
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXPLICIT-CONSTRAINED SINGLE AGENT FOR
ENHANCED TASK-SOLVING IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this study, we introduce the Explicitly Constrained Agent (EC-Agent), a novel
approach designed to enhance the task-solving capabilities of Large Language
Models (LLMs). Unlike existing multi-agent systems that depend on agents evalu-
ating tasks from different perspectives, EC-Agent explicitly imposes task-oriented
constraints for LLMs. Our observations are two-fold: first, assigning agents to
sub-tasks with defined responsibilities implicitly sets constraints; second, these
multi-agent systems often struggle with accurately assigning agents to sub-tasks,
leading to overlapping duties and potential misguidance. In contrast, our single-
agent system, driven by explicit methods and constraints, provides LLMs with
detailed prompts, resulting in more precise responses. EC-Agent consists of two
stages: a Reasoning Stage and a Summary Stage. 1) In the Reasoning Stage,
three modules are proposed: Explicit Method, Explicit Constraint, and Execution.
Specifically, LLMs utilize the Explicit Method and Constraint modules to ana-
lyze the task type and specific rules, generating multiple suitable methods and
constraints. Subsequently, the Execution module combines these methods and
constraints to produce and output possible solutions. 2) In the Summary Stage,
LLMs evaluate the multiple reasoning processes and results from the previous
step. They rectify any inconsistencies, summarize the information, and output the
final result. Experimental results demonstrate that EC-Agent outperforms previous
methods across a variety of tasks.

1 INTRODUCTION

The widespread applications of Large Language Models (LLMs) has led to transformative advances
in various domains. However, the potential of LLMs is still under-exploited, especially for high-
complexity tasks such as creative writing and high-level work plan design according to Qin et al.
(2023), where the LLMs suffer a lot from issues related to the strength of knowledge and reasoning
caused by problems such as hallucination (Bang et al., 2023; Bubeck et al., 2023), lack of slow
thinking (Sloman, 1996; Lin et al., 2023a) and so on.

Recent research has attempted to address these challenges by introducing structured intermediate
steps and leveraging the ability of multi-persona systems. The Chain of Thought (CoT) (Wei et al.,
2023) approach improves LLM performance by breaking down the task into smaller, easier handle
steps, leading to more thorough reasoning at each stage. Similarly, the Tree of Thought (ToT) (Yao
et al., 2023a) approach uses a branching strategy to explore multiple potential solutions at the same
time, thereby increasing the chances of finding the right and best result. In addition, the Self-Planner
Prompt (SPP) (Wang et al., 2023b) study illustrates the effectiveness of dynamically allocating agents
in the LLM based on specific task inputs and user-defined requirements. This approach enables
the model to generate more rational and contextually appropriate outputs by adapting the reasoning
process to the task’s unique demands.

However, our observation is that multi-agent systems implicitly set constraints based on the task and
rely on agents to evaluate the task from different perspectives. While these systems aim to improve
instruction generation by introducing agents with distinct roles and responsibilities, they face practical
challenges. Accurately generating executable plans for the LLM and allocating agents to specialized
sub-tasks and defining their responsibilities can be difficult, potentially leading to overlapping duties.
Furthermore, the effectiveness of these solutions depends on the roles of the generated agents and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: The pipeline of EC-Agent comprises two stages: the Reasoning Stage and the
Summary Stage. Key modules within this structure are the Explicit Method (EM) and
Explicit Constraints (EC).

their operational sequencing, with a single miss-assigned or unrelated agent potentially misleading
the entire reasoning process.

To address these issues, we propose the EC-Agent, a novel approach that leverages a single-agent
system driven by explicit method and constraints. By providing LLMs with prompts that combine
explicit method and constraints, our approach provides more accurate and efficient reasoning during
task-solving.

To be more specific, EC-Agent involves two stages: the Reasoning Stage and the Summary Stage. The
Reasoning Stage consists of three modules: the explicit method generation module (EM), the explicit
constraints generation module (EC), and the execution module. The input task is first analyzed to
infer a suitable method for solving it, along with explicit and implicit constraints, ensuring the model
accurately identifies the necessary conditions for task solutions. Following this, EC-Agent guides
the LLMs in combining the task description with the generated method and explicit constraints to
formulate a comprehensive execution plan. This plan, which includes a detailed multi-step work
strategy, significantly enhances the LLMs’ reasoning accuracy. In the Summary Stage, EC-Agent
reviews the outputs of the execution process. It prompts the LLMs to rectify and summarize the
results based on the initial task description, method, and constraints, ensuring a high-quality final
solution.

We further conduct experiments on various tasks, including ‘Trivia Creative Writing,’ ‘Logic Grid
Puzzles,’ ‘Codenames Collaborative,’ and ‘Code Generation.’ EC-Agent improves the performance
of LLMs compared with standard prompting and outperforms previous methods.

In summary, EC-Agent is an intelligent agent driven by explicit task constraints and planning. It
effectively solves general tasks while avoiding some pitfalls associated with multi-role agent systems.
Our main contributions are as follows:

1. EC-Agent combines the Reasoning Stage and the Summary Stage in a structured pipeline
that is simple yet ensures thorough and systematic task-solving.

2. By incorporating explicit method and constraints, EC-Agent provides clear and direct
guidance to LLMs, improving the accuracy and reliability of their outputs.

3. Experimental results show that EC-Agent improves LLM performance compared to standard
prompting and outperforms previous methods with performance margins on various tasks.

2 RELATED WORK

2.1 PROMPTING PIPELINE

Wei et al. (2023) introduces the concept of Chain-of-Thought, which effectively enhances the
reasoning ability of LLMs by generating a series of intermediate reasoning steps in response to a
question. Yao et al. (2023a) proposes to explore multiple feasible paths and combine searching and
backtracking, which improves the effectiveness in solving complex logical reasoning problems. Besta
et al. (2023) introduces a GoT structure that can comprehensively utilize the optimal results generated

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

during the reasoning process. While ongoing advancements aim to augment the task-solving ability
of LLMs through the implementation of diverse reasoning pipelines, a notable performance gap
persists, particularly in generating complex content requisite for domains such as creative writing and
storyboard generation. In this study, we explore a new pipeline imbued with a hierarchical structure
specifically engineered to address the complexities inherent in such creative generation tasks. these
methods have two limitations: 1) They cannot generate complex content. 2) The scale of problems
they can solve is relatively limited.

2.2 AUTONOMOUS AGENTS FRAMEWORK

LLMs have emerged as fundamental components within the autonomous agents framework. This
framework cover three distinct operational modes: single-agent mode, human-agent interaction mode,
and multi-agent mode. Gravitas (2023) is an early single-agents framework that relies on LLMs,
combined with relevant tools, to address issues of diversity. Hong et al. (2023), Cai et al. (2023), Lin
et al. (2023b) are two human-agent interaction frameworks that enhance task performance through
continuous human-machine interaction. Nakajima (2023) is composed of multiple agents, each
with a specific role: the task creation agent generate task, the task prioritization agent manages
the task list, and the execution agent selects and executes tasks from this list. The system operates
with fixed agents and adheres to a predetermined sequence of execution. Hong et al. (2023) has
shown remarkable advancements in Agent-Pipeline solutions, demonstrating unparalleled creativity
and proficiency in problem resolution. Li et al. (2023) introduce systems optimizing inter-agent
communication. Park et al. (2023) builds on a multi-agent foundation, providing the capability for
self-refine based on results. Wu et al. (2023) allows users to create and manage multiple autonomous
agents to collaboratively complete complex tasks. Wang et al. (2023b) proposes a reasoning method
with automatic evaluation. This approach involves automating the setup of multiple agents with
different ability to evaluate and improve reasoning results multiple times. It endows LLMs with
stronger reasoning abilities while effectively reducing hallucinations. Zhou et al. (2024) incorporation
of an environment for external feedback. However, these methods depend on the accuracy of the LLM
in generating agents. Hallucinations by the LLM, such as creating mismatched agents or making
unreasonable task arrangements, can negatively impact the effectiveness of task execution.

2.3 SPECIFIC TASKS-SOLVING WITH AGENT

In ths field of trivia creative writing, Mirowski et al. (2023) have employed hierarchical and structured
approaches combined with specific role assignments to leverage the ability of LLMs in generating
long-form creative content, such as continuous scripts enriched with detailed contextual elements.
These studies, along with Zhang et al. (2019), Mishra et al. (2023), Liu et al. (2023a), have made
commendable strides in integrating domain-specific knowledge to guide LLMs in executing tasks
with enhanced precision in respective domains.

The series of Chain of Thought (CoT) articles, such as Diao et al. (2023), Shum et al. (2024), Wang
et al. (2023a), demonstrate various reasoning and planning generation methods. Le et al. (2024)
enhances the reasoning ability of LLMs by combining language models with code execution in a form
similar to CoT. Huang et al. (2024) builds on this CoT approach by incorporating the concept of test
cases. Shinn et al. (2023) improves the execution of logic generation and planning tasks by emulating
human reflection. Lin et al. (2024) assigns LLM agents specific roles in typical development teams to
improve code generation quality.

Despite the plethora of advancements and innovations in LLMs, a common limitation is evident, i.e.,
the reliance on manual specification for both problem-solving processes and the determination of
agent attributes, impeding their versatility in generalized applications.

2.4 COGNITIVE SCIENCE AND LLMS

Researchers such as Piaget (2013), Pellegrini (2009), Wason & Johnson-Laird (1972), Sloman
(1996) have researched into the realms of human psychology and cognition, influencing subsequent
developments in artificial intelligence theory (Chandrasekaran et al., 2017). Devlin et al. (2019),
Brown et al. (2020), OpenAI (2023), Chowdhery et al. (2022), Srivastava et al. (2023) demonstrate
the ability of large language models (LLMs) to the public. Shuster et al. (2022), Bang et al. (2023),

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Liu et al. (2023b), Yao et al. (2023b), Lin et al. (2023a), Madaan et al. (2023), Shinn et al. (2023), by
integrating cognitive science with Large Language Models (LLMs), continuously explore methods to
enhance the ability of LLMs. Research related to cognitive load theory (September, 2018), indicates
that when teachers instruct students on solving new problems, clear solution design, practice, and
feedback are more effective for problem resolution than requiring students to independently explore
all aspects they need to learn for solving the problem.

All of these approaches represent new explorations in both theoretical and methodological aspects,
providing fresh perspectives for the enhancement and development of LLMs in the future.

3 METHOD

In this section, we formally introduce EC-Agent, which consists of two stages: Reasoning and
Summary, as demonstrated in Figure 1. We begin by revisiting the definition of task-solving for
LLM agents, followed by a detailed explanation of EC-Agent, including its key components and the
complete pipeline.

Given an input instruction x and a model M, if we denote the final output to be y, then the Standard
Prompting (Equ. 1) and Chain-Of-Thought (Equ. 2) can be formulated as:

y = M(x) (1)

y = M(pcot|x|{z1, z2, .., zn}) (2)

where pcot is the CoT prompt and z1, z2, ...zn are the implicit intermediate steps.

In contrast, our EC-Agent can be divided into two stages: ‘Reasoning’ and ‘Summary.’ In the
‘Reasoning’ stage, EC-Agent aims to identify and generate suitable explicit methods and explicit
constraints from user input x. Specifically, it generates multiple methods suitable for solving the
task, represented as F(x) = (f1, f2, f3, ...), along with a set of constraints C(x) = (c1, c2, c3, ...),
all based on user input x. Next, results are generated based on F(x) and C(x), denoted as
E(f, c) = (e1, e2, e3, ...en), where (e1, e2, e3, ...en) represents the implicit execution sequence.
In the ‘Summary’ stage, it includes both a review section and a summary section. The review section,
denoted as A(e, c) = (a1, a2, a3, ...an), is used to examine and adjust the reasoning process as well
as the validity of the results. The summary section, denoted as S(a, c), integrates all reasoning
processes and answers, and based on the task and constraints, generates the final result. The system
can be represented as:

y = M(pec|x|F(x)|C(x)|E(f, c)|A(e, c)|S(a, c)) (3)

We now provide details for each stage of EC-Agent. Detailed prompts of each module can be found
in Appendix A.

3.1 REASONING STAGE

The first stage of EC-Agent is reasoning, where it can generate multiple possible solutions given
user input x. At the core of this stage are the creation of methods and constraints with respect to
the tasks. This is then followed by an execution step to develop the solutions. We now elaborate on
the detailed functionality of the three main components in reasoning: Explicit Method Generation,
Explicit Constraints Generation, and Execution.

3.1.1 EXPLICIT METHOD GENERATION

A core module of EC-Agent is the generation of explicit methods. In the first step of the reasoning
stage, EC-Agent guides the LLM to search for and generate one or more methods suitable for the
given task based on the input task information. These methods are then output in an explicit form
as execution plans. During this phase, we prompt the LLM to generate general methods rather than
those specifically tailored to the task requirements. This process is represented as F(x), and the
generated results are denoted as (f1, f2, f3, ...).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1.2 EXPLICIT CONSTRAINTS GENERATION

Another core module of EC-Agent is the generation of explicit constraints. Previous work has
shown that multi-agent systems benefit from evaluating outputs based on the roles of the agents. We
posit that providing constraints to LLMs during problem-solving can achieve similar performance
enhancements, with explicit constraints offering direct and efficient guidance. Specifically, these
explicit constraints are derived from two aspects:

1. Explicit Requirements from the Input Task: This includes specific instructions embedded
within the task, such as "5 or 10 common-sense questions in Trivia Creative Writing tasks"
or "room numbers with person preferences in Logic Grid Puzzle tasks."

2. Implicit Constraints Related to the Task: This includes inherent requirements necessary for
the task’s execution, such as "validity checks for input values in code generation tasks."

This process is represented as C(x), and its output results are as (c1, c2, c3, ...).

3.1.3 EXECUTION

Based on the generated F(x) and C(x), EC-Agent further guides the LLMs to perform reasoning
execution. This involves synthesizing the current task description with the generated methods and
constraints, and then outputting the reasoning results, denote as E(f, c).
To enhance the robustness of EC-Agent, we employ a multi-sampling approach. This approach allows
the LLMs to execute the Reasoning Stage multiple times, generating several results for the task. This
increases the likelihood of producing feasible and accurate solutions. To maintain a balance between
efficiency and cost, we use 2 samples in our experiments.

3.2 SUMMARY STAGE

Following the execution results from the Reasoning stage, the Summary stage is employed to produce
the final solution. This stage consists of two main steps: Review and Conclusion. In the Review
step, each execution plan’s results are evaluated independently to ensure correctness, consistency,
and adherence to the constraints. In the Conclusion step, the LLMs synthesize all solutions and their
evaluations, summarizing the outcomes into a coherent and accurate final result.

3.2.1 REVIEW

In this step, a list of ‘common errors for the task’ is generated by combining the ‘task,’ ‘method,’ and
‘constraints.’ This is followed by a reflection and correction of the input "reasoning information and
results," and the corrected "reasoning process and results" are re-output, denoted as A(e, c).

3.2.2 CONCLUSION

The second step is ‘Conclusion,’ denoted as S(a, c). We instruct the LLMs to summarize and select
based on the task description and all reasoning records (each containing a complete reasoning process
and outcome), discarding alternative answers with flawed logical reasoning, ultimately providing the
final result. Throughout this process, we observe that the LLMs pay more attention to differences and
the logic in the reasoning process. Based on this information, they summarize and select, leading to a
performance improvement.

4 EXPERIMENTS

To assess the efficacy and adaptability of EC-Agent across different applications, we apply EC-
Agent to 4 distinct tasks, including Trivia Creative Writing, Logic Grid Puzzle, Codenames
Collaborative and Code Generation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Methods
(GPT-4-0613)

Trivia.C.W (N=5)
Score (%) ∆

Trivia.C.W (N=10)
Score (%) ∆

Logic.G.Puzzle
Score (%) ∆

Codenames.C
Score (%) ∆

Standard Prompting 74.6 77.0 57.7 75.4
CoT 67.1 ↓7.5 68.5 ↓8.5 65.8 ↑8.1 72.7 ↓3.3

Self-Refine[iter=1] 73.9 ↓0.7 76.9 ↓0.1 60.0 ↑2.3 64.6 ↓10.8
SPP 79.9 ↑5.3 84.7 ↑7.7 68.3 ↑10.6 79.0 ↑3.6

EC-Agent (ours) 80.5 ↑5.9 85.7 ↑8.7 69.2 ↑11.5 82.9 ↑7.5

Table 1: We compared with Standard Prompting, CoT, Self-Refine, and SPP. EC-
Agent outperforms these baselines in various tasks. (Based on GPT-4-0613)

Methods
(GPT-3.5-Turbo)

Trivia.C.W (avg)
Score (%) ∆

Logic.G.Puzzle
Score (%) ∆

Codenames.C
Score (%) ∆

Standard Prompting 64.0 46.0 61.0
CoT 48.0 ↓16.0 50.0 ↑4.0 54.0 ↓7.0
SPP 37.0 ↓27.0 48.0 ↑2.0 35.0 ↓26.0

EC-Agent (ours) 71.4 ↑7.4 50.0 ↑4.0 66.8 ↑5.8

Table 2: EC-Agent demonstrated a certain level of stability, without experiencing
the performance instability as in CoT or SPP. (Based on GPT-3.5-Turbo-0613)

Model Methods Trivia.C.W (N=5)
Score (%) ∆

Trivia.C.W (N=10)
Score (%) ∆

Logic.G.Puzzle
Score (%) ∆

Codenames.C
Score (%) ∆

LLama3.1-8b
Standard Prompting 50.4 60.1 44.0 50.1

EC-Agent (ours) 59.4 ↑9.0 65.9 ↑5.8 48.3 ↑4.3 62.3 ↑12.2

Gemma2-9b
Standard Prompting 52.6 59.1 43.5 65.7

EC-Agent (ours) 58.9 ↑6.3 63.2 ↑4.1 51.0 ↑7.5 75.3 ↑9.6

Mistral-7b
Standard Prompting 46.4 50.4 33.5 62.8

EC-Agent (ours) 49.4 ↑3.0 52.8 ↑2.4 42.5 ↑9.0 67.5 ↑4.7

Table 3: EC-Agent also achieves performance improvements across various tasks with different
open-source models. More details about average and variance scores are provided in Appendix C.

4.1 TRIVIA CREATIVE WRITING

Task Description. We adopted the same task setting as SPP (Wang et al., 2023b) , requiring LLMs
to craft coherent stories around a given topic while integrating answers to N trivia questions. This
tests the model’s capability to retrieve information from its self-compressed knowledge base. The
task is structured into two scenarios: N=5 and N=10, where a higher N indicates a greater number
of trivia questions to be correctly answered during story generation. SPP developed a benchmark
comprising 100 instances for each scenario, utilizing a total of 1000 questions from the TriviaQA
dataset (Joshi et al., 2017). We utilized the SPP dataset for both N=5 and N=10 settings in our tests.

Evaluation Metrics. We adopted the evaluation approach used by SPP, applying an automated
metric to determine the ratio of target answers (and their variants) included in the generated output
relative to the total number of trivia questions. This is quantified as the Trivia Creative Writing Metric
Score, calculated by dividing the number of correct answer mentions by the total number of trivia
questions.

Result. Table 1, Colume 1 & 2, Table 2, Colume 2, Table 3, Colume 3 & 4 demonstrate the
exceptional performance of EC-Agent in model internal imformation retrieve. Compared to the
standard method, CoT method, and generative Multi-Agent systems like SPP and Auto-Agent, EC-
Agent achieved average scores of 83.1 (GPT-4-0613), 71.4 (GPT-3.5-Turbo-0613), 62.65 (LLama3.1-
8b), 61.5 (Gemma2-9b), and 51.1 (Mistral-7b).

The inclusion of “explicit conditional constraint generation” in our method enhances the reasoning
stability of the LLMs when answering factual questions, effectively reducing model hallucinations.
With GPT-4-0613, our average scores are 85.7 for tasks with 10 trivia questions (N=10) and 80.5 for
tasks with 5 trivia questions (N=5).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Compared to the Chain of Thought (CoT) and SPP methods, our approach provides better reasoning
stability. Specifically, with the GPT-3.5-Turbo-0613 version, our method shows a 11.5% improvement
over the Standard method and a substantial 92.9% improvement over the SPP method.

4.2 LOGIC GRID PUZZLE

Task Description. In this task, we evaluate the multi-step reasoning ability of EC-Agent using the
Logic Grid Puzzle task from the Bigbench dataset (Srivastava et al., 2023). This dataset comprises
200 instances, each describing a logic puzzle. The objective of each puzzle is to deduce house
numbers by integrating given problems and clues, which detail 2-5 rooms, the residents, and specific
characteristics of these residents.

Evaluation Metrics. For evaluation metrics, we assess the accuracy of the responses by comparing
the predicted house numbers against the standard answers provided in the dataset.

Result. Table 1, Colume 4 and Table 3, Colume 4 present the results for the Logic Grid Puzzle
task. EC-Agent enhances the reasoning and conditional constraint ability of large language models.
Our evaluations show an average score of 69.2 (GPT-4-0613), 50.0 (GPT-3.5-Turbo-0613), 48.3
(LLama3.1-8b), 51.0 (Gemma2-9b), and 42.5 (Mistral-7b). These results demonstrate performance
comparable to CoT and SPP, while exceeding both standard methods and Self-Refine (Madaan et al.,
2023). (More detailed are provided in Task 2.1 of Appendix B)

4.3 CODENAMES COLLABORATIVE

Task Description. Codenames Collaborative is a collaborative task where two players take on
the roles of Spymaster and Guesser. This task test the model’s knowledge, reasoning, and theory
of mind abilities. The Spymaster provides a hint word related to the target words while excluding
other distractor words, and the Guesser uses the given hint and the full list of words to infer the target
words.

Evaluation Metrics. Our task adopts the Codenames Collaborative dataset designed in SPP. This
dataset provides an environment with a set of questions and target words, allowing for accurate
measurement of the model’s capability without human annotation.

Result. Table 1, Colume 5 and Table 3, Colume 5 present the results for the Codenames Collabo-
rative task. Our evaluations show that EC-Agent achieves an average score of 82.9 (GPT-4-0613),
66.8 (GPT-3.5-Turbo-0613), 62.3 (LLama3.1-8b), 75.3 (Gemma2-9b), and 67.5 (Mistral-7b). This
task demands more robust reasoning ability from LLMs compared to the trivia creative writing task.
Notably, our method outperforms others, demonstrating superior knowledge and reasoning abilities
in this collaborative setting. Please refer to Task 2.2 in Appendix B for more details.

4.4 CODE GENERATION

Task Description. In this task, we evaluate the effectiveness of EC-Agent using code generation
datasets: MBPP (Austin et al., 2021). The datasets consist of a comprehensive collection of Python
programming problems designed to test a model’s ability to handle various coding scenarios.

Evaluation Metrics. We use pass@1 as the evaluation metric for code correctness, the most widely
adopted metric for automatic code generation (Chen et al., 2021; Huang et al., 2024).

Result. Table 4 presents the results of our evaluations using GPT-4-0613 and GPT-3.5-Turbo-1106
on the MBPP datasets, along with general task frameworks like Zero-Shot Prompting and MetaGPT,
as well as specialized programming frameworks such as Language Agent T.S. and LLM CodeGen
Scrum. Additionally, Table 5 showcases the results of our evaluations using open-source models on
the same MBPP datasets.

In the basic MBPP, EC-Agent achieved average scores of 90.3 (GPT-4-0613), 83.2 (GPT-3.5-
Turbo-1106), 72.8 (LLama3.1-8b), 72.4 (Gemma2-9b), and 49.5 (Mistral-7b). Our method, which

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model Methods MBPP
Score (%) ∆

GPT-4
Zero-shot Prompting 82.5

Meta GPT 87.7 ↑5.2
EC-Agent (ours) 90.3 ↑6.8

GPT-3.5-Turbo

Zero-shot Prompting 77.5
Language Agent T.S. 81.1 ↑4.6

LLMCodeGen 82.5 ↑5.0
EC-Agent (ours) 83.2 ↑5.7

Table 4: Comparison of EC-Agent, baselines, and
other methods across different models.

Model Methods MBPP
Score (%) ∆

LLama3.1-8b
Zero-shot Prompting 68.0

EC-Agent (ours) 72.8 ↑4.8

Gemma2-9b
Zero-shot Prompting 69.1

EC-Agent (ours) 72.4 ↑3.3

Mistral-7b
Zero-shot Prompting 49.0

EC-Agent (ours) 49.5 ↑0.5

Table 5: MBPP test with open-source models.

emphasizes the explicit articulation of implicit conditions, improves model performance by ensuring
the rationality of input data and generating test cases that follow the task’s constraint instructions.

4.5 ABLATION STUDIES

We further conducted ablation studies on different modules of EC-Agent to evaluate the impact of
each component on overall performance. The results of these evaluations are presented in Table 6.

Explicit Method. As shown in “EM” row in Table 6, Guiding the LLM to apply explicit methods in
the reasoning process can efficiently enhances outcomes. This aligns with human cognitive processes,
where a clear understanding of the task and selecting appropriate methods are crucial for successful
completion.

Explicit Constraints. In our approach, we enhance the performance of LLMs by replacing the
generation of dynamic role agents with explicit conditional constraints. The impact of the EC module
on the results can be seen in the row titled ‘EC’ in Table 6. We also observer that the integration of
explicit conditional constraints offers key advantages:

1. It eliminates the uncertainty and incompleteness in dynamic role generation.

2. It directs LLMs to focus more precisely on the task during the reasoning process. (Refer to
Task 3 in Appendix B and Table 6)

Multi Samples. Additionally, we also tested the hypothesis: “Can the performance of problem-
solving be improved by allowing the LLM to perform task planning multiple times under limited
model ability?” by using a Multi Samples strategy. The results showed that while the model’s
reasoning performance benefits from additional repetitions of task planning, the associated reasoning
cost also increases. (Refer to ‘EM + EC + Samples’ row in Table 6).

Result Review. Finally, we also evaluated the effects of ‘self-summarization and reflection’ on
single and multiple reasoning results across various tests. The results indicated that the effects
of ‘summarization and reflection’ varied across different tasks, depending on the method used to
determine task outcomes. When task outcomes can be assessed through strict logical reasoning, this
approach can enhance reasoning results; conversely, its effectiveness is weaker when the assessment
method is less rigorous. (Refer to ‘EM + EC + Review’ row in Table 6).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Methods (Gemma2-9b) Trivia.C.W (N=5) Trivia.C.W (N=10) Logic.G.Puzzle Codenames.C
Standard 52.6 59.1 43.5 65.7

Plan + CoT 56.9 61.6 45.0 69.2
Plan + CoT + EC 55.6 62.1 45.5 69.3

EM 55.4 60.8 48.5 73.6
EC 56.4 61.3 47.0 74.0

EM + EC 57.0 61.6 50.0 75.1
EM + EC + Review 57.1 61.8 50.0 75.1
EM + EC + Samples 58.3 62.9 50.5 75.2

EC-Agent 58.9 63.2 51.0 75.3

Table 6: Ablation Studies: Comparative Analysis of Task Performance Scores for Various
Methods. The experiments lead to the following conclusion: The EM + EC combination
demonstrates stable performance across different task types, showing a slight advantage over the
Plan + CoT combination in text generation tasks, and surpassing the Plan + CoT combination in
reasoning tasks.

Methods (Gemma2-9b) Trivia.C.W (Avg.) Logic.G.Puzzle Codenames.C
input output input output input output

Standard 0.2k 0.45k 0.3k 0.45k 0.1k 0.002k
EM+EC 0.2k 0.5k 0.3k 0.5k 0.1k 0.4k

EM+EC+Review 0.7k 0.9k 0.8k 0.9k 0.5k 0.8k
EM+EC+Samples 2.1k 1.9k 2.4k 1.5k 1.5k 1.2k

EC-Agent 2.6k 3.2k 2.9k 2.7k 2.0k 2.4k

Table 7: Ablation Studies: Token (number) Costs Across Different Methods. As more modules
are adopted, the consumption of tokens also increases. This is mainly due to multiple samples in
the Reasoning Stage and reviews and conclusions in the Summary Stage.

Computational Cost. The cost of EC-Agent mainly comes from the multi-sample process in the
Reasoning stage and the Summary stage. According to the ablation experiments, in tasks related
to ‘text content generation,’ multi-sampling can effectively improve the success rate of the task. In
‘logical reasoning’ tasks, the impact of reducing the number of samples on the success rate is not as
significant. Therefore, in practical applications, the number of samples can be adjusted appropriately
based on the differences in task types to achieve a reasonable comparison between performance and
cost. (Refer to Table 7).

Alternate Modules. We also conducted experiments with multiple module combinations. In this
comparative experiment, we used ‘Plan + CoT’ as one module, combined with the EC module. The
results of these experiments are shown in Table 6 under ‘Plan + CoT,’ ‘Plan + CoT + EC,’ and ‘EM
+ EC’ This cross-combination approach in multi-task experiments allows for a relatively objective
validation of the effectiveness and stability of the system. The specific differences of these modules
during the reasoning process can be referenced in Task 3 of Appendix B.

The following conclusions can be drawn from the experiments: for various tasks, while the combina-
tion of ‘Plan + CoT’ also achieved good results, its performance in some reasoning tasks was inferior
to that of the ‘EM + EC’ combination (‘EM + EC’ is more focused on the specific requirements
of the tasks). Therefore, the ‘EM + EC’ combination offers the better cost-effectiveness (including
support for task diversity, reasoning results, reasoning efficiency, and computational cost). If the
better performance is needed, running the complete EC-Agent Pipeline is recommended.

5 CONCLUSION

In conclusion, our study demonstrates that integrating explicit conditional constraints enhances LLMs
performance by aligning model reasoning more closely with structured task execution method. Our
findings also suggest that integration of explicit constraints and optimized task planning could pave
the way for more robust and efficient LLMs applications in complex problem-solving scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

LIMITATIONS

While EC-Agent demonstrates promising performance across various tasks, potential issues can arise
in complex real-world scenarios. For instance, in extremely long reasoning chains, problems like
‘early-termination’ can occur. In the future, we will explore how to address reasoning problems in
more complex scenarios and delve into the model’s capabilities, particularly for open-source models.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, and Pascale Fung. A multitask,
multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity. arXiv
preprint arXiv:2302.04023, 2023.

Maciej Besta, Nils Blach, Ales Kubicek anobert Gerstenberger, Lukas Gianinazzi, Joanna Gajda,
Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler.
Graph of thoughts: Solving elaborate problems with large language models. arXiv preprint
arXiv:2308.09687, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, and Prafulla Dhariwal
et al. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio
Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments with gpt-4.
arXiv preprint arXiv:2303.12712, 2023.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, and Denny Zhou. Large language models as
tool makers. arXiv preprint arXiv:2305.17126, 2023.

Arjun Chandrasekaran, Deshraj Yadav, Prithvijit Chattopadhyay, Viraj Prabhu, and Devi Parikh. It
takes two to tango: Towards theory of ai’s mind. arXiv preprint arXiv:1704.00717, 2017.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, and Paul Barham et al. Palm: Scaling language modeling with pathways. arXiv preprint
arXiv:2204.02311, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423.

Shizhe Diao, Pengcheng Wang, Yong Lin, and Tong Zhang. Active prompting with chain-of-thought
for large language models, 2023.

10

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Significant Gravitas. Auto-gpt: An autonomous gpt-4 experiment. 2023. URL https://github.
com/Significant-Gravitas/Auto-GPT.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, and Chenglin
Wu. Metagpt: Meta programming for multi-agent collaborative framework. arXiv preprint
arXiv:2308.00352, 2023.

Dong Huang, Qingwen Bu, Yuhao Qing, and Heming Cui. Codecot: Tackling code syntax errors in
cot reasoning for code generation, 2024.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension, 2017.

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul, Doyen Sahoo, and Shafiq Joty. Codechain:
Towards modular code generation through chain of self-revisions with representative sub-modules,
2024.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for "mind" exploration of large scale language model society. arXiv
preprint arXiv:2303.17760, 2023.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Prithviraj Ammanabrolu, Faeze Brahman, Shiyu Huang,
Chandra Bhagavatula, Yejin Choi, and Xiang Ren. Swiftsage: A generative agent with fast and
slow thinking for complex interactive tasks. arXiv preprint arXiv:2305.17390, 2023a.

Feng Lin, Dong Jae Kim, Tse-Husn, and Chen. When llm-based code generation meets the software
development process, 2024.

Jessy Lin, Nicholas Tomlin, Jacob Andreas, and Jason Eisner. Decision-oriented dialogue for
human-ai collaboration. arXiv preprint arXiv:2305.20076, 2023b.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+p: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023a.

Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. Chain of hindsight aligns language models with
feedback. arXiv preprint arXiv:2302.02676, 2023b.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

Piotr Mirowski, Kory W. Mathewson, Jaylen Pittman, and Richard Evans. Co-writing screenplays
and theatre scripts with language models: Evaluation by industry professionals. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems, CHI ’23, New York, NY,
USA, 2023. Association for Computing Machinery. ISBN 9781450394215. doi: 10.1145/3544548.
3581225. URL https://doi.org/10.1145/3544548.3581225.

Prakhar Mishra, Chaitali Diwan, Srinath Srinivasa, and G. Srinivasaraghavan. Ai based approach to
trailer generation for online educational courses. arXiv preprint arXiv:2301.03957, 2023.

Y Nakajima. Task-driven autonomous agent utilizing gpt-4, pinecone, and langchain for diverse
applications. 2023. URL https://github.com/yoheinakajima/babyagi/tree/main.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior. arXiv preprint
arXiv:2304.03442, 2023.

Anthony Pellegrini. The Role of Play in Human Development. Oxford University Press, 10 2009.
ISBN 9780195367324. doi: 10.1093/acprof:oso/9780195367324.001.0001. URL https://doi.
org/10.1093/acprof:oso/9780195367324.001.0001.

11

https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://doi.org/10.1145/3544548.3581225
https://github.com/yoheinakajima/babyagi/tree/main
https://doi.org/10.1093/acprof:oso/9780195367324.001.0001
https://doi.org/10.1093/acprof:oso/9780195367324.001.0001

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jean Piaget. The construction of reality in the child, volume 82. Routledge, 2013.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen, Michihiro Yasunaga, and Diyi
Yang. Is chatgpt a general-purpose natural language processing task solver? arXiv preprint
arXiv:2302.06476, 2023.

September. Cognitive load theory: Research that teachers really need to understand. 2018. URL
https://api.semanticscholar.org/CorpusID:202685323.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. arXiv preprint
arXiv:2303.11366, 2023.

KaShun Shum, Shizhe Diao, and Tong Zhang. Automatic prompt augmentation and selection with
chain-of-thought from labeled data, 2024.

Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju, Eric Michael Smith, Stephen Roller, Megan Ung,
Moya Chen, Kushal Arora, Joshua Lane, Morteza Behrooz, William Ngan, Spencer Poff, Naman
Goyal, Arthur Szlam, Y-Lan Boureau, Melanie Kambadur, and Jason Weston. Blenderbot 3:
a deployed conversational agent that continually learns to responsibly engage. arXiv preprint
arXiv:2208.03188, 2022.

Steven Sloman. The empirical case for two systems of reasoning. Psychological Bulletin, 119:3–, 01
1996. doi: 10.1037/0033-2909.119.1.3.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, and Adrià Garriga-Alonso et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023a.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing
cognitive synergy in large language models: A task-solving agent through multi-persona self-
collaboration. arXiv preprint arXiv:2307.05300, 2023b.

Peter Cathcart Wason and Philip Nicholas Johnson-Laird. Psychology of Reasoning: Structure and
Content. Harvard University Press, Cambridge, MA, USA, 1972.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. arXiv
preprint arXiv:2201.11903, 2023.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2023b.

Yeyao Zhang, Eleftheria Tsipidi, Sasha Schriber, Mubbasir Kapadia, Markus Gross, and Ashutosh
Modi. Generating animations from screenplays. In Proceedings of the Eighth Joint Conference
on Lexical and Computational Semantics (*SEM 2019), pp. 292–307, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics. doi: 10.18653/v1/S19-1032. URL https:
//aclanthology.org/S19-1032.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models, 2024.

12

https://api.semanticscholar.org/CorpusID:202685323
https://aclanthology.org/S19-1032
https://aclanthology.org/S19-1032

	Introduction
	Related Work
	Prompting Pipeline
	Autonomous Agents Framework
	Specific Tasks-Solving with Agent
	Cognitive Science and LLMs

	Method
	Reasoning Stage
	Explicit Method Generation
	Explicit Constraints Generation
	Execution

	Summary Stage
	Review
	Conclusion

	Experiments
	Trivia Creative Writing
	Logic Grid Puzzle
	Codenames Collaborative
	Code Generation
	Ablation Studies

	Conclusion

