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Abstract

We compare fine-tuning models with supervised fine-tuning (SFT) and reinforce-1

ment learning (RL) and find that, even at matched new-task accuracy, RL consis-2

tently forgets less. We investigate the cause and show that the degree of forgetting3

is not determined by the training algorithm itself, but by the distributional shift,4

namely the KL divergence between the fine-tuned and base policy when evaluated5

on the new task distribution. RL’s advantage arises because on-policy updates6

bias optimization toward KL-minimal solutions among the many that solve a task,7

whereas SFT can converge to distributions arbitrarily far from the base model. We8

validate this across experiments with large language models and controlled toy9

settings, as well as provide theory on why on-policy RL updates lead to a smaller10

KL change. We term this principle RL’s Razor: among all ways to solve a new11

task, RL prefers those closest in KL to the original model.12
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Figure 1: RL prefers KL-minimal solutions. Left: RL converges to policies close in KL to the base
model. Right: This reduces forgetting at matched new-task accuracy compared to SFT.

1 Introduction13

Foundation models have rapidly become the backbone of modern AI. Despite their remarkable14

capabilities, today’s models are largely static once deployed: they are not designed to self-improve15

and continually acquire new capabilities. We imagine a future where deployed models are long-16

lived agents assisting humans in the long-term and continuously adapting to new needs. As such,17

models must improve and adapt to new data, environments, and objectives [1, 2, 3, 4, 5, 6]. A18

central challenge to this vision is catastrophic forgetting—the tendency for models to lose previously19

acquired capabilities when trained on new tasks [7, 8, 9, 10]. To enable foundation models to serve as20

long-term agents, we need to develop post-training methods that allow models to acquire new skills21

without erasing old ones.22
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Figure 2: Pareto frontiers of RL and SFT. Each point represents a fine-tuned model. We sweep
hyperparameters and plot only those on the Pareto-frontier. RL improves new-task performance while
preserving prior knowledge, whereas SFT increases performance at the expense of forgetting.

To further this goal, we analyze two widely used post-training schemes of supervised fine-tuning23

(SFT) and reinforcement learning (RL). Our experiments reveal a surprising finding: even when24

SFT and RL achieve the same performance on the new task, we observe that SFT often achieves25

new-task gains by erasing prior knowledge, while RL better preserves old skills. This striking26

empirical gap raises the question: what underlying mechanism allows RL to improve on new tasks,27

but unlike SFT, not disturb the model’s prior knowledge?28

In search of this governing principle, we ablated many possible confounding variables proposed in29

prior work, and uncovered an empirical forgetting law: When fine-tuning a model, π, on a new task30

τ , the degree of forgetting is accurately predicted by Ex∼τ

[
KL(π0||π)

]
, the Kullback–Leibler31

(KL) divergence between the finetuned and the base policy computed on the new task distribution τ .32

Although the underlying reason for this phenomenon remains unclear, its consistency across settings33

suggests it captures a fundamental property of forgetting.34

This law also clarifies the surprising difference between SFT and RL. Our analysis reveals a simple35

but powerful principle we call RL’s Razor: among the many high-reward solutions for a new task,36

on-policy methods such as RL are inherently biased toward solutions that remain closer to the37

original policy in KL divergence. Figure 1 (left) highlights this effect: among the many policies38

that reach a high success rate on the new task, RL is biased toward KL-minimal solutions, while SFT39

can converge to distant ones.40

Together, these findings suggest a new perspective on post-training: to achieve continual adaptation,41

algorithms should explicitly aim to minimize KL divergence from the base model. This principle42

opens the door to designing future training methods that combine RL’s ability to preserve prior43

knowledge with the efficiency of SFT, enabling foundation models that can learn for life.44

2 Reinforcement Learning Forgets Less than SFT45

In this section, we compare the degree of catastrophic forgetting induced by SFT and RL.46

Experimental Setup. For each new task, we trained a Qwen 2.5 3B-Instruct [11]using either SFT,47

with annotations from either the original dataset or GPT-4o or RL, specifically GRPO [12]. Evaluation48

was twofold: performance on the held-out test set of the new task measured training gains, while49

performance on a diverse set of unrelated benchmarks quantified catastrophic forgetting. To obtain a50

reliable comparison, we trained dozens of models for each method under a variety of hyperparameter51

choices. Importantly, all RL experiments were done without explicit KL regularization. We then52

plotted only the models lying on the Pareto frontier. For more details, see Appendix C.53

Tasks and Datasets. We repeated this experiment across three distinct domains: Math reasoning:54

math questions from the Open-Reasoner-Zero dataset [13], annotated with GPT-4o [14] responses55

filtered for correctness. Science Q&A: Chemistry L-3 subset of SciKnowEval [15], also annotated56

with GPT-4o. Tool use: ToolAlpaca dataset [16], using available annotations. For the evaluation of57

catastrophic forgetting, we used established benchmarks: Hellaswag [17], TruthfulQA [18], MMLU58

[19], IFEval [20], Winogrande [21], and HumanEval [22]. These serve as proxies for diverse prior59

abilities that the model should ideally retain.60

Results. Figure 2 illustrates the learning-forgetting trade-offs for all tasks. Across all of them, RL61

training produces nearly horizontal Pareto frontiers as gains on the new task are achieved without62

loss on previous tasks. In contrast, SFT exhibits a steep downward slope—as new task accuracy rises,63

average performance on prior tasks consistently degrades.64

2
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Figure 3: KL divergence predicts catastrophic forgetting. (Left) Learning-Forgetting Trade-offs.
SFT outperforms RL only when an oracle distribution is used as a source of annotation. (Middle)
Forgetting aligns to a single curve when plotted against KL divergence. (Right) RL improves new-task
accuracy with smaller KL shifts than SFT, highlighting the conservativeness of on-policy updates.

Takeaway 1

While SFT boosts new-task performance by sacrificing prior knowledge, RL achieves
comparable improvements with substantially less forgetting.

65

66 3 Smaller KL divergences lead to less forgetting67

A central question raised by our initial results is why RL fine-tuning tends to forget less than SFT.68

To address this, we sought a confounding variable that could robustly explain the behavior of both69

methods. We systematically tested several candidates, including weight change under different norms,70

sparsity, and gradient rank. None of these explained the observed differences (see Appendix D.2).71

What ultimately emerged is that the KL divergence between the trained model and the base model on72

the new task distribution is an excellent predictor of catastrophic forgetting.73

To test this hypothesis in a setting where we could run large numbers of experiments and push RL74

until it starts to forget, we developed a toy problem we call ParityMNIST which mimic realistic75

setting by allowing multiple different distributions to be all correct. We pretrained a 3-layer MLP76

on a subset of ParityMNIST and FashionMNIST [23], then fine-tuned on ParityMNIST. For more77

details, see Appendix C.2. This design allowed us to replicate the phenomenon where RL reached78

high accuracy on the new task with substantially slower degradation of prior knowledge, while SFT79

exhibited a steeper trade-off (Figure 3, left). Importantly, reproducing the effect in this simple MLP80

setting shows that it is not specific to transformers or language modeling, but a more general property81

of fine-tuning deep generative models.82

KL as Predictor. When we plot forgetting directly against KL divergence from the base model on83

the ParityMNIST distribution, results across both RL and SFT collapse onto the same curve (Figure84

3, middle). This shows that KL, not the training algorithm itself, predicts forgetting. A second-order85

polynomial fit achieves R2 = 0.961 in this toy setting. The same correlation is observed in our LLM86

experiments with R2 = 0.61. Although the statistic is lower, the residuals are mean-zero and not87

explained by predictors, consistent with random noise possibly due to approximated measures of KL88

and task accuracy.89

Optimal SFT Distribution. Finally, the simplicity of ParityMNIST allowed us to analytically90

compute the optimal SFT distribution, that is, the optimal distribution with minimal KL divergence91

to the base model, see C.2 for details. Training SFT directly on this distribution outperformed RL,92

showing that the key factor is the KL distance, with RL being naturally biased toward such solutions.93

In addition, we also trained the SFT model on data generated by an RL trained model and found that94

it can reach the same level of performance and forgetting as the RL model, see Figure 7.95

Takeaway 2

Across both SFT and RL, the amount of catastrophic forgetting is determined by how far the
model moves from its base distribution on the new task, as measured by KL divergence.

96

97 4 On-policy methods leads to smaller KL divergence98

Having established that the KL divergence between the trained model and its base distribution on the99

new task predicts catastrophic forgetting, we now ask: why are RL fine-tuned models able to achieve100

strong task performance while moving less in KL than SFT models?101

3
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Figure 4: Comparison of algorithm classes. (Left) The four quadrants illustrate algorithm types,
defined by whether they are on- or off-policy and whether they incorporate negative gradients.
(Middle) On-policy methods retain prior knowledge more effectively. (Right) The on-policy methods
achieve higher new-task accuracy while incurring smaller KL shifts from the base model.

Experimental Evidence To answer this, we examine the differences in training objectives. For102

discrete output spaces, SFT and policy gradient RL use the following objectives1:103

LSFT(π) = −Ex∼D,y∼πβ
[log π(y|x)] LRL(π) = −Ex∼D,y∼π [A(x, y) log π(y|x)]

where πβ is the source of annotations, usually humans, and A(x, y) is an Advantage function (the104

reward of y normalized with respect to other rewards for the same x). Two features distinguish the105

objectives: Sampling Distribution—RL trains on outputs drawn from the model’s own distribution,106

whereas SFT relies on fixed external annotations; and Negative Examples—in RL, some sampled107

responses receive negative coefficients A(x, y), pushing probability mass away from poor outputs, a108

mechanism absent in SFT.109

Our hypothesis is that one of these two differences drives RL’s slower forgetting. To test this, we110

compare four objectives: GRPO is an on-policy objective with negative examples, where A(x, y) is111

the normalized reward. 1–0 Reinforce is on-policy without negative examples, setting A(x, y) = 1112

for correct responses and 0 otherwise, equivalent to sampling from the model and applying SFT only113

on correct answers. SFT is offline and does not use negative examples. SimPO [25] is offline with114

negative examples (see Appendix C.4).115

We compared the four objectives on the Science Q&A task, measuring their learning–forgetting116

trade-offs as in Section 4. The results, shown in Figure 4, reveal that 1–0 Reinforce behaves similarly117

to GRPO, while SimPO resembles SFT. Thus, the critical factor is not the presence of negative118

gradients but the use of on-policy data. Plotting KL divergence confirms this conclusion: on-policy119

methods reach the same task performance with significantly smaller KL divergence from the base120

model than offline methods.121

Theoretical Perspective To support our empirical findings, we also analyzed the policy gradient122

objective and found that, in a simplified setting, it has an implicit bias toward the minimum KL123

solution. for formal theorem and details, see Appendix B.124

Takeaway 3

On-policy training explains why RL maintains smaller KL divergence than SFT. Sampling
from the model’s own distribution keeps it close to the base model, while SFT pushes it

toward arbitrary external distributions.
125

126

5 Discussion and Conclusion127

We show that forgetting is governed by KL divergence from the base policy rather than the training128

algorithm itself. RL forgets less than SFT because on-policy updates naturally bias toward KL-129

minimal solutions, preserving prior knowledge. Open questions remain about why large KL shifts130

disrupt old skills. More broadly, this work highlights a new direction for optimization design:131

developing methods that minimize KL divergence from first principles.132

1In practice, the expectation is taken over outputs sampled from the current policy, and the policy gradient
trick [24] ensures gradients flow only through the log-probability term, not through the sampling distribution.
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A Related work309

Foundation Models and Post-training In modern deep learning, large-scale models trained on310

broad, diverse datasets (usually termed Foundation models) serve as general-purpose backbones311

across domains such as language, vision, robotics, and multimodal reasoning [26, 27, 28, 29, 30]. Pre-312

training often relies on self-supervised or weakly supervised objectives, producing models with broad313

domain knowledge and some zero-shot capabilities [31, 32]. However, raw pre-trained models may314

not directly meet the requirements of specific applications or align with domain-specific constraints.315

Post-training methods address this gap by adapting foundation models to downstream tasks through316

supervised fine-tuning on curated datasets [33, 34, 35, 36], reinforcement learning from human or317

automated feedback [37, 38, 39, 40], and other techniques [41].318
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Catastrophic Forgetting. While fine-tuning primarily aims to improve performance on a new319

specific task, preserving the model’s pre-existing general capabilities is equally critical. Unfortunately,320

fine-tuning often leads to catastrophic forgetting—a phenomenon where learning new information321

significantly deteriorates previously acquired knowledge [7, 8, 9]. Many works have sought to reduce322

forgetting by constraining updates, for example through weight penalties, feature preservation, or323

output matching [42]. These approaches highlight important factors, but what remains missing is a324

unifying principle that predicts forgetting across different algorithms and settings.325

In contrast, our work does not propose a new method but instead identifies a simple law: the KL326

divergence between the fine-tuned and base policy, measured on the new task distribution, reliably327

predicts the degree of forgetting. This explains the success of some popular forgetting mitigation328

methods like Elastic Weight Update [9], which can be seen as approximation of KL minimization329

[43]. Interestingly, practitioners have also observed that KL regularization, originally introduced in330

RL fine-tuning of LLMs to stabilize optimization or prevent reward hacking [44, 45], helps reduce331

catastrophic forgetting [38].332

SFT versus RL. Most prior comparisons between SFT and RL have focused on performance on the333

new task being learned. A seminal result by [46] showed that in sequential decision making, on-policy334

learning can achieve stronger performance even when the learning signal is identical. Building on335

this, recent studies have found that RL fine-tuned models often exhibit superior generalization beyond336

the training distribution [47, 48, 49] and transfer more effectively to related tasks [50] compared337

to SFT trained models. However, none of this work has examined their relative susceptibility to338

catastrophic forgetting, which is the focus of our study.339

Concurrently, [51] report that RL forgets less than SFT, but ascribe RL’s advantage to negative exam-340

ples and ignore sampling-distribution effects. Section 4 shows that this assumption is inconsistent341

with our results.342

B Theory343

Policy gradient methods can be understood as a form of conservative projection. At each step, the344

policy samples outputs it already finds likely, then re-weights those samples according to reward,345

shifting probability mass toward higher-reward outcomes while suppressing lower-reward ones.346

Crucially, because updates are defined relative to the model’s own distribution, they nudge the policy347

toward a nearby re-weighted distribution, rather than pulling it toward a potentially distant external348

distribution (as in SFT). This explains why policy gradient methods tend to remain close to the base349

model in KL divergence.350

This perspective can be formalized by observing that, in the binary-reward case, the re-weighted351

distribution targeted by policy gradient is exactly the minimum-KL projection of the current policy352

onto the set of optimal ones.353

Lemma B.1 (Rejection sampling as an I-projection). Let p be a distribution over a finite set Y , and
let R : Y → {0, 1} be a reward function. Rejection sampling from p with acceptance condition
R(y) = 1 yields a distribution qRS. This distribution can be equivalently characterized as the
solution to:

qRS =q DKL(q||p) s.t Ey∼q[R(y)] = 1

Equivalently, qRS is the I-projection of p onto the set {q : Eq[R] = 1}354

Proof. Let S = {y ∈ Y : R(y) = 1}. Rejection sampling produces the conditional distribution

qRS(y) =

{
p(y)
p(S) y ∈ S,

0 y /∈ S,

where p(S) =
∑

y∈S p(y) and we assume P (S) > 0.355

Now consider the optimization problem. The constraint Eq[R] = 1 means∑
y∈Y

q(y)R(y) =
∑
y∈S

q(y) = 1
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so q must put all of its mass on S. Thus the feasible set is exactly all distributions supported on S.356

For any q supported on S, we can write p(y) = p(S) p(y|S) for y ∈ S, and then357

DKL(q∥p) =
∑
y∈S

q(y) log
q(y)

p(y)
=

∑
y∈S

q(y) log
q(y)

p(y | S)
− log p(S)

∑
y∈S

q(y)

= DKL

(
q∥p(· | S)

)
− log p(S)

where we used
∑

y∈S q(y) = 1 in the last step. The second term is constant in q, so minimizing358

DKL(q||p) is the same as minimizing DKL(q||p(·|S)). By strict convexity of DKL(·∥·) in its first359

argument, the unique minimizer is q = p(· | S) = qRS.360

Lemma B.2 (Policy gradient as an M-projection). Let Y be a finite set and let Π ⊆ ∆(Y ) be a set of
admissible policies (distributions over Y ). Consider the single-step reinforcement learning objective

max
π

Ey∼π[R(y)]

where R : Y → R≥0 is a reward function. By the policy gradient theorem, this objective is
equivalently optimized by

max
π

Ey∼π̄

[
R(y) log π(y)

]
where π̄ indicates that gradients are not propagated through the sampling distribution. Define the
distribution

q(y) =
π(y)R(y)

Z
, Z =

∑
y∈Y

π(y)R(y)

Then taking a policy gradient step is equivalent to taking a gradient step on the following objective:

min
π
−Ey∼q[log π(y)]

In other words, optimizing the RL objective using policy gradient is equivalent to finding the M -361

projection of q onto the set of feasible policies π using gradient descent.362

Proof. Expanding the policy gradient objective gives

Ey∼π̄[R(y) log π(y)] =
∑
y∈Y

π(y)R(y) log π(y)

Let Z =
∑

y∈Y π(y)R(y). Define q(y) = π(y)R(y)/Z. Then the above becomes∑
y∈Y

π(y)R(y) log π(y) = Z
∑
y∈Y

q(y) log π(y) = Z Ey∼q[log π(y)]

Since Z does not depend on π in the gradient computation (it is treated as a constant in the π̄ sense),363

maximizing the original objective is equivalent to maximizing Ey∼q[log π(y)].364

Finally, recall that the M -projection of a distribution q onto a set of distributions Π is given by

min
π∈Π

KL(q∥π) = Eq[log
q

π
] = Eq[log q] − Eq[log π]

since Eq[log q] does not depend on π, the maximizer of Eπ̄[R log π] over Π coincides with365

argminπ∈Π KL(q∥π). Thus, the policy gradient update corresponds to the M -projection of q366

onto the policy class.367

Theorem B.3 (RL with binary reward as an EM algorithm). Let Y be a finite set and let Π ⊆ ∆(Y )
be a set of feasible policies. Let R : Y → {0, 1} be a binary reward function and P ∗ the set of
all optimal policies P ∗ = {q : Eq[R] = 1}. Then, solving the Single-step reinforcement learning
objective using policy gradients is equivalent to performing the following optimization procedure:

qt = arg min
q∈P∗

KL(q∥πt), πt+1 = argmin
π∈Π

KL(qt∥π)

This procedure is also known as EM with information projection.368
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Proof. Sampling y ∼ π and accepting iff R(y) = 1 is exactly rejection sampling onto the event369

S = {y ∈ Y : R(y) = 1}. The resulting distribution is π(·|S). By Lemma A.1 with p ← π, this370

π(·|S) solves371

min
q

DKL(q∥π) s.t. Eq[R] = 1

establishing the I-projection. Applying Lemma A.2 on the RL objective gives us the M-projection.372

Proposition B.4 (Convergence to minimum KL solution). Under the setting appear in theorem373

B.3 and assume Π is an e-flat (exponential-family) model with full support, the optimal set P ∗ is374

nonempty and realizable (i.e., Π ∩ P ∗ ̸= ∅). Then:375

(1) If the M-projection is exact at every step, then (πt) converges to

π† = arg min
π∈P∗∩Π

DKL(π ∥π0)

(2) If the M-projection is inexact but, for some errors εt ≥ 0, it holds that

DKL(qt∥πt+1) ≤ min
π∈Π

DKL(qt∥π) + εt with
∞∑
t=0

εt <∞

then πt also converges to the same limit π†.376

Proof. The I-step is always an exact I-projection (Lemma A.1). In the case of an exact M-step, the iter-377

ative process is EM with information projections. The e-/m-flat geometry yields the Pythagorean iden-378

tities implying convergence to π† [52, 53, 54]. When the M-step only ensures a (near-)minimization379

up to summable errors, the iteration is GEM: monotone improvement and convergence follow from380

the GEM theory of [55] together with generalized alternating minimization for Bregman divergences381

[56], which, under the same e-/m-flat assumptions, selects the same minimum-KL limit π†.382
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Figure 5: KL-minimal path to opti-
mality. Alternating I-projection into the
set of optimal policies and M-projection
into Π carries π0 into P ∗ while prefer-
ring the closest solution in KL.

Practical considerations. Our theoretical equivalence383

should be interpreted with the following caveats:384

• Beyond REINFORCE. In practice, many policy gradient385

algorithms such as GRPO and PPO replace the raw re-386

ward R(y) with an advantage estimate A(y). Since this387

substitution is a control variate technique, it leaves the388

expected gradient direction unchanged while reducing389

its variance. Thus, our projection-based interpretation390

continues to hold.391

• The optimal policy set P ∗ defined by the linear con-392

straint Eq[R] = 1 is an m-flat family, but the rep-393

resentable policy set Π induced by a neural network394

parametrization is not in general e-flat. This may pre-395

vent exact convergence to the minimum-KL solution396

described above. Nevertheless, our theorem provides a397

principled explanation for the bias observed in practical398

RL algorithms.399

C Training and Evaluation Details400

C.1 LLM experiments401

Unless otherwise stated, all reinforcement learning experiments were conducted using GRPO [12].402

For the Math reasoning task, the training set provided final answers but lacked reasoning chains403

required for SFT training. To obtain these, we queried DeepSeek R1 [39], sampling up to 16 responses404

per prompt and retaining a single response that matched the correct final answer. This yielded valid405

annotations for 96% of the dataset. For the Science Q&A task, we applied the same procedure with406

GPT-4o, obtaining correct annotations for the entire dataset.407

To construct the learning–forgetting trade-off curves (e.g., Figure 2), we followed the protocol below:408
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1. Hyperparameter sweep. We trained multiple models under a broad sweep of hyperparameters409

(see Table 1).410

2. New-task evaluation. For Math and Science Q&A, accuracy was measured by comparing411

the model’s final answer to the ground truth, ignoring intermediate reasoning chains. For412

Tool Use, we extracted API calls from the output and matched them against ground-truth413

calls via regular expressions.414

3. Previous-task evaluation. We assessed performance on unrelated benchmarks as described415

in Section 2, using the Language Model Evaluation Harness [57].416

4. Pareto filtering. From the trained models, we retained only those lying within 2 accuracy417

points of the Pareto frontier.418

5. Curve fitting. An exponential function was fit to the filtered points to produce the trade-off419

curves.420

Hyperparameter SFT / SIMPO RL
Base Model Qwen2.5 3B-Instruct Qwen2.5 3B-Instruct
Learning Rate {1e-5, 3e-5, 5e-5, 7e-5, 9e-5} {1e-5, 2e-5, 3e-5, 4e-5, 5e-5}
Optimizer adamw adamw
LR Scheduler {constant w. warmup, cosine w. warmup} constant w. warmup
Warmup steps 50 50
Epochs {1,2} 1
Batch Size {16,32,64,128} See Below
Max Grad Norm 1 1
bfloat16 True True
Weight Decay 0 0

GRPO-only hyperparameters
KL reg. 0
Group Size 64
Prompts per generation 8
num iterations (µ) {1,2}
Loss type Dr. GRPO [58]
Table 1: Hyperparameters used for the LLM experiments. Curly braces {} indicate a sweep over the
specified values. Additional parameters such as weight decay and max gradient norm were manually
ablated; since they showed no significant effect on results, they were not included in the final sweep.]

C.2 MNIST Experiments421

All MNIST experiments were conducted using a 3-layer MLP with input dimension 785, hidden422

layers of sizes 512 and 256, and output dimension 10. The input consisted of a flattened 28 × 28423

image concatenated with a binary indicator: +1 for ParityMNIST and −1 for FashionMNIST.424

Pretraining. We pretrained the network jointly on ParityMNIST and FashionMNIST using small425

subsets of the original datasets (500 images from each). For ParityMNIST, the label was chosen426

uniformly at random among all digit labels with the correct parity.427

Fine-tuning methods. We evaluated five fine-tuning strategies:428

1. GRPO.429

2. GRPO + KL regularization with coefficient 0.1.430

3. SFT 1: all even digits mapped to label 0, all odd digits to label 1.431

4. SFT 2: even digits randomly mapped to {0, 4}, odd digits to {1, 5}.432

5. SFT with oracle distribution: annotations drawn from the minimum-KL distribution consistent433

with task correctness.434
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Oracle distribution. Motivated by the KL–forgetting connection, we define the oracle distribution435

as the one that achieves perfect task accuracy while remaining closest (in KL divergence) to the436

pretraining distribution π0. Concretely, for an input image x we compute π0(·|x) ∈ R10 and the437

binary indicator vector R ∈ {0, 1}10 encoding which labels are correct given the digit’s parity. The438

oracle distribution q∗ is the solution to:439

q∗ = argmin
q

DKL(π0∥q) s.t. q⊤R = 1.

Since KL is convex and the constraint is linear, we can calculate a closed-form solution for every440

image. We then sample from q∗ to produce SFT annotations.441

Hyperparameter sweep. For each method we trained models across a sweep of 15 learning rates442

logarithmically spaced between 3e− 6 and 1e− 3, using either a constant-with-warmup or cosine-443

with-warmup scheduler, and training for 1 or 2 epochs. Including mid-training checkpoints, this444

produced approximately 500 runs per method.445

C.3 Centered Kernel Alignmen446

Centered Kernel Alignment (CKA) [59] Given representations X,Y ∈ Rn×d, define kernels447

K = XX⊤, L = Y Y ⊤. Let H = I − 1
n11

⊤ be the centering matrix. The centered kernels are448

K̄ = HKH, L̄ = HLH.

CKA is then computed as449

CKA(K,L) =
⟨K̄, L̄⟩F
∥K̄∥F ∥L̄∥F

,

where ⟨A,B⟩F = tr(A⊤B).450

CKA with k-NN Alignment (CKNNA) [60] Let α(i, j) ∈ {0, 1} indicate whether i, j are mutual451

k-nearest neighbors in both X and Y . Define the masked inner product452

⟨A,B⟩α =

n∑
i=1

n∑
j=1

α(i, j)AijBij .

CKNNA is then given by453

CKNNA(K,L) =
⟨K̄, L̄⟩α√

⟨K̄, K̄⟩α ⟨L̄, L̄⟩α
.

When α(i, j) = 1 for all i ̸= j, CKNNA reduces to standard CKA.454

C.4 SIMPO455

SimPO is an offline objective that utilizes negative examples. We create negative examples by456

sampling incorrect responses from an external model, and use the SFT data for positive examples.457

The SimPO [25] loss compares correct and incorrect outputs via a logistic term:458

LSIMPO(π) = −Ex∼D,yw∼πβ+ ,yl∼πβ− [log σ (log π(yw|x)− log π(yl|x)− 1)]

where πβ+ and πβ− denote distributions for correct and incorrect responses, respectively. We used459

SimPO rather than naïve likelihood/negative likelihood because the latter was unstable to train.460

D Additional Results461

D.1 Representation Preservation462

While benchmark performance provides an external view of forgetting, it can also be sensitive to463

superficial factors, such as formatting mismatches with the previous tasks. To probe whether the464

training altered the model’s internal capacity more fundamentally, we analyzed changes to the model’s465

representations.466
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Figure 6: CKA similarity to the base model during training. Although SFT and RL achieve
comparable task performance, SFT models diverge substantially in their representations, whereas RL
models remain more closely aligned with the base model.

Experimental Setup. To study how representations change between models, we compare their467

embeddings on a shared dataset. Directly comparing raw embedding values is not meaningful, since468

these can vary arbitrarily during training. Instead, it is common to compare the relative geometry of469

the embeddings—that is, how different inputs relate to each other. This geometry can be summarized470

by a kernel (similarity) matrix, which encodes pairwise relationships among inputs. Centered Kernel471

Alignment (CKA) [59] is a standard measure for comparing such kernels, providing a way to quantify472

representational similarity between models.473

For this analysis, we constructed kernels from random Wikipedia paragraphs, ensuring that the474

comparison probes representations of content unrelated to the new training tasks. We then measured475

the similarity of the kernel between the base model and its fine-tuned variant using a version of CKA476

called CKNNA ([60], see Appendix C.3 for more details). Specifically, we compare models that477

achieved similar final accuracy on the new task.478

Results. Figure D.1 shows that RL-trained models maintain almost perfect representational align-479

ment with the base model, even after learning the new task. By contrast, SFT-trained models diverge480

substantially, indicating that the training reshapes their internal space in ways that distort previously481

encoded knowledge. Together with the benchmark results, this suggests that RL is able to integrate482

new abilities without disturbing the broader conceptual structure, while SFT incurs representational483

shifts that manifest as catastrophic forgetting.484

D.2 Incorrect Hypothesis485

Science advances not only through identifying the right explanations, but also by systematically ruling486

out incorrect ones. To this end, we tested a broad set of candidate variables as potential predictors of487

catastrophic forgetting. These variables fell into four categories:488

• Weight-level changes. A natural hypothesis is that forgetting is tied to how much the parameters489

themselves move. We measured parameter changes under L1, Fisher-weighted L2, and spectral490

norm metrics. The Fisher matrix was computed on the basis of the model parameters, with491

expectation over inputs from the previous task. These metrics correlated only weakly with forgetting:492

large parameter shifts could occur without forgetting, and conversely, forgetting sometimes occurred493

despite small parameter movement.494

• Sparsity and rank of updates. Motivated by [61], who argue that RL updates are sparse while SFT495

weight updates are dense, we explicitly tested this hypothesis. In our setting, however, we found496

that the reason for the observed sparse updates where the use of bfloat16 for model training.497

Since bfloat16 has a limited mantissa, small parameter updates (such as those produced by RL)498

can fail to cross the representational threshold, effectively causing no update at all. Performing the499

same training with float32 resulted in models with identical performance but without any sparsity500
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in their weight updates. Checking the rank of the weight changes, we found that all algorithms lead501

to full rank weight updates.502

• Representation-level changes. Following the CKNNAA results from subsection D.1, we examined503

hidden activation shifts (L1 and L2 distances) as proxies for changes in internal representations.504

These variables show some correlation, but the curves were distinct between training objectives.505

• Distributional distances. We considered multiple measures of output distribution change,506

all measured over inputs from the new task τ : Forward KL (Ex∼τ

[
KL(π0||π)

]
), Reverse KL507

(Ex∼τ

[
KL(π||π0)

]
), Total Variation, and L2 distance between distributions. While reverse KL508

showed a good signal, and TV moderately correlated with forgetting, none approached the predictive509

power of forward KL.510

Table 2 summarizes these results. Across all candidates, forward KL divergence between the fine-511

tuned and base model on the new task distribution emerges as the only consistent and high-fidelity512

predictor of catastrophic forgetting.513

Variable R2 (2nd deg. polynomial)

KL, forward 0.96 ± 0.01
KL, reverse 0.93± 0.01
TV 0.80± 0.01
Distribution change, L2 0.56± 0.02
Weight change, L1 0.34± 0.02
Weight change, Fisher Weighted L2 0.58± 0.02
Weight change, spectral norm 0.58± 0.02
Sparsity of weight change N/A
Rank of weight change N/A
Activation change, L1 0.52± 0.02
Activation change, L2 0.55± 0.02

Table 2: Predictive power of alternative variables compared to forward KL. None approaches the
explanatory strength of forward KL divergence.
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Figure 8: Gradient similarity versus KL change. (Left) On the new training task (ParityMNIST),
gradient cosine similarity and KL change per step remain anti-correlated. (Right) On the prior task
(FashionMNIST), the gradient similarity is more correlated with the KL change per step on the
training task (ParityMNIST). Together, these plots show that taking a larger step on the current task
induces gradients that are more similar in direction to the
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