
Published as a Tiny Paper at ICLR 2024

VISUALIZING INFORMATION CONSERVATION AND DE-

COMPOSITION VIA THE INFORMATION MATRIX

Dor Tsur & Haim Permuter
School of Electrical Engineering
Ben-Gurion University of the Negev
{dortz,haimp}@post.bgu.ac.il

ABSTRACT

We introduce a novel framework for visualizing information conservation, decom-
position and transfer in time-series data, termed the Information Matrix (IXY ).
Our approach, grounded in information theory, focuses on mutual information
(MI), directed information (DI), and transfer entropy (TE) to analyze sequential
data. This framework not only offers theoretical insights into information dynam-
ics in sequential systems but also provides a simple visualization of information
flow in such systems. We demonstrate the utility of the Information Matrix to the
analysis of sequential real world data.

1 INTRODUCTION

Information theoretic quantities, such as mutual information (MI) play a key role in the
analysis and design of machine learning systems across most domains Haussler et al. (1994);
Goldfeld & Polyanskiy (2020); Shwartz-Ziv & LeCun (2023), and was shown useful for causal anal-
ysis in machine learning tasks Peters et al. (2017). Contemporary machine learning tasks consider
non-i.i.d. time-series data, e.g. video, speech and text. With MI being a measure between two ran-
dom variables, it often fails to properly quantify dependence between two sequences, as it involves
conditioning of current events on future events. To this end, the literature of information theory and
neuroscience consider the two time-series generalizations of MI, termed directed information (DI)
Massey et al. (1990) and transfer entropy (TE) Schreiber (2000), which are given by

I(Xm → Y m) :=

m
∑

i=1

I(Xi;Yi|Y
i−1), TX→Y

m (k, l) := I(Xm−1

m−k ;Ym|Y m−1

m−l ), (1)

respectively. These measure had already shown benefit for the analysis of times series data in numer-
ous fields Raginsky (2011); Zhou & Spanos (2016); Tiomkin & Tishby (2017); Kalajdzievski et al.
(2022); Bonetti et al. (2023). We believe that the increase of sequential machine learning will es-
calate the utility of sequential information theoretic frameworks. Thus, the focus of this work is
to study an information theoretic data-structure, yielding appealing visualizations of the underlying
information transfer that provide a deeper insight into the temporal-dynamics.

The proposed framework allows for the visualization of existing information theoretic conservation
laws, which are usually based on algebraic tricks applied to the underlying KL divergence represen-
tations. These visualization rely on simple matrix entry coloring arguments by transferring temporal
relations into visual patterns.

2 INFORMATION MATRIX

Consider a time series (Xn, Y n) ∼ PXn,Y n and define the Information Matrix (InfoMat) as an n×n

matrix of conditional mutual information terms, given by I
X,Y
i,j := I(Xi, Yj |X

i−1, Y j−1), where

we take Xk = Yk = ∅ for k ∈ N \ [1, . . . , n]. Following the chain rule for MI Cover & Thomas
(2006), we observe the following relation

I(Xn;Y n) =

n
∑

i=1

n
∑

j=1

I(Xi, Yj |X
i−1, Y j−1) =

n
∑

i=1

n
∑

j=1

I
X,Y
i,j . (2)
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The first utility of IX,Y stems from its ability to simplify the visualization of information conserva-
tion, due to equation 2. We can thus represent information conservation laws (see Massey & Massey
(2005); Amblard & Michel (2011)) by identifying DI and TE as subsets of entries of IX,Y , i.e.,
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, (3)

I(Xn;Y n) = I(Xn → Y n) + I(D ◦ Y n → Xn) (4)

= I(D ◦Xn → Y n) + I(D ◦ Y n → Xn) + Iinst(X
n, Y n), (5)

where I(D ◦Xn → Y n) :=
∑n

i=1
I(Xi−1;Yi|Y

i−1) is the time-delayed DI with D ◦Xn being a

left concatenation of a null symbol with Xn
n−1, and Iinst(X

n, Y n) :=
∑n

i=1
I(Xi;Yi|X

i−1, Y i−1)

is the instantaneous information exchange. To obtain a clear visualization of the relations in I
X,Y ,

we color each term with its corresponds elements in I
X,Y (e.g. Iinst(X

n, Y n) :=
∑n

i=1
I
X,Y
i,i ) and

consider an equality under the summation over all the matrix entries. We explore new theoretical
relations and provide their visual proofs in Appendix A.

Visualization tool We demonstrate the utility of the infomat for the visualization of information
flow in sequential systems. We consider two datasets. The first is a Gaussian process with memory
and asymmetric relation, which is visualized in Fig. 1a. Second we consider real world data. Specif-
ically, we visualize the relation between breath and heart rate physiological data, which we use to
determine the direction and magnitude of information flow (Fig. 1b). The proposed tool allows
us to, not only quantify the overall direction of effect from the entire sequence, but to observe its
evolution over time. See Appendices B, C for more details and visualizations.

Discussion and future work As demonstrated, the proposed visualization simplifies the analysis
of information exchange and visualization thereof in sequential systems. The proposed framework
can be made practical when combined with neural estimation techniques Belghazi et al. (2018);
Tsur et al. (2023), which we plan to employ for the derivation of an efficient estimator of IX,Y for
general datasets. To address the neural estimation performance dependence on dimension, we can
further consider approximate low dimensional methods Hotelling (1992); Tsur et al. (2024). Direc-
tions for future work are numerous. Applications encompass causal discovery, healthcare sensor
monitoring and analysis of non-stationary sequences. Additionally, since TE and DI can be ex-
pressed with entropies, we aim to develop a corresponding framework for entropy matrices.
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(a) Infomat Visualization on ARMA Gaus-
sian process data under linear relatio with
increasing weights.
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(b) Infomat visualization on Physiolog-
ical data. Larger effect in direction
‘breath’→‘heart’ (below diagonal).

Figure 1: Visualization of information transfer via I
X,Y in several settings.
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