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Abstract

A major limitation of current text-to-image generation models is their inherent tendency to
incorporate biases, thereby not demonstrating inclusivity in certain attributes. An approach
to enhance the inclusiveness is suggested by Zhang et al. (2023): Inclusive Text-to-Image
Generation (ITI-GEN). The authors state that ITI-GEN leverages reference images to im-
prove the inclusiveness of text-to-image generation by learning inclusive prompt embeddings
for targeted attributes. In this paper, the reproducibility of ITI-GEN is investigated in an
attempt to validate the main claims presented by the authors. Moreover, additional exper-
iments are conducted to provide further evidence supporting their assertions and research
their limitations. This concerns the research on inclusive prompt embeddings, the inclu-
sivity of untargeted attributes and the influence of the reference images. The results from
the reproducibility study mainly show support for their claims. The additional experiments
reveal that ITI-GEN only guarantees inclusivity for the specified targeted attributes. To ad-
dress this shortcoming, we present a possible solution, namely ensuring a balanced reference
dataset.

1 Introduction

Recently, there has been a significant advancement in text-based visual content creation, driven by break-
throughs in generative modelling and the utilisation of large-scale multimodal datasets (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Ramesh et al., 2021). These developments have reached a point where publicly released
models, such as Stable Diffusion (SD) (Rombach et al., 2022), can now generate highly realistic images based
on human-written prompts. However, a major limitation of current models lies in their inherent tendency
to incorporate biases from the training data, thereby not yet demonstrating inclusivity in certain attributes
and minority groups (Bianchi et al., 2023; Ramesh et al., 2022; Bansal et al., 2022).

A straightforward approach to enhance inclusivity in text-to-image generation is the usage of a truly inclusive
training dataset (Dhariwal & Nichol, 2021; Zhao et al., 2020). However, obtaining an extensive training
dataset that is well-balanced across all relevant attributes is deemed impractical. An alternative strategy to
achieve more inclusiveness is to specify or enumerate each category in natural language, i.e. hard prompt
searching (HPS) (Bansal et al., 2022; Hutchinson et al., 2022; Ding et al., 2021; Petsiuk et al., 2022).
Nevertheless, numerous categories are difficult to specify with natural language, such as skin tone, or cannot
be well synthesised by the existing models due to linguistic ambiguity or model misrepresentation.

Contrary to these two approaches, Zhang et al. (2023) suggest a more efficient strategy called Inclusive Text-
to-Image Generation (ITI-GEN). This method utilises images as guides to enhance representation by learning
inclusive prompt embeddings. The authors claim that ITI-GEN enhances the inclusiveness by generating
images with a uniformly distributed representation across attributes of interest.

In this work, we aim to reproduce their findings, verify their claims, and conduct additional experiments to
provide further evidence supporting their assertions and research their limitations.
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2 Scope of reproducibility

Zhang et al. (2023) propose a novel method for inclusive text-to-image generation, in which inclusive prompt
embeddings are learned using images. With this method they achieve group fairness (Mehrabi et al., 2021)
for the specified groups in the inclusive prompts. For the purpose of our discussion, we denote groups as
attributes (e.g. gender, age), encompassing categories (e.g. male, 10-19). To maintain consistency with the
terminology used in the original paper, we consider the following scenarios: a single binary attribute pertains
to one attribute that includes two categories, multiple attributes involve a combination of binary attributes,
and multi-category attributes encompass a combination of attributes with multiple categories.

The main claims of the original paper that we address can be summarised as follows:

• Claim 1: Inclusiveness in text-to-image generation: ITI-GEN can generate images that
represent a more uniform distribution across different binary attributes, improving inclusiveness in
text-to-image generation compared to state-of-the-art approaches that enumerate each category in
natural language.

• Claim 2: Scalable to multiple attributes: ITI-GEN can generate a more evenly distributed
representation across various category combinations of binary attributes compared to baseline meth-
ods.

• Claim 3: Scalable to multi-category attributes: ITI-GEN achieves more inclusiveness com-
pared to baseline methods for attributes encompassing multiple categories, including those that are
notably underrepresented in the training data.

• Claim 4: High-quality images: ITI-GEN generates images with FID scores of approximately
60, indicating high-quality images.

In addition to reproducing the results presented in the paper, we perform novel experiments. We investigate
the disparities between the embeddings produced by ITI-GEN and those derived from natural language.
Additionally, we delve into a limitation of ITI-GEN: the possibility of biases being introduced by the reference
images, as indicated by Zhang et al. (2023).

3 Methodology

The ITI-GEN implementation is publicly accessible on GitHub within their repository1. The replication of all
experiments is facilitated by the provided code, slight modifications were introduced to ensure compatibility
with our GPU server infrastructure2. Additionally, we conducted experiments extending beyond the scope
of their original study to gain further insights into the performance of ITI-GEN.

3.1 Model descriptions

The original paper proposes ITI-GEN, a new framework that achieves inclusiveness in text-to-image genera-
tion by creating discriminative prompts based on reference images. A general overview of image generation
using ITI-GEN prompts is provided in Appendix A. To realise inclusiveness, ITI-GEN aims to sample an
equal number of images capable of representing any category combination within the attribute set A. Here, A
encompasses M distinct attributes (e.g. gender, age), each containing Km categories (e.g. types of gender).
This process involves utilising a pre-trained generative model, namely SD (Rombach et al., 2022) (sd-v1-4),
and a human-written prompt tokenised as T ∈ Rp×e obtained with the vision-language pre-trained CLIP
model (Radford et al., 2021). SD and CLIP have a total of 860M and 428M parameters, respectively.

For each mutually exclusive category k, within attribute m, inclusive prompt embeddings are acquired. This
is done by introducing q learnable tokens Sm

k ∈ Rq×e after the original token T, thereby constructing a new
1https://github.com/humansensinglab/ITI-GEN
2Project page: https://anonymous.4open.science/r/factai-2422
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prompt Pm
k = [T; Sm

k ]. The default CLIP embedding dimension e is 768 and the authors set q to 3, making
the total number of parameters

∑M
m=1 Km × 3 × 768.

In the presence of a reference image set corresponding to target attributes, the learnable prompts undergo
a training process designed to align these attributes within the images. This alignment is achieved through
the application of both Direction Alignment Loss and Semantic Consistency Loss. The former ensures the
alignment of directions between the prompts Pm

i and Pm
j with the direction defined by the embeddings of

the reference images. The latter focuses on maximising the cosine similarity between the learning prompts
and the original input prompt. This serves the purpose of maintaining faithfulness to the input prompt
during the generation of images.

3.2 Datasets

The original paper conducted experiments using a total of four datasets, whereas this research exclusively
utilises two of these datasets for training the inclusive prompt embeddings. (1) CelebA contains images
featuring faces of celebrities annotated with 40 binary attributes, such as male, young and eyeglasses (Liu
et al., 2015). In total, CelebA consists of 16,000 images, with 200 images per category. (2) FairFace includes
images of faces annotated with two perceived gender categories and nine perceived age categories (Karkkainen
& Joo, 2021). This dataset contains a total of 2,200 images, with 200 images per category. The authors have
made these datasets available in a dedicated repository3.

3.3 Evaluation

The generated images are evaluated with the following two metrics. (1) Distribution Discrepancy (DKL) is
used to quantify the distribution diversity of the attributes. The original paper aims to generate inclusive
images, ensuring a uniform distribution across the attributes of interest. To classify the attributes in the
images two models are used, namely CLIP for the binary attributes and a classifier proposed by Karkkainen
& Joo (2021) for the multi-category attributes. (2) Fréchet Inception Distance (FID) is used to measure
image quality (Heusel et al., 2017).

3.4 Hyperparameters

In order to closely replicate the original experiments, we predominantly employ the same set of hyperpa-
rameters. Due to limited time and resources, the Denoising Diffusion Implicit Models (DDIM) steps of SD
is decreased from 50 to 25 for the experiment of the third claim. The DDIM framework iteratively improves
samples via denoising. Reducing its steps from 50 to 25 speeds up the sampling process but could slightly
alter the quality. However, SD would still produce satisfactory images (Song et al., 2020).

3.5 Experimental setup and code

Experiments - Claim 1 & 2 This experiment researches the inclusiveness of ITI-GEN and its scalability
to multiple attributes. Due to limitations in GPU resources, we were unable to execute every experiment
with each of the five prompts outlined in the original paper. Consequently, we conducted the experiments
exclusively using the prompt "a headshot of a person". As a result, we established our own baseline for
Vanilla SD and HPS.

we trained the ITI-GEN model, following the methodology and code from the original experiments. For each
attribute, we generated 200 images, categorising them into positive and negative instances. Subsequently,
we conducted a comparative analysis between ITI-GEN, SD and HPS baselines.

Experiment - Claim 3 This experiment investigates the scalability of ITI-GEN to multi-category at-
tributes. Specifically, we reproduced one of the two challenging settings proposed in the original paper,
namely Perceived Gender × Age. Firstly, the ITI-GEN model is trained using the same methodology as
the original paper. Secondly, 540 images are generated in total (30 images for each combination of age and

3https://drive.google.com/drive/folders/1_vwgrcSq6DKm5FegICwQ9MwCA63SkRcr
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gender category). This experiment uses the code from the original paper for both training and image gen-
eration. Evaluation is conducted using the same classifier as mentioned in the original paper, proposed by
Karkkainen & Joo (2021), and is publicly accessible on GitHub4. To ensure a fair comparison, we established
our own baseline for Vanilla SD.

Experiment - Claim 4 To address the quality of the generated images, we examine the FID score. It is
important to note that a substantial sample size, typically exceeding 50K, is crucial to avoid overestimation
of this score (Chong & Forsyth, 2020). Moreover, Stein et al. (2023) found that human judgement of
perceptual realism in diffusion models does not align with the FID metric. Given the computational demands
and divergence from human evaluation, leveraging the FID score poses challenges. For reproducibility, we
explore the feasibility of calculating FID scores in a low-resource setting. Additionally, we assess FID score
differences for positive and negative instances of an attribute, aiming for minimal divergence to ensure
inclusivity.

We compute FID scores for 50, 100 and 400 vanilla SD images, generated with the prompt "a headshot of a
person", to examine the impact of image quantity. Furthermore, we investigate FID scores for 100 ITI-GEN
generated images per category.

Additional Experiment - Inclusive prompt embeddings The authors argue that instead of specifying
attributes explicitly using descriptive natural language, images can represent specific concepts or attributes
more efficiently. Consequently, inclusive prompt embeddings are acquired using images as guidance. There-
fore, we want to examine the distinction between utilising image and text guidance. To achieve this, we
investigate the variance between inclusive prompt (image guided) embeddings and the hard prompt (text
guided) embeddings.

This experiment involves three binary attributes. For each category, both the trained ITI-GEN and the
hard prompt CLIP embeddings are extracted. Subsequently, these embeddings are projected onto the CLIP
embedding space. To create a 2D visualisation of the projected embeddings, we employ the dimensionality
reduction technique UMAP (McInnes et al., 2020).

Additional Experiment - The inclusivity of untargeted attributes ITI-GEN provides inclusivity
for a targeted attribute (inclusive prompt) while overlooking inclusivity for all other attributes. It would be
undesirable if introducing a targeted attribute resulted in reduced inclusivity for the untargeted attributes.
Additionally, the authors acknowledge a potential limitation, emphasising the risk of biases introduced by
a limited set of reference images used in training ITI-GEN. Therefore, we examined the inclusivity of the
untargeted attributes.

We employed HPS and ITI-GEN to create images focusing on the targeted attributes: gender and age.
Subsequently, these images were classified via CLIP according to an untargeted attribute, assessing how
targeting attributes might affect the distribution of untargeted attributes. For example, we generated images
for the category male with HPS and ITI-GEN and examined how many of those images resulted in pale or dark
skin. This methodology enables an analysis of how such targeted adjustments influence various unanticipated
aspects within the images.

Additional Experiment - Influence of reference images on untargeted attribute inclusivity In
the aforementioned experiment, we investigate the inclusivity of untargeted attributes. This leads to a sub-
sequent research question: do the observed biases stem from the selection of reference images? Consequently,
we investigate whether the choice of reference images is the root cause of biases. We hypothesise that biases
within the reference images are amplified in the generated images with ITI-GEN embeddings, particularly
for attributes with a clear visual distinction (e.g. gender).

The experiment focuses on the targeted attribute eyeglasses and the untargeted attribute gender. First, the
reference images of this attribute are visualised in the CLIP embedding space. Next, we construct a new
set of 25 reference images, ensuring balance across both eyeglasses and gender (see Appendix E for more

4https://github.com/dchen236/FairFace
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details). Afterwards, we train the ITI-GEN model on both the balanced and unbalanced reference sets and
generate images for each setting. Finally, we computed the ratio for the untargeted gender attribute for
these images.

3.6 Computational requirements

All experiments were conducted using a NVIDIA A100 GPU and a NVIDIA T4 GPU. Training ITI-GEN
with a single attribute takes approximately 5 minutes.

4 Results

4.1 Reproducibility study

Table 1: Comparison of ITI-GEN with baseline methods with (a) single attribute and (b)
multiple attributes.

Method (a) Single Attribute (b) Multiple Attributes
Dmale

KL ↓ Dyoung
KL ↓ Dpale skin

KL ↓ Deyeglass
KL ↓ Dmustache

KL ↓ Dsmile
KL ↓ Dmale×young

KL ↓ Dmale×young×eyeglass
KL ↓ Dmale×young×eyeglass×smile

KL ↓
SD 5 0.264 0.615 0.201 0.136 0.101 0.069 0.834 1.023 1.125
SD 1 5×10−5 0.637 0.110 0.541 0.525 0.288 0.595 1.177 1.506
HPS 0.000 0.000 2×10−4 0.693 0.637 0.018 0.001 0.098 0.277
ITI-GEN 5×10−5 8×10−4 0.000 0.0018 0.316 0.000 0.001 0.305 0.337

Claim 1 & 2: Inclusiveness in text-to-image generation and scalable to multiple attributes
The results presented in Table 1 indicate that ITI-GEN demonstrates near-perfect performance in balancing
almost every single and multiple attribute, thereby validating the first and second claim made by the authors.
Moreover, ITI-GEN exhibits comparable or superior performance to HPS, providing support for the authors’
assertion that utilising images as guidance, rather than language, may prove advantageous in describing
categories. The qualitative results of this experiment are shown in Appendix C.

Notably, our findings reveal a Dmustache
KL score of 0.316 for ITI-GEN, while the original paper reported a

value of 4.5 × 10−4. One plausible explanation for this discrepancy is that the authors might have employed
an evaluation technique different from CLIP, as indicated in their paper. Specifically, the issue of negative
prompts (e.g. without mustache) in CLIP may lead to inaccurate attribute classification. However, upon
manually evaluating the mustache attribute, two people classifying the generated images independently, 99
out of 100 contained the desired category. The DKL score obtained using this statistic, 5 × 10−5, aligns with
the one reported by the authors. This outlier does not contradict their claim; however, it does highlight a
shortcoming in their evaluation technique.

Moreover, an analysis of the reproducibility of the vanilla SD baseline is provided in Appendix B.

Claim 3: Scalable to multi-category attributes Our results for the third claim align closely with those
presented in the original paper. As illustrated in Figure 1, the generated images from ITI-GEN are more
uniformly distributed across the multi-category attribute age than the baseline SD. Despite this alignment,
the distributions from our experiment deviate significantly more from a uniform distribution than those
reported in the original paper. Specifically, the proportion of the age category 20-29 for both SD and ITI-
GEN is considerably higher than that of the other categories. This discrepancy may be attributed to the
difference in the number of images generated and evaluated between our study and the original paper, as
the authors do not provide the number of images employed in their experiment. The qualitative results of
this experiment are shown in Appendix C.

Claim 4: High-quality images The quality of the images generated with single and multiple attributes
is evaluated. Table 2 displays the FID scores corresponding to images generated across various ITI-GEN
categories, compared with SD baselines evaluated on a varying number of images.

Initially, it is noteworthy that both the baseline and ITI-GEN images exhibit FID scores considerably higher
than the reported 67.4 and 60.4 from the original paper for SD and ITI-GEN, respectively. However, the
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Figure 1: Multi-category distribution for
Perceived Gender × Age with "a headshot of a
person".
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Figure 2: Prompt embedding visualisation. Two-
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hard prompt and ITI-GEN embeddings.

Table 2: FID (↓) comparison. FID scores for the SD baseline are computed using the indicated number
of images, while ITI-GEN FID scores are determined based on 100 images per category.

SD ITI-GEN
# images Male Young Eyeglasses Male x Young

50 100 400 + - + - + - ++ + - - + - -
165.9 146.3 109.6 165.7 159.5 192.4 174.7 174.9 179.1 161.0 192.7 175.5 149.8

FID score is dependent on the number of images (section 3.5). This is additionally endorsed by the results
obtained for SD, where a substantial decline in the FID score is evident with an increase in the number
of images. Hence, considering the assumption that the authors employed 40K images for score calculation
compared to our 100, the substantial deviation in FID scores can be ascribed to its dependence on quantity.

Ideally, a uniform distribution should not only be maintained in the number of images per category, but also
in the quality of generated images across different categories. Upon examination of Table 2, this uniformity
appears to be lacking. Particularly, there is a considerable disparity in image quality between young positive
and negative categories, which is deemed undesirable.

4.2 Results beyond original paper

Inclusive prompt embeddings Examining Figure 2 reveals several observations. Firstly, it is visually
apparent that the embeddings associated with the HPS distinctly differ from those of ITI-GEN. The clear
visual separation in the figure underscores the unique characteristics exhibited by the HPS embeddings
compared to their ITI-GEN counterparts. Secondly, a notable distinction in the treatment of category
absence is evident. Specifically, the HPS embeddings of w/ eyeglasses and w/o eyeglasses are proximal,
implying a similarity between the vectors. In contrast, the ITI-GEN embeddings of the same categories
are more distant in the embedding space, suggesting a more accurate representation of distinct features.
These results offer confirmation to the authors’ claim that relying on images for guidance, as opposed to
language, may be beneficial in describing categories. Lastly, the figure illustrates that, in the case of ITI-
GEN embeddings, specific clusters are more well-defined compared to HPS. For instance, the embeddings of
old, w/ mustache, male, and w/ eyeglasses form a cohesive group within the space. This observation raises
concerns about potential introduction of unintended biases within the ITI-GEN vectors. This issue is further
researched in the following paragraph.

The inclusivity of untargeted attributes In this experiment we investigated the inclusivity of untar-
geted attributes. Figure 3 highlights some insightful results.
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In Figure 3a, targeting on gender, the impact of ITI-GEN on untargeted attributes is evident for men, showing
increased inclusivity across all attributes. However, for women, this improvement of the age attribute is less
pronounced and the smile attribute does not improve.

(a) Proportions of Age and Smile in HPS and ITI-GEN
for the Targeted Attribute Gender.

(b) Proportions of Gender and Skin Tone in HPS and
ITI-GEN for the Targeted Attribute Age.

Figure 3: The inclusivity of untargeted attributes. Comparative analysis of the proportion of
untargeted attributes of images generated with HPS and ITI-GEN. A proportion nearing 50% signifies a
balanced level of inclusivity.

As shown in Figure 3b, the results are less straightforward when moving to the age attribute. Within the
young category, ITI-GEN exclusively generates women, leading to a reduction in inclusivity. However, there
is a distinct improvement in inclusivity observed for the skin tone attribute. In the old category, inclusivity
does not improve for this attribute.
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Figure 5: The inclusivity of untargeted attributes for balanced
and unbalanced reference image sets. Comparative analysis of the
proportion of the untargeted attribute gender of images generated with
HPS, unbalanced ITI-GEN and balanced ITI-GEN.

Influence of reference images on untargeted attribute inclusivity To research a potential cause of
the aforementioned bias introduction, we examined the influence of the reference image set on the inclusivity
of untargeted attributes.

From Figure 4 it becomes evident that within the eyeglasses attribute there is a clear distinction between men
and women. Particularly, this demarcation is considerably more pronounced than the seperation based on
the presence or absence of eyeglasses. This observation suggests that the gender attribute exhibits superior
visual distinguishability compared to the eyeglasses attribute, making it a visually stronger attribute.

Figure 5 compares the gender distribution in images generated by ITI-GEN when trained on an unbalanced
versus a balanced reference set for the target attribute eyeglasses. It is observed that in the case of an
unbalanced dataset, all generated images targeting eyeglasses depict men, while those without eyeglasses
predominantly portray women. However, when the model is trained on a balanced reference set, this bias
is hardly present. This suggests that when targeting on subtle attributes, the bias of visually stronger
untargeted attributes within the reference set is amplified during the image generation process.
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5 Discussion

Throughout this work, we have conducted several experiments to reproduce the main results from the research
by Zhang et al. (2023). The results provide support for their claims, as we were largely able to reproduce
the original results. Specifically, our results showed that ITI-GEN produces images with significantly lower
distribution discrepancies compared to baseline methods for binary, multiple and multi-category attributes.

However, some minor discrepancies emerged. Particularly, the Dmustache
KL exhibited a notably higher score

compared to the original paper. This divergence may be attributed to the utilisation of a different evaluation
technique. Additionally, the distributions supporting claim 3 deviate from a uniform distribution as reported
in the original paper. The number of images utilised in this experiment might explain this difference, as this
detail was missing in the original paper.

Upon investigating the image quality, we found the FID score to be dependent on the number of images,
supporting Chong & Forsyth (2020). Additionally, the FID score demonstrated unequal results within
attributes, which is undesirable. It is crucial to acknowledge that due to constraints in our computational
resources combined with the FID score’s quantity dependence, definitive conclusions cannot be drawn from
the reported scores. Nevertheless, we strongly encourage future researchers to consider the objective of
achieving uniform image quality across categories.

Interestingly, comparing text- and image-guided embeddings supported the authors’ motivation that utilising
image guidance can be beneficial in category description. However, it concurrently raised concerns regarding
the potential introduction of additional biases.

The investigation of the inclusivity of untargeted attributes showed increased inclusivity for some and de-
creased for other attributes compared to HPS. Especially, the decrease raises concern. This shows that
ITI-GEN only guarantees inclusivity for the specified targeted attributes. The fact that ITI-GEN is trained
on a limited set of reference images potentially explains these results due to the limited possibility of diversity
in the training data.

Further investigation into the aforementioned influence of the reference image set revealed that the presence
of bias in visually strong attributes within this set can give rise to additional biases in the generated images.
Notably, training ITI-GEN with a balanced reference image set resulted in a decrease in additional biases.
This demonstrates the importance of a balanced reference image set. In conclusion, it is crucial to remain
mindful of potential additional biases that might be introduced by the reference images.

Overall, the experiments from the original paper were largely reproducible, and their main claims proved to
be valid. Our research showed that aiming for an inclusive reference set could help to achieve the goal of
inclusiveness among all attributes.

5.1 What was easy, and what was difficult.

The original code and dataset were publicly accessible, well-organised and thoroughly documented. Addi-
tionally, detailed flags, encompassing all hyperparameters, were provided. The original appendix contained
an extensive array of supplementary results, addressing nearly every outstanding concern. Notably, the
low number of parameters in the ITI-GEN model rendered it highly efficient for training. Consequently,
replicating the principal findings proved to be straightforward.

The primary challenge encountered was the computational demands associated with image generation using
the diffusion model. Unfortunately, we were therefore unable to generate as many images as the original work
did for reproducing the scores. Generally, this limitation did not pose a significant obstacle in validating
their primary assertions, as the results exhibited a consistent trend for the KL divergence metric. However,
in instances involving the FID score, which is particularly sensitive to the quantity of images, we were unable
to replicate the author’s results due to the constrained number of generated images.
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5.2 Communication with original authors

We contacted the original authors to ask about the apparent disparity in generated image quality. Their
prompt response included comprehensive details regarding the process of image generation.
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A Overview of image generation using HPS and ITI-GEN

In Figure 6 a general overview of image generation using HPS and ITI-GEN is shown, highlighting their
differences.

Figure 6: A general overview of image generation using HPS and ITI-GEN

B Vanilla SD reproducibility

In our attempt to reproduce the outcomes of the baseline as described in the original paper, we observed
a deviation in the results from those reported in the original study. While there is a discrepancy in the
precise quantitative scores when compared to the original paper, the general trend observed in the scores
largely aligns with the original findings. However, this conformity does not extend to the scores of the specific
attributes, notably eyeglasses and smiling, where we noted a significant divergence. This divergence in scores
could potentially be attributed to variances in the computational resources utilised in our replication study
and the number of images used to calculate the DKL score, as the authors did not provide precise details on
this matter.

C Qualitative results

In Figure 7, a distinct separation is evident among the four defined categories. However, when including
additional attributes, the distinction between the categories becomes somewhat ambiguous, as illustrated
in Figure 8. For instance, the attributes eyeglasses and perceived gender are not completely uniformly dis-
tributed. A better separation between categories occurs when expanding the analysis to multi-category
attributes, as depicted in Figure 9. The distinction between men and women remains prominent, accompa-
nied by a visible increase in age.
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Figure 7: Results of ITI-GEN on binary attributes for Perceived Gender × Age. Examples are
randomly picked with "a headshot of a person".
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Figure 8: Results of ITI-GEN on the combination of four binary attributes for Perceived Gender
× Age × Eyeglasses × Smiling. Examples are randomly picked with "a headshot of a person".
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Figure 9: Results of ITI-GEN on multi-category attributes for Perceived Gender × Age. Examples
are randomly picked with "a headshot of a person".
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Table 3: Hyperparameters configuration for training the ITI-GEN model.

learning rate λ steps per epoch learnable tokens epochs batch size
Train 0.01 (0.005 after 10 epoch) 0.8 5 3 30 16

D Hyperparameters

The ITI-GEN model’s training is fine-tuned with hyperparameters: an initial learning rate of 0.01, halved
after 10 epochs for precision adjustments, and a lambda of 0.8. The training spans 30 epochs, with up-
dates every 5 steps, targeting 3 specific learnable tokens. A batch size of 16 ensures a balance between
computational speed and memory efficiency.

For image generation, the only hyperparameters are the DDIM steps, set to a default of 50, and the batch
size, which was limited to 1 due to memory constraints.

E Balancing the reference image set

Table 4: Reference image set distribution. This table presents the composition of the image sets of the
attribute eyeglasses classified by CLIP based on gender. The balanced image set is a subset of the reference
image set.

Eyeglasses + Eyeglasses -
Female Male Female Male

Reference image set 53 147 114 86
Balanced image set 13 12 13 12
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