologi-

al features (and is recommended by Tibrewal et al. (2012) as the

ost preferred clinical evaluation approach in bone-related medi-

al imaging diagnosis), however, it adds to the difficulty for com-

utational methods because of the image characteristics difference

n different modalities. Unfortunately, the training dataset of a cer-

ain modality is often limited, which means that the shape, ap-

earance, texture, resolution of the vertebrae, as well as the im-

ge intensity distribution, varies widely in the training dataset, as

hown in Fig. 1 (d). Spondylolisthesis grading across MRI modalities

s challenging because of these varieties in training data. 

We propose a faster adversarial recognition (FAR) network for

ccurately perform spondylolisthesis grading basing on reliable

ritical vertebrae detection. As shown in Fig. 2 , our FAR network

s an adversarial training network using the multi-task recogni-

ion network as the generator and an adversarial module as the

iscriminator. The multi-task recognition network is designed

or accurately and robustly detecting the critical vertebrae and

erforming spondylolisthesis grading in MRI images of different

odalities in a hybrid supervised manner. Inspired by the Faster

CNN scheme ( Ren et al., 2015 ), the multi-task recognition net-

ork uses hierarchical Feature Extracting Network (FEN) to extract

mage features, Region Proposal Network (RPN) to efficiently

nd out positive proposals (regions that have high confidence of

ontaining vertebrae), and Multi-task Detection-Grading Module

MDGM) to precisely classify the detected vertebrae, regress their

ounding boxes, and decide spondylolisthesis gradings using the

hared features without the need of localizing the landmarks.

uxiliary supervision is introduced to multi-task recognition net-

ork to provide the loss gradient back-propagation pathway to

EN, which promotes the network to evolve towards producing

eliable detections and prevents multiple detection or missing

etection. The discriminative network is designed for improving

he detection performance by using an adversarial model to access

he high-order statistics of the detection box coordinates. 

.1. Existing work on spondylolisthesis grading. 

Limited automatic spondylolisthesis grading work has been at-

empted in the existing literature. Jamaludin et al. (2017) uses six

ain radiological features obtained from MRI images using a CNN
odel including spondylolisthesis. Spondylolisthesis is considered

o be a binary measure of the vertebral slip, i.e., it is graded by 0

no vertebral slip) and 1 (vertebral slip). Results comparable with

hose of an expert radiologist are reported. In Liao et al. (2016) ,

 hierarchical learning approach is used to detect and label verte-

rae centers. Then, a critical anatomy region propagation method

s used to roughly estimate the superior and inferior surfaces of

ertebrae, then the endpoints of these surfaces are extracted using

he domain-specific information. Lastly, spondylolisthesis grade is

uccessfully and robustly determined using the Meyerding grading

ystem ( Niggemann et al., 2012 ) in CT images. However, as men-

ioned above, grading spondylolisthesis into several stages (which

s more than simply judging the occurrence of vertical slip) from

RI images is more challenging because not all images in a dataset

re collected using the same modality. 

.2. Methodology overview 

.2.1. Instance detection 

Recent instance detections methods are impressive and have

chieved great success in many applications ( Gao et al., 2017a;

017b; Zhao et al., 2019 ), however, they cannot be directly applied

o detecting critical vertebrae for spondylolisthesis grading due to

he complexity of the problem. Recent instance detections methods

re mainly divided into two categories: two-step detection (such

s Faster RCNN ( Ren et al., 2015 )) and one-step detection (such as

OLO ( Redmon et al., 2016 ) and SSD ( Liu et al., 2016 )). In two-step

etection, regions that have high confidence of containing object

re first proposed, then the proposed regions are used for cropping

he extracted features for object classification and refined bound-

ng box regression; while in one-step detection, the images are

irectly separated into grids, these grids are used directly for ob-

ect classification and bounding box regression. Generally, two-step

etection has a higher detection accuracy but slower speed than

ne-step detection ( Zhao et al., 2018 ). Methods of both categories

ave shown good results in object detection ( Ren et al., 2015; He

t al., 2017 ), architectural distortion detection ( Ben-Ari et al., 2017 ),

nd small object detection ( Li et al., 2017 ). In medical image anal-

sis domain, although the postures of the objects do not change

uch, a great challenge is that different objects can also show

imilar appearances (for example, people in real-world images can

e with different body postures, while other non-people objects
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are significantly different from people; as a contrast, the vertebrae

usually show similar appearances, while different vertebrae looks

relatively the same). To make it more challenging, the successive

grading task demands a perfect detection accuracy of discrimi-

nating similar-appearing vertebrae. Thus, even the more accurate

the two-step detection method is chosen, multiple detection or

missing detection can still happen in some images in the datasets

( Fig. 1 (b)). Unfortunately, neither multiple detection nor missing

detection is tolerable for the successive grading task. Fine tuning

the hyper-parameters of existing Faster RCNN can adjust the num-

ber of detected objects in each image, however, this strategy is

not robust enough to deal with the image characteristic variance

of MRI images. 

1.2.2. Adversarial training 

Adversarial Training, represented by the Generative Adversarial

Networks (GANs) has the potential to be used in monitoring its

generative network ( G ) by a discriminative network ( D ) to improve

its performance. G and D are iteratively and sequentially trained to

complete the following minimax optimization: ( Goodfellow et al.,

2014 ) 

min 

G 
max 

D 
E x ∼p data ( x ) 

[ log D ( x )] + E z ∼p z [ log (1 − D (G ( z )))] (1)

where x is the training data, and its distribution is p data ; z a ran-

dom noise vector sampled from a certain distribution p z ; and the

denotation G ( z ) means G tries to generate synthetic data using z .

In solving the min-max optimization in Eq. (1) , G is trained to

generate data who have the same distribution as the real ones

and minimize the probability of its generated data being recog-

nized, and D is trained to discriminate the synthetic data from

the real ones. GAN has been successfully used for image synthesis

( Reed et al., 2016 ), image semantic segmentation ( Luc et al., 2016 ),

and super-resolved representations for small objects ( Li et al.,

2017 ). Since the input of D in Eq. (1) is the whole real image (or

the whole output of G ), the adversarial network is able to access

large portions of its input (or the entire input), which implicitly

leverages the high-order potential (for example the label consis-

tency over super-pixels) to detect and correct mistakes in the syn-

thesis/segmentation work. This is believed to be beneficial to the

performance of G . Thus, we conjecture that adversarial training can

similarly be used for vertebrae detection because the coordinates

of these vertebrae also have some implicit internal higher-order

potentials, which can be excavated for enforcing the relative posi-

tions of vertebrae coordinates for more precise detection. However,

GAN has been known to be unstable to train ( Radford et al., 2015 ),

which leads to oscillation and mode collapse. Previous studies sug-

gested several ways (such as virtual batch normalization (BN) in

both G and D ( Salimans et al., 2016 ), leaky ReLU activation in D

( Radford et al., 2015 ), and gradient penalties in D ( Mescheder et al.,

2018 )) to stabilize GAN training. These methods are easy to be em-

bedded in the object detection framework because this framework

contains CNN’s, BN’s and ReLU’s. Thus, combining object detection

network and adversarial learning makes perfect complementation

to each other. 

1.3. Contributions 

• For the first time, we proposed FAR network to accom-

plish 3-level spondylolisthesis grading from MRI images ac-

curately and robustly, which eliminates the tedious and irre-

producible manual work. 
• We provide a path for gradient back-propagation through

the box coordinates by introducing hybrid supervision

theme to two-stage detection network. This strategy pro-

vides supervision of ground truth object classes and box
coordinates to the hierarchical feature extracting network,

which results in excellent detection performance without

false positive detections. 
• We leverage the internal high-order relationships of the de-

tected bounding box coordinates by combining adversarial

module with the multi-task recognition network. This strat-

egy enforces the relative positions relationships of the de-

tected vertebrae, which refines the coordinates of the de-

tected objects to make them more precise. 
• We perform accurate and efficient spondylolisthesis grad-

ing by designing a novel multi-task detection grading mod-

ule. This design leverages the shared hierarchical features to

prompt the mutual benefit between the detection and grad-

ing tasks. 

. Methodology 

As shown in Fig. 2 , the FAR network is composed of two parts:

1) The multi-task recognition network (generator, Section 2.1 ),

hich is a hybrid supervision network composed of a hierarchi-

al feature extraction network (FEN), a regional proposal network

RPN), and a multi-task detection-grading module (MDGM). As

hown in Fig. 3 , FEN extracts abundant hierarchical features for the

ollowing network; RPN accurately and efficiently find out positive

roposals; and MDGM accurately perform classification, bounding

ox regression, and spondylolisthesis grading after RoI pooling us-

ng proposals. RPN and MDGM are designed to share hierarchi-

al features obtained by FEN. They both involve a loss term, but

DGM’s loss term is dependent on the output of RPN. Under this

onfiguration, auxiliary supervision that performs classification and

ounding box regression similar to MDGM is introduced. Anchors

re used for RoI pooling in the auxiliary branch, which helps the

radients to smoothly back-propagate from detection-level to FEN

eatures. (2) The adversarial module (discriminator, Section 2.2 ),

hich refines the coordinates of the detected objects by using

n adversarial model to assess the higher-order statistics of the

ounding box coordinates. 

.1. Multi-task recognition network. 

.1.1. Feature extraction network (FEN) 

FEN uses bottom-up layers and top-down layers in sequence

o extract abundant hierarchical features and leverage the seman-

ics from low to high levels. Inspired by the Faster RCNN and

ask RCNN work, the FAR network used Resnet ( He et al., 2016 )

ith top-down pathway ( Lin et al., 2017 ) as the backbone fea-

ure extracting CNN network to build up pyramid image features

rom the input 512 × 512 MRI image, as shown in the left part

f Fig. 4 . The Resnet uses shortcut connections to improve train-

ng accuracy and solves the degradation problem in deeper net-

orks. Image features are extracted after each stage of building

locks (conv2_x ∼ conv5_x in Table. 1 of the original Resnet paper

 He et al., 2016 )) and denoted as C2 ∼ C5. In our work, these fea-

ures are of size 128 × 128 × 256, 64 × 64 × 512, 32 × 32 × 1024,

nd 16 × 16 × 2048. However, different from the original Resnet,

e use group normalization (GN) ( Wu and He, 2018 ) instead of

atch normalization (BN) ( Ioffe and Szegedy, 2015 ) after each con-

olution layer in the building blocks. This is because BN may not

erform well with small batch size (for example, 2 or 4) as in

edical image analysis domain. GN, however, divides the channels

f all the input features in a batch into several groups (the group

umber is set to 32 by default), then calculate the mean and stan-

ard deviation of each group, and lastly perform the normalization

ithin each group. This normalization is thus not dependent on
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Fig. 3. The overall procedure for training the multi-task recognition network. The abundant hierarchical features from FEN are fed into RPN for finding out the positive 

and negative proposals. Then, the proposals, as well as the shared hierarchical features from FEN, are fed into MDGM for classification, bounding box regression, and 

spondylolisthesis grading. Hybrid supervision (the shadow region) introduces an auxiliary supervision branch to provide back-propagation pathway for the ground truth of 

MDGM detection task (which are directly annotated on the input images, denoted as DET GT ) to FEN by using constant anchors to crop the features. 

Table 1 

Training configurations of the FAR network. 

Network name Multi-task recognition network Discriminative network 

Training method Momentum Optimizer 

Learning rate decay type Exponential 

Initial learning rate 1e-3 1e-4 

End learning rate 1e-6 1e-5 

Learning momentum 0.9 

Learning rate decay factor 0.96 

Number epochs per decay 10 

Fig. 4. The feature extraction network (FEN) architecture. The bottom-up layers use 

Resnet to improve training accuracy and solved the degradation problem in deeper 

networks; the top-down layers build up a feature pyramid and share features of all 

levels to successive networks. 
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atch size, which improves the accuracy when the batch size is

mall. 

After obtaining the pyramid image features, the top-down lay-

rs perform up-sampling and merges the up-sampled feature maps

ith the lower level from the pyramid by lateral connections. As

hown in the right part of Fig. 4 , the top-down layer starts from

he top feature map (which is the coarsest and with the strongest

emantics) and iteratively up-samples the feature maps. In each it-

ration, the resolution is doubled, and the resulting feature map is

erged with the corresponding lower level feature map by lateral

onnections (implemented by pixel-wise add). The merged feature

ap is then fed into the next up-sampling unit. The resultant fea-

ure maps (denoted as P 5 ∼ P 2 , whose resolutions are respectively

6 × 16 × 256, 32 × 32 × 256, 64 × 64 × 256, and 128 × 128 × 256)

ontain ablated information of all scales, which to the utmost ex-

ent retains spatial information and mitigates the semantic gaps of

he bottom-up layers. These P 5 ∼ P 2 are shared to the successive

etworks, which enhances the learning efficiency and grading ac-

uracy for both detection and grading. 
.1.2. Regional proposal network (RPN) 

The RPN is used for coarsely detecting object locations with

igh objectness scores in the form of proposals (bounding boxes).

PN first equidistantly samples grid points from the original input

mage and places boxes of different size and aspect ratio (namely,

nchors, as shown in Fig. 5 ) centered on the grid points at sev-

ral hundred pre-defined locations in the input images ( Ren et al.,

015 ). 

As shown in Fig. 5 , the RPN is a fully-convolutional network

hat finds regions having high confidence of containing vertebrae.

ollowing Ren et al. (2015) , RPN takes shared hierarchical features

s input; it uses a 3 × 3 convolutional layer for dimension reduc-

ion, then uses two sibling 1 × 1 convolutional layers to predict

PN class logits ( RPN 

pred 
CL 

) and RPN bounding box corrections

 RPN 

pred 
BBC 

) . The RP N 

pred 
CL 

’s indicate the possibilities of the corre-

ponding anchors containing vertebrae, while the RP N 

pred 
BBC 

’s are the

odification values for transforming anchors to regional proposals.

fter obtaining proposals by applying RP N 

pred 
BBC 

’s to anchors, the

redicted RP N 

pred 
CL 

’s and proposals are used to calculate RPN loss

ith RPN ground truth classes ( RPN 

GT 
CL 

) and RPN ground truth

oxes ( RPN 

GT 
BOX 

) . It should be noted that the RPN ground truth

RPN 

GT ) ’s are not the manually labeled ground truth for the

etection task (DET GT ) in MDGM on the input images because the

roposals are class-agnostic, and each DET GT box may assign more

han one RPN 

GT box to be positive ( Ren et al., 2015 ). 

The RPN loss function has a form of: 

 RPN = L RPN ( p ( θ) , p 

∗, t ( θ) , t ∗) (2)

here θ represents all network parameters in FEN and RPN;

 ( θ) and t ( θ) are lists of predicted RP N 

pred 
CL 

’s and proposal co-

rdinates: p ( θ) = 

{
p i ( θ) 

}
and t ( θ) = 

{
t i ( θ) 

}
, where i is the in-

ex of a proposal. p 

∗ and t ∗ are correspondingly RP N 

GT 
CL 

’s and

P N 

GT 
BOX 

’s. The coordinates for each proposal is a list: t i ( θ) =
t ix ( θ) , t iy ( θ) , t iw 

( θ) , t ih ( θ) 
}
, which respectively mean the x po- 

ition of the proposal center, y position of the proposal center, pro-

osal width, and proposal height. These notations in Eq. (2) show

hat the RPN loss is function of FEN and RPN parameters θ. 
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Fig. 5. The detailed architecture of RPN, where two sibling networks are used to find out the possibilities of containing objects for each anchor ( RPN pred 
CL 

) and their bounding 

boxes (proposal coordinates, which are refined anchors by RPN pred 
BBC 

). These procedures are supervised by RPN GT , namely, RPN GT 
CL for supervising predicted RPN class logits 

( RPN pred 
CL 

) and RPN GT 
BOX for supervising the proposal coordinates. 

Fig. 6. The detailed architecture of MDGM, where the final detection classes, box coordinates, and spondylolisthesis grading tasks are performed using the proposals and 

the shared hierarchical features. RoI pooling is performed by using proposal coordinates to crop the features. The cropping operation is not differentiable to the proposal 

coordinates, so the MDGM network are separately supervised with RPN (the MDGM results are supervised by DET GT , which is the labeled ground truth on input images; the 

RPN results are supervised using RPN GT , as shown in Fig. 5 ). 
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The RPN usually yields hundreds of proposals (each corresponds

to an anchor). We use non-maximum suppression (NMS) and hard

negative mining (HNM) to reduce redundancy. Only negative pro-

posals with high objectness scores (which are difficult to recognize

from positive ones) are preserved to satisfy a constraint (Negatives:

Positives = 5:1). The positive proposals and preserved negative pro-

posals are fed into the successive network (MDGM in our work).

Usually, RPN is able to correctly find out regions having high con-

fidence of containing vertebrae. However, due to the difference in

RPN 

GT and DET GT (the DET GT of one vertebra may assign more than

one RPN 

GT box to be positive), the training objective of FEN and

RPN may be deviated (because an anchor that is actually negative

may be assigned a positive label during training), which results

in false positives in some images. Also, the RP N 

pred 
BBC 

’s may have

large errors (namely, the proposals may have large deviations to

the ground truth boxes) because it uses linear corrections to cor-

rect anchors which are relatively far to the target boxes. Thus, only

using RPN 

GT to supervise FEN and RPN might not be enough. 

2.1.3. MDGM 

Inspired by the RoI pooling layers in Faster RCNN, we intro-

duce the shared features from FEN to perform critical vertebrae

detection and spondylolisthesis grading in a multi-task network. As

shown in Fig. 6 , the MDGM simultaneously performs the detection

task and the grading task; and the detection task has two sub-tas

ks: classification and bounding box regression. 

In the detection task, the selected proposals and the shared fea-

tures are fed into MDGM to achieve these tasks while reinforcing

the mutual benefit them by sharing parameters from the multi-

output learning architecture. The shared features are of different

spatial resolutions ( P ∼ P ), we choose one for each proposal us-
5 2 
ng the feature level calculated by 

 = � k 0 + log 2 ( 
√ 

wh /h 0 ) � (3)

here w and h are the width and height of the proposal. This

quation is similar to that in Lin et al. (2017) , except that we

hanged the canonical ImageNet pre-training size (224) to h 0 ,

hich is set to be 64 since the widths and heights of most ver-

ebrae in our work is near 64. Then we set k 0 to be 4, which re-

ult in the 64 × 64 vertebrae corresponding to P 4 . This configura-

ion corresponds to Resnet ( He et al., 2016 ) which uses C 4 as the

ingle-scale feature map. For smaller proposals, a finer-resolution

eature is used, which corresponds to a smaller k and a larger P k 
esolution (for example, a proposal of size 32 × 32 corresponds to

 2 ). This configuration also ensures most vertebrae has a feature

evel between 2 ∼ 5 because h × w of most vertebrae are between

6 × 16 and 128 × 128. For the very few exceptions, their feature

evels are cut off to 2 (for vertebrae smaller than 16 × 16) or 5 (for

hose larger than 128 × 128). The feature level k is chosen specif-

cally for each proposal, which ensures that most vertebrae of dif-

erent scales can be assigned to features of appropriate scale and

ackles the multi-scale problem without the need of re-calculating

he features. 

After feature map selection, the chosen features are cropped by

he corresponding proposals, then each cropped feature is resized

o 7 × 7. In this procedure, bilinear interpolation is used to com-

ute the values of shared FEN features at the proposal coordinates

sed for the cropping operation (since the cropping coordinates

ay not be integer pixels) to align the features with the cropping

roposals, which achieves better detection box coordinate accuracy

 He et al., 2017 ). Next, the cropped and resized features are fed

nto 2 cascading convolutional layers (the first one has a kernel
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(  
ize of 7 × 7, and the second 1 × 1) to obtain shared features, and

hen the shared features are fed into two siblings 1 × 1 convolu-

ional layers to predict the detection object class logits ( DET 
pred 
CL 

)

nd the detection bounding box corrections ( DET 
pred 
BBC 

) . DET 
pred 

BBC 
’s

re applied to the positive proposals to calculate detection box co-

rdinates. The loss of the detection task is formulated as 

 Det = L Det ( q ( θ) , q 

∗, u ( θ) , u 

∗ | p ( θ) , t ( θ)) (4)

here q ( θ) and u ( θ) are respectively lists of predicted DET 
pred 

CL 
’s

nd detection box coordinates: q ( θ) = 

{
q j ( θ) 

}
and u ( θ) =

u j ( θ) 
}
, where subscript j is the index of a detection. q ∗ and

 

∗ are correspondingly DET GT 
CL 

and DET GT 
BOX 

. Similar to the pro-

osal, the coordinates for each detection box is a list: u j ( θ) =
u jx ( θ) , u jy ( θ) , u jw 

( θ) , u jh ( θ) 
}

which means the x / y position of

he detection box center, and the width/height of the detection

ox. These notations in Eq. (4) show that the loss of the detection

ask is dependent on both detections ( q ( θ) and u ( θ)) and proposals

 p ( θ) and t ( θ)) because the detection task is based on the proposal

oordinates. 

In the grading task, the shared features from FEN are chosen,

ropped and resized by the detection boxes. This procedure is sim-

lar to that in the detection work, except that the cropped features

re resized to 32 × 32 for a larger resolution. Then, the resized fea-

ures are fed into a 4-layer convolutional network (the first two

ayers with 3 × 3 kernel size, the third with 8 × 8 kernel size, the

ast with 1 × 1 kernel size; all convolutional layers are with stride

; all layers are followed by GN and ReLU; and the first two layers

re followed by 2 × 2 max pooling after GN and ReLU) for spondy-

olisthesis grading features. Then, the grading features are flattened

nto a row vector. Afterward, the coordinates of the detection boxes

re also flattened to a row vector and concatenated with the grad-

ng features. Lastly, a 1 × 1 convolutional layer (serving as fully

onnected layers) is used to predict the logits of spondylolisthe-

is grading using the concatenated vector, and cross-entropy loss

s used to calculate the grading loss L gra . 

This multi-task training strategy not only reuses the shared hi-

rarchical feature map to reduce computation cost, but also leads

o higher grading accuracy because it eliminates the interference

nformation of other parts of the image. Moreover, it eliminates

he need to localize the landmarks and completely avoids the grad-

ng error resulting from the deviation of landmarks, which greatly

elps to improve the robustness of grading. 

.1.4. The auxiliary supervision branch 

Although the MDGM is able to simultaneously perform de-

ection and grading task, the cropping operation hinders the

ack propagation of the gradient signal of DET GT from MDGM to

PN/FEN. Even though the cropping operation has no parameters,

t is implemented by using the proposal coordinates t to crop out

 section from the shared features, which means that the cropped

eatures are dependent on t . Resultingly, the predicted detection

bject class logits ( DET 
pred 

CL 
), the detection bounding box correc-

ions ( DET 
pred 

BBC 
), and the loss term L Det are all dependent on t be-

ause they are deduced by the cropped features. In other words,

ifferent from traditional multi-task learning, the loss terms of the

ater networks are dependent on the output of its preceding net-

ork ( Eq. (4 ) also shows this dependence). In optimizing the net-

ork, the total loss (which contains the term L Det ) and (4) ) is min-

mized by evolving the network parameters θ. This minimization

s implemented by the gradient descent method. When calculating

he loss gradient, the derivatives of L Det w.r.t. different parameters

re calculated to compose the loss gradient. Based on the chain

ule of back propagation, the derivative of L w.r.t. an arbitrary
Det 
arameter θ is: 

∂L Det 

∂θ
= 

∂L Det 

∂ u i 

∂ u i 

∂ F i 

∂ F i 
∂ t i 

∂ t i 
∂θ

(5) 

here F i is the flattened features cropped by the i th proposal

 Dai et al., 2016 ). Eq. (5) means that, the derivative of L Det w.r.t.

 network parameter should include a term concerning the deriva-

ive of the cropped features F i to the proposal coordinates t i (i.e.,

he term 

∂ F i 
∂ t i 

). However, this term is undefined because the crop-

ing operation does not have a derivative, which means that 
∂L Det 
∂θ

an not be calculated. This hinders the back propagation of the de-

ection loss signal ( L Det ) from MDGM to the parameters ( θ) of the

receding feature extraction network (FEN) and regional proposal

etwork (RPN). 

Without the auxiliary branch, the detection network can be

rained anyway by approximate joint training method which ig-

ores the above-mentioned problem, but this strategy may give

ise to false positives in the detection task. As discussed in the

riginal Faster RCNN paper ( Ren et al., 2015 ), the approximate

oint training strategy treats the proposals as fixed, pre-computed

oxes, so the derivative of L Det w.r.t. the proposal coordinates t i is

imply ignored. In this way, MDGM and FEN/RPN can anyway be

rained together, and the back propagation takes place as usual.

owever, since the back propagation pathway of the loss gradi-

nt from MDGM to the preceding network (FEN/RPN) is blocked,

he detection ground truth ( DET GT ) can only be used to super-

ise the MDGM network (but not the FEN/RPN network). In other

ords, although the two parts (MDGM and FEN/RPN) are jointly

rained, they are actually supervised by different ground truths

eparately during the training. The FEN and RPN are only super-

ised by the RPN 

GT , which may lead to false positives and large

ocalization errors. In original faster RCNN, this does not seem a

ig problem because their experiments show that the RPN 

GT su-

ervision can achieve satisfactory detections in general. However,

ince a much more strict detection performance is demanded (no

ultiple/missing detection, as well as high IoU of detection with

ET GT 
BOX 

) in our application, this strategy might not be enough be-

ause of false negatives and large errors of RP N 

pred 
BBC 

’s. 

Thus, inspired by deep supervision (where an auxiliary branch

s added to the main branch to provide gradient signals) ( Lee et al.,

015 ) and Single Shot Detection (SSD, where fixed anchors of dif-

erent scales are used to perform classification and bounding box

egression for objects of different scale) ( Liu et al., 2016 ), we add

n auxiliary branch (the network in the red shadow area in Fig. 3 ,

nd it is detailed in Fig. 7 ) to provide smooth propagation path-

ay for DET GT signals to FEN. Similar to SSD, anchors correspond-

ng to the selected proposals by the NMS and HNM are used to

rop the features and perform the detection task (classification and

ounding box regression) in the auxiliary supervision branch. The

mportance of this auxiliary back propagation pathway is that it

llows the DET GT to be used to supervise the FEN/RPN and re-

ove false negatives. Since the coordinates of anchors are now in-

eed constant (not “treated as” constant), the gradient of L aux does

ot involve the gradient w.r.t. proposal coordinates t i . Namely, the

erivative of L Det _ aux w.r.t. θ is: 

∂L Det _ aux 

∂θ
= 

∂L Det _ aux 

∂ u i 

∂ u i 

∂ F i 

∂ F i 
∂θ

(6) 

q. (6) is similar to (5) , but the term 

∂ F i 
∂ t i 

∂ t i 
∂θ

is removed because

he coordinates of anchors are no longer dependent on parame-

er θ . Thus, the auxiliary branch bridges the FEN/RPN and auxil-

ary detection network into a whole with a smooth back propaga-

ion pathway for the gradient of the DET GT signal to the FEN/RPN.

his auxiliary supervision branch is similar to deep supervision

 Lee et al., 2015 ) in that the supervision is added after the gradient
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Fig. 7. The auxiliary supervision branch in hybrid supervision. The auxiliary supervision works together with the supervisions in the main branch, which compose the hybrid 

supervision strategy. This hybrid supervision strategy introduces DET GT signals (rather than simply using RPN GT signals) to train FEN/RPN networks, and helps jointly training 

the whole multi-task recognition network, which promotes the network to yield reliable detections without false positives. 
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value vanishes, and the added supervision provides a stronger

gradient signal to facilitate training. The auxiliary branch can be

trained with any preceding/succeeding layers. Thus, network pa-

rameters θ can be updated using gradient signals form DET GT . Al-

though the RPN 

GT is unchanged, the introduction of DET GT supervi-

sion to the FEN and RPN network can efficiently remove the false

positives caused by RPN 

GT supervision. 

In more details, RPN 

GT may have more than one positive boxes

corresponding to one positive DET GT , which misleads the FEN/RPN

training to regard some proposals that are actually negative as pos-

itive. This resultantly gives rise to false positive anchors/proposals.

In the main branch, all proposals (including false positives) are fed

into MDGM through ROI pooling. When the DET GT distinguishes

the false positives, a large detection loss ( L Det ) is produced. How-

ever, without the auxiliary branch, the large L Det signal cannot be

used to update the FEN/RPN because of the blocked back propaga-

tion pathway. As a contrast, in the auxiliary branch, a large aux-

iliary loss ( L aux ) is similarly produced by the supervision of DET GT 

when the auxiliary branch receives false positive anchors produced

by FEN/RPN. With the help of the auxiliary branch, the loss sig-

nal from L aux can now be back propagated to FEN/RPN through

the auxiliary pathway. In this way, these networks are updated by

DET GT signal and thus promoted to yield reliable proposals (and

thus final detections) without false positives in the forward pass.

Also, the two bounding box corrections RP N 

pred 
BBC 

’s and DET 
pred 

BBC 
’s are

trained in a unified network in the auxiliary branch. The mutual

beneficial effect of RP N 

pred 
BBC 

’s and DET 
pred 

BBC 
’s prediction is enhanced

to provide a more appropriate intermediate variable value (the

proposal positions in our work). As such, the preceding RP N 

pred 
BBC 

’s

and succeeding DET 
pred 

BBC 
’s can be more efficient in linearly cor-

recting the bounding box positions, which at last results in more

proper detections. 

2.1.5. Objective function of multi-task recognition network 

The objective function of the detection framework includes four

parts: the RPN loss L RPN , the MDGM detection loss L Det , the MDGM

grading loss L Gra , and the auxiliary loss L aux . These losses respec-

tively corresponds to the four terms in Eq. (7) ; L RPN , L Det and L aux 

are further composed of classification loss and bounding box loss.

L G = L RPN + L Det + L Gra + L aux 

L RPN = 

λ1 

N 1 

N 1 ∑ 

i 1 =1 

L cls ( p i 1 , p 
∗
i 1 
) + 

λ2 

N 2 

N 2 ∑ 

i 2 =1 

L loc ( t i 2 , t 
∗
i 2 
) 

L Det = 

λ3 

N 3 

N 3 ∑ 

i 3 =1 

L cls ( q i 3 , q 
∗
i 3 
) + 

λ4 

N 4 

N 4 ∑ 

i 4 =1 

L loc ( u 

q ∗
i 4 

i 4 
, u 

∗
i 4 
) 

L Gra = λ5 L cls ( G , G 

∗) 

L aux = 

λ6 

N 3 

N 3 ∑ 

i 3 =1 

L cls ( q a,i 3 , q 
∗
i 3 
) + 

λ7 

N 4 

N 4 ∑ 

i 4 =1 

L loc ( u 

q ∗
i 4 

a , i 4 
, u 

∗
i 4 
) 

(7)
ll loss terms in Eq. (7) are functions of network parameters θ, but

he notations θ are omitted for simplifying presentation. 

In L RPN : (1) The first term is RPN class loss, where i 1 is the

ndex of an anchor, N 1 is the total number of the positive and

egative anchors in RPN, p i 1 
is predicted RP N 

pred 
CL 

, p ∗
i 1 

is the cor-

esponding ground truth label RP N 

GT 
CL 

for this anchor, L cls means

he cross-entropy loss of p i 1 
and p ∗

i 1 
. (2) The second term is the

PN box loss, where i 2 is the index of a RPN 

GT positive anchor (an

nchor whose RP N 

GT 
CL 

is true, i.e., it contains vertebrae), N 2 is the

otal number of the RPN 

GT positive anchors (because only anchors

hose RP N 

GT 
CL 

is positive account for bounding box regression loss),

 i 2 
is the list representing a predicted proposal coordinates; t ∗

i 2 
is

he RP N 

GT 
BOX 

coordinates corresponding to each prediction, and L loc 

eans the smooth L1 loss defined as: 

 loc ( t i , t 
∗
i ) = 

∑ 

c∈ { x,y,w,h } 

{
0 . 5(t ic − t ∗

ic 
) 2 i f 

∣∣t ic − t ∗
ic 

∣∣ < 1 ∣∣t ic − t ∗
ic 

∣∣ − 0 . 5 otherwise 
(8)

here t ic means one element in the predicted proposal coordinates

ist t i = 

{
t ix , t iy , t iw 

, t ih 
}

; and t ∗
ic 

means the corresponding RPN 

GT . 

In L Det : (1) The first term is detection class loss, where i 3 is the

ndex of a selected proposal, N 3 is the total number of selected

ositive and negative proposals after HNM and NMS, q i 3 is pre-

icted detection class logits DET 
pred 

CL 
, q ∗

i 3 
is the corresponding de-

ection class ground truth DET GT 
CL 

. The cross-entropy loss of q i 3 and

 

∗
i 3 

are calculated as the detection class loss. (2) The second term

s detection box loss, where i 4 is the index of a positive proposal,

 4 is the total number of the positive proposals after HNM and

MS, u 

q ∗
i 4 

i 4 
is a list representing the predicted detection box coor-

inates detailed in Section 2.1.3 , while the superscript q ∗
i 4 

means

nly the box of the ground truth class is used, u 

∗
i 4 

is the corre-

ponding DET GT 
BOX 

coordinates. The term L loc means the smooth L1

oss defined in Eq. (8) . 

In L aux : The two terms (auxiliary class loss and auxiliary bound-

ng box loss) are similar to those in L Det , the only difference is

hat the predictions (class logits q a,i 3 
and detection box coordi-

ates u 

q ∗
i 4 

a,i 4 
) are acquired from the auxiliary branch, and we thus

se subscript a . The same cross-entropy loss and smooth L1 loss

ormulas as in MDGM are used in the auxiliary branch. 

The weights ( λ1 ∼λ7 ) in Eq. (7) are selected based on the previ-

us experience of the original Faster RCNN paper ( Ren et al., 2015 ),

he original deep supervision paper ( Lee et al., 2015 ) as well as

ur experiments. Based on the following considerations and exper-

ments, we set all λ1 ∼λ7 to be 1, and add a constraint to force

he losses of the auxiliary branch to be no larger than those of

heir corresponding main branch: 
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Fig. 8. The adversarial model is able to simultaneously access all the coordinates of 

different vertebrae, which helps capture the implicit higher-order statistics in these 

coordinates. The adversarial training promotes the higher-order statistics of the pre- 

dicted coordinates to gradually approach that of the ground truth coordinates. This 

enforces the internal relationships and regulates the distribution of the bounding 

box coordinates, which improves the performance of the generator. 
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RPN and MDGM loss weights. The weights of RPN loss and

DGM loss ( λ1 ∼λ5 ) are selected according to the results of the

riginal Faster RCNN network. In Ren et al. (2015) , it is proved by

xperiment that change of the weights does not significantly af-

ect the results within a scale of about two orders of magnitude.

e infer that the weights between different parts of the multi-task

ecognition network (RPN and MDGM), and those among different

asks (classification, bounding box regression, and grading) in RPN

nd MDGM do not significantly affect the performance of the FAR

etwork in a relatively wide scale. We thus simply set all these

eights to be 1. We also changed λ2 and λ4 to 0.1 and 10 to alter

he weight trade-off between classification and bounding box lo-

alization; the results show that the changes of the weights do not

ake significant in either grading or detection performance. 

Auxiliary loss weights. The weights of the auxiliary branch

 λ6 ∼λ7 ) are selected according to the results of the original Faster

CNN work ( Ren et al., 2015 ), deep supervision work ( Lee et al.,

015 ) as well as our own experiments. First, we set λ6 = λ7 as

n Ren et al. (2015) . Then, we find in Lee et al. (2015) that the

eights of the auxiliary branches linearly decays as a function of

poch with the initial value 0.3. We infer that this configuration

eans: (1) The auxiliary supervision branch should provide gradi-

nt signals at the beginning of the training. (2) The auxiliary su-

ervision loss should not account for a too large proportion in the

otal loss, especially when the training comes to stability. Based on

hese inferences, we set λ6 = λ7 = 1 and add a constraint to force

he losses of the auxiliary branch to be no larger than those of

heir corresponding main branch. We also tried the same configu-

ation of λ6 and λ7 as in Lee et al. (2015) , the grading or detection

erformance does not show significant changes. 

.2. Discriminator network. 

The discriminative network increases detection accuracy by us-

ng an adversarial model to assess the joint distributions of the

oordinates of the bounding boxes. This thought is inspired by the

emantic segmentation scheme using adversarial networks, where

igher-order terms are used to reveal and reinforce the spatial la-

el relationship of adjacent points (for example, label consistency

an be used as a higher-order term because the labels of adjacent

oints should probably be the same ( Luc et al., 2016 )). In our work,

ince the coordinates of critical vertebrae are also related to each

ther, we are inspired to leverage the higher-order terms of the

ritical vertebrae coordinates to improve detection performance.

owever, specifying one kind of higher-order terms for coordinates

s difficult because the coordinates are continuous variables, and

elative relationships of coordinates (for example the height, area,

istance of different vertebrae, and even implicit joint distributions

hat are human-inconspicuous) are more often used rather than

he values of the coordinates. Thus, we use an adversarial module

o monitor a wide range of higher-order statistics of the bounding

ox coordinates without being limited to several manually defined

inds of higher-order statistics. Another advantage of introducing

dversarial module to our detection work is that the positions of

he critical vertebrae are dependent on each other, whereas the

etection framework neglects this dependence and only performs

ndependent detections of each vertebra. The adversarial element

an be a sound choice to make full use of these internal higher-

rder statistics as it is able to access all the detection boxes. By

everaging these higher-order statistics as soft constraints (if these

onstraints are violated, D can discriminate the output of the de-

ection network from ground truth detection boxes, and the D loss

s high), the adversarial module serves as a supervisor to guide the

igher-order statistics of detected vertebrae to gradually approach

he ground truth higher-order statistics, as shown in Fig. 8 . In this
ay, the adversarial module helps the detection network to im-

rove its performance. 

In the adversarial module, we take the normalized coordinates

f the ground truth boxes as the “real data” for all critical vertebrae

n an image. This results in a 3 × 4 coordinate matrix (each row of

he matrix corresponds to the four angular points of the bounding

ox of one critical vertebra). This ground truth coordinate matrix

s used as x (real data) in Eq. (1) since the ground truth box coor-

inates have certain spatial distributions and internal higher-order

tatistics, which is expected to be learned by G . Similarly, the pre-

icted coordinate matrix composed of normalized coordinates of

he predicted detection boxes serves as G ( z ) in Eq. (1) . However,

ince the input of G is the images I instead of the noise z , we

hange the notation to G ( I ) for clarity. 

Since the coordinate matrix (input of D ) is a tensor with a

ather small size (much smaller than the images used in image

emantic segmentation work), D can be implemented by a rela-

ively simple network with fewer parameters to enhance training

fficiency and avoid over-fitting. We use two convolution layers

3 × 3 kernel size, stride 1, with GN and leaky ReLU to stabilize

he training ( Radford et al., 2015 )) followed by a fully connected

ayer to build the D network, as shown in Fig. 8 . This network, al-

hough simple, can access the coordinates of all the three detection

oxes, so the mismatches in the high-order statistics of different

ertebrae can be penalized by the adversarial loss term ( Luc et al.,

016 ). For a comprehensible example, if wrong detection happens

say, for example, L3 is regarded as L4 by G ), the coordinate matrix

elationship would be significantly different from that of the cor-

ect coordinate matrix (the deviation of y coordinates of L4 to that

f L5 will significantly increase because detected L4 is far above

eal L4); and this will be penalized by the adversarial loss, which

rges the coordinates to gradually approach the internal distribu-

ion of the critical vertebrae coordinates. 

.3. FAR network training strategy 

The training strategy of FAR network empirically has a sta-

le performance by combining the robust losses of the multi-

ask recognition network and the discriminative network. Since the

ulti-task recognition loss has been detailed in Section 2.1.5 , We



10 S. Zhao, X. Wu and B. Chen et al. / Medical Image Analysis 58 (2019) 101533 

Fig. 9. Qualitative visualization shows that our FAR network can accurately perform spondylolisthesis grading and critical vertebrae detection in different modality MRI 

images. Fig. 9 (a)–(c) are MRI-T1 images with grading 0–2; (d)–(f) are MRI-T2 images with grading 0–2; (g)–(h) are MRI-PD images with grading 0–1; (i)–(j) are MRI-TSE 

images with grading 0–1. The dotted boxes are the detection boxes with confidence scores, and the solid boxes are ground truth boxes. Although the area, appearance, 

resolution, images intensity distribution and relative positions of the critical vertebrae are different, our network achieves high accuracy. 
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mainly consider the adversarial loss here. In training, D network

simultaneously receives the predicted coordinate matrix and the

ground truth coordinate matrix and calculates D ( x ) or D (G ( I )) ( D ( ·)
means the probability that D judges its input to be ground truth),

then D loss is calculated as Eq. (1) . FAR network uses a hybrid loss

function that is a weighted sum of two terms comprising a detec-

tion loss and GAN loss: 

min 

G 
max 

D 
αL G (G ( I ) , x ) − β[ L D (D ( x ) , 1) + L D (D ( G(I) ) , 0)] (9)

In Eq. (9) , the term L G (G ( I ) , x ) corresponds to the G loss, which is

a concise denotation of Eq. (7) since it is a function of detection

network parameters taking the image I and LGT detections x as in-

puts. The last two terms (with the negative sign) are D loss (the

probability of the output results can be discriminated by D ), which

correspond to the terms in Eq. (1) and are calculated by the op-

posite number of the cross-entropy of the outputs of D and1’s for

ground truth data (and0’s for predicted detections). The weights α
and β are set to be 1. 

When training, G and D should be trained respectively and si-

multaneously ( Han et al., 2018; Goodfellow et al., 2014 ). The min-

max optimization work Eq. (9) is split to two minimize work

( Eq. (10) for training G and (11) for training D ). Since the last term

in Eq. (9) is a function of both G and D parameters, it appears in

both Eqs. (10) and (11) : 

min 

G 
αL detect (G ( I ) , x ) − βL GAN (D ( G(I) ) , 0) (10)

min 

D 
L GAN (D ( x ) , 1) + L GAN (D ( G(I) ) , 0) (11)

Following Han et al. (2018) , Eq. (10) is changed to Eq. (12) for a

stronger gradient signal to speeds up training: 

min 

G 
αL detect (G ( I ) , x ) + βL GAN (D ( G(I) ) , 1) (12)

To ensure that D is functioning, two momentum optimizers are re-

spectively implemented on G and D . Considering the training of

G is harder than D , the initial learning rate for G is set to be

larger, as shown in Table. 1 . Since the grading task is dependent on

the detection task in G , the detection task in G and the adversar-

ial module D are first respectively and simultaneously trained for

10,0 0 0 steps ( ∼ 170 epochs) with the parameters of grading net-

work fixed. Then, the grading network is trained together with the
etection task and adversarial module for another 10 0 0 steps ( ∼ 17

pochs). 

. Data and experiments 

.1. Data acquisition 

The proposed FAR network has been intensively evaluated us-

ng a challenging dataset including 150 MRI images of different

odalities (such as T1, T2, PD, and TSE) acquired from different

edical centers. Besides the difference of modalities, the MRI im-

ges also have different image characteristics (such as vertebrae

ppearance, image resolution, intensity distribution) because they

re examined by different models of vendors and scanned using

ifferent parameters. The raw MRI lumbar scans are 3D volumes

ontaining multiple slices, however, since the universal clinical di-

gnosis method (Meyerding grading system) uses single slices that

ontain critical vertebrae to perform spondylolisthesis grading, we

ollow this method to perform spondylolisthesis grading using se-

ected single slices. Among sequential MRI scans of each patient,

he middle scan of the lumber is selected for a better presentation

f the critical vertebrae in the sagittal direction. Thus, there are

50 lumbar scans from 150 patients in our dataset, and no patient

s placed in both sets of training and testing. The numbers of ver-

ebrae in the images of different patients vary widely from 7 to 15,

hich adds to the difficulty of precisely locating the critical ver-

ebrae. The detection ground truth is labeled on each MRI image

sing our lab tool according to the clinical criterion. The spondy-

olisthesis ground truths are annotated by two experienced physi-

ians using Meyerding grading system blinded to each other. The

ifferences between the two manual grading results are used to

ssess the inter-operator variability. 

It should be noted that although we use the central sagittal

lice of the 3D scan to better present the critical vertebrae and

implify the training, the FAR network is not limited to central

lices, i.e., the central slice does not need to be designedly chosen

rom the 3D MRI scan. If the training dataset of FAR network con-

ains sagittal slices of different indices (not only the central slice),

he FAR network can learn to perform detection and grading for

hese slices. As long as the critical vertebrae for spondylolisthesis
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rading exists in the extracted slice, our FAR network can reliably

erform detection and grading. 

.2. Implementation details. 

For training, all the input selected slices to the FAR network are

irectly resized to size 512 × 512 without manual cropping, and

he batch size is set to be 2 as mentioned in Section 2.1.1 . The loss

eights are set as discussed in Sections 2.1.5 and 2.3 . The codes

f the FAR network are implemented in Python 3.6 on Tensor-

ow 1.2. The training configurations of the multi-task recognition

ramework and the discriminative network are listed in Table. 1 .

he gradient is clipped so that its maximum L2-norm is 5 to avoid

radient exploding and accelerate the convergence of our FAR net-

ork. The parameters of FEN and RPN are initialized using the pre-

rained network on COCO dataset, while the other parameters are

andomly initialized. Once all hyper-parameters are properly set,

ur FAR network does not need human intervention when process-

ng MRI scans of different patients. The training is implemented on

n NVIDIA GTX1080 GPU. 

For evaluation and comparison, standard five-fold cross-

alidation is employed. Since the number of the dataset is limited,

e did not divide it into training, validation and testing sets di-

ectly. Following the criterion of five-fold cross-validation, we ran-

omly partitioned the original dataset into five equal size sub-

atasets. Of the five sub-datasets, a single sub-dataset is retained

s the testing data unseen to the network, and the remaining four

ub-datasets are used as training data. During the cross-validation

rocess, we choose the same training parameters to train the mod-

ls, save the network training checkpoints, and evaluate the per-

ormance. The five results from the folds can then be averaged to

roduce a single result. This method can ensure that all images are

sed for both training and testing, and each image is used for test-

ng exactly once. 

.3. Evaluation criteria. 

Extensive experiments are conducted to validate the effective-

ess of our FAR network from the following aspects. Since our FAR

etwork is a multi-task detection grading network, we respectively

valuate FAR network from the aspect of grading and detection in

ll the following experiments. 

.3.1. Qualitative performance evaluation for FAR network 

In order to visually demonstrate the accuracy and robustness to

mage characteristics, we choose images of different MRI modal-

ties, vertebrae appearance, vertebrae numbers, image resolution,

ntensity distribution, and spondylolisthesis grading to visually

valuate the detection and grading results of our FAR network.

he chosen images are from different folds in our five-fold cross-

alidation to verify the reproducibility of our FAR network when

he training and testing data vary. The detection box and the

round truth box of the critical vertebrae are both demonstrated

o prove the excellent vertebrae detection performance; the pre-

icted gradings are also demonstrated to visualize the high grading

erformance based on the detected relative positions of the critical

ertebrae. 

.3.2. Quantitative performance evaluation for the grading task 

The grading accuracy is defined as the percentage of images

hose grading and detection are correct. This is a rather strict

etric because we find in some experiments that a small frac-

ion of wrongly detected images could have a correct grading re-

ult, however, we treat these images as wrongly graded because

he correct grading may be acquired by coincidence. 
We also calculate the confusion matrix for a more detailed anal-

sis of the spondylolisthesis grading performance. The confusion

atrix is an N × N matrix, where N represents the total number

f gradings (3 in our work). The element at the i th row and j th col-

mn of the confusion matrix means the number of images whose

redicted grading is i and ground truth grading is j . It is thus easy

o understand that the sum of the diagonal elements in the con-

usion matrix is the number of correctly graded images. Besides,

e add a new row to demonstrate the detection results, each el-

ment in this row means the number of wrongly detected images

or each grading. 

.3.3. Quantitative performance evaluation for the detection task 

The detection accuracy of our FAR network is mainly evaluated

y mAP 75 , which is a widely used evaluation metric in the object

etection domain. mAP 75 is a comprehensive metric that consid-

rs the precision, recall as well as the IoU (Intersection-over-union)

ith the ground truth boxes of an object detector. Many state-of-

he-art object detection networks such as Faster RCNN ( Ren et al.,

015 ), Mask RCNN ( He et al., 2017 ), and YOLO ( Redmon et al.,

016 ) use this metric to evaluate the performance of their net-

orks. Below, we give a brief introduction of mAP 75 to demon-

trate how this metric measures precision, recall as well as the IoU

imultaneously in one single metric. 

The metric mAP 75 is calculated by averaging the AP 75 (Average

recision at IoU threshold 0.75) among different classes. AP 75 is

cquired by summarizing the shape of the precision-recall curve

 Everingham et al., 2010 ) for objects of each given class. As dis-

ussed in Section 2.1.4 , each detection result is represented by a

et of detection box coordinates, a confidence score (which is ob-

ained by feeding the DET 
pred 

CL 
to the softmax operation to obtain

lass probability vector, and then choosing the largest element of

he class probability vector), and a predicted class label (the index

here the class probability vector reaches its maximum) in our ob-

ect detection task. Having this in mind, the AP 75 for each class is

alculated as follows: 

First, all detection boxes having this class are sorted by their

onfidence scores. For the i th point in the precision-recall curve,

he first i detection boxes in the sorted box series (with i high-

st confidence scores) are chosen to be predicted positives. Then,

or each detection box, if it has an IoU larger than 0.75 with the

round truth box and the predicted class label is correct, this de-

ection is considered to be a true positive based on our selected

oU threshold (0.75). Otherwise, this detection is considered to be

 false positive. Then, the precision and recall are calculated by: 

precision = 

t rue posit i v e 
t rue posit i v e + false positi v e 

recall = 

t rue posit i v e 
t rue posit i v e + false negati v e 

= 

t rue posit i v e 
DET GT positi v e ob jects 

(13) 

n this way, the i th point in the precision-recall curve is deter-

ined. As i increases, more detection boxes are considered to be

ositive. If the newly chosen box is true positive, the recall and

he precision will both increase (the precision will keep the same

f it is 1); if the newly chosen box is false positive, the recall will

emain the same and the precision will decrease. Thus, when i

s gradually increased to reach some value, the recall will even-

ually reach 1. At this time, we can obtain the whole precision-

ecall curve. Then, the AP 75 value is calculated by averaging the

recision at all values of recall (which can be understood as the

pproximated area-under-curve of the precision-recall curve). This

alculation has many variations such as “11-point interpolation”

nd “interpolating all points”, however, this does not make much
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difference in our work. After calculating the AP 75 for all classes, the

AP 75 ’s of different classes are averaged to obtain mAP 75 . 

One advantage of mAP 75 is that it penalizes methods which

retrieve only a subset of true positive objects with high preci-

sion (i.e., the method omits some of the objects in the image)

( Everingham et al., 2010 ). 

The IoU threshold can be adjusted to obtain AP M 

(and mAP M 

),

where M is the IoU threshold. The larger M, the more difficult it is

for a predicted detection box to be true positive because it has to

be highly overlapped with the ground truth box. In our work, be-

sides mAP 75 , we calculated mAP M 

of different IoU thresholds from

0.5 to 0.95, which reveals the variation of mAP M 

when the IoU

threshold become becomes stricter and stricter. If the mAP M 

is high

at large M, we know that our method has very few false positives

and false negatives, and the detection boxes have high IoU’s with

their ground truths. This is required in our multi-task detection-

grading work because the grading performance is significantly af-

fected by the detection results. 

3.3.4. Ablation experiments of FAR network 

Ablation experiments following the same five-fold cross-

validation protocol are carried out to respectively prove the ne-

cessity of the hybrid supervision and the adversarial module. First,

the auxiliary branch in the hybrid supervision is removed (an-

notated as “without hybrid supervision”) as a comparison exper-

iment to demonstrate the importance of the auxiliary gradient

back-propagation pathway. Second, the adversarial module is re-

moved (annotated as “without adversarial module”) to prove the

strengths of the adversarial ability to leverage the higher-order

statistics. Third, both the auxiliary branch and the adversarial mod-

ule are removed (annotated as “only MDGM”) for proving the abil-

ities of the multi-task module, and also the necessity of the inte-

gration of proposed modules. Also, inner-comparison experiments

are carried out to show that the FAR network is robust to changes

of hyper-parameters such as anchor scales, anchor aspect ratio, and

Resnet structure. 

3.3.5. Inter-comparison experiments 

Inter-comparison experiments concerning Resnet and four other

popular networks (VGG-19, VGG-19-FCN, GoogLeNet-FCN, and

Densenet) are conducted to demonstrate the strengths of the FAR

network. These experiments are designed as two parts: (1) The

first part is using these baseline networks to directly perform grad-

ing as a classification task. (2) The second part is using these

baseline networks as feature extraction network (FEN) for the

multi-task recognition network in Fig. 2 . This design on one hand

demonstrates the effect of our multi-task detection-grading work-

flow, and on the other hand compares different FEN’s for feature

extraction. 

Direct grading workflow. Five popular networks (VGG-19,

VGG-19-FCN, GoogLeNet-FCN, Resnet, and Densenet) are used

to directly perform spondylolisthesis grading without detec-

tion with the same five-fold cross-validation protocol. VGG-19

( Simonyan and Zisserman, 2014 ) is a network designed for large-

scale image recognition using 16 convolution layers and 3 fully

connected layers. VGG-19-FCN and GoogLeNet-FCN are both from

the fully convolutional network (FCN) ( Shelhamer et al., 2016 ) for

natural image classification. VGG-19-FCN is composed by chang-

ing the last 3 fully connected layers of VGG-19 into 1 × 1

convolutional layers. GoogLeNet-FCN, as shown in Table 1 of

( Szegedy et al., 2015 ), is a fully convolutional network of 5 stages,

22 layers with inception modules for performance enhancement.

The Resnet backbone in FEN of our work is also used to di-

rectly perform spondylolisthesis grading without detection. Lastly,

Densenet, which is one of the most state-of-the-art networks, is

used for direct grading task. We use architecture DenseNet-121 in
able 1 in Huang et al. (2017) for this task. All networks are imple-

ented by ourselves on Tensorflow using the same training batch

ize. The grading accuracies are examined when the training steps

each 10 0 0, 10 0 0 0, and 11,0 0 0 (which are the grading task train-

ng steps, the detection training steps, and the detection training

teps plus the grading training steps in the FAR network) using the

ame metric as FAR network. The best one of the three accuracies

s used to compare with the FAR network. 

Multi-task detection-grading workflow using different FEN.

his experiment series uses all above-mentioned networks as fea-

ure extraction network (FEN) in our multi-task detection-grading

orkflow. The subsequent procedures (top-down layers, regional

roposal network, multi-task detection grading network, auxiliary

upervision branch, and the adversarial module) are the same as

hose in the FAR network for a fair comparison, as shown in Fig. 3 .

imilar to the FAR network, necessary modifications are applied to

he baseline networks for feature extraction because the baseline

etworks are originally designed for classification. The shapes of

he intermediate outputs of these baseline networks are modified

o produce tensors with suitable shapes for the hierarchical fea-

ures (that is, 128 × 128 × 256 for the first tensor, 64 × 64 × 512

or the second, 32 × 32 × 1024 for the third and 16 × 16 × 2048

or the forth), and these tensors are used as C2 ∼ C5 in Fig. 4 . The

odifications for different baseline networks are as follows: 

• For VGG-19, we adjust the output widths, heights, and chan-

nels of the 2–5th convolutional stacks (there are altogether 5

stacks in VGG-19, as shown in Table 1 in Simonyan and Zis-

serman (2014) ) to acquire tensors of the above-mentioned

shapes and use them as C2 ∼ C5. This is achieved by

adding/removing the pooling layers (to adjust the widths

and heights) and adding 1 × 1 convolutional layer (to adjust

the channels) after some convolutional stacks. 
• For VGG-19-FCN, C2 ∼ C4 are the same as those in VGG-19.

Then, we convert the last three fully connected layers to

1 × 1 convolutional layers and adjust the output shape of

the last 1 × 1 convolutional layer to be 16 × 16 × 2048. This

output is used as C5. 
• For GoogLeNet-FCN, the outputs of the second pooling lay-

ers and those of inception 3b ∼ 5b in Table 1 of the orig-

inal GoogLeNet paper ( Szegedy et al., 2015 ) are used as

C2 ∼ C5. The widths, heights, and channels of these ten-

sors are adjusted to fit our requirements in the same way

(adding/removing the pooling layers and adding 1 × 1 con-

volutional layers) as in experiments with VGG-19. 
• For Densenet, based on the DenseNet-121 architecture, the

output of each transition layer succeeding one dense block

is used as the hierarchical features C2 ∼ C5. The hyperpa-

rameters “growth rate” and “layers in each block” are care-

fully adjusted to guarantee the features has the same shape

with those of FAR network. We tried several combinations

of these hyperparameters for the best performance. 

.3.6. Comparison of detecting all vertebrates separately and 

etecting all vertebrates in a single bounding box 

In our FAR network, all critical vertebrae are detected sepa-

ately. However, our ultimate objective is spondylolisthesis grad-

ng. Thus, we also carry out experiments to compare the grading

erformance of detecting all vertebrates separately and detecting

ll vertebrates in a single bounding box. In experiments detect-

ng all vertebrates in a single bounding box, the upper-left corner

oint of the L4 bounding box, and the lower-right corner of the

1 bounding box are used to form a new bounding box. This new

ounding box is used as the ground truth of the detection task.

ntuitively, the predicted detection box for each image should be

 single bounding box containing all three critical vertebrae. This
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Table 2 

Confusion matrix spondylolisthesis grading estimated by 

our method compared to the ground truth for each pa- 

tient. The horizontal “Grade 0–2” means the ground 

truth grading, and the vertical “Grade 0–2” means the 

predicted grading. 

(training) Grade 0 Grade 1 Grade 2 

Grade 0 287 4 0 

Grade 1 1 219 1 

Grade 2 0 1 87 

wrong detection 0 0 0 

(testing) Grade 0 Grade 1 Grade 2 

Grade 0 66 5 0 

Grade 1 3 51 2 

Grade 2 0 0 17 

wrong detection 3 0 3 
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ounding box is then used to perform the grading task instead of

he three separate bounding boxes used in our FAR network. The

rading results are recorded and compared with those of our FAR

etwork. 

. Results and discussion 

.1. Comprehensive analysis 

.1.1. Qualitative evaluation results of FAR network 

Fig. 9 demonstrates that FAR network has simultaneously

chieved accurate spondylolisthesis grading and excellent criti-

al vertebrae detection. The images shown in Fig. 9 are of dif-

erent modalities, vertebrae appearance, vertebrae numbers, im-

ge resolution, and intensity distribution from different folds in

ur five-fold cross-validation. The high overlap of the detected

oxes (dashed boxes) with their ground truth (solid boxes) in

ig. 9 shows that our FAR network is robust to changes of im-

ge characteristics. Its performance is reproducible when the train-

ng and testing data varies. Also, the spondylolisthesis grades are

ifferent in these images, which means that the detection per-

ormance of our FAR network is not affected by spondylolisthesis

rades. The grading results labeled in the figures are correct, which

emonstrates high grading performance based on the detected rel-

tive positions of the critical vertebrae. 

.1.2. Quantitative detection and grading results of FAR network 

General accuracies for detection and grading task. For quanti-

ative analysis, our FAR network is able to correctly detect all crit-

cal vertebrae in all of the training images and 96% of the test-

ng images, i.e., on average, ∼ 28.8 out of 30 testing images are

orrectly detected in each fold of the five-fold cross-validation.

ased on these detection results, the overall spondylolisthesis

rading accuracy is 0.9883 ± 0.0094 for the training dataset and

.8933 ± 0.0276 for the testing dataset. This means that: (1) On av-

rage, the FAR network is able to correctly perform spondylolis-

hesis grading in ∼ 118.6 out of the 120 training images, while it

s able to correctly grade ∼ 26.8 out of the 30 testing images in

ach fold of the five-fold cross-validation. (2) The grading network

s properly trained based on perfect detection results in the train-

ng dataset, which ensures that all critical vertebrae are detected

nd used for the grading task during training; neither multiple de-

ection nor missing detection happens to perturb the training of

he grading network in MDGM. 

The confusion matrix for grading task. The confusion ma-

rix (shown in Table. 2 ) is calculated for a more detailed evalu-

tion of the grading performance. As mentioned in Section 3.3.2 ,

ach row in the confusion matrix indicates the predicted gradings

hile each column indicates the ground truth grades. For example,

he first row of the training confusion matrix means that the FAR
etwork predicts 291 instances to be grading 0, in which 287 of

hem are correct and 4 of them are actually grading 1. The confu-

ion matrix counts up the detection results in the five-fold cross-

alidation: since we have respectively 72, 56, and 22 patients of

rade 0, 1, and 2 in the dataset, and that each patient are used

 times for training and 1 time for testing in the five-fold cross-

alidation, there should be respectively 288, 224, and 88 instances

n training and 72, 56, and 22 instances in testing. It can be seen

hat 593 out of 600 training instances and 134 out of 150 testing

nstances are correctly detected and graded; all training instances

nd 144 out of 150 testing instances are correctly detected. For the

rongly processed instances in testing, 3 instances with grade 0

nd 3 instances with grade 2 are wrongly detected, 5 instances

ith grade 1 are regarded as grade 0, 3 instances with grade 0 are

egarded as grade 1, and 2 instances with grade 2 are regarded as

rade 1. None of the predicted grades differs more than one from

he ground truth. 

It should be noted that although there are more wrong de-

ections in images of grade 0 and 2 than grade 1 (the last row

n Table. 2 ), the detection result is actually not relevant to the

pondylolisthesis grading. Instead, the difference in detection ac-

uracy of different grades might be caused by the competition

cross classes when calculating DET 
pred 

CL 
( He et al., 2017 ). In the

lass competition, even if the probability of the correct class is just

lightly smaller than that of the wrong class, the detection would

e wrong. The class competition is a natural property of the so-

ution of classification tasks using CNN’s, which is not affected by

he spondylolisthesis grading. 

Grading performance comparison with inter-operator vari- 

bility. As mentioned in Section 3.1 , we have two manual grad-

ngs performed by different physicians (denoted as P1 and P2).

e count up the number of images where the two gradings per-

ormed by P1 and P2 are the same. The ratio of this summation to

he total number of images is regarded as the accuracy for inter-

perator variability, which is calculated to be 0.9200, i.e., 138 out

f 150 manual gradings are the same with each other. It is thus

hown that the accuracy of our method (0.8933, i.e., 134 out of

50 gradings are correct) is comparable with physician work. The

rong gradings of our FAR network most happen when the ground

ruth forward displacement measurement (the length of the or-

nge arrow in Fig. 1 ) falls at ranges close to critical points of ad-

acent gradings (forward translation percentage is less than 10% or

n 25% ± 5%). In practice, this case accounts for 70% of the wrong

rading (correctly detected but wrongly graded images) in testing. 

The mAP 75 and mAP M 

at different threshold for detection per-

ormance. The high spondylolisthesis grading performance can be

ainly attributed to the excellent detection accuracy and precise

ertebrae bounding boxes of the multi-task recognition network.

he mAP 75 of our FAR network for the training/testing dataset are

espectively 1 ± 0 and 0.9636 ± 0.0180, which means that the de-

ection network has a good performance: the three critical verte-

rae are detected and correctly classified in almost all images, and

he detected vertebrae overlap very well with the ground truth

IoU ≥ 0.75). For a more generalized evaluation, we also calculate

he mAP M 

(mAP at different IoU thresholds) and plot the mAP-

oU curve. The calculated mAP-IoU curve as a function of IoU is

hown in the left figure in Fig. 10 ) for a more detailed evaluation

f the detection performance. This curve shows that the mAP is

till high ( ≥ 0.9) when the IoU threshold is 0.9/0.8 in the train-

ng/testing dataset, which means that almost all detections have an

oU higher than 0.9 with their ground truth in the training dataset,

nd above 90% of the detections have an IoU higher than 0.8 with

heir ground truth in the testing dataset. Moreover, as shown in

he right figure in Fig. 10 ), the mAP-IoU curves for all critical ver-

ebrae are similar, which means that the performance of the de-

ection task in our FAR network is insensitive to different classes. 
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Fig. 10. Average Precision (AP) for different classes (right) and mean Average Precision (mAP) for all classes (left) at different IoU thresholds calculated using the training 

(solid lines) and testing (dashed lines) dataset. The mAP value is averaged throughout each instance in the dataset. The mAP is still high when the IoU threshold is as high 

as 0.8, which means that our method not only detects all the critical vertebrae but also achieved high accuracy in the bounding box regression (IoU with ground truth boxes 

are high). 

Table 3 

Ablation experiments demonstrating the effect of PRL and GAN. It can be seen that each component in 

FAR network efficiently improved the detection accuracy. 

Row No. Settings test grading accuracy test detection accuracy ( mAP 75 ) 

1 our FAR network 0.8933 ± 0.0276 0.9636 ± 0.0180 

2 without hybrid supervision 0.8200 ± 0.0348 0.9378 ± 0.0326 

3 without adversarial module 0.8533 ± 0.0315 0.9550 ± 0.0278 

4 only MDGM 0.8067 ± 0.0398 0.9364 ± 0.0385 
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Our FAR network can accurately and fully-automatically per-

form detection and grading, which is beneficial for clinical treat-

ment processes such as therapeutic schedules and surgery plans.

For example, the FAR network automatically presents that grade 2

spondylolisthesis happens between L4 and L5 vertebrae in Fig. 9 (c).

In term of treatment planning, our FAR network indicates that

physical therapy can be applied to this patient to reduce the

amount of pressure the spine. However, if the patient feels that

the condition is worsening, which implicates a risk of transition to

higher grades, one should try bracing to help immobilize the spine.

Moreover, the detection result also shows that the intervertebral

disc between L4 and L5 may be compressed by the vertebrae, and

there may be a risk of harming the disc and develop bulging disc

or slipped disc in the future. In all, although the variability of im-

age characteristics in multi-modality MRI images leads to unusual

difficulties, the FAR network is able to acquire accurate detection

and grading results. 

4.2. Ablation experiments. 

As shown in Table. 3 , the hybrid supervision and adversar-

ial module contribute to a superior performance of detection and

grading accuracy. As a baseline, FAR network on average achieves

0.8933 ± 0.0276 testing grading accuracy and 0.9636 ± 0.0180 test-

ing mAP 75 (first row in Table. 3 ). (1) After only preserving the

multi-task detection grading module (MDGM), the testing grad-

ing accuracy decreases to 0.8067 ± 0.0398 and testing mAP 75 de-

creases to 0.9364 ± 0.0385 (fourth row in Table. 3 ). This not only

demonstrates the effectiveness of hybrid supervision and adversar-

ial module, but also proves that the multi-task detection grading

module is capable of extracting correct features and finding out

the fine-grained detailed difference between similar appearing ver-

tebrae, which contributes to correctly classifying the critical ver-

tebrae. (2)If the hybrid supervision is removed, the testing grad-

ing accuracy decreases to 0.8200 ± 0.0348 and testing mAP de-
75 
reases to 0.9378 ± 0.0326 (second row in Table. 3 ), which demon-

trates the hybrid supervision can significantly correct detection

rrors by removing false positives and promote correct grading by

ielding better bounding box positions. (3)If the adversarial mod-

le is removed (third row in Table. 3 ), the testing grading accu-

acy decreases to 0.8533 ± 0.0315 and testing mAP 75 decreases to

.9550 ± 0.0278, which demonstrates the adversarial plays a role

n refining the predicted vertebrae coordinates probably by exam-

ning their internal higher-order relationships. Since FAR network

chieves higher detection and grading performance than its ablated

ersions, the combination of the hybrid supervision and adversarial

odule makes the FAR network a more efficient and reliable res-

lution for critical vertebrae detection and spondylolisthesis grad-

ng. 

.3. Hyper-parameter changes. 

As shown in Table. 4 , the detection and grading performance

s investigated with different settings of anchors. By default we

se anchors of 5 scales and 3 aspect ratios; the grading accu-

acy and detection mAP 75 are listed in the 1 st row (which is the

ame with the 1 st row in Table. 3 ). Then, scales 8 and 128 are re-

oved in sequence, as shown in the 2–3rd rows. Compared with

he default experiment, it is found that both grading accuracy and

etection mAP 75 drop only by an inconspicuous margin ( ∼ 0.66%

rop in testing grading accuracy, which corresponds to ∼ 0.18 in-

tance in each fold in the five-fold cross-validation; and ∼ 0.51%

rop in testing mAP 75 ). Next, we use only 1 aspect ratio (1:1) to

e-implement the above experiments, and the results are listed in

he 4–6th rows of Table. 4 . The results are almost as good as using

 aspect ratios (the testing grading accuracies and mAP 75 ’s in the

–6th rows are similar to those in the 1–3rd rows). These results

how that the FAR network is robust to changes of anchor settings.

his robustness may be because the size of the critical vertebrae

s mostly 16–64, and that different critical vertebrae have aspect
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Table 4 

Detection results using different settings of anchors. It is seen that when the anchor scales and ratios are reduced, the mAP of our 

proposed FAR network only drops by a inconspicuous margin, namely, our network is robust to changes of anchor settings. 

Row No. Settings Anchor scales Aspect ratios test grading accuracy test detection accuracy ( mAP 75 ) 

1 5 scales, 3 ratios 8, 16, 32, 64, 128 2:1, 1:1, 1:2 0.8933 ± 0.0276 0.9636 ± 0.0180 

2 4 scales, 3 ratios 16, 32, 64, 128 2:1, 1:1, 1:2 0.8933 ± 0.0144 0.9602 ± 0.0195 

3 3 scales, 3 ratios 16, 32, 64 2:1, 1:1, 1:2 0.8867 ± 0.0291 0.9585 ± 0.0182 

4 5 scales, 1 ratios 8, 16, 32, 64, 128 1:1 0.8667 ± 0.0298 0.9590 ± 0.0186 

5 4 scales, 1 ratios 16, 32, 64, 128 1:1 0.8533 ± 0.0292 0.9548 ± 0.0207 

6 3 scales, 1 ratios 16, 32, 64 1:1 0.8533 ± 0.0325 0.9542 ± 0.0191 

Table 5 

The effect of number of layers in Resnet. FAR network is robust to changes in the number of layers in 

the feature extracting network within a certain scope. 

Row No. Settings of (FEN backbone) test grading accuracy test detection accuracy ( mAP 75 ) 

1 Resnet-101 0.8933 ± 0.0276 0.9636 ± 0.0180 

2 Resnet-50 0.8600 ± 0.0301 0.9645 ± 0.0246 

Table 6 

Comparison with the state-of-the-art. The annotation direct means direct grading, whereas the annotation 

multi-task means multi-task detection and grading. 

Row No. Settings test grading accuracy test detection accuracy ( mAP 75 ) 

1 our method (Resnet-multi-task) 0.8933 ± 0.0276 0.9636 ± 0.0180 

2 Resnet-direct 0.6933 ± 0.0562 –

3 VGG-19-multi-task 0.8600 ± 0.0356 0.9377 ± 0.0384 

4 VGG-19-direct 0.7600 ± 0.0471 –

5 VGG-19-FCN-multi-task 0.8667 ± 0.0392 0.9442 ± 0.0367 

6 VGG-19-FCN-direct 0.7800 ± 0.0446 –

7 GoogLeNet-FCN-multi-task 0.5000 ± 0.0898 0.7555 ± 0.0786 

8 GoogLeNet-FCN-direct 0.6733 ± 0.0955 –

9 Densenet-multi-task 0.7933 ± 0.0760 0.8981 ± 0.0645 

10 Densenet-direct 0.7000 ± 0.0882 –
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atios close to 1:1 (although they may appear differently). More-

ver, the hybrid supervision manner may also contribute to this

obustness by training the RP N 

pred 
BBC 

’s and DET 
pred 

BBC 
’s in a unified net-

ork, which provides more appropriate proposal positions so that

sing linear correction is more appropriate. In this way, even if

here are fewer anchors (which means that the positive anchors

ay be somewhat farther to the ground truth), a good perfor-

ance could still be achieved. 

We also change the number of layers in Resnet (which are used

or feature extraction in FEN) following He et al. (2017) . The fa-

ous Resnet structure Resnet-50 and Resnet-101 are compared.

he results listed in Table. 5 shows that changing Resnet-101 to

esnet-50 does not significantly decrease testing grading accuracy

r mAP 75 . The FAR network is robust to changes in the number of

ayers in the feature extracting network within a relatively wide

cope, which means that the hierarchical features are correctly ex-

racted in FEN. 

.4. Inter-comparison. 

As mentioned in Section 4.4.3 , five popular networks (i.e., VGG-

9, VGG-19-FCN, GoogLeNet-FCN, Resnet, and Densenet) are used

o perform spondylolisthesis grading in two workflows (i.e., multi-

ask detection and grading workflow and direct grading workflow

ithout detection). The results in Table. 6 show that: (1) our pro-

osed multi-task detection and grading workflow is beneficial to

he grading accuracy. (2) Our FAR network, i.e., multi-task detec-

ion and grading workflow with Resnet as FEN, performs the best

mong the baseline networks. Comparing with the state-of-the-art

lassification networks, FAR network shows significant advantages

y an average of ∼ 15% grading accuracy. 
.4.1. Comparison with direct grading workflow 

The 1 , 3 , 5 , 7 , 9 th rows in Table. 6 are the experiments using the

ulti-task detection and grading workflow with different FEN’s,

hile the 2 , 4 , 6 , 8 , 10 th rows are the experiments using the di-

ect grading workflow with the corresponding FEN’s. Generally, the

ulti-task workflow outperforms the direct grading workflow, as

ong as the detection accuracy is acceptable. Detailed discussions

re as follows: 

Our FAR network (multi-task workflow with Resnet as FEN)

ersus Resnet for direct grading. The first and second rows in

able. 6 reveals the advantages of the multi-task workflow in our

AR network compared to the “Resnet-direct” method. Although

sing Resnet to directly perform spondylolisthesis grading as a

lassification work has a training accuracy as high as our FAR

etwork (0.9917 compared with 0.9883, which are not shown in

able. 6 for concision and readability), the testing accuracy is

ar lower (0.6933 compared with 0.8933). This indicates that the

Resnet-direct” model may be over-fitting when directly used to

redict spondylolisthesis grading. The over-fitting may be due to

he redundant information provided by the image, which is elimi-

ated by the detection work by revealing the coordinates (and the

elative locations) of the critical vertebrae. The most important de-

isive factors of spondylolisthesis are learned through the detec-

ion task, and the nonsignificant factors are wiped off to guarantee

 higher grading performance. Actually, the RPN and MDGM have

uch fewer parameters than the FEN (RPN has 3 convolutional lay-

rs; MDGM has 9 convolutional layers, 4 for detection task and 5

or grading task), but they show a significant effect on grading per-

ormance. The multi-task workflow in our FAR network reinforces

he mutual benefit between detection and grading for superior per-

ormance. 

Other networks for multi-task workflow versus direct grad-

ng. (1) For VGG-19 and VGG-19-FCN, the multi-task detection and
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grading experiments also show better grading performances than

the direct grading experiments (the accuracy is 10% higher in the

multi-task workflow). This again demonstrates the advantages of

our designed MDGM, hybrid supervision, as well as the adversar-

ial module. VGG-19 and VGG-19-FCN seem to be less over-fitted

in the direct grading workflow (nevertheless, over-fitting still ex-

ists) probably because they contain fewer convolutional layers. (2)

For GoogLeNet-FCN, the multi-task detection and grading experi-

ments show even worse grading performance than direct grading.

This may be due to the GoogLeNet network is not suitable for cor-

rectly detecting the critical vertebrae (as shown in the Table. 6 , the

detection performance measured by mAP 75 is not satisfactory; ac-

tually, in nearly 40% of the images, not all three vertebrae are cor-

rectly detected). The incorrect detections disturb the grading pro-

cedure and result in a worse grading accuracy. (3) For DenseNet,

the multi-task detection and grading experiments show slightly

better grading performance than direct grading, but the perfor-

mances of both two workflows are lower than those of Resnet and

VGG-19/VGG-19-FCN. 

4.4.2. Comparison of different FEN’s in the multi-task 

detection-grading workflow 

Among the networks used in the multi-task detection-grading

workflow, we find that the Resnet performs the best; VGG-19/VGG-

19-FCN also show acceptable performance. The VGG-19/VGG-19-

FCN have relatively large model capacity, so they produce gener-

ally good results; however, the deeper network and the shortcut

connections in Resnet can extract more distinguishable features

for different vertebrae and further improve the performance. VGG-

19 and VGG-19-FCN show similar performance in the multi-task

workflow, probably because the added three 1 × 1 convolutional

layers do not make significant changes in the whole workflow con-

taining FEN, RPN, MDGM, and the adversarial module. 

To our surprise, we find that both detection performance

and grading accuracy of GoogLeNet and Densenet are lower

than those of Resnet and VGG-19/ VGG-19-FCN. Experiments in

Shelhamer et al. (2016) have also reported similar results, i.e., the

performance of GoogLeNet does not match that of VGG-16. In or-

der to explore the reasons for these results, we further analyze

the structures of the convolutional networks. We find that: (1)

VGG is a cascade network where the input of each layer is the

output of the preceding layer; Resnet is a similar cascade struc-

ture except for some shortcut connections summing up the in-

put and output of several convolutional layers. (2) Both GoogLeNet

and Densenet contain parallel architectures, i.e., the same inputs

are processed by different convolutional layers, and then the re-

sults are concatenated in the channel dimension. For example, in

the inception unit in GoogLeNet, the same inputs are processed

by four parallel branches (respectively 1 × 1 convolutional layer,

1 × 1 convolutional layer and 3 × 3 convolutional layer, 1 × 1 con-

volutional layer and 5 × 5 convolutional layer, and Max Pooling

layer and 1 × 1 convolutional layer), then the four results are con-

catenated in the channel dimension. Similarly, the input and output

of the composite functions in the dense blocks are concatenated

in Densenet ( Huang et al., 2017 ). These concatenation operations

make the network wider ( Szegedy et al., 2015 ), but they may to

some extent weaken the effect of the convolutional layers because

only a proportion of feature maps after the convolutional layers

are added to the “collective knowledge” of the network, while the

remaining feature maps are kept unchanged ( Huang et al., 2017 ).

Since a proportion of the channels in the output feature maps are

simply duplicated from the input (or only processed by a simple

combination of Max Pooling layer and 1 × 1 convolutional layer),

the effect of the convolutional layers in GoogLeNet and Densenet

is weakened. Actually, for Densenet, we find that the performances

are better when we use fewer “layers in each block” and larger
growth rate”. This means that when we use fewer dense connec-

ions (and concatenation operations), the outputs of each layer are

ess affected by its input, and the results are better. Thus, we infer

hat the inappropriate concatenations in the parallel convolutional

rchitecture are harmful to the detection/grading performance. 

.4.3. Comparison of detecting all vertebrates separately and 

etecting all vertebrates in a single bounding box 

As shown in Table. 7 , compared to detecting all vertebrates sep-

rately, detecting all vertebrates together in a single bounding box

or all vertebra results in lower grading performance and similar

etection performance. This may be due to: 

• For the grading task, detecting all vertebrae separately can

acquire the bounding box coordinates of each critical verte-

bra. Since the grading is related to the relative positions of

the vertebra, revealing their bounding box coordinates helps

promote the grading performance. On the contrary, the sin-

gle bounding box cannot reveal the relative positions of the

critical vertebrae, which is unbeneficial to the grading task. 
• For the detection task, the image characteristics are not af-

fected by the detection target, and the difficulty of separate

detection and single detection are almost the same. Thus,

the detection performances of the two experiments are sim-

ilar. 

.5. Using our FAR network to directly process 3D MRI scan. 

Up to this point, the discussion of our FAR network is on pro-

essing 2D MRI slice. Now, we would like to demonstrate that our

AR network is able to be extended to directly process 3D lumbar

cans. Since the grading task is clinically performed using 2D slice,

rocessing spondylolisthesis grading using 3D MRI scan may lack

linical background support. Thus, we mainly discuss the detection

ask in this section. From the aspect of methodology, vertebrae de-

ection from 3D MRI scans can be broadly divided into two classes:

1) directly using 3D CNN’s; (2) using 2D CNN’s with some addi-

ional machine learning methods. We give a brief discussion of the

wo methods as follows: 

Directly using 3D CNN’s is a straightforward method of pro-

essing 3D MRI scans. 3D CNN is also a novel concept for 3D ob-

ect detection that can leverage the spatial relevance of different

agittal slices in the 3D input. Also, they are not difficult to imple-

ent based on state-of-the-art deep learning architectures such as

ensorflow. 

For our FAR network, replacing the 2D CNN’s with 3D CNN’s

ay be a method for directly using 3D CNN’s for vertebrae detec-

ion. However, the computational cost may be a problem for di-

ectly training 3D CNN’s. Although some methods have been pro-

osed to deal with this problem, they may still face class imbal-

nce problem and/or complicated pre-processing/post-processing

rocedures. For example, Liao et al. (2018) uses image samples

cropped images) to train 3D CNN’s to detect vertebrae. After the

raining completes, the trained 3D CNN network is converted to

D FCN by reshaping the weight matrices into 1 × 1 × 1 convolu-

ional layers. The entire 3D image is fed to the FCN during testing.

his method can efficiently reduce computation, but it still faces

he problems of losing the global information of the input 3D im-

ge. Even though samples appropriate for representing vertebrae

re correctly cropped, it is hard for the network to distinguish the

ertebrae without this global information because different verte-

rae look similar. Sorting the positive samples by coordinates and

eeding them into an LSTM can mitigate this problem, however,

n the testing phase, once there exist false positives, the sorting

rocedure would be incorrect and the performance of LSTM is ru-

ned. Also, the selection of samples also requires a lot of consider-

tions and/or pre-processing. For example, if samples are randomly
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Table 7 

Comparison of detecting all vertebrates separately and detecting in a single bounding box. 

Row No. Settings test grading accuracy test detection accuracy ( mAP 75 ) 

1 Detecting each vertebra separately 0.8933 ± 0.0276 0.9636 ± 0.0180 

2 Detecting all vertebra together 0.8333 ± 0.0323 0.9582 ± 0.0184 
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hosen, one should consider how to deal with the class imbalance

roblem (the negative samples would be much more than positive

nes) and the portion cropping problem (whether to consider a

ropped sample that contains only a section of a vertebra rather

han the whole vertebra as a positive). Thus, we think that 3D

NN’s are not necessarily needed in our work. 

Using the extension of 2D CNN’s to process 3D lumber scans

s easy to implement. It does not require additional computational

ost by introducing 3D CNN’s. Also, since our FAR network is de-

igned for 2D MRI images, the detection and grading task for 3D

RI scans can be performed with the existing FAR network slice

y slice. However, this scenario ignores the spatial relationship of

ifferent slices, which may affect detection performance. 

One remedial measure of leveraging the spatial relationship is

o introduce additional machine learning methods. After feeding

he single slices to the FAR network, simple and effective machine

earning methods such as voting, random forests, LSTMs can be

sed to integrate the detection results of single slices. In this way,

he spatial relevance of different sagittal slices is leveraged without

ntroducing too much computation. 

Actually, this method is to some extent similar to that proposed

y Liao. Liao’s method ( Liao et al., 2018 ) uses 3D CNN’s for de-

ecting single vertebra at some given locations (i.e., the cropped

mages) from different slices; and then integrate the information

f different locations in one slice using LSTM (or other machine

earning methods). Our method, as a contrast, uses 2D CNN’s for

etecting all vertebra in a given slice; and then integrate the in-

ormation of different slices using LSTM (or other machine learn-

ng methods). Both methods first detect vertebrae from some di-

ensions using CNN’s, then uses other methods to integrate the

nformation from the other dimension. The difference is that the

equential order of the processing dimensions is different. 

In summary, our FAR network is able to be directly extended to

D lumbar scan without many modifications, and has strong appli-

ation ability in computer-aided diagnosis and treatment plan of

pondylolisthesis. 

. Conclusion 

In this paper, we develop a faster adversarial recognition (FAR)

etwork to detect critical vertebrae and perform spondylolisthesis

rading from MRI images across multiple modalities. FAR network

s trained in an adversarial scheme: the generator is a multi-task

ecognition network that performs high quality (large IoU with

round truth and no false-positives) detection and accurate grading

ith the help of an auxiliary gradient back-propagation pathway in

ybrid supervision manner; and the discriminator implicitly lever-

ges the high-order statistics of the detection coordinates to su-

ervise the generative network and refine the detections. The ex-

erimental results demonstrate the effectiveness of FAR network in

etecting critical vertebrae as well as performing spondylolisthesis

rading from MRI images with different image characteristics. 
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