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Abstract

We present a unified hard-constraint framework for solving geometrically complex
PDEs with neural networks, where the most commonly used Dirichlet, Neumann,
and Robin boundary conditions (BCs) are considered. Specifically, we first in-
troduce the “extra fields” from the mixed finite element method to reformulate
the PDEs so as to equivalently transform the three types of BCs into linear forms.
Based on the reformulation, we derive the general solutions of the BCs analytically,
which are employed to construct an ansatz that automatically satisfies the BCs.
With such a framework, we can train the neural networks without adding extra
loss terms and thus efficiently handle geometrically complex PDEs, alleviating
the unbalanced competition between the loss terms corresponding to the BCs and
PDEs. We theoretically demonstrate that the “extra fields” can stabilize the training
process. Experimental results on real-world geometrically complex PDEs showcase
the effectiveness of our method compared with state-of-the-art baselines.

1 Introduction

Many fundamental problems in science and engineering (e.g., [2, 19, 28]) are characterized by partial
differential equations (PDEs) with the solution constrained by boundary conditions (BCs) that are
derived from the physical system of the problem. Among all types of BCs, Dirichlet, Neumann, and
Robin are the most commonly used [33]. Figure 1 gives an illustrative example on these three types
of BCs. Furthermore, in practical problems, physical systems can be very geometrically complex
(where the geometry of the definition domain is irregular or has complex structures, e.g., a lithium-ion
battery [11], a heat sink [40], etc), leading to a large number of BCs. How to solve such PDEs has
become a challenging problem shared by both the scientific and industrial communities.

The field of solving PDEs with neural networks has a history of more than 20 years [6, 1, 34, 8, 36].
Such methods are intrinsically mesh-free and therefore can handle high-dimensional as well as
geometrically complex problems more efficiently compared with traditional mesh-based methods,
like the finite element method (FEM). Physical-informed neural network (PINN) [25] is one of the
most influential works, where the neural network is trained in the way of taking the residuals of both
the PDEs and the BCs as multiple terms of the loss function. Although there are many wonderful
improvements such as DPM [13], PINNs still face serious challenges as discussed in the paper [15].
Some theoretical works [37, 38] point out that there exists an unbalanced competition between the
terms of PDEs and BCs, limiting the application of PINNs to geometrically complex problems. To
address this issue, some researchers [3, 35, 18] have tried to embed BCs into the ansatz. Some of

∗Corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



HEATENVIRONMENT

Dirichlet BC Neumann BC Robin BC

Figure 1: An illustration on three types of BCs. We give an example from heat transfer, where
T = T (x) is the temperature, k is the thermal conductivity, and h is the heat transfer coefficient. (1)
The Dirichlet BC specifies the value of the solution at the boundary. Here we assume a constant
temperature THEAT at the heat source (x = x0). (2) The Neumann BC specifies the value of the
derivative at the boundary. We assume that the right wall (x = x2) is adiabatic and force the derivative
to be zero. (3) The Robin BC is a combination of the first two. And we use it to describe the heat
convection between the heat source and the environment (T∞) at the surface (x = x2).

them [16, 27] follow the pipeline of the Theory of Connections [22], while others [41, 12, 17] have
considered solving the equivalent variational form of the PDEs. In this way, the neural networks can
automatically satisfy the BCs and no longer require adding corresponding loss terms. Nevertheless,
these methods are only applicable to specific BCs (e.g., Dirichlet BCs, homogeneous BCs, etc) or
geometrically simple PDEs. The key challenge is that the equation forms of the Neumann and Robin
BCs have no analytical solutions in general and are thus difficult to be embedded into the ansatz.

In this paper, we propose a unified hard-constraint framework for all the three most commonly used
BCs (i.e., Dirichlet, Neumann and Robin BCs). With this framework (see Figure 2 for an illustration),
we are able to construct an ansatz that automatically satisfies the three types of BCs. Therefore, we
can train the model without the losses of these BCs, which alleviates the unbalanced competition
and significantly improves the performance of solving geometrically complex PDEs. Specifically,
we first introduce the extra fields from the mixed finite element method [20, 4]. This technique
substitutes the gradient of a physical quantity with new variables, allowing the BCs to be reformulated
as linear equations. Based on this reformulation, we derive a general continuous solution of the
BCs with simple form, overcoming the challenge that the original BCs cannot be solved analytically.
Using the general solutions obtained, we summarize a paradigm for constructing the hard-constraint
ansatz under time-dependent, multi-boundary, and high-dimensional cases. Besides, in Section 4, we
demonstrate that the technique of extra fields can improve the stability of the training process.

We empirically demonstrate the effectiveness of our method through three parts of experiments. First,
we show the potency of our method in solving geometrically complex PDEs through two numerical
experiments from real-world physical systems of a battery pack and an airfoil. And our framework
achieves a supreme performance compared with advanced baselines, including the learning rate
annealing methods [37], domain decomposition-based methods [10, 23], and existing hard-constraint
methods [30, 31]. Second, we select a high-dimensional problem to demonstrate that our framework
can be well applied to high-dimensional cases. Finally, we study the impact of the extra fields as well
as some hyper-parameters and verify our theoretical results in Section 4.

To sum up, we make the following contributions:

• We introduce the extra fields to reformulate the PDEs, and theoretically demonstrate that
our reformulation can effectively reduce the instability of the training process.

• We propose a unified hard-constraint framework for Dirichlet, Neumann, and Robin BCs,
alleviating the unbalanced competition between losses in the physics-informed learning.

• Our method has superior performance over state-of-the-art baselines on solving geometri-
cally complex PDEs, as validated by numerical experiments in real-world physical problems.
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Figure 2: A pipeline of proposed method. In this paper, We consider PDEs with multiple boundary
conditions of Dirichlet, Neumann, and Robin. We first introduce the extra fields to reformulate the
BCs as linear equations whose general solutions are then deduced. Finally, we aggregate the general
solutions for each boundary to obtain our final ansatz via Eq. (11). Since our ansatz automatically
satisfies the BCs, the unbanlanced competition is alleviated and the hypothesis space is reduced.

2 Background

2.1 Physics-Informed Neural Networks (PINNs)

We consider the following Laplace’s equation as a motivating example,

∆u(x1, x2) = 0, x1 ∈ (0, 1], x2 ∈ [0, 1], (1a)
u(x1, x2) = g(x2), x1 = 0, x2 ∈ [0, 1], (1b)

where Eq. (1a) gives the form of the PDE, and Eq. (1b) is a Dirichlet boundary condition (BC). A
solution to the above problem is a solution to Eq. (1a) which also satisfies Eq. (1b).

Physics-informed neural networks (PINNs) [25] employ a neural network NN(x1, x2;θ) to approx-
imate the solution, i.e., û(x1, x2;θ) = NN(x1, x2;θ) ≈ u(x1, x2), where θ denotes the trainable
parameters of the network. And we learn the parameters θ by minimizing the following loss function

L(θ) = LF (θ)+LB(θ) ≜
1

Nf

Nf∑
i=1

∣∣∣∆û(x
(i)
f,1, x

(i)
f,2;θ)

∣∣∣2+ 1

Nb

Nb∑
i=1

∣∣∣û(0, x(i)
b,2;θ)− g(x

(i)
b,2)

∣∣∣2 , (2)

where LF is the term restricting û to satisfy the PDE (Eq. (1a)) while LB is the BC (Eq. (1b)), {x(i)
f =

(x
(i)
f,1, x

(i)
f,2)}

Nf

i=1 is a set of Nf collocation points sampled from [0, 1]2, and {x(i)
b = (0, x

(i)
b,2)}

Nb
i=1 is a

set of Nb collocation points sampled from x1 = 0.

PINNs have a wide range of applications, including heat [5], flow [21], and atmosphere [42]. However,
PINNs are struggling with some issues on the performance [15]. Previous analysis [37, 38] has
demonstrated that the convergence of LF can be significantly faster than that of LB. As demonstrated
in later experiments (see Section 5), this pathology may lead to nonphysical solutions which does not
satisfy the BCs or initial conditions (ICs). Moreover, for geometrically complex PDEs where the
number of BCs is large, this problem is exacerbated and can seriously affect accuracy, as supported
by our experimental results in Table 1.

2.2 Hard-Constraint Methods

One potential approach to overcome this pathology is to embed the BCs into the ansatz in a way
that any instance from the ansatz can automatically satisfy the BCs, as utilized by previous work
[3, 24, 35, 39, 30, 18, 31]. We note that the loss terms corresponding to the BCs are no longer needed,
and thus the above pathology is alleviated. These methods are called hard-constraint methods, and
they share a similar formula of the ansatz as

û(x;θ) = u∂Ω(x) + l∂Ω(x)NN(x;θ), (3)
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where x is the coordinate, Ω is the domain of interest, u∂Ω(x) is the general solution at the boundary
∂Ω, and l∂Ω(x) is an extended distance function which satisfies

l∂Ω(x) =

{
0 if x ∈ ∂Ω,

> 0 otherwise.
(4)

In the case of Eq. (1) (where x = (x1, x2), Ω = [0, 1]2), the general solution is exactly g(x2), and
we can use the following ansatz (which automatically satisfies the BC in Eq. (1b))

û(x1, x2;θ) = g(x2) + x1NN(x1, x2;θ). (5)

However, it is hard to directly extend this method to more general cases of Robin BCs (see Eq. (7)),
since we cannot obtain the general solution u∂Ω(x) analytically. Existing attempts are either mesh-
dependent [9, 43], which are time-consuming for high-dimensional and geometrically complex PDEs,
or ad hoc methods for specific (geometrically simple) physical systems [26]. It is still lacking a
unified hard-constraint framework for both geometrically complex PDEs and the most commonly
used Dirichlet, Neumann, and Robin BCs.

3 Methodology

We first introduce the problem setup of geometrically complex PDEs considered in this paper and
then reformulate the PDEs via the extra fields, followed by presenting our unified hard-constraint
framework for embedding Dirichlet, Neumann and Robin BCs into the ansatz.

3.1 Problem Setup

We consider a physical system governed by the following PDEs defined on a geometrically complex
domain Ω ⊂ Rd

F [u(x)] = 0, x = (x1, . . . , xd) ∈ Ω, (6)

where F = (F1, . . . ,FN ) includes N PDE operators which map u to a function of x, u and its
derivatives. Here, u(x) = (u1(x), . . . , un(x)) is the solution to the PDEs, which represents physical
quantities of interest. For each uj , j = 1, . . . , n, we pose suitable boundary conditions (BCs) as

ai(x)uj + bi(x)
(
n(x) · ∇uj

)
= gi(x), x ∈ γi, ∀i = 1, . . . ,mj , (7)

where γ1, . . . , γmj are subsets of the boundary ∂Ω whose closures are disjoint, ai(x) and bi(x) are
two functions satisfying that a2i (x)+ b2i (x) ̸= 0 holds for ∀x ∈ γi, and n(x) = (n1(x), . . . , nd(x))
is the (outward facing) unit normal of corresponding γi at x. It is noted that Eq. (7) represents a
Dirichlet BC if ai ≡ 1, bi ≡ 0, a Neumann BC if ai ≡ 0, bi ≡ 1, and a Robin BC otherwise.

For such geometrically complex PDEs, if we directly resort to PINNs (see Section 2.1), there would
be a difficult multi-task learning with at least (

∑n
j=1 mj+N) terms in the loss function. As discussed

in the previous analysis [37, 38], it will severely affect the convergence of the training due to the
unbalanced competition between those loss terms. Hence, in this paper, we will discuss how to
embed the BCs into the ansatz, where every instance automatically satisfies the BCs. However, it is
infeasible to directly follow the pipeline of hard-constraint methods (see Eq. (3)) since Eq. (7) does
not have an general solution of analytical form. Therefore, a new approach is needed to address this
intractable problem.

3.2 Reformulating PDEs via Extra Fields

In this subsection, we present the general solutions of the BCs, which will be used to construct
the hard-constraint ansatz subsequently. We first introduce the extra fields from the mixed finite
element method [20, 4] to equivalently reformulate the PDEs. Let pj(x) = (pj1(x), . . . , pjd(x)) =
∇uj , j = 1, . . . , n. And we substitute them into Eq. (6) and Eq. (7) to obtain the equivalent PDEs,

F̃ [u(x),p1(x), . . . ,pn(x)] = 0, x ∈ Ω, (8a)
pj(x) = ∇uj , x ∈ Ω ∪ ∂Ω, ∀j = 1, . . . , n, (8b)
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where (u(x),p1(x), . . . ,pn(x)) is the solution of the new PDEs, F̃ = (F̃1, . . . , F̃N ) are the PDE
operators after the reformulation. And for j = 1, . . . , n, we have the corresponding BCs

ai(x)uj + bi(x)
(
n(x) · pj(x)

)
= gi(x), x ∈ γi, ∀i = 1, . . . ,mj . (9)

Now, we can see that Eq. (7) has been transformed into linear equations with respect to (uj ,pj),
which are much easier for us to derive general solutions. Hereinafter, we denote (uj ,pj) by p̃j , and
their general solutions at γi (i.e., (uγi

j ,pγi

j )) by p̃γi

j . Next we will discuss how to find p̃γi

j .

To obtain the general solution of Eq. (9), the first step is to find a basis B(x) of the null space (whose
dimension is d). However, we must emphasize that B(x) should be carefully chosen. Since Eq. (9)
is parameterized by x, for any x ∈ γi, B(x) should always be a basis of the null space, that is, its
columns cannot degenerate into linearly dependent vectors (otherwise it will not be able to represent
all possible solutions). An example of an inadmissible B(x) is given in Appendix A.1.

Generally, for any dimension d ∈ R, we believe it is non-trivial to find a simple expression for the
basis. Instead, we prefer to find (d+ 1) vectors in the null space, d of which are linearly independent
(that way, B(x) ∈ R(d+1)×(d+1)). We now directly present our construction of the general solution
while leaving a detailed derivation in Appendix A.3.

p̃γi

j (x;θγi

j ) = B(x)NNγi

j (x;θγi

j ) + ñ(x)g̃i(x), (10)

where ñ = (ai, bin)
/√

a2i + b2i , g̃i = gi
/√

a2i + b2i , NNγi

j : Rd → Rd+1 is a neural network with
trainable parameters θγi

j , and B(x) = Id+1 − ñ(x)ñ(x)
⊤. Incidentally, in the case of d = 1 or

d = 2, we can find a simpler expression for B (see Appendix A.2). Besides, we note that all the
neural networks are implemented as MLPs in this paper, unless otherwise stated.

3.3 A Unified Hard-Constraint Framework

With the parameterization of a neural network, Eq. (10) can represent any function in γi, as long as
the function satisfies the BC (see Eq. (9)). Since our problem domain contains multiple boundaries,
we need to combine the general solutions corresponding to each boundary γi to achieve an overall
approximation. Hence, we construct our ansatz as follows

(ûj , p̂j) = l∂Ω(x)NNmain(x;θmain) +

mj∑
i=1

exp
[
− αil

γi(x)
]
p̃γi

j (x;θγi

j ), ∀j = 1, . . . , n (11)

where NNmain : Rd → Rd+1 is the main neural network with trainable parameters θmain,
l∂Ω, lγi , i = 1, . . . ,mj are continuous extended distance functions (see Eq. (4)), and αi (i =
1, . . . ,mj) are determined by

αi =
βs

minx∈∂Ω\γi
lγi(x)

, (12)

where βs ∈ R is a hyper-parameter of the “hardness” in the spatial domain. In Eq. (11), we utilize
extended distance functions to “divide” the problem domain into several parts, where p̃γi

j (NNγi

j is its
learnable part) is responsible for the approximation on the boundaries while NNmain is responsible
for internal. Furthermore, Eq. (12) ensures that the weight of p̃γi

j decays to e−βs at the nearest
neighbor of γi, so that p̃γi

j does not interfere with the approximation on other boundaries. We provide
a theoretical guarantee of the satisfaction of the BCs along with the approximation ability for Eq. (11)
in Appendix A.4. Besides, if ai, bi, n or gi are only defined at γi, we can extend their definition to
Ω ∪ ∂Ω using interpolation or approximation via neural networks (see Appendix A.5). And it is easy
to extend this framework to the spatial-temporal domain as discussed in Appendix A.6.

Finally, we can train our model with the following loss function

L =
1

Nf

Nf∑
k=1

N∑
j=1

∣∣F̃j [û(x
(k)), p̂1(x

(k)), . . . , p̂n(x
(k))]

∣∣2
+

1

Nf

Nf∑
k=1

n∑
j=1

∥∥p̂j(x
(k))−∇ûj(x

(k))
∥∥2
2
,

(13)
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where û = (û1, . . . , ûn), {ûj , p̂j}nj=1 is defined in Eq. (11) and {x(k)}Nf

k=1 is a set of collocation
points sampled in Ω. For neatness, we omit the trainable parameters of neural networks here. We
note that Eq. (13) measures the discrepancy of both the PDEs (i.e., F̃1, . . . , F̃N ) and the equilibrium
equations introduced by the extra fields (i.e., Eq. (8b)) at Nf collocation points.

According to Eq. (13), we have now successfully embedded BCs into the ansatz, and no longer need
to take the residuals of BCs as extra terms in the loss function. That is, our ansatz strictly conforms
to BCs throughout the training process, greatly reducing the possibility of generating nonphysical
solutions. Nevertheless, this comes at the cost of introducing (nd) additional equilibrium equations
(see Eq. (8b)). But in many physical systems, especially those with complex geometries, the number
of BCs (cnt(BCs)) is far larger than (nd) (e.g., n = 3, d = 2, cnt(BCs) = 1260 for a classical
physical system, a heat exchanger [7]). So we may actually reduce the number of loss terms by
an order of magnitude or two (∆cnt(losses) = nd − cnt(BCs) ≪ 0), alleviating the unbalanced
competition between loss terms.

4 Theoretical Analysis

In Section 3.2, we introduce the extra fields and reformulate the PDEs (from Eq. (6) and Eq. (7) to
Eq. (8) and Eq. (9)). To further analyze the impact of this reformulation, we consider the following
abstraction of 1D PDEs (Eq. (14a)) and the one after the reformulation (Eq. (14b))

L
[
u,

du

dx
,
d2u

dx2
, · · · , d

nu

dxn

]
= f(x), x ∈ Ω, (14a)

L
[
u, p1, p2, · · · , pn−1] = f(x), x ∈ Ω, (14b)

where L is an operator, f is a source function, and pi+1 = dpi/ dx, p1 = du/dx are the introduced
extra fields. From the above equations, we can find that the orders of derivatives in the PDEs are
reduced. Intuitively, as the PDEs are included in the loss function (see Eq. (2)), lower derivatives
result in less accumulation of back-propagation, and thus stabilize the training process.

To formally explain this mechanism, without loss of generality, we consider a simple case (with
proper Dirichlet BCs) where L[· · · ] = ∆u, f(x) = −a2 sin ax. And our ansatz is a single-layer
neural network of width K, i.e., û = c⊤σ(wx+ b), p̂ = c⊤p σ(wx+ b), where c,w, b, cp ∈ RK , σ
is an element-wise activation function (for simplicity, we take σ as tanh). More details on the PDEs
are given in Appendix A.7.1. Next, we focus on the gradients of the loss terms of the PDEs F , since
that of the BC stays the same during the reformulation. We state the following theorem.

Theorem 4.1 (Bounds for the Gradients of the PDE Loss Terms). Let θ = (c,w, b), θ̃ =

(c,w, b, cp), and LF as well as L̃F be the loss terms corresponding to the original and trans-
formed PDEs, respectively. We have the following bounds∣∣∣(∇θLF

)⊤∣∣∣ = O
(
|c|⊤w2 + a2

)
·
(
w2, |c| ◦ |w| ◦ (|w|+ 1), |c| ◦w2

)
, (15a)∣∣∣(∇θ̃L̃F

)⊤∣∣∣ = O
(
∥cp∥1 +max(|c|, |cp|)⊤|w|+ a2

)
·
(
|w|,max(|c|, |cp|) ◦max(|w|,1),

max(|c|, |cp|) ◦max(|w|,1),max(|w|,1)
)
, (15b)

where ◦ is the element-wise multiplication, 1 is an all-ones vector, max(·) is the element-wise
maximum of vectors, and operations on vectors (|·|, (·)2, etc) are element-wise operations.

(a) A 2D battery pack (b) An airfoil

Figure 3: An illustration of the geometries of the problems in Section 5.2 and Section 5.3.
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The proof is deferred to Appendix A.7.2. We can find that (∇θLF )
⊤ has a high-order relationship

with the trainable parameters θ. This often makes training unstable, as the gradients (∇θLF )
⊤ may

rapidly explode or vanish when θ are large or small. After the reformulation, (∇θ̃L̃F )
⊤ is associated

with the parameters in a lower order, and some terms are controlled by 1, alleviating this issue of the
instability. We note that the improvement in stability comes from lower derivatives in the PDEs, and
this mechanism does not depend on the specific form of the PDEs. In Section 5.5.1, we empirically
show that this mechanism is general, even for nonlinear PDEs.

5 Experiments

In this section, we will numerically showcase the effectiveness of the proposed framework on
geometrically complex PDEs, which is also the main focus of this paper. To this end, we test our
framework on two real-world problems (see Section 5.2 and Section 5.3) from a 2D battery pack and
an airfoil, respectively. Besides, to validate that our framework is applicable to high-dimensional
cases, an additional high-dimension problem is considered in Section 5.4, followed by an ablation
study in Section 5.5. We refer to Appendix A.8 for experimental details.

5.1 Experiment Setup

Evaluation In our experiments, we utilize mean absolute error (MAE) and mean absolute per-
centage error (MAPE) to measure the discrepancy between the prediction and the ground truth. In
Section 5.3, we replace MAPE with weighted mean absolute percentage error (WMAPE) to avoid the
“division by zero”, since a considerable part of the ground truth values are very close to zero,

WMAPE =

∑n
i=1 |ŷi − yi|∑n

i=1 |yi|
, (16)

where n is the number of testing samples, ŷi is the prediction and yi is the ground truth.

Baselines We consider the following baselines in subsequent experiments.

• PINN: original implementation of the PINN [25].
• PINN-LA & PINN-LA-2: PINN with learning rate annealing algorithm to address the

unbalanced competition [37] and a variant we modified for numerical stability.
• xPINN& FBPINN: two representative works for solving geometrically complex PDEs via

non-overlapping [10] and overlapping [23] domain decomposition.
• PFNN & PFNN-2: a representative hard-constraint method based on the variational formu-

lation of PDEs [30] and its latest variant incorporating domain decomposition [31].

5.2 Simulation of a 2D battery pack (Heat Equation)

To emphasize the capability of the proposed hard-constraint framework (HC) to handle geometrically
complex cases, we first consider modeling thermal dynamics of a 2D battery pack [32], which is

Table 1: Experimental results of the simulation of a 2D battery pack

MAE of T MAPE of T

t = 0 t = 0.5 t = 1 average t = 0 t = 0.5 t = 1 average

PINN 0.1283 0.0457 0.0287 0.0539 128.21% 11.65% 4.47% 24.82%
PINN-LA 0.0918 0.0652 0.0621 0.0661 91.72% 19.13% 11.96% 27.06%
PINN-LA-2 0.1062 0.0321 0.0211 0.0402 106.05% 8.94% 4.09% 19.76%
FBPINN 0.0704 0.0293 0.0249 0.0343 70.33% 8.13% 5.87% 14.74%
xPINN 0.2230 0.1295 0.1515 0.1454 222.83% 30.28% 20.25% 54.70%
PFNN 0.0000 0.3036 0.4308 0.2758 0.02% 79.64% 84.60% 68.29%
PFNN-2 0.0000 0.3462 0.5474 0.3215 0.02% 66.06% 90.21% 59.62%

HC 0.0000 0.0246 0.0225 0.0221 0.02% 5.38% 3.77% 5.10%
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Table 2: Experimental results of the simulation of an airfoil

MAE WMAPE

u1 u2 p u1 u2 p

PINN 0.4682 0.0697 0.3883 0.5924 1.1979 0.3539
PINN-LA 0.4018 0.0595 0.2652 0.5084 1.0225 0.2418
PINN-LA-2 0.5047 0.0659 0.2765 0.6385 1.1325 0.2521
FBPINN 0.4058 0.0563 0.2665 0.5134 0.9676 0.2429
xPINN 0.7188 0.0583 1.1708 0.9095 1.0029 1.0672

HC 0.2689 0.0435 0.2032 0.3402 0.7474 0.1852

governed by the heat equation (see Appendix A.8.1), where x ∈ Ω, t ∈ [0, 1] are the spatial and
temporal coordinates, respectively, T (x, t) is the temperature over time. The geometry of the problem
Ω is shown in Figure 3(a), where γcell,i is the cell and γpipe,i is the cooling pipe.

The baselines are trained with Nf = 8192 collocation points, Nb = 512 boundary points and
Ni = 512 initial points (an additional Ns = 512 points on the interfaces between subdomains are
required for the xPINN), while the HC is trained with Nf = 8192 collocation points. All the models
are trained for 5000 Adam [14] iterations (with a learning rate scheduler) followed by a L-BFGS
optimization until convergence and tested with Nt = 146,487 points evaluated by the FEM. The
testing results are given in Table 1 (where “average” means averaging over t ∈ [0, 1]). We find
that the accuracy of the HC is significantly higher than baselines almost all the time, especially at
t = 0. This is because the ansatz of the HC always satisfies the BCs and ICs during the training
process, prevents the approximations from violating physical constraints at the boundaries. Besides,
we also provide an empirical analysis of convergence in Appendix A.9 and results of 5-run parallel
experiments (where problems in all three cases are revisited) in Appendix A.10.

5.3 Simulation of an Airfoil (Navier-Stokes Equations)

In the next experiment, we consider the challenging benchmark PDEs in computational fluid dynamics,
the 2D stationary incompressible Navier-Stokes equations, in the context of simulating the airflow
around a real-world airfoil (w1015.dat) from the UIUC airfoil coordinates database (an open airfoil
database) [29]. Specifically, the airfoil is represented by 240 anchor points and the governing
equation can be found in Appendix A.8.2, where u(x) = (u1(x), u2(x)), p(x) are the velocity, and
the pressure of the fluid, respectively, and the geometry of the problem is shown in Figure 3(b).

The baselines (PFNN and PFNN-2 are not applicable to Navier-Stokes Equations) are trained with
Nf = 10,000 collocation points, Nb = 2048 boundary points (Ns = 2048 points for the xPINN),
while the HC is trained with Nf = 10,000 collocation points. All the models are trained for 5000
Adam iterations followed by a L-BFGS optimization until convergence and tested with Nt = 13,651
points evaluated by the FEM. According to the results in Table 2, the HC has more obvious advantages,
compared with the previous experiment. This is because complex nonlinear PDEs are more sensitive
to the BCs, and the failure at the BCs can cause the approximations to deviate significantly from the
true solutions. In addition, we find that the WMAPE on u2 is relatively large for all methods, which
is because the true values of u2 are close to zero, amplifying the effect of the noise.

Table 3: Experimental results of the high-dimensional heat equation

MAE of u MAPE of u

t = 0 t = 0.5 t = 1 average t = 0 t = 0.5 t = 1 average

PINN 0.0219 0.0428 0.1687 0.0582 1.43% 1.70% 4.04% 1.99%
PINN-LA 0.0085 0.0149 0.0727 0.0235 0.55% 0.59% 1.73% 0.78%
PINN-LA-2 0.0122 0.0274 0.1495 0.0466 0.79% 1.08% 3.57% 1.49%
PFNN 0.0000 0.1253 0.3367 0.1425 0.00% 5.02% 8.19% 4.64%

HC 0.0000 0.0029 0.0043 0.0026 0.00% 0.12% 0.11% 0.10%
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Figure 4: The history of MovVar(|∇θLF |)
/
MovVar(|∇θ̃L̃F |).

5.4 High-Dimensional Heat Equation

To demonstrate that our framework can generalize to high-dimensional cases, we consider a problem
of time-dependent high-dimensional PDEs in Ω× [0, 1] (see Appendix A.8.3), where Ω is a unit ball
in R10, and u is the quantity of interest.

Here, we do not consider the baselines of the xPINN, FBPINN, and PFNN-2, because the method of
domain decomposition is not suitable for high-dimensional cases. And the other baselines are trained
with Nf = 1000 collocation points, Nb = 100 boundary points and Ni = 100 initial points, while
the HC is trained with Nf = 1000 collocation points. All the models are trained for 5000 Adam
iterations followed by a L-BFGS optimization until convergence and tested with Nt = 10,000 points
evaluated by the analytical solution to the PDEs. We refer to Table 3 for the testing results. It can
be seen that the HC achieves impressive performance in high-dimensional cases. This illustrates
the effectiveness of Eq. (10) and the fact that our model can be directly applied to high-dimensional
PDEs, not just geometrically complex PDEs.

5.5 Ablation Study

In this subsection, we are interested in the impact of the “extra fields” and the hyper-parameters of
“hardness” (i.e., βs and βt, see Section 3.3).

5.5.1 Extra fields

We test the PINNs (with and without the “extra fields”) on the Poisson’s equation and the nonlinear
Schrödinger equation (see Appendix A.8.4). We vary the network architecture and report the ratio of
the the moving variance (MovVar) of |∇θLF | to that of |∇θ̃L̃F | at each iteration (see Figure 4). In

both linear and nonlinear PDEs, we find that models with the “extra fields” (|∇θ̃L̃F |) achieve smaller
gradient oscillations during training, which is consistent with our theoretical results in Section 4.
This is because the “extra fields” reduces the orders of the derivatives, which in turn reduces the
accumulation of backpropagation, avoiding vanishing or exploding gradients.

5.5.2 Hyper-parameters of Hardness

We repeated the experiment in Section 5.2 with different combinations of the values of βs and βt,
and all other settings stay the same. Table 4 gives the testing results (where the MAE and MAPE

Table 4: The MAE / MAPE of T on different βs and βt

βt = 1 βt = 2 βt = 5 βt = 10

βs = 1 0.3492 / 48.21% 0.3539 / 48.56% 0.3226 / 44.64% 0.2889 / 40.69%
βs = 2 0.2800 / 40.30% 0.1670 / 26.16% 0.2140 / 31.72% 0.1619 / 25.20%
βs = 5 0.1878 / 28.68% 0.1195 / 19.68% 0.0542 / 10.35% 0.0221 / 5.10%
βs = 10 0.1896 / 29.15% 0.1104 / 18.70% 0.0517 / 10.56% 0.0329 / 8.15%
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are the average results over t ∈ [0, 1]). In general, the accuracy increases as the values of βs and βt

become larger. The reason is that “harder” βs and βt cause the BCs to be better satisfied, which in
turn makes the approximations more compliant with physical constraints. However, too large βs and
βt (they are both on the exponential, see Eq. (11)) can lead to performance degradation, which may
be related to numerical stability.

6 Conclusion

In this paper, we develop a unified hard-constraint framework for solving geometrically complex
PDEs. With the help of “extra fields”, we reformulate the PDEs and find the general solutions of the
Dirichlet, Neumann, and Robin BCs. Based on this derivation, we propose a general formula of the
hard-constraint ansatz which is applicable to time-dependent, multi-boundary, and high-dimensional
cases. Besides, our theoretical analysis demonstrates that the reformulation is helpful for training
stability. Extensive experiments show that our method can achieve state-of-the-art performance
in real-world geometrically complex as well as high-dimension PDEs, and our theoretical results
are universal to general PDEs. One of the limitations is that here we only consider the three most
commonly used BCs and future works may include extending the framework to more general BCs.
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