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Abstract. Continual test-time adaptation methods are designed to fa-
cilitate the continual adaptation of models to dynamically changing real-
world environments. Concurrently, real-world vision applications, such as
semantic segmentation, necessitate the utilization of high-resolution im-
ages to achieve optimal performance, which limits the batch size during
test time. However, the instability caused by batch normalization layers
and entropy loss when using small batch sizes as well as a single image
significantly destabilizes many existing methods in real-world continual
TTA scenarios. To overcome these challenges, we present BESTTA, a
novel single image continual test-time adaptation method guided by style
transfer, which enables stable and efficient adaptation to the target en-
vironment by transferring the style of the input image to the source
style. To implement the proposed method, we devise BeIN, a simple yet
powerful normalization method, along with the style-guided losses. We
demonstrate that BESTTA effectively adapts to the continually chang-
ing target environment, leveraging only a single image on both semantic
segmentation and image classification tasks. Remarkably, despite train-
ing only two parameters in a BeIN layer consuming the least memory,
BESTTA outperforms existing state-of-the-art methods in terms of per-
formance.

1 Introduction

Deep learning models have significantly improved the performance of computer
vision applications [6, 14]. However, in real-world scenarios, the models suffer
from performance degradation due to domain shifts between training and tar-
get data. Unsupervised domain adaptation (UDA) [10, 24, 25, 30, 33, 37, 39] and
test-time training (TTT) [23, 38] techniques have been proposed to address the
performance gap. These methods assume that the models are adapted to the
unseen domain with the huge amount of source data at test time. However it is
impractical to utilize these methods in the real world due to the limited com-
putational resources. Fully test-time adaptation (TTA) methods [2, 29, 41] have
recently emerged to enable online adaptation of a trained model to the target
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Fig. 1: Semantic segmentation performances on the Cityscapes-to-ACDC single image
continual test-time adaptation task, evaluated on DeepLabV3Plus-ResNet50 [3]. Pro-
cessing time includes inference and adaptation time per image. The circle radius and
values indicate the peak GPU memory usage. The violet circles are batch normalization-
based and the blue circles are pseudo-label-based methods. BESTTA significantly out-
performs the state-of-the-art continual test-time adaptation methods [1, 28, 36, 41, 43]
in terms of mIoU while consuming the least GPU memory.

environment without source data or labels. These TTA methods have limitations
in that they can only adapt to a single target domain, resulting in overfitting to
the target domain and forgetting the prebuilt knowledge. Consequently, recent
studies [1, 28, 36, 43] have proposed continual test-time adaptation methods to
adapt a model for continually changing target domains over a long period, ad-
dressing the issues of catastrophic forgetting and error accumulation found in
the previous TTA methods.

Despite the advancements in TTA methods, they often overlook practical-
ity by using infeasible batch sizes of 64 or 128 in real-world applications. Most
real-world downstream vision tasks, such as semantic segmentation, require high-
resolution images for optimal performance [42,48]. This need for high resolution
limits the batch size due to the limited computational resources available in edge
environments where most TTA methods are deployed. However, TTA methods
that consider limited batch sizes have not yet been sufficiently explored, espe-
cially when using a single image input, as shown in Table 1.

There are two main reasons why existing TTA methods cannot handle the
single-image setting. Firstly, small mini-batch severely degrades the performances
of most existing TTA methods based on batch normalization (BN) [13,27,28,35,
36,41,44]. These methods utilize BN to align the distributions between training
and target data. However, inaccurate mini-batch statistics, resulting from the
small number of samples from the target domain, cause substantial performance
degradation when using a small batch size. This issue is further exacerbated
when dealing with a single image [22, 29]. Secondly, entropy loss, which is em-
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Table 1: The settings of single image continual test-time adaptation and related adap-
tation areas. Xs and Y s denote the source image and label sets, respectively, Xt denotes
the target image set, Xt

batch = {xt
i, · · · , xt

i+k} denotes the batch of k target images,
and xt

i denotes the single target image at time i.

Settings Data Learning Continually
Changing Domain

Single
ImageSource Target Train stage Test stage

Unsupervised Domain Adaptation Xs, Y s Xt ✓ - ✗ ✗

Test-Time Training Xs, Y s Xt
batch ✓ ✓ ✗ ✗

Fully Test-Time Adaptation - Xt
batch - ✓ ✗ ✗

Continual Test-Time Adaptation - Xt
batch - ✓ ✓ ✗

Single Image Continual Test-Time Adaptation - xt
i - ✓ ✓ ✓

ployed by the majority of existing TTA methods [13, 19, 31, 36, 41], becomes
significantly unstable when only a single image is utilized, due to the large and
noisy gradients from the unreliable prediction [29]. Although EATA [28] and
SAR [29] mitigated this by filtering out the unreliable samples, these methods
still rely solely on the entropy loss, preventing optimal performance in the single-
image setting. Consistency loss using pseudo-labels [1, 43] would overcome this
problem, but it is inefficient in terms of computational complexity and memory
consumption because it requires tens of inferences for acquiring pseudo-labels.

In our paper, we present BESTTA (Beyond Entropy: Style Transfer guided
single-image continual Test-Time Adaptation), a continual TTA method that
achieves stable and efficient adaptation when only a single image is available for
update. We formulate the TTA problem as a style transfer from the target style
to the source style, which allows us to drive other losses not just the entropy
loss. We introduce the style and content losses tailored to the TTA problem,
which ensures effective and stable adaptation. Motivated by the normalization-
based style transfer methods [7, 16], we implement the style transfer process
with a single normalization layer, named BeIN. Given that effective style transfer
requires the reliable statistics of the target domain, which is difficult to obtain in
the single-image setting, we add two learnable parameters to BeIN that estimate
the reliable statistics by learning the effective style transfer with our proposed
losses.

Our contributions are summarized as follows:

– We propose BESTTA, a noble style transfer guided single-image continual
test-time adaptation method that enables stable and efficient adaptation.
We formulate the test-time adaptation problem as a style transfer and pro-
pose novel style and content losses for stable single-image continual test-time
adaptation.

– We propose a simple but powerful normalization method, namely BeIN. BeIN
provides stable style transfer by learning to estimate the target statistics from
input and source statistics.

– We demonstrate that the proposed BESTTA effectively adapts to continually
changing target domains with a single image on semantic segmentation and
image classification tasks. Remarkably, despite training only two parameters,
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BESTTA outperforms the existing state-of-the-art methods with the least
memory consumption, as shown in Fig. 1.

2 Related Work

2.1 Test-Time Adaptation

In order to enable model adaptation in source-free, unlabeled, and online set-
tings, various test-time domain adaptation methodologies [2, 19, 22, 29, 29, 31,
41, 46] have been introduced, designing unsupervised losses for this purpose.
TENT [41] was the first to highlight the effectiveness of updating batch normal-
ization based on entropy loss in a test-time adaptation task, inspiring subsequent
studies to target batch normalization updates [13,28,36]. However, these meth-
ods require a large batch size for proper batch normalization statistics and show
instability at small batch sizes [22,29]. While some methods have aimed to facili-
tate TTA with small batch sizes [19,22,29,31], they often require prior knowledge
of domain changes or auxiliary pretraining , making them impractical.

To address this, continual TTA methods [1,13,28,36,43] have emerged, aiming
to prevent catastrophic forgetting and error accumulation caused by continued
exposure to the inaccurate learning signal of unsupervised loss. To mitigate these
issues, techniques such as stochastic parameter restoration [1, 43] and weight
regularization losses [28] have been proposed. However, these methods also lack
of considerations for a small batch sizes during adaptation.

2.2 Style Transfer

Neural style transfer methods have been proposed to transfer the style of the
image while preserving the content [9, 11, 12, 20, 21, 40, 47]. Among them, some
studies proposed normalization techniques to effectively transfer the image [7,16].
Using a similar method, Fahes et al. [8] transferred the input styles in a dataset
to the target style and trained subsequent neural networks for downstream tasks.
Motivated by these methods, we propose to transfer the target feature to the
source domain, updating the normalization layer in the cTTA setting.

3 Method

Fig. 2 illustrates the overview of the proposed method, BESTTA. Motivated
by style transfer methods [7, 16] that use a normalization layer, we formulate
the TTA problem as a style transfer problem in Sec 3.1. We propose a single
normalization layer, BeIN, which stabilizes the target input statistics in single
image cTTA in Sec 3.2, with the proposed losses in Sec 3.3.
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Fig. 2: Overview of BESTTA. We inject a single normalization layer, BeIN, to the
pretrained model, which facilitates the stable single image continual test-time adapta-
tion via style transfer. E(x) denotes the input embedding, E ′(x) denotes the adapted
input embedding, E(xsrc) denotes the mean source embedding, and AE(x) denotes the
exponential moving average of the target embeddings. To transfer the style of the in-
put image to the source style, we adopt the directional style loss Lstyle. To avoid the
distortion of the content in the input image, we take the content loss Lcontent. And to
further improve the performance of the model, we use the entropy loss, i.e., Lentropy.
Finally, to avoid catastrophic forgetting and error accumulation, we use the L2 loss
LL2. During adaptation, only two normalization parameters in BeIN are trained.

3.1 Problem Definition

Stable adaptation on a single image. Batch normalization (BN) [17] uti-
lizes mini-batch statistics, mean and standard deviation of the source data to
normalize data on the same distribution for each channel:

BN(X) = α · X − µs

σs
+ β (1)

where X ∈ RB×C×H×W denotes the mini-batch of input features with C chan-
nels, α, β ∈ RC denote learnable affine parameters optimized during pretraining,
and the mean µs ∈ RC and the standard deviation σs ∈ RC are obtained by
exponentially averaging the features during pretraining.

TENT [41] introduces the concept of updating affine parameters of BN layers.
TENT replaces the source statistics (µs, σs) to a target statistics (µX , σX) of a
target input feature X to address the distribution shift, and trains the learnable
affine parameters α and β during test-time:

BNTENT(X) = α · X − µX

σX
+ β (2)

The parameters are updated with the entropy loss H(ŷ) = −Σcp(ŷ) log p(ŷ),
where ŷ is the prediction of the target input. This approach and related stud-
ies [28, 36] have demonstrated significant promise in TTA with the large batch
size.

However, the normalization-based methods suffer significant performance
drop when using small mini-batches, because they depend on the assumption
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that the true mean µt and variance σ2
t of the target distribution can be es-

timated by the sample statistics. By the central limit theorem, the sample
mean µX follows the Gaussian distribution N(µt,

σ2
t

n ) for sufficient large sam-
ples of size n. The sample variance follows the Chi-square distribution such that
(n− 1)

σ2
X

σ2
t
∼ χ2

n−1, and the variance of this distribution V ar(σ2
X) =

2σ4
t

n−1 , where
the data are normally distributed. Since the variances of the distributions of
both sample statistics significantly increase when n is small, estimating the true
mean and variance based on the sample mean and variance becomes difficult,
especially for a single image. Therefore, estimating the true mean and variance
accurately is required to ensure reliable adaptation with a single image. Also,
the entropy loss utilized in these methods is unstable because the instability of
BN persists due to its linearity. Furthermore, the entropy loss often results in
model collapse, causing biased prediction [29].

Therefore, when dealing with a single image, a solution is required that (1)
stabilizes the input statistics in the normalization layers and (2) uses stable
losses more than minimizing entropy.
Test-time adaptation as a style transfer. In the style transfer domain, there
have been several methods that utilize normalization layers for style transfer [7,
16]. Dumoulin et al. [7] proposed a conditional instance normalization (CIN) that
trains the learnable parameters αs and βs to transfer the style of the encoded
input x to the style s:

CIN(x; s) = αs · x− µx

σx
+ βs (3)

Similarly, AdaIN [16] uses the target style directly in its instance normalization
to transfer the style of encoded input x to the style of encoded target style input
y:

AdaIN(x, y) = σy ·
x− µx

σx
+ µy (4)

where σy and µy denote the standard deviation and mean of the encoded target
style input y. Despite their simplicity, they have shown promising results in
style transfer. However, it is important to note that all inputs utilized in the
aforementioned methods are in-distribution, which means that the models are
trained on both source and target data, therefore the statistics of the encoded
input image (µx, σx) are reliable. In contrast, cTTA setting involves inputs from
an arbitrary target domain that are out-of-distribution, resulting in unreliable
and unstable statistics. Motivated by this, we formulate the TTA as a style
transfer problem that transfers the target style to the source style:

TTA(x) = σs ·
x− µt

σt
+ µs (5)

where the source and the target domain follow the distributions N(µs, σ
2
s)N(µt, σ

2
t ),

respectively.
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3.2 BeIN: BESTTA Instance Normalization

We propose a BESTTA Instance Normalization (BeIN) layer that transfers the
style of a target input to the source style, enabling seamless operation of the
latter parts of a model. For stability, we estimate the target statistics (µt, σt)
using an anchor point and learnable parameters γσ and γµ. We use the source
style (µs, σs) as the anchor point because it is fixed and therefore stable. The
source style contains the mean µs and the standard deviation σs of the source
features, which are small and can be easily obtained from the training phase,
before the deployment of our method. BeIN is formulated as:

BeIN(x) = σs ·
x− µ̂t

σ̂t
+ µs (6)

where µ̂t and σ̂t denote the estimated target mean and standard deviation,
respectively. We estimate the true target statistics by combining the target input
statistics and the source style. We estimate σ̂t as a weighted harmonic mean of
the source standard deviation and the target input standard deviation with a
learnable parameter γσ:

σ̂t =
σs · σx

ρσs + (1− ρ)σx + γσ
(7)

where ρ is the hyperparameter that adjusts the ratio of using the source statistics.
For the mean, we estimate it by the weighted sum of the source mean and the
target input mean with a learnable parameter γµ:

µ̂t = ρ
σ̂t

σx
· µx + (1− ρ)

σ̂t

σs
· µs + γµ (8)

The means are scaled with the standard variations to be aligned. We insert
BeIN between the layers of the encoder as depicted in Fig. 2. By training only a
two parameters in the embedded layer, the latter part of the model seamlessly
operates with the preserved prebuilt knowledge, leading to efficient learning and
modularization of the whole model.

3.3 Style-guided losses

Conventional style losses [7, 11, 16, 20] can be used to guide the learnable pa-
rameters in BeIN to transfer the style of the input features to the source style.
These style losses align the distribution of the transferred image to the target
style. However, they require heavy computations such as additional encoding or
decoding processes or computing the gram matrix. Therefore, considering the
efficiency requirement of TTA methods, adopting the conventional style losses
is impractical. To address this problem, we propose novel directional style loss
and content loss that are computed in the embedding space of encoder during
the inference, satisfying efficiency without heavy operations.
Directional style loss. Conventional style transfer methods utilize the similar-
ity between an encoded input and an encoded style input. The straightforward
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Fig. 3: Correlations between performance and style transfer related metrics. We find
that direction similarity and target similarity have high correlation (ρ > 0.5) with
the performance, whereas source similarity [8, 32] is uncorrelated (ρ = 0.18). We use
the method of Schneider et al. [35] to measure the similarity between the adapted
and unadapted embeddings. All results are evaluated on the ACDC dataset [34] using
DeepLabV3Plus-ResNet50 [4] pretrained on the Cityscapes dataset [5].

solution to our method is to measure the source similarity cos(E(xsrc), E ′(x)) [8,
32], that is, the cosine similarity between the adapted target embedding E ′(x)
and the mean source embedding E(xsrc). However, as shown in Fig. 3d, we
empirically find that the source similarity is not correlated with the perfor-
mance, thus not beneficial to improve the adaptation. Therefore, motivated by
StyleGAN-NADA [9], we devise the directional style loss. We find that the simi-
larity between the adaptation direction (E(xsrc)−AE(x)) and the direction from
the target to the source (E ′(x)−E(x)) (see Fig. 2) has high correlation with the
adaptation performance as illustrated in Fig. 3a. Therefore, we formulate our
directional style loss as follows:

Lstyle = 1− cos((E(xsrc)−AE(x)), (E ′(x)− E(x))) (9)

where E(x) is the unadapted target embedding, AE(x) is the exponential moving
average of target embeddings.
Content loss. Style transfer without consideration about the content of the
transferred feature leads to distortion of the contents [11, 16, 20, 47]. Similar to
these findings, we find that the target similarity, that is, the cosine similarity
between the transferred feature E ′(x) and the input feature E(x) has high cor-
relation with the performance, as shown in Fig. 3b. Therefore, we devise the
content loss as follows:

Lcontent = 1− cos(E(x), E ′(x)) (10)

L2 regularization. In the continual TTA setting, where long-term adaptation
is necessary, it is crucial to prevent catastrophic forgetting and error accumu-
lation to ensure optimal performance. Therefore, we employ an L2 norm to
regularize the learnable parameters to prevent overfitting to the current target
domain. We formulate the L2 regularization loss as follows:

LL2 = ∥γµ∥2 + ∥γσ∥2 (11)

Entropy loss. We incorporate the entropy loss introduced by Wang et al. [41],
as BeIN stabilize the normalization. We verify that entropy has strong correlation
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with the performance on semantic segmentation task as shown in Fig. 3c. The
entropy loss is as follows:

Lentropy = −Σp(ŷ) log p(ŷ) (12)

where p denotes probability, ŷ denotes prediction.
Total loss. We train the learnable parameters in our proposed BeIN layer with
a combination of the proposed losses. The total loss L is as follows:

L = λ1 · Lstyle + λ2 · Lcontent + λ3 · Lentropy + λ4 · LL2 (13)

where λ1, λ2, λ3, and λ4 are the weights for each loss.

4 Experiments

We conduct two experiments on our proposed method in terms of semantic
segmentation and image classification. We use the following methods as baselines:

– Fully TTA: BN Stats Adapt [27] and TENT [41]
– Continual TTA: TENT-continual [41], EATA [28], CoTTA [43], EcoTTA [36],

and PETAL [1]

4.1 Experiments on Semantic Segmentation

We evaluate our proposed method and other baselines in two different settings
on semantic segmentation: Cityscapes-to-ACDC continual TTA and Cityscapes-
to-Cityscapes-C gradual TTA. All semantic segmentation results are evaluated
in mean intersection over union (mIoU).
Experimental setup. Following the setting of CoTTA [43], we conduct exper-
iments in the continually changing target environment. We adopt the Cityscapes
dataset [5] as the source dataset and the Adverse Conditions (ACDC) dataset [34]
as the target dataset. The ACDC dataset includes four different adverse weather
conditions (i.e., fog, night, rain, and snow) captured in the real-world. We con-
duct all experiments without the domain label except for TENT [41]. We repeat
the same sequence of four weather conditions 10 times (i.e., fog → night → rain
→ snow → fog → · · · , 40 conditions in total).

We also conduct experiments in the gradually changing target environment
to simulate more realistic environments. We adopt the Cityscapes dataset as
the source dataset and the Cityscapes-C dataset [15, 26] as the target dataset.
The Cityscapes-C dataset is the corrupted version of the Cityscapes dataset that
includes 5 severity levels and 15 types of corruptions. Following EcoTTA [36],
we utilize the four most realistic types of corruptions (i.e., brightness, fog, frost,
snow) in our experiment. The model faces varying levels of corruption severity
for a specific weather type, progressing from 1 to 5 and then from 5 to 1. Once the
severity reaches the lowest level, the corruption type is changed (e.g., brightness
1 → 2 → · · · → 5 → 4 · · · → 1 → fog 1→ 2 → · · · , 36 conditions in total).
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Table 2: Semantic segmentation results (mIoU in %) on Cityscapes-to-ACDC single
image continual test-time adaptation task. We compare ours with other state-of-the-art
TTA methods in terms of peak GPU memory usage (GB) and time consumption (ms)
for each iteration, and mean intersection over union (mIoU). All results are evaluated
using the DeepLabV3Plus-ResNet50. ∗ denotes the requirement about when the domain
shift occurs. The best and second best results are highlighted.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Mean

Method Memory
(GB)

Time
(ms)

Round 1 Round 4 Round 7 Round 10
Fog Night Rain Snow Fog Night Rain Snow Fog Night Rain Snow Fog Night Rain Snow

Source 1.76 135.9 44.3 22.0 41.5 38.9 44.3 22.0 41.5 38.9 44.3 22.0 41.5 38.9 44.3 22.0 41.5 38.9 36.6
BN Stats Adapt [27] 2.01 192.7 36.8 23.5 38.2 36.3 36.8 23.5 38.2 36.3 36.8 23.5 38.2 36.3 36.8 23.5 38.2 36.3 33.7

TENT∗ [41] 9.58 343.8 38.2 22.9 41.1 37.8 38.2 22.9 41.1 37.8 38.2 22.9 41.1 37.8 38.2 22.9 41.1 37.8 35.0
TENT-continual [41] 9.58 343.8 37.7 23.5 39.9 37.5 31.4 17.3 30.7 26.8 19.8 11.2 18.8 17.3 13.4 8.7 12.4 11.8 22.3

EATA [28] 9.90 190.6 36.8 23.4 38.3 36.5 37.6 23.5 39.0 37.1 38.1 23.6 39.5 37.6 38.5 23.6 39.9 38.0 34.4
CoTTA [43] 18.20 4337 46.3 22.0 44.2 40.4 48.1 21.0 45.3 40.2 48.1 20.4 45.3 39.7 48.0 20.0 45.1 39.5 38.4
EcoTTA [36] 10.90 759.3 33.4 20.8 35.6 32.9 34.2 21.2 36.1 33.2 34.7 21.3 36.3 33.2 34.9 21.4 36.5 33.2 31.2
PETAL [1] 18.51 5120 44.7 22.1 42.9 40.1 47.3 22.4 44.4 40.8 47.1 22.1 44.7 40.6 46.9 22.0 44.6 40.5 38.5

BESTTA (Ours) 8.77 291.8 47.8 24.3 47.2 43.8 54.5 26.1 48.4 45.2 54.5 26.1 48.4 45.3 54.5 26.1 48.4 45.3 43.2

Table 3: Semantic segmentation results (mIoU in %) on the Cityscapes-to-
Cityscapes-C gradual test-time adaptation task. All experiments are evaluated using
DeepLabV3Plus-ResNet50.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ MeanMethod Bright. Fog Frost Snow
Source 67.5 59.3 24.8 13.9 41.4

TENT-continual [41] 61.9 45.2 23.0 15.3 36.3
PETAL [1] 64.7 35.8 5.7 0.4 26.7

BESTTA (Ours) 68.2 60.5 31.6 20.0 45.0

Implementation Details. We utilize ResNet50-DeepLabV3+ [3] pretrained
on the Cityscapes dataset. We set the batch size to 1 with an image of size
1920 × 1080 for the continually changing setting and a 2048 × 1024 size for
the gradually changing setting, respectively. We collect the source style (µs, σs)
and the mean source embedding E(xsrc) by inferencing the source data before
deployment. We insert the proposed BeIN layers between the third and fourth
layers in the backbone. The λ1, λ2, λ3, and λ4 are set to 0.3, 1.0, 0.3, and 0.04,
respectively. For optimization, we employ the SGD optimizer with a learning rate
of 0.001 for the adaptation phase. Note that the model was pretrained with a
learning rate of 0.1. The experiments are conducted using an NVIDIA RTX3090
GPU.
Quantitative Results. As shown in Table 2, we compare our approach with
the baselines on the cTTA setting. Our proposed BESTTA achieves the highest
mIoU across all weather types and rounds. In particular, our method signifi-
cantly outperforms the second-best baseline, PETAL [1], with a mean mIoU gap
of 4.7%, despite using 5.7% of the processing time per image compared to the
second-best model. Ours also prevent catastrophic forgetting and error accumu-
lation in the long-term adaptation, as ours shows consistently high performance.
In contranst, the BN-based methods [28,36,41] show severe performance degra-
dation. Notably, even we reinitialize the TENT reinitialize whenever each domain
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Fig. 4: Embedding feature distributions of adapted embeddings in our method and the
baselines. Our method successfully aligns the target distribution (ACDC) to the source
distribution (Cityscapes). Our method successfully aligns the embedding distribution
with the source distribution, whereas the BN-based methods (TENT [41], EATA [28],
EcoTTA [36]) exhibit instability as their embedding distributions collapse. We use
DeepLabV3Plus-ResNet50 [3] pretrained on Cityscapes [5] in this experiment.

change occurs, the performance is lower than the source model. This indicates
that the unstable mini-batch statistics and entropy loss hinder the adaptation
in single image cTTA.

The experimental results for the gradually changing setting are presented in
Table 3. Similar to the cTTA setting, our method significantly outperforms the
baselines. All the baselines perform worse than the source model, indicating that
they fail to deal with the single image cTTA setting.

Qualitative Results. Fig. 4 provides the distributions of the adapted features
of ours and the baselines. Comparing Fig. 4a and Fig. 4b, the feature distribution
of the target domain that is obtained by the source model is diversified. The BN-
based methods, such as TENT, EATA, and EcoTTA, exhibit instability as their
embedding distributions collapse to a single point. Although CoTTA does not
show distribution collapse, its distribution is closer to the unadapted distribution
than the source distribution, indicating that the model is not well adapted to
the target domain. In contrast, our adapted features are aligned with the source
features from the source model, and the features for each degradation are similar
to each other. This demonstrates that our BESTTA effectively and stably adapts
the model to the target domain by normalizing the target distribution to the
source distribution.

Fig. 5 shows predictions of ours and the baselines on the ACDC dataset.
Compared to the other state-of-the-art methods, our results are clearer and more
accurate. In particular, at night, the baselines show globally noisy predictions
while ours show clear results; in fog and snow, our method perceives the sky
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Fig. 5: Qualitative comparison of semantic segmentation on Cityscapes-to-ACDC task.
All experiments are evaluated using DeepLabV3Plus-ResNet50. The results of other
methods are presented in the supplementary material.

Table 4: Ablation study on our losses. Performances (mIoU in %) are evaluated on
Cityscapes-to-ACDC single image continual test-time adaptation task for each different
combination of losses, using DeepLabV3Plus-ResNet50 [3]. The results are separated
by the number of losses used. Using all of our proposed losses considerably improves the
performance. Because the content loss and the L2 regularization are only meaningful
with other losses, their individual results are excluded.

Lentropy Lstyle Lcontent LL2 Round 1 Round 4 Round 7 Round 10 Mean
✓ ✗ ✗ ✗ 21.2 5.3 4.5 4.2 6.7
✗ ✓ ✗ ✗ 31.0 25.4 24.4 24.0 25.6
✓ ✓ ✗ ✗ 37.1 32.3 30.2 28.9 31.8
✓ ✗ ✓ ✗ 21.8 14.0 13.6 13.4 14.7
✓ ✗ ✗ ✓ 13.8 5.0 5.0 5.0 5.9
✗ ✓ ✓ ✗ 39.0 37.3 37.1 36.9 37.4
✗ ✓ ✗ ✓ 38.3 38.6 38.5 38.6 38.5
✓ ✓ ✓ ✗ 40.1 39.2 37.9 37.3 38.6
✓ ✓ ✗ ✓ 28.8 26.9 26.9 26.9 27.1
✓ ✗ ✓ ✓ 37.2 41.1 41.1 41.1 40.7
✗ ✓ ✓ ✓ 40.4 40.7 40.7 40.8 40.7
✓ ✓ ✓ ✓ 40.8 43.5 43.6 43.6 43.2

as sky while others predict it as buildings. These observations demonstrate the
effectiveness of our method in a real-world environment. Further results are
presented in the supplementary material.
Effectiveness of losses. We perform an ablation study on our losses, and
the results are provided in Table 4. Updating the parameters in BeIN only with
entropy losses yields the lowest performance. Conversely, including style loss sig-
nificantly improves performance, demonstrating the effectiveness of style trans-
fer in our method. The addition of content loss further improves performance
by preserving the content of the input image, allowing only feature styles to
be transferred. However, it still exhibits error accumulation, as evidenced by a
gradual performance degradation. L2 loss effectively prevents this phenomenon
by maintaining stable performance across rounds.
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Table 5: Ablation study on the position of BeIN. Performance (mIoU in %) are eval-
uated on Cityscapes-to-ACDC task, using DeepLabV3Plus-ResNet50.

Layer1 Layer2 Layer3 Layer4 mIoU
✓ ✗ ✗ ✗ 41.7
✗ ✓ ✗ ✗ 40.9
✗ ✗ ✓ ✗ 43.2
✗ ✗ ✗ ✓ 36.0
✓ ✗ ✓ ✗ 43.0
✗ ✓ ✓ ✗ 41.7
✗ ✗ ✓ ✓ 41.4
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Fig. 6: Robustness to catastrophic forgetting. We evaluated the adapted models af-
ter each round on the source dataset (Cityscapes). All experiments are evaluated on
Cityscapes-to-ACDC in semantic segmentation using DeepLabV3Plus-ResNet50. In
comparison to TENT, ours does not show catastrophic forgetting and error accumula-
tion.

Selection of layer to insert BeIN layer. Table 5 shows the effectiveness of
the selection of layers, where the BeIN layer is inserted to transfer the features.
Adaptation of features from layer third achieves the highest performance. How-
ever, the addition of other layers leads to a performance degradation compared
to using only the third layer.
Prevention of catastrophic forgetting. As shown in Fig. 6, we evaluated the
performance of adapted models after each round on the source dataset, to assess
the robustness to the forgetting. TENT exhibits an error accumulation, reflected
in the decrease in performance on the ACDC with each round. In addition,
TENT experiences catastrophic forgetting of source knowledge, as evidenced by
a rapid decline in performance on Cityscapes (the source dataset). In contrast,
our method demonstrates resilience against forgetting source-trained knowledge,
with remarkably improved performance across all rounds.

4.2 Experiments on Image Classification

Experimental Setup. We conduct experiments to verify the effectiveness
of our method in image classification. Following CoTTA [43], we pretrain the
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Table 6: Image classification results on CIFAR-10-C. All results are evaluated using
WideResNet-28 pre-trained on CIFAR-10. We use the error rate (%) as the metric.
The lowest and second lowest error rates are highlighted.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Mean

Method
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Source 88.9 89.2 89.6 77.5 83.2 75.6 77.2 75.2 70.0 68.4 66.9 49.9 81.0 81.2 83.2 77.1
BN Stats Adapt [27] 89.5 89.4 89.7 90.1 89.5 89.5 89.5 89.6 89.6 89.2 89.8 90.1 89.5 89.4 89.6 89.6
TENT-continual [41] 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0

CoTTA [43] 54.0 64.0 78.0 86.8 88.0 89.9 89.7 87.8 87.6 89.7 88.7 90.0 89.4 53.9 86.7 81.6
PETAL [1] 51.1 52.0 77.7 73.4 62.8 79.7 84.1 48.3 67.4 78.9 19.0 81.5 56.5 57.4 69.8 64.0

BESTTA (Ours) 55.2 50.5 65.6 38.1 46.1 29.3 32.6 23.4 33.1 21.8 9.1 38.5 24.5 44.3 28.9 36.1

WideResNet-28 [45] on CIFAR-10 [18] and adapt the network to CIFAR-10-
C [15] in the single image cTTA setting.

Results. As provided in Table 6, our approach outperforms other methods in
mean accuracy over different corruption types. TENT shows performance that
is almost equal to random performance. The second best method, PETAL, is
better than the source model, but it is far from satisfactory performance. In
contrast, our method exhibits anti-forgetting and maintains high performance
over time.

5 Conclusion

In this paper, we propose BESTTA, a style transfer guided continual test-time
adaptation (cTTA) method for stable and efficient adaptation, especially in the
single image cTTA setting. To stabilize the adaptation, we devise a stable nor-
malization layer, coined BeIN, that incorporates learnable parameters and source
statistics. We propose style-guided losses to guide our BeIN to effectively transfer
the style of the input image to the source style. Our approach achieves state-
of-the-art performance and memory efficiency in the single image cTTA setting.
We plan to explore a method to automatically select the best layer to insert our
BeIN layer.
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