Under review as a conference paper at ICLR 2025

SPIKINGVTG: SALIENCY FEEDBACK GATING
ENABLED SPIKING VIDEO TEMPORAL GROUNDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Video Temporal Grounding (VTG) seeks to retrieve consecutive intervals or spe-
cific clips from a video based on specified natural language queries. VTG requires
accurately aligning video segments with corresponding natural language instruc-
tions, highlighting the need for effective methodologies to capture semantic cor-
respondence and maintain temporal coherence. Spiking neural networks (SNNs),
previously underexplored in this domain, present a unique opportunity to tackle
VTG challenges from both the architectural and energy-efficiency perspectives.
In this paper, we leverage sparse spike-based communication of SNNs to propose
a multimodal architecture tailored for VTG tasks, namely SpikingVTG, providing
a biologically inspired and efficient solution. Leveraging temporal saliency feed-
back, our proposed spiking video-language model (VLM) achieves competitive
performance with non-spiking VLMs across diverse moment retrieval and high-
light detection tasks. We introduce a Saliency Feedback Gating (SFG) mechanism
that improves performance while reducing overall neural activity. To efficiently
train our spiking VLM, we analyze the convergence dynamics of each neuronal
layer and utilize equilibrium states to enable training using implicit differentiation
at equilibrium. This approach eliminates the need for computationally expensive
backpropagation through time while also enabling the use of knowledge distilla-
tion for efficient model training. To further improve operational efficiency and fa-
cilitate the on-chip deployability of our model, we leverage a multi-stage training
pipeline that focuses on eliminating non-local computations, such as softmax and
layer normalization, leading to the development of the Normalization Free (NF)-
SpikingVTG model. Additionally, we create an extremely quantized variant, a 1-
bit NF-SpikingVTG model, which vastly improves computational efficiency dur-
ing inference while maintaining minimal performance degradation from our base
model. Our work introduces the first spiking model to demonstrate competitive
performance on VTG benchmarks, including QVHighlights and Charades-STA.

1 INTRODUCTION

The rapid expansion of various social medias and portable smart technologies has triggered an un-
precedented surge in video content. This vast influx of data has intensified the need for efficient
methods to retrieve and analyze video information. Consequently, the field of Video Temporal
Grounding (VTG) (Lei et al., [2021} |Lin et al.,|2023)) has emerged as an important area of research.
The main objective of VTG is to identify the precise segment of a video that corresponds to a given
natural language query, enabling accurate and context-driven video content retrieval. In this paper,
we focus on two tasks: moment retrieval (Zhang et al., |2020; Mun et al., |2020), which aims to
identify video intervals relevant to a given query, and highlight detection (Hong et al.|[2020), which
retrieves the best candidate segment of the video in response to the query. Our work involves an-
alyzing multimodal data—combining video content with natural language queries—to develop an
effective solution to the problem. With the rise of foundation models like large language models
(LLMs) and video-language models (VLM), the field of VTG has seen significant advancements
(Liu et al.} 2022; Lei et al., [2021)). However, these models demand substantial computational power
and energy (Samsi et al., [2023) to operate. Furthermore, VTG is inherently resource-intensive, re-
quiring the analysis of long video sequences, leading to significant computational overhead. In this
work, we leverage sparse spike-based communication and simplified accumulation-based compu-
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tation in spiking neural networks (SNNs) (Ghosh-Dastidar & Adeli, 2009) to develop an efficient,
lightweight solution for VTG.

Beyond the computational efficiency of SNN-based frameworks, we also harness their temporal dy-
namics to propose a spiking transformer-based VLM (Fig. [I), namely SpikingVTG, that matches
or surpasses the performance of current state-of-the-art non-spiking VLM. The input video for the
VTG task typically consists of a long sequence of segments or clips. A key challenge in VTG is thus
accurately identifying salient segments (Lin et al.| |2023) or temporally dependent segments that ex-
hibit a strong semantic correspondence with the given query. Our SNN-based VLM, operated over a
period of simulation time steps, allows us to leverage its intermediate temporal output as a feedback
to identify the salient segments. We use the average spiking rate (ASR) of the output of the spiking
transformer core in the SpikingVTG model to compute a dynamic saliency score of each video seg-
ment w.r.t the given query, which we then leverage as a mask for a multiplicative gating mechanism.
This improves performance of the model by enabling it to focus on relevant portions of the video,
while also reducing computational overhead by minimizing attention to irrelevant segments.

From a bio-plausibility perspective, as explored by [Kar et al| (2019), feedback based connection
plays a prominant role in human visual cortex primarily responsible for object recognition. Fur-
thermore, the feedback connection maintains the layer-wise convergence of ASR at equilibrium,
enabling the implementation of an implicit differentiation framework (Xiao et al., [2021)), allowing
for more efficient training of our model. This learning framework, leverages layer-wise converged
ASR values at equilibrium to train the spiking model in one backpropagation step, instead of us-
ing the computationally expensive backpropagation through time (BPTT) (Neftci et al.,[2019). The
SpikingVTG framework further involves a multi-stage training pipeline aimed at developing spiking
models to facilitate potential deployment on resource-constrained edge-based device enabled with
neuromorphic chips. To allow for efficient training of our spiking model, we employ a knowledge
distillation strategy (Hinton et al.,|2015), enabling knowledge transfer from a non-spiking UniVTG
model, used as the “teacher”, to our “student” SpikingVTG model. This process utilizes the ASR of
converged intermediate states at equilibrium, enabling efficient training of our spiking VLM.

Traditional transformer architectures (Vaswani et al., [2017) utilize non-local normalization op-
erations such as softmax and layer normalization, which present challenges for implementation
on neuromorphic hardware (Shrestha et al.| 2022)). To address this limitation, we introduce the
Normalization-Free (NF)-SpikingVTG model, which eliminates all layer normalization operations
and substitutes softmax spiking attention with a ReLU-based spiking attention mechanism. While
ReLU-based attention mechanisms have previously been explored in non-spiking domains (Shen
et al.,|2023)), we are the first to introduce this concept within a spiking attention mechanism, demon-
strating competitive performance compared to traditional softmax-based approaches. Additionally,
to reduce computational complexity, following works on quantization in analog LLMs (Wang et al.,
2023)), we propose a 1-bit quantized variant of SpikingVTG. Our multi-stage training pipeline en-
ables minimal performance degradation while enhancing computational efficiency during inference,
in our SpikingVTG models. To our knowledge, this work is the first to evaluate the performance of
an operational spiking VLM framework across various VTG tasks, including moment retrieval and
highlight detection, on datasets such as QVHighlights and Charades-STA.

The primary contributions of our work are as follows:

» SpikingVTG Model and Training Framework: We propose a transformer-based, multi-
modal spiking video language model with a spiking decoder module for moment retrieval
and highlight detection in VTG tasks. We leverage the layer-wise convergence dynamics in
our model to train our model using implicit differentiation at equilibrium, bypassing mem-
ory intensive BPTT. The result is the first spiking architecture to demonstrate competitive
performance on VTG.

 Saliency Feedback Gating Mechanism: We introduce a saliency feedback gating mech-
anism for input video, that leverages the ASR of the output of the spiking transformer
core at each time step. This temporal feedback enhances task-specific performance while
minimizing neural activity, ultimately reducing overall computational overhead.

* Multi-Stage Training Pipeline: We propose a multi-stage training pipeline for our Spik-
ingVTG framework, utilizing knowledge distillation and architectural modifications to cre-
ate lightweight and computationally efficient spikingVTG variants. We replace computa-
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Figure 1: High-level overview of the proposed SpikingVTG architecture. The spiking Vision-
Language Model (VLM) takes video and textual features as inputs, employing a spiking transformer
core that utilizes Saliency Feedback Gating through temporal feedback connections. The model
incorporates a spiking decoder module that takes the output of the transformer core to predict pa-
rameters for the VTG task.

tionally intensive non-local operations like layer normalization and softmax with hardware-
friendly alternatives. We further introduce extreme quantization, developing a 1-bit NF-
SpikingVTG model that significantly reduces memory as well as computational overhead.

2 RELATED WORKS

VTG Advancements: With the recent rise of multimodal LLM architectures, the field of video-
language modeling has opened new avenues for understanding and extracting key information from
video data. Moment-DETR (Le1 et al., |2021)), a transformer encoder-decoder model introduced
alongside the QVHighlights dataset, laid a strong foundation for subsequent VTG architectures.
UMT (Liu et al.} 2022) introduced an unified framework for solving both highlight detection and
moment retrieval tasks. Due to the limited availability of trainable video data, UniVTG (Lin
et al) [2023) proposed an innovative solution by unifying various VTG tasks and labels under a
single formulation. This approach enabled the development of an LLM-like pretraining frame-
work, achieving state-of-the-art performance on VTG tasks. Although no fully spiking-based ar-
chitecture has been explored for VTG tasks, SpikeMba (Li et al., 2024)—primarily a non-spiking
model—integrates SNN components to generate proposal sets from video data. However, since its
core framework is derived from Mamba (Gu & Dao, [2023)) and relies on floating-point matrix multi-
plications, SpikeMba cannot be considered a baseline for spiking models, which predominantly use
accumulation-based operations.

Spiking neural networks (SNNs): SNNs allow for event-driven computation and communica-
tion in neuromorphic hardware, significantly reducing energy consumption. SNNs have been im-
plemented in neuromorphic systems like IBM TrueNorth (DeBole et al., [2019) and Intel Loihi 2
(Davies et al.,[2021), demonstrating approximately 75 x greater energy efficiency compared to tra-
ditional neural networks running on low-power GPUs (Tang et al., [2020). SNNs, with their energy-
efficient computational framework, offer a promising solution to the resource-intensive demands of
multimodal VTG tasks. While SNNs for a long time were confined in simpler vision-based tasks
(Yamazaki et al.| [2022) with relatively simple architectures, recent developments have scaled them
to transformer-based architectures for tasks ranging from vision to language modelling (Zhou et al.,
2022} Bal & Senguptal 2024; Zhu et al.,2023)), however majority of them rely on some normaliza-
tion techniques which are not implementable on a neuromorphic chip.

3 METHODOLOGY

In this section, we first present the VTG problem formulation, followed by a detailed explanation of
the SpikingVTG framework. We describe its core components, including the spiking transformer,
saliency feedback gating mechanism, and spiking decoder. Next, we elaborate on the scalable train-
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ing framework and then we introduce the multi-stage pipeline, that allows efficient training using
knowledge distillation and enables more efficient iterations of our architecture, facilitating the devel-
opment of lightweight SpikingVTG variants such as NF-SpikingVTG and 1-bit NF-SpikingVTG.

3.1 VIDEO TEMPORAL GROUNDING (VTG)

For a given video V' and language query (), we start by segmenting V into a sequence of L,, fixed-
length clips, denoted as {v1,...,vr, }. Each clip v; has a length [ and is centered at timestamp
t;. The textual query ) consists of L, tokens, denoted as @ = {q1, ..., qu}. Following previous
studies on VTG (Lin et al., 2023)), we define three parameters for each clip v; = (f;, d;, s;), where
fi = 1if the clip is in foreground, i.e. relevant else f; = 0. d; = [d,,d.,] € R? represent the
temporal distance that converts the clip timestamp ¢; to its interval boundaries. Here, d; is valid
when f; = 1. The term d;, denotes the distance between the start of the interval and ¢;, while
d., denotes the distance between the end of the interval and ¢;. s; € [0,1] is a continuous score
that quantifies the relevance between the visual content of clip v; and the query (). Our proposed
SpikingVTG model predicts these three parameters for each video clip. In this paper, we focus on
specific VTG tasks, which are carried out as follows:

Moment Retrieval: We rank the predicted clip boundaries {b; }2*,, where b; = [t; — d.,, t; + d.,],
based on their associated probabilities given by { fi}fz“’l. Since the predicted L, boundaries are
dense, we employ a 1-dimensional Non-Maximum Suppression (NMS) (Hosang et al., 2017) with a
threshold of 0.7 to eliminate highly overlapping boundary boxes, resulting in a final prediction.

Highlight Detection For each clip, we rank all clips based on their combined scores { ﬁ + gi}z‘L=U1-
This combined value represents how well the chip ¢ match with the underlying query. We then return
the top clips (e.g., Top-1) as predictions.

3.2 SPIKINGVTG: ARCHITECTURE OVERVIEW

The core computational unit of the proposed SpikingVTG model is a leaky integrate-and-fire (LIF)
neuron (Dutta et al., 2017)). Neurons communicate with each other using sparse, spike-based acti-
vations instead of real-valued signals, significantly improving energy/power efficiency. The model
architecture includes a spiking transformer core for processing inputs, a saliency feedback gating
mechanism for dynamic input control, and a spiking decoder module to predict the parameters re-
quired for the VTG task, as described in Section

3.2.1 SPIKING NEURAL NETWORKS
The discrete time dynamics of an LIF-based spiking neuron can be given as follows,

it + 6] = yui[t] + W1y (sa—n)[t]) + bi,

1

where, at time ¢, u;[t] is the membrane potential of the it" neuronal layer; b; indicates a bias term
and -y is the leaky term. W;_1) represents the layer-specific operation; ¢ + ¢ is an intermediate time
step to determine if the neuron fired; V;, is the threshold of layer ¢. We use a ternary spiking model
(Guo et al.| 2024) in our work for spike (s[t + 1]) generation, thus the spiking operation is given as,

+1 ifuft + 0] > Vig,,
sift+1] =< =1 ifwft+ 6] < —Vip,, 2)
0 otherwise

This approach enhances performance while avoiding the introduction of additional floating-point
multiplicative and accumulative (fp-MAC) operations. The average spiking rate (ASR) (Xiao et al.,
2021) of LIF neurons within each layer ¢ at time ¢ can be defined as a weighted-average function:

S Y sl
Ei:l YT

a;[t] = 3)

4
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3.2.2 SPIKING TRANSFORMER CORE

The high-level overview of each encoder block of our spiking transformer architecture is demon-
strated in Fig. [I| The model consists of N encoder layers, each consists of a spiking multi-headed
attention block, followed by an intermediate layer and an output layer. Communication within and
between encoder layers occurs via spikes. Furthermore, all matrix multiplications involved in linear
layers and attention layer comprises of more efficient fp-accumulative (ACC) operations instead of
fp-MAC operations in conventional neural architectures. For this work we have used four encoder
layers and eight attention heads. The hidden size dimension is 1024. Detailed descriptions of each
layer are provided in the Appendix |A] In Section we replace non-local normalization opera-
tions and introduce a ReLU-based attention mechanism. In Section[3.4.3] we quantize all weights
in the linear layers, including those in the intermediate and output layers, to 1-bit precision.

3.2.3 SALIENCY FEEDBACK GATING (SFG)

SpikingVTG operates over a specific number of convergence ‘SALIENCY FEEDBACK GATING (SFG)‘
time steps (7°), with the convergence dynamics detailed in Sec- Foedback
tion [3.3] This temporal processing allows us to leverage in- / ¢°°""e°“°" \
termediate temporal outputs to dynamically update the input Attn. 3y Cosine

Pooler Similarity

to the model at every time step for better predictions. This
approach conforms to the feedback connections observed in

Element-wise

the human visual cortex (Kar et al. [2019), providing a bio- Multiply

plausible explanation for its efficacy. The ASR of the final _ v
encoder layer of the Spiking Transformer core is used as a tem- = 6 S
poral feedback to compute a dynamic saliency score with the } )
input query enabling the design of a gating mechanism, allow- A

ing selective focusing on relevant segments of the video while Text
minimizing computation on irrelevant segments. The saliency tatures

feedback gating mechanism is shown below,

aNv t]- M Figure 2: Overview of the in-
va—’ ternal operations of the saliency-
|2 [t] |2 M[|2 (4) feedback gating mechanism. The
Vv [t+1] =V x F[t], ASR of the output of the spiking

5 i transformer core at each time step
IMt+1=Vig+1]eQ, is leveraged as the feedback signal

(Fig. ).

FUi[t] = cos(alv[t], M) :=

1

where, using attentive pooling operation, sentence representa-
tion M = Softmaz(W,Q)Q, M € R*P Q € REaxD,
V € REv*P and W, is a learnable embedding. FYi[t] is the dynamic saliency score, at time ,
for the i-th segment of the video. The ASR of the output of the spiking transformer core is given
as aV[t] € REvHLa)xD, af-v v[t] is ASR of output of the spiking transformer core, corresponding
to video segment i, at time ¢t. The SFG layer comprises O(L, - D) floating-point multiplication
operations; however, the computational overhead of this layer is significantly less than that of the
more substantial transformer component which has a complexity of O(L? - D + L - D?), where
L = L, + L,. and D is the hidden dimension of the transformer. I[t + 1] is derived from the
concatenation of saliency feedback gated video features and query features and serves as the input
to the spiking transformer core at time ¢ + 1.

The SFG mechanism not only results in better performance of our SpikingVTG architecture on
evaluation metrics (see Table [3)) but also reduces overall neural activity by sparsifying input spikes.
As shown in Fig. [3b, empirical results confirm that the model with the gating mechanism exhibits
a lower neural activity, particularly in the input and spiking attention layers, compared to the model
without this mechanism.

3.2.4 SPIKING DECODER

The spiking decoder comprises of stacked 1-D convolution operations followed by integrate-fire
(IF) neuron layers (y = 1 in Eqn. [I)), for spike generation. The spiking decoder used for predicting
foreground indicator (f;) per clip, applies n; 1-D convolution operations with kernel size k1, each
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Figure 3: Results obtained upon passing a random input sample from QVHighlights dataset to our
SpikingVTG models. (a) Graph shows convergence dynamics of layer-wise mean ASR against
operating time steps for a randomly selected spiking transformer encoder layer (Fig. [I). It is to be
noted that since we allow ternary spikes ASR can be negative as well. (b) Graph shows, layer-wise
mean spiking activity (act, [t], averaged over number of neurons in that layer) against operating time
steps in x-axis. The model with SFG shows markedly reduced activity in both the input layer and
the spiking attention layer, underscoring its role in minimizing neuronal activity.

followed by an IF layer. The final layer consists of a single output channel, and its temporal mean
is passed through a sigmoid activation to produce the final prediction. The spiking decoder used for
d; applies no 1-D convolution operations with kernel size ko, each followed by an IF layer, and the
final convolution layer has two output channels to predict both components in d;.

3.3 TRAINING LEVERAGING CONVERGENCE DYNAMICS

R
f is operation of layer 7. As time approaches ¢ — oo, the layer-wise ASRs converge to equilibrium,
enabling the derivation of steady-state equations for linear layers (Xiao et al., 2021). Moreover,
surrogate steady-state functions can be formulated for non-linear layers (Bal & Senguptal, 2024) as,

1 Fr %
m(f(ai—1)+bi)) )

Following, Eqn. & we can formulate a;[t + 1] = ﬁ(f(a(i_l) [t +1]) + b; — 2Ly where

*
a;

= g(
where, clipping function o(x) clamps the values within [—1,1]. This is because following Eqn.
we allow ternary spikes thus ASR must be with [—1, 1]. The empirical convergence of ASR is
shown in Fig. Bh. To analyze the overall layer-wise neural activity, which includes both positive and
negative spiking event, we present the layer-wise dynamics of the absolute spiking events in Fig. [3p,
ie. act;t] = Li:ltlsi[t”.

Training: As described in the Section the SpikingDecoder is responsible for predicting f;
and d; for individual video clip ¢ and s; is computed using the SFG module at equilibrium. Using
these three predictions, we design a loss function that combines various components. The total loss
over N clips in the training set is given by L = % Zf\il (Ly, + La, + L¢,), where Ly is the binary
cross-entropy loss for the indicator variable f;, Ly combines smooth L1 loss with generalized IoU
loss (Rezatofighi et al., 2019) for the predicted boundaries, and L. is an optional loss incorporating
intra- and inter-video contranstive learning (Chen et al.,|2020). A detailed mathematical formulation
of the loss functions can be found in the Appendix B}

at equilibrium are used,
_ fo(a”)

During training, leveraging implicit differentiation (Bai et al.,[2019) at equilibrium, only ASR values
OL(a*) OL(a*), .4
=— I e , 6
00 Oa* (5o la-) 00 ©

where, 6 is the model parameters, gg(a) = fg(a) — a, f is the steady-state equation of ASR, J ! is
the inverse Jacobian of gy when a = a*, i.e., at equilibrium. Thus, unlike BPTT, we do not need to
store the intermediate computational graph and the model parameters can be updated using a single
backpropagation step.
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Figure 4: High-level overview of the multi-stage training framework for our proposed SpikingVTG
models, enabling the development of lightweight and computationally efficient spiking models. Be-
low each model we have noted the primary operations involved in that architecture.

3.4 MULTI-STAGED TRAINING PIPELINE

Training a multimodal spiking architecture like SpikingVTG is resource-intensive. To enhance the
efficiency of this process and develop computationally efficient variants of our model, we propose a
multi-staged training framework, as illustrated in Fig. @] We utilize a non-spiking “teacher” VLM
to guide the training of our “student” SpikingVTG model. After this initial stage, we fine-tune
SpikingVTG using the true labels. Once the base SpikingVTG model is established, we modify
its architecture, as outlined in Sections [3.4.2 and [3.4.3] followed by additional fine-tuning to cre-
ate computationally efficient variants with minimal performance degradation. The resulting com-
putationally efficient, lightweight models are well-suited for deployment on neuromorphic chips,
enabling efficient inference.

3.4.1 LEVERAGING KNOWLEDGE DISTILLATION (KD)

To enable efficient training of our spiking multimodal architecture, we utilize Knowledge Distillation
(KD) techniques (Hinton et al., 2015} [Tang et al., 2019; Jiao et al.| [2019). We use the pre-trained
UniVTG, currently the state-of-the-art in VTG, as a “teacher” and rather than distilling based on
the prediction layer, we exploit the outputs of the internal layers of the “teacher”. We establish a
one-to-one mapping, by design, between the internal representations at equilibrium of our spiking
transformer and the corresponding layers of the “teacher”, ensuring that the number of layers in both
architectures remains consistent. The internal representation-based KD is formulated as,

N
Lgp =Y MSE(a;Wa, T;,) (7)

i=1

where, Wy € R% >4 is a linear transformation that aligns the dimensionality of the layers of the
“student” with that of the corresponding layers of the “teacher”. a;. denotes the converged ASR at
equilibrium of the internal representation layer r;, which is the output from the spiking transformer
encoder layer ¢ of the “student”. 7). is the representation of the the corresponding block ¢ of the
teacher model. The KD process is an integral part of the framework and serves as the first stage of
our multi-stage pipeline, followed by fine-tuning on the true labels (Fig. F).

3.4.2 REPLACING SOFTMAX AND REMOVING LAYER NORMALIZATION

In our work, we use a spiking attention mechanism (see Appendix [A) which uses the key and
value inputs as spikes instead of real values. Given d-dimensional queries, keys, and values
{qilt], sk [t], sv, [t]}1, at time ¢, the attention weights c;; are computed as follows:

1
aijlt] = ¢ (ﬂ [Qi[t]Tsm [t],- - 7qi[t]TSkL [tH>j (8)
where, ¢ is the softmax function and output of spiking attention layer at time ¢ is attn;[t] =
Zle @ [t]sy, [t]. Given that softmax requires expensive non-local fp-MAC operations, we replace
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it with the less costly ReLU() operation and perform a simple scaling with L~!. This replacement,
while maintaining competitive model performance, is only feasible when following the multi-stage
training process outlined in Fig. 4] This highlights the importance of the initial KD and fine-tuning
stages, which help stabilize the model. Additionally, we explore the removal of all layer normaliza-
tion layers, from Fig. [1] during training (as shown in Fig. [4)), further streamlining the model design
for on-chip deployment. We refer to the resulting model, which uses ReLU in place of Softmax and
omits layer normalization, as a Normalization-Free (NF) spiking model.

3.4.3 1-BIT WEIGHT QUANTIZED SPIKINGVTG

Following prior work (Wang et al.,[2023), 1-bit quantization consists of centering the weights W to
achieve a zero mean, followed by binarization to +1 or —1 using the signum function as shown,

W, =sgn(W — a),

_ 1 - 9)
o= nm%:W”

where, W € R™*™. The signum function, denoted as sgn(z), categorizes the element x based on
its sign. It outputs +1 when x is positive and —1 when z is zero or negative. The output of the
linear layer is scaled by a constant § = % > y |W;;|. Thus, with ternary activations, our model
now incorporates binary weights. Following the multi-stage learning approach illustrated in Fig.
our 1-bit SpikingVTG model emerges as a light-weight multimodal spiking VLM, with all linear
layer weights quantized to 1-bit. Additionally, we empirically demonstrate that employing binary
weights while eliminating normalization layers achieves competitive performance, resulting in 1-
bit NF-SpikingVTG, enabling on-chip implementation and significantly improving computational
efficiency. Thus, in the resulting model the primary computational operation involve integer accu-
mulations since individual weight values are W,,, € {—1, 1} and activations are s € {—1,0,1}.

Table 1: Performance comparison of our SpikingVTG model with SFG against non-spiking VTG
solutions on the evaluation set of the QVHighlights and Charades-STA for moment retrieval task.

Method SNN QVHighlights Charades-STA

@0.3 @0.5 @0.7 mAP@avg @0.3 @0.5 @0.7  mloU
UniVTG+PT (Lin et al.||2023) No 78.58 6735  52.65 45.44 72.63  60.19  38.55 52.17
M-DETR (Lei et al.[[2021) No - 53.94 3484 32.20 65.83  52.07 30.59 4554
2D-TAN (Zhang et al.,|2020) No - - - - 5876 46.02 27.5 41.25
LLaViLo (Ma et al.;|2023) No - - - - - 5572 3343 -
UniVTG (Lin et al.,[2023) No 71.81 59.74  40.90 36.13 70.81  58.01  35.65 50.1
UMT (Liu et al.||2022) No - 60.26  44.26 38.59 - 49.35  26.16
EaTR (Jang et al.|[2023) No - 61.36 45.79 41.74 - - - -
QD-DETR (Moon et al.|[2023) | No - 62.68  46.66 41.22 - 57.31 3255 -
SpikeMba (Li et al.,[2024) No - 6532 5133 44.84 7124  59.65  36.12  51.74
SpikingVTG (Our Model) Yes 80.72 6742  50.65 43.81 71.13  58.13  37.02  50.62

4 EXPERIMENTATION

We evaluate all proposed spiking video-language models on moment retrieval and highlight detec-
tion tasks using the QVHighlights and Charades-STA datasets. Since, to the best of our knowl-
edge, our proposed model is the first spiking VLM evaluated on VTG tasks, we benchmark its
performance against state-of-the-art non-spiking video-language models. Additionally, we perform
a study comparing our three model variants—Vanilla SpikingVTG, NF-SpikingVTG, and 1-bit NF-
SpikingVTG— on task specific performance and computational efficiency. Preliminary energy anal-
ysis further highlights the potential benefits of each model version.

4.1 EXPERIMENTAL DETAILS

The Spiking Transformer core in our model comprises four encoder layers, each with a hidden
dimension of 1024, with 8 attention heads. For the knowledge distillation phase, we employ a pre-
trained UniVTG model (Lin et al.|[2023)) that has been fine-tuned on our specific dataset. Additional
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hyper-parameter and experimental details are provided in Appendix [D] The experiments were run
on a NVIDIA RTX A6000 GPU with 48GB memory.

Dateset Details: QVHighlights (Lei et al., [2021) is the only public dataset that includes ground-
truth annotations for moment retrieval and highlight detection, allowing for a thorough evaluation
of the performance of our model and additional ablation studies. We also employ the Charades-
STA dataset (Gao et al.,[2017) to conduct further assessments on additional moment retrieval tasks.
Additional details on datasets are available at Appendix [C|

Evaluation Metrics: For QVHighlights, following previous work (Lei et al., [2021) we use Re-
call@1 with IoU thresholds of 0.3, 0.5 and 0.7 and average mean average precision (mAP) as the
evaluation metric for moment retrieval tasks. For highlight detection, we use mAP and HIT@1 (Le1
et al., 2021), where a clip is considered a true positive if it receives a score of ”Very Good” (Liu
et al.| 2022). For Charades-STA, we employ Recall@1 with IoU thresholds of 0.3, 0.5, and 0.7,
along with the mean IoU (mloU).

4.2 RESULTS

Our model outperforms non-spiking VTG
models, including EaTR (Jang et al.l 2023),
2D-TAN (Zhang et al., |2020), M-DETR (Lei
et al., 2021), LLaViLo (Ma et al.,|2023), UMT
(Liu et al) [2022), QD-DETR (Moon et al.,

Table 2: Performance comparison of our Spik-
ingVTG model with SFG against other non-
spiking VTG solutions on the evaluation set of the
QVHighlights for highlight detection task.

2023) and non-pretrained UniVTG model (Lin] | Method SNN m%i“‘ghl'{'lg;gl

et al., [2023). Additionally, it achieves com- [ UniVIG+PT (Lin et al[[2023) No 4134 68.77

petitive results compared to the current state- g\h;iE(Lﬁu et all-v22%1251) EG ;gzg g;gz
. . PR + (Le1 et al.| ) o 35.3 55.

of-the-art pretrained UprTG quel. It is im- M-DETR (Ceret aT13031) No P

portant to note that SpikeMba (L1 et al.| 2024) EaTR (Jang et al}[2023) No 37.15  58.65

is not a fully spiking architecture; rather, one | M-DETR+PT (Leictal}2021) | No | 37.70 6032

£ i K UniVTG (Lin et al.|[2023) No | 3883 6181

component of its multi-stage network uses an QD-DETR (Moon et al][2023) | No | 39.13  63.03
SNN. Our model establishes a baseline for fu- UMT (Liu et al][2022) No | 3985 -

ture spiking VLM architectures on VTG tasks. L SpikingVIG (Our Model) Yes | 4074  68.32

The results are shown in Table[I] & 2]

Table 3: Performance comparison of the different SpikingVTG variants as highlighted in Fig. 4|on
the evaluation set of QVHighlights dataset.

Method QVHighlights-MR QVHighlights-HL | Activity
@03 @05 @0.7 mAP@avg | mAP HIT@I
Vanilla Spiking Transformer 78.65 65.10 47.46 42.56 40.60 67.42 0.41
SpikingVTG without KD 67.68 52.71 34.26 32.12 3591 57.94 0.35
SpikingVTG 80.72 67.42 50.65 43.81 40.74 68.32 0.34
NF-SpikingVTG 79.87 6645 4827 42.68 40.54 67.61 0.25
1-bit NF-SpikingVTG 78.77 65.16 4735 42.32 40.31 67.29 0.19
1-bit NF-SpikingVTG w/ ReLU | 78.39 66.06 47.10 41.78 40.22 67.10 0.19

4.3 ABLATION STUDY

As demonstrated in Table[3] the inclusion of the Spike Feedback Gating (SFG) mechanism enhances
performance compared to the model without SFG, i.e. a vanilla spiking transformer. Furthermore, as
highlighted in Fig. [3]it results in reduced neuronal activity as well. KD plays a critical role in improv-
ing the performance of the model w.r.t evaluation metrics. Moreover, the computationally efficient
NF-SpikingVTG model with SFG performs competitively even when compared to other state-of-the-
art (SOTA) non-spiking VLMs. Although the 1-bit NF-SpikingVTG variant shows a slight reduction
in performance across evaluation metrics, it is highly memory efficient and involves simpler compu-
tations, making it well-suited for deployment on resource-constrained hardware. Furthermore, Table
also presents the average model-wide neural activity of the spiking model, calculated over 7' = 10
time steps. This metric represents the proportion of active neurons per timestep, averaged across
all layers. This demonstrates that the optimizations aimed at enhancing computational efficiency
(i.e. reducing non-local normalization operation and introducing quantized weights) also effectively
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reduce overall neural activity in the model. We also implement a variant of 1-bit NF SpikingVTG
by replacing all GELU layers with hardware friendly ReLU layer Timcheck et al.[(2023).

4.4 ANALYSIS OF ENERGY AND POWER EFFICIENCY

We conduct a preliminary energy analysis of the proposed SpikingVTG variants during test-time in-
ference and compare it to a non-spiking UniVTG model with comparable depth and hidden state
dimensions (also hidden dimension (D) is same as intermediate layer dimension in our imple-
mentation). From a simpler circuit design standpoint, for our analysis we consider 45nm CMOS
technology and 32-bit precision, thus floating point (fp)-MAC operations consume 4.6p.J, fp-ACC
operations consume 0.9p.J and integer(int)-ACC operations consume 0.1p.J (Han et al., 2015). The
primary energy consumption is attributed to the transformer encoder layers, which consist primarily
of the attention mechanism and multiple linear layers (Wang et al.,[2023)). The primary computation
cost, calculated for an input sequence of length L, of each transformer encoder-layer of the non-
spiking model can be expressed as: E4 = [(3LD?) + (LD? + L?D) + (LD?) + (LD?)] fp-MAC
operations, corresponding to the three projection layers for query, key, and values, the attention
mechanism, the intermediate layer, and the output layer.

For the SpikingVTG model, per spiking transformer

encoder layer the computational cost per time step is  _ ¢ // jjz

givenby: Eg, = [(3-IFR;,-LD?)+(IFRy-LD?*+ a g
IFR, - L?D) + (IFRun - LD?) + (IF Ripgerm. - = 7 S
LD?)] fp-ACC operations, where each term is asso-  F ¢ e

ciated for each component similar to the one spec-
ified above. [F'R; represents the mean firing rate
of the corresponding layer [. The total energy cost
for the spiking model is: Fg = (Eg, * T') fp-ACC

o
N
o

QVHighlights-
o
2
N

o
N
N}

-# Energy Efficiency
8~ QVHighlights-HD: HIT@1

10.0

7.5

Energy Eff

5.0

25

operations, where 1" represents the number of time SpikingVTG
steps the model is operated. The models that include

normalization also have an added cost of energy for Fi 5. Graph depicti h .
normalization however, it is of the order O(LD) so + 84r¢ 2= Jrap epicting the performance

it has not been included in our computation. It is to O.f each S.plkmgVTG variant on the QVngh_
be noted that both our NF-SpikingVTG and 1-BIT 1ights highlight detection task, alongside
NF-SpikingVTG models are normalization free so their potential energy efficiency (Ey).

they do not incur this added cost. Moreover, for 1-bit SpikingVTG, the core computations in matrix
multiplications shift from using fp-ACC to int-ACC operations.

NF-SpikingVTG
Models

1-bit NF-SpikingVTG

We define energy efficiency of the spiking model as Ey = E4/Eg. Specific examples illustrating
energy efficiency of SpikingVTG models is provided in Appendix[D} When operating the underlying
models for T' = 10 time steps, the energy efficiency and performance of each model are illustrated

in Fig. The average power efficiency for each model type is calculated as Py = ((g;* //71,)) =
Ey x T, demonstrating that our models are significantly more power-efficient (ranging from 12.5x
in SpikingVTG to up to 200x in 1-bit NF-SpikingVTG) compared to non-spiking models. This
efficiency arises from the ability of SNNs to unroll complex operations over time, thus providing
low-powered solutions for complex tasks unlike conventional non-spiking architecture. Although
this method of analysis does not account for architectural energy advantages, it provides a useful

approximation to gauge the potential benefits of spiking models over their non-spiking counterparts.

5 CONCLUSIONS

Our saliency feedback gating-enabled SpikingVTG model offers a computationally efficient ap-
proach for VTG tasks while maintaining competitive performance with state-of-the-art non-spiking
models. By harnessing layer-wise convergence dynamics, we efficiently train our model using
implicit differentiation at equilibrium. We employ a multi-stage training pipeline that incorpo-
rates knowledge distillation, using the non-spiking pretrained UniVTG model as the “teacher” and
the SpikingVTG model as the “student”. This training pipeline further enables architectural op-
timizations, leading to the development of Normalization Free (NF)-SpikingVTG and 1-bit NF-
SpikingVTG, enhancing computational efficiency and facilitating the on-chip deployment of these
complex models.

10
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A SPIKING TRANSFORMER: LAYER-WISE DETAILS

The Spiking Transformer layer primarily consists of a spiking multi-head attention (MHA) block,
followed by a spiking feedforward network comprising an intermediate layer and an output layer
with both inter- and intra-layer communication happening using spikes. Details of the operations in
each layer are provided below.

Spiking Attention Block: In Spiking MHA, to enable computationally efficient accumulate based
operations the input to the attention layer are spikes instead of real-valued data. The spiking attention
mechanism is given as follows,

Attn(X[t), K [t], Vs[t]) = o(d* Q(XG[t]) - (B[E)T) - V() (10)

Here, Q(X;(t)) represents the Query, obtained by passing the input spikes X () at time ¢ through
a linear layer (W¢g). The spikes for the Key layer (K(¢)) are generated by passing X(¢) through
a linear mapping (Wx), followed by an LIF neuron layer. Similarly, we generate spikes for Value.
d is a scaling constant. Since the input, key, and value matrices consist of spike trains rather than
real-valued data, the primary computations in all matrix multiplications are floating-point accu-
mulation operations rather than floating point multiplicative and accumulative operations. In the
NF-SpikingVTG variant, as discussed in the paper, we use ¢ as the Re LU function, significantly re-
ducing the computational overhead compared to employing ¢ as the non-local So ftmax operation.
The output of the attention layer is fed to an LIF neuron, which outputs spikes. The convergence
dynamics of the layer at equilibrium is given as, a},,, = J(ﬁ(Attn(a;‘;, ap,ay) + battn), wWhere
a,, represents the ASR of the layer used to generate the Query, a i denotes the ASR of the Key, and
a; corresponds to the ASR of the Value. by, is a bias term.

Intermediate Layer: The intermediate layer takes as input the spikes generated from the pre-
ceding layer and maps it to an intermediate dimension with a linear layer. The output is then
passed through an LIF layer. The convergence dynamics of the layer at equilibrium is given as,

A vorm. = a(ﬁ(gelu(Wimerm.a;)) + binterm.))» Where Wipierm. is the linear weight and gelu()

is the activation used for the layer. a is the ASR at equilibrium for the previous layer. b;,ierm. 1S
a bias term. During inference, all matrix multiplications involve accumulative operations due to the
nature of the input.

Output Layer: The output layer takes as input the spikes generated from the preceding layers as
shown in Fig. The output is then passed through an LIF layer. The convergence dynamics of
the layer at equilibrium is given as, aj,s,,; = U(ﬁ(norm(Woutputa;‘merm. + ay) + boutput))s
where Woyipus 1s the linear weight and layer norm is used for normalization. a},,,.,,, 1s the ASR
at equilibrium for the previous intermediate layer. b,ypyus iS @ bias term. During inference, all
matrix multiplications involve accumulative operations due to the nature of the input. In the NF-

SpikingVTG model we further remove the layer normalization to improve on-chip deployability.

B Lo0SS FUNCTION DETAILS

As described in the main paper, the total loss over N clips in the training set is defined as L =
% Zf\il (Ly, + La, + Lc,), where Ly represents the binary cross-entropy loss for the indicator
variable f;, Ly combines the smooth L1 loss with the generalized IoU loss |Rezatofighi et al.|(2019)
for the predicted boundaries, and L. is an optional loss term incorporating intra- and inter-video
contrastive learning |Chen et al| (2020). We follow similar loss function construction as previous
works on VTG [Lei et al|(2021); Lin et al.| (2023). The loss for fore-ground parameter is given as
follows,

Ly ==As | filog fi + (1= f;)log(1 — fy)] (10

where, f; is the true label and fz is the model prediction. The loss for predicted boundaries is given
as follows,

14
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Ld = 1f,-:1 ()\LILSmoothLl ((L, dz) + )\iouLiou(l;ia b?)) (12)

where, d;, b; are the true label and d;, b; is the model prediction. L. = MjperLinter + Aintra Lintra 18
used for inter-video and intra video contranstive learning (Lin et al.l [2023). For each video V, we
randomly select a clip v; with fore-ground indicator = 1 and positive saliency score. Clips from
the same video, denoted as v;, with saliency scores s; < s; are treated as negative samples. i.e.,
A={j|sj <s;,1<j< L,},and perform intra-video contrastive learning using the loss

exp(8;/7)
exp(8i/T) + 2 e aexp(8;/7)

. Furthermore, we treat textual queries from other samples within the batch (k € S) as negative
samples, enabling inter-video contrastive learning for cross-sample supervision:

Linga = — log (13)

exp(8; /1)

Liner = — log — 25U T)
nter g Zkes eXp(gf/T)

(14)

, where S is the training batch, §f = cos(v;, My) and M, is the sentence representation (Eqn. |
and cos is cosine similarity.

C DATASET DETAILS

QVHighlights: The QVHighlights dataset Lei et al.|(2021)) stands out as the sole dataset providing
annotations for both moment retrieval and highlight detection, making it an excellent resource for
benchmarking on both the VTG tasks. Comprising 10,148 videos with an average duration of 150
seconds. It features a total of 10,310 queries linked to 18,367 moments, resulting in an average of 1.8
distinct moments per query within each video. The dataset spans a variety of scenarios, including
daily vlogs, travel vlogs, and news events.

Charades-STA: The Charades-STA dataset comprises 16,128 indoor videos, each with an average
duration of 30.6 seconds. It includes 12,408 query-interval pairs designated for training and 3,720
query-interval pairs reserved for testing.

D ADDITIONAL EXPERIMENTAL DETAILS

In this subsection, we provide a concise overview of the implementation details and provide addi-
tional experimental details. The GPU specifications for the experiments are detailed in the main
paper, while the CPU utilized is an AMD Ryzen Threadripper 3960X 24-Core Processor. We have
used Python and the PyTorch framework to write the code. The video and textual feature are devel-
oped following previous work (Lei et al.| 2021} |Lin et al., 2023)). We have used the Adam optimizer
to train our model. We list the hyper-parameters used in the work in Table 4]

D.1 COMPARING IMPLICIT DIFFERENTIATION AT EQUILIBRIUM WITH BPTT

We were unable to train our model using BPTT due to its significantly higher memory demands
during training. For example, training our SpikingVTG model on the QVHighlights dataset re-
quires 25GB of memory with a batch size of 32 and 50 time steps for convergence (T). In contrast,
the memory requirement for training with BPTT exceeds 100GB, as it requires storing the entire
computational graph throughout the training process. Consequently, training the model with BPTT
is not feasible. This also underscores the advantage of the equilibrium-based training mechanism
employed in this work.

D.2 ENERGY ANALYSIS

Let us walk through a specific example of analyzing the energy consumption for the 1-bit NF-
SpikingVTG model. Consider a single transformer encoder layer. As discussed in the main paper,
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Hyper-parameters Range Optimal
N: Encoder Layers (2-6) 4
D: Hidden Dimension (768-2048) 1024
n1: f-decoder depth (1-5) 3
ki1: f-decoder kernel size (3-9) 3
na: d-decoder depth (1-5) 3
ko: d-decoder kernel size (3-9) 7
T’k p: Timesteps for KD (5-100) 50
T's: Timesteps for Finetuning | (5-50) 10
Vin: Threshold Potential 0.5-2.0) 1.0
~: Leaky-factor 0.9-1.0) 0.99
Ay :Ly co-efficient (1-20) 10
ALl :Lsmoothr1 co-efficient | (1-20) 10
Nintra Lintra co-efficient 0-1.0) 0.05
Ninter :Linter-co-efficient 0-1.0) 0.01
Niou :Liow co-efficient (1-20) 10
Ir: Learning Rate (Ie™® —1e79) 8e°
wq: weight decay (le™® — 1e73) le™
Batch Size (8-64) 32
Epochs 20-200 100

Table 4: Hyper-parameters of our SpikingVTG model w/SFG. Optimal values for QVHighlights
dataset is also shown.

the computational cost of the layer for a non-spiking model is given by: E4 = [3LD? + (LD? +
L?D) + LD? + LD?] * (4.6mJ). In our implementation, we use D = 1024 and lets consider
total sequence length L = 200. Thus we get energy cost of each block is 5.98m.J. Now, energy
cost per time step of our 1-bit NF-SpikingVTG is given as, Es, = [(3 - [FR;,, - LD?) + (IF Ry, -
LD? + IFR, - L?D) + (IF Ry, - LD?) + (IF Ripgerm. - LD?)] * (0.1p.J). Empirically we find
IFR;, =040,IFR;, =0.18,IFR, = 0.19, IFRytp, = 0.03, [ FR;nterm. = 0.09.

Thus Es, = 0.03mJ resulting in Eg = Eg, * T = .3mJ, where T = 10. Thus efficiency factor is
E;=FEs/Eg =19.93.
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