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Abstract

We compare fine-tuning models with supervised fine-tuning (SFT) and reinforce-
ment learning (RL) and find that, even at matched new-task accuracy, RL consis-
tently forgets less. We investigate the cause and show that the degree of forgetting
is not determined by the training algorithm itself, but by the distributional shift,
namely the KL divergence between the fine-tuned and base policy when evaluated
on the new task distribution. RL’s advantage arises because on-policy updates
bias optimization toward KL-minimal solutions among the many that solve a task,
whereas SFT can converge to distributions arbitrarily far from the base model. We
validate this across experiments with large language models and controlled toy
settings, as well as provide theory on why on-policy RL updates lead to a smaller
KL change. We term this principle RL’s Razor: among all ways to solve a new
task, RL prefers those closest in KL to the original model.
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Figure 1: RL prefers KL-minimal solutions. Left: RL converges to policies close in KL to the base
model. Right: This reduces forgetting at matched new-task accuracy compared to SFT.

1 Introduction

Foundation models have rapidly become the backbone of modern Al Despite their remarkable
capabilities, today’s models are largely static once deployed: they are not designed to self-improve
and continually acquire new capabilities. We imagine a future where deployed models are long-
lived agents assisting humans in the long-term and continuously adapting to new needs. As such,
models must improve and adapt to new data, environments, and objectives [[1} 2} 3, 4, 5, [6]. A
central challenge to this vision is catastrophic forgetting—the tendency for models to lose previously
acquired capabilities when trained on new tasks [[7,8, 9, [10]]. To enable foundation models to serve as
long-term agents, we need to develop post-training methods that allow models to acquire new skills
without erasing old ones.
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Figure 2: Pareto frontiers of RL and SFT. Each point represents a fine-tuned model. We sweep
hyperparameters and plot only those on the Pareto-frontier. RL improves new-task performance while
preserving prior knowledge, whereas SFT increases performance at the expense of forgetting.

To further this goal, we analyze two widely used post-training schemes of supervised fine-tuning
(SFT) and reinforcement learning (RL). Our experiments reveal a surprising finding: even when
SFT and RL achieve the same performance on the new task, we observe that SFT often achieves
new-task gains by erasing prior knowledge, while RL better preserves old skills. This striking
empirical gap raises the question: what underlying mechanism allows RL to improve on new tasks,
but unlike SFT, not disturb the model’s prior knowledge?

In search of this governing principle, we ablated many possible confounding variables proposed in
prior work, and uncovered an empirical forgetting law: When fine-tuning a model, 7, on a new task
7, the degree of forgetting is accurately predicted by E . .- [KL(ﬂ'O | |7'r)], the Kullback-Leibler
(KL) divergence between the finetuned and the base policy computed on the new task distribution 7.
Although the underlying reason for this phenomenon remains unclear, its consistency across settings
suggests it captures a fundamental property of forgetting.

This law also clarifies the surprising difference between SFT and RL. Our analysis reveals a simple
but powerful principle we call RL’s Razor: among the many high-reward solutions for a new task,
on-policy methods such as RL are inherently biased toward solutions that remain closer to the
original policy in KL divergence. Figure[T| (left) highlights this effect: among the many policies
that reach a high success rate on the new task, RL is biased toward KL-minimal solutions, while SFT
can converge to distant ones.

Together, these findings suggest a new perspective on post-training: to achieve continual adaptation,
algorithms should explicitly aim to minimize KL divergence from the base model. This principle
opens the door to designing future training methods that combine RL’s ability to preserve prior
knowledge with the efficiency of SFT, enabling foundation models that can learn for life.

2 Reinforcement Learning Forgets Less than SFT

In this section, we compare the degree of catastrophic forgetting induced by SFT and RL.

Experimental Setup. For each new task, we trained a Qwen 2.5 3B-Instruct [11]using either SFT,
with annotations from either the original dataset or GPT-40 or RL, specifically GRPO [[12]. Evaluation
was twofold: performance on the held-out test set of the new task measured training gains, while
performance on a diverse set of unrelated benchmarks quantified catastrophic forgetting. To obtain a
reliable comparison, we trained dozens of models for each method under a variety of hyperparameter
choices. Importantly, all RL experiments were done without explicit KL regularization. We then
plotted only the models lying on the Pareto frontier. For more details, see Appendix [C]

Tasks and Datasets. We repeated this experiment across three distinct domains: Math reasoning:
math questions from the Open-Reasoner-Zero dataset [[13l], annotated with GPT-4o [14] responses
filtered for correctness. Science Q&A: Chemistry L-3 subset of SciKnowEval [15]], also annotated
with GPT-4o. Tool use: ToolAlpaca dataset [[16], using available annotations. For the evaluation of
catastrophic forgetting, we used established benchmarks: Hellaswag [17], Truthful QA [18], MMLU
[19], IFEval [20], Winogrande [21], and HumanEval [22]. These serve as proxies for diverse prior
abilities that the model should ideally retain.

Results. Figure[2illustrates the learning-forgetting trade-offs for all tasks. Across all of them, RL
training produces nearly horizontal Pareto frontiers as gains on the new task are achieved without
loss on previous tasks. In contrast, SFT exhibits a steep downward slope—as new task accuracy rises,
average performance on prior tasks consistently degrades.
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Figure 3: KL divergence predicts catastrophic forgetting. (Left) Learning-Forgetting Trade-offs.
SFT outperforms RL only when an oracle distribution is used as a source of annotation. (Middle)
Forgetting aligns to a single curve when plotted against KL divergence. (Right) RL improves new-task
accuracy with smaller KL shifts than SFT, highlighting the conservativeness of on-policy updates.

While SFT boosts new-task performance by sacrificing prior knowledge, RL achieves
comparable improvements with substantially less forgetting.

3 Smaller KL divergences lead to less forgetting

A central question raised by our initial results is why RL fine-tuning tends to forget less than SFT.
To address this, we sought a confounding variable that could robustly explain the behavior of both
methods. We systematically tested several candidates, including weight change under different norms,
sparsity, and gradient rank. None of these explained the observed differences (see Appendix [D.2).
What ultimately emerged is that the KL divergence between the trained model and the base model on
the new task distribution is an excellent predictor of catastrophic forgetting.

To test this hypothesis in a setting where we could run large numbers of experiments and push RL
until it starts to forget, we developed a toy problem we call ParityMNIST which mimic realistic
setting by allowing multiple different distributions to be all correct. We pretrained a 3-layer MLP
on a subset of ParityMNIST and FashionMNIST [23]], then fine-tuned on ParityMNIST. For more
details, see Appendix[C.2] This design allowed us to replicate the phenomenon where RL reached
high accuracy on the new task with substantially slower degradation of prior knowledge, while SFT
exhibited a steeper trade-off (Figure [3] left). Importantly, reproducing the effect in this simple MLP
setting shows that it is not specific to transformers or language modeling, but a more general property
of fine-tuning deep generative models.

KL as Predictor. When we plot forgetting directly against KL divergence from the base model on
the ParityMNIST distribution, results across both RL and SFT collapse onto the same curve (Figure
[l middle). This shows that KL, not the training algorithm itself, predicts forgetting. A second-order
polynomial fit achieves R% = 0.961 in this toy setting. The same correlation is observed in our LLM
experiments with R? = 0.61. Although the statistic is lower, the residuals are mean-zero and not
explained by predictors, consistent with random noise possibly due to approximated measures of KL
and task accuracy.

Optimal SFT Distribution. Finally, the simplicity of ParityMNIST allowed us to analytically
compute the optimal SFT distribution, that is, the optimal distribution with minimal KL divergence
to the base model, see[C.2]for details. Training SFT directly on this distribution outperformed RL,
showing that the key factor is the KL distance, with RL being naturally biased toward such solutions.
In addition, we also trained the SFT model on data generated by an RL trained model and found that
it can reach the same level of performance and forgetting as the RL model, see Figure

Across both SFT and RL, the amount of catastrophic forgetting is determined by how far the
model moves from its base distribution on the new task, as measured by KL divergence.

4 On-policy methods leads to smaller KL divergence
Having established that the KL divergence between the trained model and its base distribution on the
new task predicts catastrophic forgetting, we now ask: why are RL fine-tuned models able to achieve
strong task performance while moving less in KL than SFT models?
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Figure 4: Comparison of algorithm classes. (Left) The four quadrants illustrate algorithm types,
defined by whether they are on- or off-policy and whether they incorporate negative gradients.
(Middle) On-policy methods retain prior knowledge more effectively. (Right) The on-policy methods
achieve higher new-task accuracy while incurring smaller KL shifts from the base model.

Experimental Evidence To answer this, we examine the differences in training objectives. For
discrete output spaces, SFT and policy gradient RL use the following objective

Lspr(m) = —Egnp, yrrs [log7(ylx)] Lru(rm) = —Egnpymr [A(x,y)log 7 (y|z)]

where 74 is the source of annotations, usually humans, and A(z,y) is an Advantage function (the
reward of y normalized with respect to other rewards for the same x). Two features distinguish the
objectives: Sampling Distribution—RL trains on outputs drawn from the model’s own distribution,
whereas SFT relies on fixed external annotations; and Negative Examples—in RL, some sampled
responses receive negative coefficients A(x,y), pushing probability mass away from poor outputs, a
mechanism absent in SFT.

Our hypothesis is that one of these two differences drives RL’s slower forgetting. To test this, we
compare four objectives: GRPO is an on-policy objective with negative examples, where A(z,y) is
the normalized reward. 1-0 Reinforce is on-policy without negative examples, setting A(x,y) = 1
for correct responses and 0 otherwise, equivalent to sampling from the model and applying SFT only
on correct answers. SFT is offline and does not use negative examples. SimPO [25] is offline with
negative examples (see Appendix [C.4).

We compared the four objectives on the Science Q&A task, measuring their learning—forgetting
trade-offs as in Section 4. The results, shown in Figure ] reveal that 1-0 Reinforce behaves similarly
to GRPO, while SimPO resembles SFT. Thus, the critical factor is not the presence of negative
gradients but the use of on-policy data. Plotting KL divergence confirms this conclusion: on-policy
methods reach the same task performance with significantly smaller KL divergence from the base
model than offline methods.

Theoretical Perspective To support our empirical findings, we also analyzed the policy gradient
objective and found that, in a simplified setting, it has an implicit bias toward the minimum KL
solution. for formal theorem and details, see Appendix

On-policy training explains why RL maintains smaller KL divergence than SFT. Sampling
from the model’s own distribution keeps it close to the base model, while SFT pushes it
toward arbitrary external distributions.

5 Discussion and Conclusion

We show that forgetting is governed by KL divergence from the base policy rather than the training
algorithm itself. RL forgets less than SFT because on-policy updates naturally bias toward KL-
minimal solutions, preserving prior knowledge. Open questions remain about why large KL shifts
disrupt old skills. More broadly, this work highlights a new direction for optimization design:
developing methods that minimize KL divergence from first principles.

'In practice, the expectation is taken over outputs sampled from the current policy, and the policy gradient
trick [24] ensures gradients flow only through the log-probability term, not through the sampling distribution.
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A Related work

Foundation Models and Post-training In modern deep learning, large-scale models trained on
broad, diverse datasets (usually termed Foundation models) serve as general-purpose backbones
across domains such as language, vision, robotics, and multimodal reasoning [26} 27, 28} 29,130]. Pre-
training often relies on self-supervised or weakly supervised objectives, producing models with broad
domain knowledge and some zero-shot capabilities [31}132]]. However, raw pre-trained models may
not directly meet the requirements of specific applications or align with domain-specific constraints.
Post-training methods address this gap by adapting foundation models to downstream tasks through
supervised fine-tuning on curated datasets [33} 134,35, 36]], reinforcement learning from human or
automated feedback [1377, 138} |39, 40|, and other techniques [41].
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Catastrophic Forgetting. While fine-tuning primarily aims to improve performance on a new
specific task, preserving the model’s pre-existing general capabilities is equally critical. Unfortunately,
fine-tuning often leads to catastrophic forgetting—a phenomenon where learning new information
significantly deteriorates previously acquired knowledge [7, 18, [9]. Many works have sought to reduce
forgetting by constraining updates, for example through weight penalties, feature preservation, or
output matching [42]. These approaches highlight important factors, but what remains missing is a
unifying principle that predicts forgetting across different algorithms and settings.

In contrast, our work does not propose a new method but instead identifies a simple law: the KL
divergence between the fine-tuned and base policy, measured on the new task distribution, reliably
predicts the degree of forgetting. This explains the success of some popular forgetting mitigation
methods like Elastic Weight Update [9], which can be seen as approximation of KL minimization
[43]. Interestingly, practitioners have also observed that KL regularization, originally introduced in
RL fine-tuning of LLMs to stabilize optimization or prevent reward hacking [44! |45]], helps reduce
catastrophic forgetting [38]].

SFT versus RL. Most prior comparisons between SFT and RL have focused on performance on the
new task being learned. A seminal result by [46] showed that in sequential decision making, on-policy
learning can achieve stronger performance even when the learning signal is identical. Building on
this, recent studies have found that RL fine-tuned models often exhibit superior generalization beyond
the training distribution [47} 48] 49] and transfer more effectively to related tasks [50] compared
to SFT trained models. However, none of this work has examined their relative susceptibility to
catastrophic forgetting, which is the focus of our study.

Concurrently, [51] report that RL forgets less than SFT, but ascribe RL’s advantage to negative exam-
ples and ignore sampling-distribution effects. Sectionf]shows that this assumption is inconsistent
with our results.

B Theory

Policy gradient methods can be understood as a form of conservative projection. At each step, the
policy samples outputs it already finds likely, then re-weights those samples according to reward,
shifting probability mass toward higher-reward outcomes while suppressing lower-reward ones.
Crucially, because updates are defined relative to the model’s own distribution, they nudge the policy
toward a nearby re-weighted distribution, rather than pulling it toward a potentially distant external
distribution (as in SFT). This explains why policy gradient methods tend to remain close to the base
model in KL divergence.

This perspective can be formalized by observing that, in the binary-reward case, the re-weighted
distribution targeted by policy gradient is exactly the minimum-KL projection of the current policy
onto the set of optimal ones.

Lemma B.1 (Rejection sampling as an I-projection). Let p be a distribution over a finite set Y, and
let R :' Y — {0,1} be a reward function. Rejection sampling from p with acceptance condition
R(y) = 1 yields a distribution qrs. This distribution can be equivalently characterized as the
solution to:

ars =q Dxi(qllp) st Eyq[R(y)] =1
Equivalently, qgs is the I-projection of p onto the set {q : E,[R] = 1}

Proof. Let S = {y € Y : R(y) = 1}. Rejection sampling produces the conditional distribution

p(y) S
_ s YES
qars(y) {0 y ¢S,
where p(S) = >_ 5 p(y) and we assume P(S5) > 0.

Now consider the optimization problem. The constraint E,[R] = 1 means
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so ¢ must put all of its mass on S. Thus the feasible set is exactly all distributions supported on .S.
For any ¢ supported on S, we can write p(y) = p(S) p(y|S) for y € S, and then

Dralp) = 3 atw)log L2 = 3™ gy log ~L9 _10g p(8) T ()

< py) p(y |9) yes
= Dxw(qllp(- | S)) —logp(S)

where we used >, 5 ¢(y) = 1 in the last step. The second term is constant in ¢, so minimizing

Dxr.(q||p) is the same as minimizing Dxr,(¢||p(:|S)). By strict convexity of Dk, (-||-) in its first
argument, the unique minimizer is ¢ = p(- | S) = ggs. O

Lemma B.2 (Policy gradient as an M-projection). Let Y be a finite set and let II C A(Y") be a set of
admissible policies (distributions over Y ). Consider the single-step reinforcement learning objective

max B, [R(y)]

where R : 'Y — Rxq is a reward function. By the policy gradient theorem, this objective is
equivalently optimized by
max B,z [R(y) log 7(y)]

where T indicates that gradients are not propagated through the sampling distribution. Define the
distribution

Wy) == Z= > m(y)R(y)

yey
Then taking a policy gradient step is equivalent to taking a gradient step on the following objective:

mgn —Eyqllog m(y)]

In other words, optimizing the RL objective using policy gradient is equivalent to finding the M -
projection of q onto the set of feasible policies T using gradient descent.

Proof. Expanding the policy gradient objective gives
Ey~z[R(y)logm(y)] = Y 7(y)R(y) log 7 (y)
yey
Let Z =3 oy m(y)R(y). Define ¢(y) = m(y) R(y)/Z. Then the above becomes
> m(y)RW)logn(y) = Z Y q(y)logm(y) = Z Eyqlog 7(y)]
yey yey

Since Z does not depend on 7 in the gradient computation (it is treated as a constant in the 7 sense),
maximizing the original objective is equivalent to maximizing E, 4 [log 7 (y)].

Finally, recall that the M -projection of a distribution g onto a set of distributions II is given by
. q
min KL(q||7) = E,[log ;} =E,[logq] — E,llogn]

since E,[logg¢] does not depend on 7, the maximizer of Ez[Rlogn] over II coincides with
arg min, ¢y KL(g||7). Thus, the policy gradient update corresponds to the M -projection of ¢
onto the policy class. O

Theorem B.3 (RL with binary reward as an EM algorithm). Let Y be a finite set and let 1 C A(Y')
be a set of feasible policies. Let R :' Y — {0,1} be a binary reward function and P* the set of
all optimal policies P* = {q : E4[R] = 1}. Then, solving the Single-step reinforcement learning
objective using policy gradients is equivalent to performing the following optimization procedure:

- in KL — in KL
g = arg min (qllme), M1 = arg min (qellm)

This procedure is also known as EM with information projection.
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Proof. Sampling y ~ 7 and accepting iff R(y) = 1 is exactly rejection sampling onto the event
S ={y €Y : R(y) = 1}. The resulting distribution is 7(+:|S). By Lemma A.1 with p < m, this
7(:|S) solves

mqin Dxr(g||m) st EgR]=1

establishing the I-projection. Applying Lemma A.2 on the RL objective gives us the M-projection. [

Proposition B.4 (Convergence to minimum KL solution). Under the setting appear in theorem
[B.3| and assume 11 is an e-flat (exponential-family) model with full support, the optimal set P* is
nonempty and realizable (i.e., I1 N P* # &). Then:

(1) If the M-projection is exact at every step, then (7)) converges to
T ; D
! =arg min D (|| 7o)

(2) If the M-projection is inexact but, for some errors €, > 0, it holds that

oo
Dx1,(g||me+1) < min Dk (ge|lw) + er with Zet < 00
mell —0

then 7, also converges to the same limit 7'

Proof. The I-step is always an exact I-projection (Lemma A.1). In the case of an exact M-step, the iter-
ative process is EM with information projections. The e-/m-flat geometry yields the Pythagorean iden-
tities implying convergence to 7' [52} 153, 54]. When the M-step only ensures a (near-)minimization
up to summable errors, the iteration is GEM: monotone improvement and convergence follow from
the GEM theory of [55]] together with generalized alternating minimization for Bregman divergences

[56]], which, under the same e-/m-flat assumptions, selects the same minimum-KL limit 7. O

Practical considerations. Our theoretical equivalence = 1

should be interpreted with the following caveats: space 2(1) gptimat e

* Beyond REINFORCE. In practice, many policy gradient _° 2
algorithms such as GRPO and PPO replace the raw re- sl ®7 e
ward R(y) with an advantage estimate A(y). Since this N e A
substitution is a control variate technique, it leaves the . 1
expected gradient direction unchanged while reducing >
its variance. Thus, our projection-based interpretation

continues to hold.

* The optimal policy set P* defined by the linear con-
straint E;[R] = 1 is an m-flat family, but the rep-
resentable policy set II induced by a neural network
parametrization is not in general e-flat. This may pre-
vent exact convergence to the minimum-KL solution
described above. Nevertheless, our theorem provides a
principled explanation for the bias observed in practical
RL algorithms.

Figure 5: KL-minimal path to opti-
mality. Alternating I-projection into the
set of optimal policies and M-projection
into II carries 7 into P* while prefer-
ring the closest solution in KL.

C Training and Evaluation Details

C.1 LLM experiments

Unless otherwise stated, all reinforcement learning experiments were conducted using GRPO [12].

For the Math reasoning task, the training set provided final answers but lacked reasoning chains
required for SFT training. To obtain these, we queried DeepSeek R1 [39]], sampling up to 16 responses
per prompt and retaining a single response that matched the correct final answer. This yielded valid
annotations for 96% of the dataset. For the Science Q&A task, we applied the same procedure with
GPT-40, obtaining correct annotations for the entire dataset.

To construct the learning—forgetting trade-off curves (e.g., Figure[2), we followed the protocol below:

11
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1. Hyperparameter sweep. We trained multiple models under a broad sweep of hyperparameters

(see Table|l).
2. New-task evaluation. For Math and Science Q&A, accuracy was measured by comparing
the model’s final answer to the ground truth, ignoring intermediate reasoning chains. For
Tool Use, we extracted API calls from the output and matched them against ground-truth
calls via regular expressions.
3. Previous-task evaluation. We assessed performance on unrelated benchmarks as described
in Section 2] using the Language Model Evaluation Harness [57].
4. Pareto filtering. From the trained models, we retained only those lying within 2 accuracy
points of the Pareto frontier.
5. Curve fitting. An exponential function was fit to the filtered points to produce the trade-off
curves.
Hyperparameter SFT / SIMPO RL
Base Model Qwen2.5 3B-Instruct Qwen2.5 3B-Instruct
Learning Rate {1e-5, 3e-5, 5e-5, 7e-5, 9e-5} {1e-5, 2e-5, 3e-5, 4e-5, 5e-5}
Optimizer adamw adamw
LR Scheduler {constant w. warmup, cosine w. warmup} constant w. warmup
Warmup steps 50 50
Epochs {1,2} 1
Batch Size {16,32,64,128} See Below
Max Grad Norm 1 1
bfloat16 True True
Weight Decay 0 0
GRPO-only hyperparameters
KL reg. 0
Group Size 64
Prompts per generation 8
num iterations () {1,2}
Loss type Dr. GRPO [58]

Table 1: Hyperparameters used for the LLM experiments. Curly braces {} indicate a sweep over the
specified values. Additional parameters such as weight decay and max gradient norm were manually
ablated; since they showed no significant effect on results, they were not included in the final sweep.]

C.2 MNIST Experiments

All MNIST experiments were conducted using a 3-layer MLP with input dimension 785, hidden
layers of sizes 512 and 256, and output dimension 10. The input consisted of a flattened 28 x 28
image concatenated with a binary indicator: +1 for ParityMNIST and —1 for FashionMNIST.

Pretraining. We pretrained the network jointly on ParityMNIST and FashionMNIST using small
subsets of the original datasets (500 images from each). For ParityMNIST, the label was chosen
uniformly at random among all digit labels with the correct parity.

Fine-tuning methods. We evaluated five fine-tuning strategies:

GRPO.

GRPO + KL regularization with coefficient 0.1.

SFT 1: all even digits mapped to label 0, all odd digits to label 1.
SFT 2: even digits randomly mapped to {0, 4}, odd digits to {1,5}.

A

SFT with oracle distribution: annotations drawn from the minimum-KL distribution consistent
with task correctness.

12
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Oracle distribution. Motivated by the KL—forgetting connection, we define the oracle distribution
as the one that achieves perfect task accuracy while remaining closest (in KL divergence) to the
pretraining distribution 7. Concretely, for an input image = we compute 7 (-|z) € R and the
binary indicator vector R € {0, 1}'° encoding which labels are correct given the digit’s parity. The
oracle distribution g* is the solution to:

¢* = argmin Dgp,(mollq) st ¢ R=1.
q

Since KL is convex and the constraint is linear, we can calculate a closed-form solution for every
image. We then sample from ¢* to produce SFT annotations.

Hyperparameter sweep. For each method we trained models across a sweep of 15 learning rates
logarithmically spaced between 3e — 6 and 1e — 3, using either a constant-with-warmup or cosine-
with-warmup scheduler, and training for 1 or 2 epochs. Including mid-training checkpoints, this
produced approximately 500 runs per method.

C.3 Centered Kernel Alignmen

Centered Kernel Alignment (CKA) [S9] Given representations X, Y € R™*4, define kernels
K=XX"L=YY'" LetH =1 — %11T be the centering matrix. The centered kernels are

K=HKH, L=HLH.
CKA is then computed as o
K,L
CKA(K,L) = K L) 7
IK|F L] r
where (A, B)r = tr(AT B).

CKA with k-NN Alignment (CKNNA) [60] Let «(4,5) € {0, 1} indicate whether 4, j are mutual
k-nearest neighbors in both X and Y. Define the masked inner product

<A,B>a :Z O[(Z,]) A”Blj
i=1j=1
CKNNA is then given by
CKNNA(K,L) = (K, L)

VIE, K)o (L, LYo
When «(i,j) = 1 for all i # j, CKNNA reduces to standard CKA.

C4 SIMPO

SimPO is an offline objective that utilizes negative examples. We create negative examples by
sampling incorrect responses from an external model, and use the SFT data for positive examples.
The SimPO [25]] loss compares correct and incorrect outputs via a logistic term:

LSIMPO(W) = 7EZ'N'D,wa7rﬁ+7leﬂ'ﬁ7 [IOgO' (logﬂ-(yw‘x) - logﬂ—(yl‘x) - 1)}

where mg+ and g~ denote distributions for correct and incorrect responses, respectively. We used
SimPO rather than naive likelihood/negative likelihood because the latter was unstable to train.

D Additional Results

D.1 Representation Preservation

While benchmark performance provides an external view of forgetting, it can also be sensitive to
superficial factors, such as formatting mismatches with the previous tasks. To probe whether the
training altered the model’s internal capacity more fundamentally, we analyzed changes to the model’s
representations.

13
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Figure 6: CKA similarity to the base model during training. Although SFT and RL achieve
comparable task performance, SFT models diverge substantially in their representations, whereas RL
models remain more closely aligned with the base model.

Experimental Setup. To study how representations change between models, we compare their
embeddings on a shared dataset. Directly comparing raw embedding values is not meaningful, since
these can vary arbitrarily during training. Instead, it is common to compare the relative geometry of
the embeddings—that is, how different inputs relate to each other. This geometry can be summarized
by a kernel (similarity) matrix, which encodes pairwise relationships among inputs. Centered Kernel
Alignment (CKA) [59] is a standard measure for comparing such kernels, providing a way to quantify
representational similarity between models.

For this analysis, we constructed kernels from random Wikipedia paragraphs, ensuring that the
comparison probes representations of content unrelated to the new training tasks. We then measured
the similarity of the kernel between the base model and its fine-tuned variant using a version of CKA
called CKNNA ([60]], see Appendix [C.3]for more details). Specifically, we compare models that
achieved similar final accuracy on the new task.

Results. Figure shows that RL-trained models maintain almost perfect representational align-
ment with the base model, even after learning the new task. By contrast, SFT-trained models diverge
substantially, indicating that the training reshapes their internal space in ways that distort previously
encoded knowledge. Together with the benchmark results, this suggests that RL is able to integrate
new abilities without disturbing the broader conceptual structure, while SFT incurs representational
shifts that manifest as catastrophic forgetting.

D.2 Incorrect Hypothesis

Science advances not only through identifying the right explanations, but also by systematically ruling
out incorrect ones. To this end, we tested a broad set of candidate variables as potential predictors of
catastrophic forgetting. These variables fell into four categories:

* Weight-level changes. A natural hypothesis is that forgetting is tied to how much the parameters
themselves move. We measured parameter changes under L1, Fisher-weighted Lo, and spectral
norm metrics. The Fisher matrix was computed on the basis of the model parameters, with
expectation over inputs from the previous task. These metrics correlated only weakly with forgetting:
large parameter shifts could occur without forgetting, and conversely, forgetting sometimes occurred
despite small parameter movement.

* Sparsity and rank of updates. Motivated by [61]], who argue that RL updates are sparse while SFT
weight updates are dense, we explicitly tested this hypothesis. In our setting, however, we found
that the reason for the observed sparse updates where the use of bfloat16 for model training.
Since bfloat16 has a limited mantissa, small parameter updates (such as those produced by RL)
can fail to cross the representational threshold, effectively causing no update at all. Performing the
same training with f1oat32 resulted in models with identical performance but without any sparsity

14
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in their weight updates. Checking the rank of the weight changes, we found that all algorithms lead
to full rank weight updates.

* Representation-level changes. Following the CKNNAA results from subsection[D.T} we examined
hidden activation shifts (L1 and L2 distances) as proxies for changes in internal representations.
These variables show some correlation, but the curves were distinct between training objectives.

* Distributional distances. We considered multiple measures of output distribution change,
all measured over inputs from the new task 7: Forward KL (E,~. [KL(mol|7)]), Reverse KL
(Epmr [KL(W| \ﬂo)]), Total Variation, and Lo distance between distributions. While reverse KL
showed a good signal, and TV moderately correlated with forgetting, none approached the predictive
power of forward KL.

Table@] summarizes these results. Across all candidates, forward KL divergence between the fine-
tuned and base model on the new task distribution emerges as the only consistent and high-fidelity
predictor of catastrophic forgetting.

Variable R? (2nd deg. polynomial)
KL, forward 0.96 +0.01
KL, reverse 0.93 £0.01
TV 0.80 +0.01
Distribution change, L2 0.56 +£0.02
Weight change, L1 0.34 £0.02
Weight change, Fisher Weighted L2 0.58 &£ 0.02
Weight change, spectral norm 0.58 £ 0.02
Sparsity of weight change N/A

Rank of weight change N/A
Activation change, L1 0.52 £0.02
Activation change, L2 0.55 £0.02

Table 2: Predictive power of alternative variables compared to forward KL. None approaches the
explanatory strength of forward KL divergence.

SFT Student
J RL Teacher

60 -

Fashion MNIST Accuracy
& 8 & 3 &

@
&

B‘B 9‘0 5‘2 9‘11 9‘5 9‘8
MNIST Accuracy

Figure 7: SFT distillation from an RL teacher. Accuracy trade-off between the new task (MNIST)
and the prior task (FashionMNIST). Sweeping student hyperparameters shows that SFT can match
the teacher within noise on both tasks. This suggests that what matters is not the optimization path,
but the distribution of the final model.
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Figure 8: Gradient similarity versus KL change. (Left) On the new training task (ParityMNIST),
gradient cosine similarity and KL change per step remain anti-correlated. (Right) On the prior task
(FashionMNIST), the gradient similarity is more correlated with the KL change per step on the
training task (ParityMNIST). Together, these plots show that taking a larger step on the current task
induces gradients that are more similar in direction to the
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