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ABSTRACT

Embodied agents operating in multi-agent, partially observable, and decentralized
environments must plan and act despite pervasive uncertainty about hidden objects
and collaborators’ intentions. Recent advances in applying Large Language Mod-
els (LLMs) to embodied agents have addressed many long-standing challenges,
such as high-level goal decomposition and online adaptation. Yet, uncertainty is
still primarily mitigated through frequent inter-agent communication. This incurs
substantial token and time costs, and can disrupt established workflows, when hu-
man partners are involved. We introduce PCE, a Planner-Composer-Evaluator
framework that converts the fragmented assumptions latent in LLM reasoning
traces into a structured decision tree. Internal nodes encode environment assump-
tions and leaves map to actions; each path is then scored by scenario likelihood,
goal-directed gain, and execution cost to guide rational action selection without
heavy communication. Across two challenging multi-agent benchmarks (C-WAH
and TDW-MAT) and three diverse LLM backbones, PCE consistently outperforms
communication-centric baselines in success rate and task efficiency while show-
ing comparable token usage. Ablation results indicate that the performance gains
obtained by scaling model capacity or reasoning depth persist even when PCE
is applied, while PCE consistently raises the baseline across both capacity and
reasoning-depth scales, confirming that structured uncertainty handling comple-
ments both forms of scaling. A user study further demonstrates that PCE produces
communication patterns that human partners perceive as more efficient and trust-
worthy. Together, these results establish a principled route for turning latent LLM
assumptions into reliable strategies for uncertainty-aware planning.

1 INTRODUCTION

Imagine two household agents collaborating to prepare a meal: each perceives only part of the
kitchen, yet both must coordinate to assemble ingredients and deliver them to a shared workspace.
Such agents exemplify embodied agents, which perceive their surroundings, formulate plans, and
execute actions to achieve specified goals in dynamic environments (Fung et al., 2025). When mul-
tiple embodied agents must cooperate in a decentralized setting under partial observability, each
agent’s limited perceptual field produces pervasive uncertainties about unobserved objects as well
as the intentions and actions of collaborators (Spaan et al., 2006; Amato et al., 2016; 2015). Naively
exploring these uncertainties at every planning step is computationally prohibitive. It also tends to
produce suboptimal or inconsistent plans, as the combinatorial growth of possible hidden states sig-
nificantly increases the difficulty of assessing the relative value of available actions and maintaining
a coherent belief.

Agents powered by Large Language Models (LLMs) have achieved notable progress in such set-
tings. By leveraging few-shot and zero-shot reasoning, LLM-based planners can decompose high-
level goals into executable action sequences, adapt plans to environmental changes, and reliably
infer the intentions of the collaborators, enabling robust performance in complex long-horizon set-
tings. To handle uncertainty, however, most existing systems rely on repeated natural-language
communication with collaborators to verify plans, exchange information, and iteratively refine joint
strategies. This communication-centric paradigm incurs significant costs: frequent dialogue con-
sumes large numbers of tokens and time, and when human collaborators are involved, continuous
questioning and reporting can disrupt established workflows. Moreover, simply increasing LLM
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capacity or deepening its reasoning chains does not inherently resolve uncertainty. Without explicit
mechanisms to identify and assess the assumptions that underlie uncertainty in partially observable
environments, larger models still struggle to weigh competing hypotheses about the environment,
which leads to misaligned priorities and degraded planning quality.

To address these limitations, we leverage two key empirical observations: First, when asked to
evaluate or select actions, LLM planners internally generate implicit assumptions about uncertain
aspects of the environment in their zero-shot Chain-of-Thought reasoning traces. For example, they
tend to hypothesize the presence of an unseen object or infer the likely action of a collaborator. These
assumptions can in turn be used to identify what information is missing. Second, we found that such
assumptions are invoked locally and referenced implicitly, without being explicitly aggregated for
a global decision. This unstructured handling prevents the planner from systematically reconciling
multiple assumptions, which hampers its ability to detect logical conflicts, compare expected gains,
weigh alternative actions consistently, and ultimately achieve higher planning accuracy.

We therefore propose Planner-Composer-Evaluator (PCE) to extract and aggregate these internally
generated assumptions into a single structured representation in the form of a decision tree, enabling
them to be jointly evaluated for more reliable and uncertainty-aware action selection. In this tree,
each internal node specifies an assumption about the environment, and each leaf node specifies the
action considered appropriate under the accumulated assumptions along the path. Thus, each root-
to-leaf path represents a particular combination of assumptions culminating in an action trajectory.
We then introduce an evaluator that scores each path in terms of its likelihood, gain, and cost, guiding
rational action selection without heavy communication. This design transforms the latent knowledge
already produced by LLM reasoning into a principled mechanism for uncertainty-aware planning.

Unlike prior multi-agent planners (Seo et al., 2025; Liu et al., 2025; Zu et al., 2025) that primarily
optimize coordination through iterative communication or joint plan negotiation, PCE operates at a
different level of the decision problem. Instead of optimizing over action sequences or communica-
tion strategies, PCE explicitly treats environmental assumptions as first-class decision variables and
reasons over them before action execution. This shifts the planning paradigm from communication-
centric coordination to structured reasoning over uncertainty embedded in the agent’s own belief
state.

Experiments on two challenging multi-agent benchmarks, C-WAH (Zhang et al., 2024b) and TDW-
MAT (Zhang et al., 2024b), show that PCE consistently outperforms communication-centric base-
lines in success rate, task efficiency, and token usage. Ablation studies reveal that increasing LLM
capacity or its reasoning depth without explicit uncertainty handling yields only limited perfor-
mance improvements relative to its computational cost. User studies further demonstrate improved
reliability in human-agent collaboration. Because the proposed framework operates on generic rea-
soning traces rather than model-specific internals, it can be readily applied to a wide range of LLM
backbones and multi-agent domains. We demonstrate this generality by running PCE on diverse
backbones, including GPT-4o mini, GPT-OSS:20B, and Gemma3:4B, and observe consistent im-
provements across all of them. Together, these results shift the focus from communication-heavy
mitigation to principled exploitation of the assumptions already present in LLM reasoning, opening
a new direction for uncertainty-aware planning in embodied systems.

2 RELATED WORK

Embodied Multi-Agent Cooperation. Embodied agents aim to achieve long-term goals in com-
plex environments populated with diverse objects (Song et al., 2023; Li et al., 2024). Recent work
has leveraged LLMs as planners to decompose high-level goals into executable action sequences for
navigation and manipulation tasks (Zhou et al., 2024; Huang et al., 2022; Song et al., 2023; Wang
et al., 2023a;c) and to enhance planning effectiveness through zero-shot and few-shot reasoning as
well as dynamic replanning (Huang et al., 2022; Song et al., 2023). Beyond single-agent settings,
cooperative planning in multi-agent environments has been studied to address tasks that exceed the
capacity of an individual agent (Zhang et al., 2024c; Guo et al., 2024).

To study more realistic embodied multi-agent cooperation, researchers focus on environments where
distributed agents must make decisions based on their own limited observations (Zhang et al., 2024b;
Seo et al., 2025; Liu et al., 2025; Zu et al., 2025). In these settings, agents cannot acquire information
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beyond their observation range in real time. They must therefore either move physically to gather
information or share it through communication with collaborators to reduce travel time (Oliehoek &
Spaan, 2012; Spaan et al., 2006; Foerster et al., 2016).

Prior work has mitigated uncertainty through intensive communication. For example, ProA-
gent (Zhang et al., 2024a) explicitly reasons about collaborators’ actions and verifies its reasoning
through dialogue; CoELA (Zhang et al., 2024b) and REVECA (Seo et al., 2025) exchange state and
plan information to validate and adjust strategies; RoCo (Mandi et al., 2024) and CaPo (Liu et al.,
2025) introduce iterative inter-agent debates; and CoTS (Zu et al., 2025) exploits communication-
based feedback to refine joint plans. While these approaches improve coordination, they incur high
token and time costs and can disrupt workflows when humans are in the loop.

More recently, LLaMAR (Nayak et al., 2024) has introduced a long-horizon LLM-based planning
framework that operates in partially observable environments without relying on heavy communi-
cation, yet its formulation addresses coordination in a centralized multi-agent setting.

Our work takes a different path: instead of relying on heavy communication, we extract and ag-
gregate the implicit assumptions in LLM reasoning into a decision tree framework that jointly eval-
uates them for rational action selection. This enables agents to adaptively balance physical and
communicative actions, reducing communication overhead while preserving or improving planning
performance.

Scaling LLM for Embodied Agents. Recent advances in LLMs have enabled natural language
reasoning and high-level decision making for embodied agents. Scaling model capacity improves
performance (Kaplan et al., 2020) but requires substantial training time and data resources. To
complement these costs, reinforcement learning fine-tuning has been proposed at the training
stage (Shao et al., 2024; Wang et al., 2024; Xu et al., 2025), while reasoning-augmentation meth-
ods such as Chain-of-Thought (Wei et al., 2022), Tree-of-Thoughts (Yao et al., 2023), and Self-
Consistency (Wang et al., 2023b) have been introduced at inference time (Snell et al., 2025).

However, merely increasing model capacity or reasoning depth does not address the fundamental
reliance on knowledge stored within model parameters (Mirzadeh et al., 2024; Huang et al., 2023;
Yin et al., 2024). This limitation is evident in tasks requiring external knowledge (Lewis et al.,
2020), where LLMs produce uncertainty-laden outputs with degraded quality (Li et al., 2025), in
partially observable, decentralized environments where agents’ internal memory quickly becomes
outdated, amplifying uncertainty and restricting planning performance (Spaan et al., 2006; Amato
et al., 2016; 2015).

To the best of our knowledge, no prior work has systematically examined whether uncertainty in
embodied planning can be resolved simply by scaling LLMs. Our experiments show that beyond
the gains from increasing model capacity or reasoning depth, PCE delivers robust improvements
across all tested backbones, indicating that its benefits are additive to and distinct from those of
scaling.

Tree-Structured Reasoning and Search. Tree-based frameworks have been widely adopted to
enhance decision quality, but PCE is conceptually distinct from existing approaches such as Tree of
Thoughts (ToT) (Yao et al., 2023) and CoTS (Zu et al., 2025) in both what the tree represents and
how communication is treated. ToT constructs a tree over reasoning steps to enhance logical co-
herence, but it operates primarily within the internal reasoning space of a single agent. It implicitly
assumes a fully observable environment and treats tree nodes as cognitive steps rather than proba-
bilistic environmental states, limiting its applicability in dynamic, partially observable multi-agent
scenarios. In multi-agent settings, CoTS performs tree search over the joint-reasoning-and-action
space and uses iterative communication to explore and prune candidate plans. This communication-
centric formulation makes dialogue a prerequisite for search, resulting in increased latency and
significant token consumption, especially under imperfect observability.

In contrast, PCE structures the decision tree based on uncertain assumptions regarding the envi-
ronment rather than just reasoning steps. Crucially, PCE treats communication not as the search
mechanism itself, but as an atomic action within the search space to be evaluated against physical
actions. This allows the agent to select communication only when it yields higher expected utility
than acting alone.
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Execution Module Communication Module

Initial action: [goexplore] kitchen 

{

‘type’: ‘assumption’

‘text’: “Missing items are in kitchen.”

‘reason’: “Foods are commonly...”

‘True’: { 

    ‘type’: ‘action’

    ‘action’: ‘[goexplore] kitchen’

 ‘False’: {

    ‘type’: ‘assumption’

     ‘text’: “Items are in cabinet”

     ...

}

...

Final action: [gocheck] cabinet

'Scenario 1': {

    ‘Likelihood’: 4,

    ‘Gain’: 3,

    ‘CostPenalty’: 5,

    ‘Action’: ‘[goexplore] kitchen’ 

},

'Scenario 2’: {

    ‘Likelihood': 4,

    ‘Gain’: 3,

    ‘CostPenalty’: 1,

    ‘Action’: ‘[gocheck] cabinet’ 

},

...  

Environment

Evaluator

Planning Module

Planner

Composer

Scenario tree

Reasoning trace

The kitchen likely contains food as 

target objects ... 

Common goal

Message logs

Action history

...

Memory Module

Observation 

Module

...

Available action list 

1. [goexplore] kitchen

2. [gocheck] cabinet

3.  ...

Choose best action... 

Context input

Figure 1: PCE employs a modular architecture with a Planner, Composer, and Evaluator pipeline
for planning.

3 PROBLEM DEFINITION

We model cooperative embodied agents under costly communication as a decentralized partially
observable Markov decision process (DEC-POMDP) (Bernstein et al., 2002; Amato et al., 2013).
The environment evolves through states s over a finite horizon t = 1, . . . ,H . At each time step, n
agents execute actions (a1, . . . , an) with transition probability P (s′ | s, a1, . . . , an).
Each agent i receives an observation oit ∈ Oi, where Oi = Oi

env ∪ Oi
com combines direct envi-

ronmental observations with communication-based observations. Observation histories evolve as
hi
t = (hi

t−1, o
i
t).

The action space Ai = Ai
phy ∪ Ai

com contains both physical and communication actions. A lo-
cal policy πi maps the current history to an action, ait = πi(hi

t). Communication actions transmit
messages mi

t constructed from hi
t and broadcast to all other agents j ̸= i. We assume costly com-

munication: each ait ∈ Acomi consumes time that could be used for Ai
phy , and messages arrive with

a one-step delay, i.e. mi
t appears in oit+1.

Our objective is to find a set of decentralized policies π = (π1, . . . , πn) that enables the agents to
cooperatively achieve a common goal G composed of multiple sub-goals within horizon H .

4 METHOD

PCE, depicted in Figure 1, adopts the modular design commonly used in embodied agent coopera-
tion (Zhang et al., 2024b; Seo et al., 2025; Liu et al., 2025; Zu et al., 2025). It comprises Observa-
tion, Memory, Planning, Communication, and Execution Modules. Among these, we redesign the
Planning Module into a Planner–Composer–Evaluator pipeline that explicitly incorporates uncer-
tainty handling, enabling more reliable action selection. Detailed prompting strategies for Planner,
Composer, and Evaluator are provided in Appendix A.12.

4.1 OBSERVATION AND MEMORY MODULES

The Observation Module transforms raw environmental and collaborator signals into structured per-
ceptual information. Each agent detects object names/IDs, locations, room associations, available
interactions, and states of objects within its perceptual range, as well as the collaborator’s held ob-
jects and position. Closed containers occlude their contents; for example, a cabinet’s interior remains
unknown until a physical action such as opening is performed, after which newly revealed objects
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(b) Composer

1

1

2

2

6
3

4
5

5

(c) Evaluator

: assumption is TRUE : assumption is FALSE : best scenario: assumption node : action node

1

1

2

2

6

3

4

5
5

𝑈:−0.1
𝑈: 0.1

𝑈: 0.2

𝑈:−0.2

𝑼:𝟎. 𝟒

[New!] Bob know where 

is the cupcake

[New!] send message

[New!] Bedroom 

has food items

Okay, let's analyze the situation. My goal is to put items onto the <coffeetable>. I am not currently holding anything, and I need to move the 

following items: 2 <cupcakes>, 1 <apple>, 1 <wine>, and 1 <pudding>. 

Let’s consider the available actions and our goal to determine the optimal action.

1. [goexplore] <livingroom> (198) – This could potentially lead you to one of the items you need, but it’s quite far.

2. [goexplore] <kitchen> (56) – The kitchen is likely to have food items such as cupcakes and pudding. This is a short distance.

3. [goexplore] <bedroom> (294) – This is the farthest option and may not yield food items.

4. [gocheck] <bathroomcabinet> (25) – This is the closest option and you might find something useful here, potentially wine or other items.

...

: action : assumption(a) Example of Planner reasoning trace 

Reasoning 

trace

Figure 2: Flow from reasoning trace to action selection. (a) The Planner produces a reasoning
trace. (b) The Composer extracts hypotheses from the trace, structures them into a decision tree,
and, when needed, generates new assumptions and communication actions to expand unexplored
branches. (c) The Evaluator scores each path; The highlighted path indicates the scenario whose
leaf node achieves the maximum score (U ), determining the agent’s final selected action.

(e.g., a cupcake) become observable. Messages issued by the collaborator in the previous step are
also included in the observation.

The Memory Module serves as a unified repository that integrates static information with dynam-
ically updated data. At initialization, it is populated with the common goal G and the low-level
action skill book (a set of APIs for performing action). During execution, the memory is incremen-
tally updated with inferred task progress, collaborator information, message logs, and the agent’s
own previous actions. To prevent unbounded growth in long simulations, message logs are trun-
cated to the most recent Kmessage entries and action histories to the most recent Kaction entries.
See Appendix A.3 for details.

4.2 PLANNER: REASONING FOR ACTION SELECTION

The planner forms the first stage of our Planning Module. It receives as context input the common
goal G, current progress, message logs, recent actions from memory, and available action list. Us-
ing this, it reasons about why each available action could contribute to achieving G and produces
an initial action choice accordingly. For example, if the agent has reached the kitchen and ob-
served a cabinet but not yet interacted with it, the Planner may propose an action such as ‘[gocheck]
<kitchencabinet> (78)’. Leveraging the reasoning capabilities of LLMs, the Planner outputs not
only a candidate action but also the associated reasoning trace.

Empirically, each candidate action in this trace tends to be grounded in a single partial assump-
tion about the uncertain environment. For example, as shown in Figure 2-(a), the available ac-
tion ‘[gocheck] <bathroomcabinet> (25)’ is grounded solely in the assumption that ‘you might
find something useful here,’ while other assumptions relevant to alternative actions remain implicit.
These traces therefore reveal isolated assumption-action links but do not show how different as-
sumptions relate to each other, limiting the Planner’s ability to rank actions under uncertainty.

4.3 COMPOSER: FROM REASONING TRACE TO SCENARIO TREE

The Composer organizes an explicit decision tree. It begins by semantically interpreting the context
input and the Planner’s reasoning trace to explicitly identify key uncertainties (assumptions). Inter-
nal nodes represent these assumptions with True/False splits whose branch conditions are inherited
along the path. A root-to-leaf path therefore defines a scenario, which is a combination of assump-
tions culminating in a leaf node. Specifically, each leaf node is assigned an action aimed at handling
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the uncertainty of the given path—either a physical action for direct interaction or a communication
action for sharing information or instructing the collaborator.

Instead of enumerating all assumption-action relationships, the Composer expands the tree top-
down. At each node, a local ranking policy selects the next assumption to branch on, prioritizing
those that most reduce uncertainty and most strongly influence subsequent action choice. Rather
than computing true probabilities, which would amount to solving an intractable POMDP, we ap-
proximate these criteria using LLMs’ commonsense reasoning. Only assumptions not yet assigned
on the path and consistent with current premises are considered, preventing incompatible scenarios
from being generated.

When no suitable assumptions remain, the Composer proposes new atomic assumptions grounded
in entities already present in the context (G, message logs, etc.). These candidates are ranked by
the same policy and, if selected, inserted as new branches. Expansion is limited at depth D or stops
early when further splits would not materially affect action choice; the resulting node becomes a leaf
and is assigned the most appropriate action. Multiple leaves may map to the same action, reflecting
its suitability across scenarios, while some initial actions may be dropped if never optimal.

Figure 2-(b) illustrates this process. Given the goal of finding food items, a root assumption ‘the
living room contains them’ leads the True branch toward a ‘[goexplore] <livingroom> (198)’. On
the False branch, the premise changes, and the Composer generates a new assumption that the col-
laborator (Bob) may know the cupcake’s location, shifting the plan from physical exploration to an
information gathering action such as [send message].

4.4 EVALUATOR: SCENARIO LIKELIHOOD, CONDITIONAL GAIN, AND EXECUTION COST

The Evaluator takes the context input and the decision tree. It then scores each leaf to guide action
choice under uncertainty. For every root-to-leaf path, it estimates 1) how likely the scenario S is, 2)
how much the action would advance the goal if the scenario holds, and 3) how costly the action is to
attempt. All scores are normalized to [0, 1] for comparability.

Scenario likelihood (L). L(S) is the estimated probability that the premise of the leaf scenario is
true, assessed by an LLM against the agent’s observation and message history. For instance, if the
collaborator was last seen in the kitchen, a scenario stating that the collaborator is still there receives
a higher score than one claiming that the kitchen is empty.

Conditional gain (G). G(a) measures how much executing action a would advance the goal given
that the scenario is true. This value is also estimated by an LLM.

Exploiting L and G, we define the expected gain as

E[gain] = L(S) · G(a),
where G(a) = 0 when the scenario is false.

Execution cost (C). C(a) quantifies the immediate resources required to attempt a, regardless
of its success. We decompose the cost into movement and communication terms using indicator
functions:

C(a) = αd(a)1{move(a)} + β ℓ(a)1{comm(a)},
where d(a) is the estimated traversing distance, ℓ(a) is the estimated message length, α, β > 0
are scaling constants that balance the cost of movement and communication, and 1{·} is the in-
dicator. This design expresses the mutually exclusive nature of movement and communication:
1{move(a)}+ 1{comm(a)} = 1.

Final score (U ). For each leaf action, the Evaluator computes a final score:

U(S, a) = E[gain] − λC(a),

where λ > 0 controlling cost sensitivity. This score integrates scenario probability, goal-directed
effectiveness, and execution expense. Ranking leaves by U(S, a) yields a rational action choice
under uncertainty, as shown in Figure 2-(c). The empirical setting of α, β, and λ is discussed in the
experiments.
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4.5 COMMUNICATION AND EXECUTION MODULES

These modules translate the Planning Module’s decisions into concrete behavior. When a communi-
cation action is selected, the Communication Module sends or responds to messages from collabora-
tors. When a physical action (e.g., moving, grasping an object, transporting a target) is selected, the
Execution Module carries it out by computing routes with A* search and invoking the appropriate
low-level Python APIs from the action skill book.

5 EXPERIMENT

Benchmarks. Under the constraint of partial observability in decentralized control, we conduct
experiments on two multi-objective household tasks composed of multiple rooms: C-WAH (Zhang
et al., 2024b) and TDW-MAT (Zhang et al., 2024b). C-WAH consists of 10 episodes, where agents
are required to accomplish 3–5 sub-goals in each episode, with the horizon H set to 250 steps.
TDW-MAT consists of 24 episodes, where agents are tasked with achieving the goal of transport-
ing 10 target objects, with the horizon H set to 3000 steps. Full environment details appear in
Appendix A.1.

Metrics. In C-WAH, we measure Total Steps to evaluate how quickly agents achieve the goal. In
TDW-MAT, we measure the proportion of target objects transported by the agents out of the total
goal objects, grouped as Food, Stuff, and their average Total.

We also evaluate system efficiency using Usages and Comm. Usages denotes the total token con-
sumption generated by the entire system. This explicitly includes not only communication tokens
but also all internal tokens generated by the LLM modules within the framework, serving as a proxy
for total computational cost. Comm measures the number of communication actions. Unlike other
metrics, Comm does not have an intrinsic “better is lower” or “better is higher” interpretation. Com-
munication actions are not direct goal completions but context-dependent interventions: in some
cases, they slow progress through unnecessary exchanges, while in others, they avert false plans and
improve coordination. We therefore treat Comm as a descriptive measure reported for diagnostic
analysis rather than as a success metric, while primary comparisons focus on task performance and
token usage.

Baselines. We compared PCE with four representative LLM-based cooperative agent frame-
works: CoELA (Zhang et al., 2024b), REVECA (Seo et al., 2025), CaPo (Liu et al., 2025), and
CoTS (Zu et al., 2025). CoELA first demonstrated LLM-driven cooperation for embodied agents.
REVECA introduced memory management, relative proximity-based planning, and plan valida-
tion. CaPo designed plan optimization through iterative debates, and CoTS integrated multi-plan
exploration with Monte Carlo Tree Search. All baselines are run under identical environmen-
tal and communication settings. For our PCE framework, we use the default hyperparameters
D = 3, α = 1, β = 1, λ = 1,Kaction = 10,Kmessage = 3. Further details of the baselines
can be found in Appendix A.2.

LLMs. To test robustness across model backbones, each framework is run on three di-
verse LLMs: gpt-4o-mini-2024-07-18 (GPT-4o mini) (Hurst et al., 2024), google/gemma-3-4b-it
(Gemma3:4B) (Team et al., 2025), and openai/gpt-oss-20b (GPT-OSS:20B) (Agarwal et al., 2025).
GPT-4o mini is a commercial LLM, whereas Gemma3:4B and GPT-OSS:20B are open-source.
GPT-OSS:20B is a large reasoning model that performs internal reasoning before generating re-
sponses; we use its medium reasoning level for comparisons. GPT-4o mini and Gemma3:4B gener-
ate outputs without an explicit reasoning module, and we apply zero-shot Chain-of-Thought prompt-
ing to encourage higher quality plans.

5.1 COMPARATIVE RESULTS

Table 1 and Table 2 summarize the two-agent cooperation results on C-WAH and TDW-MAT. Across
all three LLM backbones, our PCE framework consistently achieves the fastest goal completion in
C-WAH and the highest success rates in TDW-MAT, outperforming existing approaches on Total,
Food, and Stuff metrics.
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Table 1: Experimental results in C-WAH. Best result in bold; second-best underlined.

PCE CoELA REVECA CaPo CoTS

GPT-4o mini
Total Steps ↓ 42.76 60.40 46.80 60.82 64.00
Comm 1.70 9.88 6.00 8.72 10.24
Usages ↓ 44353.56 55467.12 46312.16 41702.00 44628.12

GPT-OSS:20B
Total Steps ↓ 49.60 72.72 53.86 68.34 65.26
Comm 2.11 9.22 6.49 8.20 8.32
Usages ↓ 73535.24 77727.20 74764.24 99810.44 95428.84

Gemma3:4B
Total Steps ↓ 59.20 77.20 62.56 75.88 72.32
Comm 3.02 9.48 9.14 7.92 4.04
Usages ↓ 50984.7 49271.24 44637.58 64015.24 51966.64

Table 2: Experimental results in TDW-MAT. Best result in bold; second-best underlined.

PCE CoELA REVECA CaPo CoTS

GPT-4o mini

Total ↑ 87.50 62.50 81.25 73.33 75.00
Food ↑ 89.17 65.83 80.83 82.50 84.17
Stuff ↑ 85.83 59.17 81.66 64.17 65.83
Comm 3.58 13.33 43.76 70.79 108.92
Usages ↓ 197807.29 113058.83 185453.54 281404.71 411392.08

GPT-OSS:20B

Total ↑ 81.25 55.00 73.33 65.41 59.17
Food ↑ 85.00 50.83 78.33 72.50 70.83
Stuff ↑ 77.50 59.17 68.33 58.33 47.50
Comm 13.75 11.62 107.79 43.00 41.83
Usages ↓ 337225.12 237498.88 370737.17 348066.92 334912.67

Gemma3:4B

Total ↑ 70.83 45.84 52.09 67.50 63.33
Food ↑ 71.66 50.00 56.67 70.83 64.17
Stuff ↑ 70.00 41.67 47.50 64.17 62.50
Comm 9.42 27.42 108.00 57.88 55.96
Usages ↓ 184809.08 98350.25 308221.25 217626.50 212029.79

These gains stem from the agent’s ability to act under uncertainty with minimal communication. By
explicitly structuring assumptions rather than relying on repeated dialogue, our method spends less
time on message exchanges and more time on physical actions. This behavior effectively suppresses
unnecessary communication-driven planning cycles, thereby reducing LLM inference cost. More-
over, although PCE’s three-module LLM architecture incurs higher per-step inference cost compared
with architectures like CoELA that perform two LLM inferences per step, this overhead is offset by
PCE’s substantial reduction in episode length. Therefore, PCE achieves high performance while
maintaining low Usages under decentralized partial observability.

In contrast, CoELA, REVECA, CaPo, and CoTS generally rely heavily on communication, which
increases the number of steps and delays goal achievement. CoELA lacks systematic communi-
cation strategies and mechanisms for evaluating the value of communication, making it difficult to
recognize when information exchange is needed to resolve uncertainty in long-horizon, multi-room
environments. REVECA can request information required to validate goal-directed plans, but has
limited ability to proactively identify highly uncertain factors and query them. CaPo and CoTS have
the advantage of generating multi-step plans, but in environments with high uncertainty, these plans
often become invalid, leading to repeated replanning.

By contrast, PCE yields stable improvements across all backbones and environments by separating
assumption extraction, scenario structuring, and evaluation. This enables the agent to detect when
information exchange is genuinely useful, select between physical and communication actions in a
principled way, and maintain high performance under decentralized partial observability.

8
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Table 3: Ablation results in C-WAH. Best result in bold; second-best underlined.

PCE w/o Planner w/o Composer w/o Evaluator

GPT-4o mini
Total Steps ↓ 42.76 56.46 46.82 47.34
Comm 1.70 9.52 0.26 1.2
Usages ↓ 44353.56 139918.56 33347.66 44720.38

5.2 ABLATION STUDY RESULTS

LLM Scaling. We first examine whether performance gains come from our structural design rather
than simply scaling LLM capacity or reasoning depth. To this end, we compare PCE with a Planner
only variant that removes the Composer and Evaluator, eliminating explicit uncertainty handling.
As shown in Figure 3, even when the backbone size is increased from Gemma3:4B→12B→27B or
when GPT-OSS:20B’s reasoning depth is raised from Low→Medium→High, Planner only shows
only modest improvements, while PCE consistently achieves faster goal completion. This indicates
that fragmented, implicitly handled assumptions persist under mere scaling, leading to inefficient
exploration and occasional planning errors. In contrast, PCE’s Composer–Evaluator explicitly or-
ganizes and scores these assumptions, demonstrating that our structured uncertainty handling syner-
gizes with scaling to provide a stable performance advantage regardless of the underlying backbone.

Component Analysis. We also ablate individual components of the PCE pipeline using GPT-4o
mini. As reported in Table 3, removing any module (w/o Planner, w/o Composer, w/o Evaluator)
reduces performance. Without the Planner, scenario trees are built directly from context. This in-
creases the difficulty of scenario exploration and often results in incoherent or redundant branches.
Without the Composer, the agent relies solely on the Planner’s reasoning trace for evaluation, which
prevents it from accounting for conflicting or complementary relationships among multiple assump-
tions and results in incomplete exploration of alternative scenarios. Without the Evaluator, actions
are selected without quantitative likelihood–gain–cost assessment, which degrades decision quality.
These results confirm that each module contributes essentially to uncertainty-aware planning.

We performed additional analyses to stress-test the structural foundations of PCE and rigorously
evaluate its reliability and scalability.

First, we constructed physical-only and communication-only variants of PCE and conducted com-
parative experiments, alongside separate comparisons between PCE and reasoning-centric baselines
(Chain-of-Thought, Tree-of-Thoughts, Self-Consistency). These analyses confirm that PCE’s high
performance does not stem merely from more sophisticated reasoning traces, but from the explicit
structuring and evaluation of uncertainty (Appendix A.5).

Second, we assessed the robustness of the framework through a series of quantitative and qualitative
evaluations: (1) scalability tests with increasing number of agents to verify cooperative efficiency
(Appendix A.9); (2) reliability assessments of the Composer and Evaluator based on human–expert
correlation studies (Appendix A.10, A.11); (3) hyperparameter sensitivity analyses to examine con-

9
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figuration stability (Appendix A.5); and (4) comparisons with an MCTS-based planner to demon-
strate efficiency advantages over traditional tree search (Appendix A.8).

Finally, we present qualitative case studies illustrating how PCE corrects ill-posed plans through its
structured decision-making process, thereby providing an interpretable grounding for the observed
quantitative improvements (Appendix A.7).

5.3 USER STUDY RESULTS

In real human collaboration, communication is a double-edged sword: excessive messaging dis-
rupts workflow, while the absence of necessary exchanges makes intentions opaque and degrades
joint performance. We hypothesized that PCE’s ability to structure and evaluate assumptions would
allow it to trigger communication only when genuinely useful, producing behavior that humans
perceive as aligned, efficient, and trustworthy. To test this, we ran a user study in the C-WAH envi-
ronment comparing (1) PCE, (2) w/o Com (communication actions removed), and (3) Com always
(communication forced before each physical action). Twelve participants (mean age 26.8; 8 male, 4
female) received the same observations and action choices as the agent.

After completing each method, participants answered four questions on a 7-point Likert scale (1:
strongly disagree, 7: strongly agree): 1) “Did the agent perform actions appropriate to your inten-
tions?” (Appropriateness), 2) “Was the agent helpful in collaboration?” (Usefulness), 3) “Did the
agent’s performance contribute to achieving the goal efficiently?” (Efficiency), and “4) Did you feel
a sense of trust with the agent?” (Trust). They then joined brief qualitative interviews.

As shown in Figure 4, PCE scored highest across all questions, confirming our hypothesis: by
reasoning over uncertainties and initiating communication selectively, PCE achieves a balance of
clarity and efficiency that users recognize as more cooperative and reliable. Interview feedback
noted that Com always disrupted workflows, while w/o Com made the agent’s intentions unclear and
harder to trust. Detailed results are in Appendix A.6.

6 CONCLUSION

This paper presented PCE, a modular Planner-Composer-Evaluator framework that extracts and
structures implicit assumptions embedded in LLM reasoning traces, enabling embodied agents to
plan under partial observability with minimal communication. Across two multi-objective bench-
marks (C-WAH and TDW-MAT) and three diverse LLM backbones, PCE consistently outperformed
communication-centric baselines in success rate and task efficiency while showing comparable to-
ken usage. Ablation studies confirmed that each module is indispensable and that explicit uncer-
tainty handling unlocks performance gains beyond what model scaling alone provides. A user study
further showed that PCE produces communication patterns that humans perceive as efficient and
trustworthy.

While our experiments focus on simulated multi-room household tasks, the proposed mechanism is
not tied to a specific domain. Future work will explore extending PCE to more complex and dynamic
environments, larger and more diverse agent teams, and adaptive discovery of new assumptions
in real time. These directions aim to test the framework’s scalability and generality under richer
uncertainty, advancing the broader goal of principled, decentralized cooperation with embodied
agents.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility of the proposed methodology and experiments, we provide code as part of
anonymized supplementary materials. These materials include the code and instructions necessary
to reproduce the methods described in this paper.
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Thomas L Griffiths, and Mengdi Wang. Embodied llm agents learn to cooperate in organized
teams. arXiv preprint arXiv:2403.12482, 2024.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International conference on
machine learning, pp. 9118–9147. PMLR, 2022.

Yuheng Huang, Jiayang Song, Zhijie Wang, Shengming Zhao, Huaming Chen, Felix Juefei-Xu,
and Lei Ma. Look before you leap: An exploratory study of uncertainty measurement for large
language models. arXiv preprint arXiv:2307.10236, 2023.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
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A APPENDIX

A.1 ENVIRONMENT SETTINGS DETAILS

In our experiments, the agent’s observations are obtained through the APIs provided by each en-
vironment, following previous studies (Zhang et al., 2024b). We perform experiments in partially
observable environments, including C-WAH and TDW-MAT. In the next section, we present the
details of these environments.

(a) C-WAH (b) TDW-MAT

Figure 5: example environment

A.1.1 COMMUNICATIVE WATCH-AND-HELP

The Communicative Watch-And-Help (C-WAH) environment extends the original Watch-And-Help
challenge (Puig et al., 2020) by introducing a communication functionality between agents. It is
implemented on top of VirtualHome (Puig et al., 2018), a platform for multi-agent simulation. We
run 10 episodes in C-WAH, where agents are assigned a common goal to accomplish in each episode.
As summarized in Table 4, the common goals fall into five categories, and agents must select from
the eight possible actions listed in Table 5 to achieve them.

In this setting, agents can exchange information with each other through communication while exe-
cuting instructions. When entering a room, an agent can observe all objects that are not inside con-
tainers such as fridges or microwaves. To inspect objects within containers, the agent must explicitly
perform an additional action to open them. To simulate real-world communication constraints, each
agent is restricted to 500 characters per frame.

The horizon H is fixed at 250 simulation steps, and each task contains 3 to 5 subgoals (i.e., ob-
jects). Failure to achieve the common goal within 250 steps results in an unsuccessful episode. An
illustration of the environment layout is provided in Figure 5-(a).

Table 4: The goal specifications of the C-WAH

Goals Description

Prepare afternoon tea put [cupcake, pudding, apple, juice, wine] on coffeetable
Wash dishes put [plate, fork] inside dishwasher
Prepare a meal put [coffeepot, cupcake, pancake, poundcake, pudding, apple, juice,

wine] on dinnertable
Put groceries put [cupcake, pancake, poundcake, pudding, apple, juice, wine] inside

fridge
Set up a dinner table put [plate, fork] on dinnertable
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Table 5: The action space in C-WAH

Action Description

Walk towards move to an object in the same room with the agents or a room
Turn left turn left by 30 degrees
Turn right turn right by 30 degrees
Grasp grasp an object
Open open a closed container
Close close an open container
Put put the held objects into an open container or onto a surface
Send message send a message to other agents

A.1.2 THREEDWORLD MULTI-AGENT TRANSPORT

The ThreeDWorld Multi-Agent Transport (TDW-MAT) environment, an extended version of the
ThreeDWorld Transport Challenge (Gan et al., 2021b), is built on TDW (Gan et al., 2021a). It
incorporates more natural object placements and provides a richer set of objects and containers that
support item transportation. The common goal in TDW-MAT involves transporting items across two
categories: Food and Stuff. Each episode consists of 10 target objects and 2–5 containers, which are
strategically placed to enable the transport of multiple items at once, as detailed in Table 6.

Unlike in C-WAH, agents in TDW-MAT cannot acquire complete information about a room without
executing a full 360-degree rotation in 15-degree increments. Communication is restricted to 500
characters per frame, and the horizon H is set to 3000 simulation steps. The environment layout is
illustrated in Figure 5-(b), and the complete action space is provided in Table 7.

Table 6: The target objects and containers of the TDW-MAT environments.

Task Type Object Name

Food
Containers bowl, plate, tea tray
Objects bread, burger, loaf bread, apple, banana, orange

Stuff
Containers plastic basket, wicker basket, wood basket
Objects iPhone, pen, key, iPod, lighter, purse, calculator, pencil bucket, mouse

Table 7: The action space of the TDW-MAT environment.

Action Description

Move forward move forward 0.5m
Turn left turn left by 15 degrees
Turn right turn right by 15 degrees
Grasp grasp an object
Put In put the target into the container
Drop drop the objects held in hand
Send message send a message to other agents
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A.2 BASELINES

CoELA (Zhang et al., 2024b) implements a modular LLM-driven multi-agent architecture: each
agent has perception, memory, planning, communication, and execution modules. Agents exchange
linguistic updates and reason over what to do next. It is decentralized and flexible, and with strong
LLMs can achieve good multi-agent coordination in embodied tasks.

REVECA (Seo et al., 2025) proposes an LLM-based cooperative agent architecture that leverages
information relevance and relative proximity for adaptive planning, and employs trajectory-based
validation to prevent false planning caused by collaborators’ actions, yielding more efficient memory
use and stronger coordination under partial observability.

CaPo (Liu et al., 2025) introduces a collaborative meta-plan generation phase, where agents jointly
construct a high-level task decomposition and allocate subtasks before execution. During the task,
agents engage in progress-adaptive re-planning, dynamically updating the meta-plan when new in-
formation or environmental changes are observed. This two-stage process of structured plan con-
struction followed by adaptive revision enhances coordination, reduces redundancy, and improves
task efficiency in embodied multi-agent settings.

CoTS (Zu et al., 2025) introduces a collaborative tree search framework for multi-agent planning,
inspired by Monte Carlo Tree Search. Instead of following a single plan path, agents explore mul-
tiple candidate branches, evaluate them using LLM-based reasoning or heuristic scoring, and then
converge on a coherent long-term strategy. A dedicated plan evaluation module monitors execution
progress and selectively triggers plan updates when necessary, striking a balance between adaptabil-
ity and stability. This design provides greater foresight, improves resilience to planning errors, and
reduces unnecessary disruptions during collaboration.

A.3 EXAMPLE OF MEMORIES IN MEMORY MODULES

In this session, we describe the information stored in the memory module—including the common
goal, object information, collaborator information, message logs, previous actions, and the low-level
action skill book—and provide detailed explanations along with illustrative examples for each.

Common goal. The common goal G is expressed in natural language as a description of the house-
hold task that the agents must jointly complete in the given episode. Below are examples of common
goals in C-WAH and TDW-MAT.

• C-WAH: “Find and put target objects 1 pudding, 1 juice, 1 apple, 2 cupcakes onto the goal
location <coffeetable> (268).”

• TDW-MAT: “Transport 2 breads, 2 burgers, 4 apples, 1 loaf of bread, 1 banana to the bed.”

Object information. Object IDs and names, 3D positions, room IDs and names, available actions,
and object state (e.g., whether the object is held, inside a container, or available to be grasped). An
example of this is shown in Listing 1.

Collaborator information. Collaborator’s held objects and 3D position. This information is up-
dated when the collaborator enters the observation range, and the module stores the most recently
observed values.

Message logs. The messages sent by all the agents. Only the most recent Kmessage messages are
stored, and in our implementation we set Kmessage = 3.

Previous Actions. The actions performed by the agent from the past to the present are stored.
Only the most recent Kaction actions are kept, and in our implementation, we set Kaction = 10.

Low-level action skill book. The low-level action skill book outlines the Python APIs required
for interacting with the environment. An example of this is shown in Listing 2.
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Listing 1: Example of object information

1 # A simple example of an object information list with one entry.
2 object_information_list = [{
3 "object_id": 21,
4 "object_name": "apple",
5 "position": [13.22, 1.20, 5.41],
6 "available_action": "gograb",
7 "room_name": "livingroom",
8 "room_id": 198,
9 "states": [15, "GRABBABLE"]

10 }]

Listing 2: Example of low-level action skill book

1 # A simple example of a low-level action skill book
2 def goexplore(self):
3 if current_room == target_room:
4 # Move towards a specific room based on the plan.
5
6 def gocheck(self):
7 if ’OPEN’ in container[’states’]:
8 # Check the status of a container and attempt to interact with it.
9

10 def gograb(self):
11 if target in reachable_objects:
12 # Attempt to grab an object, ensuring availability and conditions.
13
14 def goput(self):
15 if len(grabbed_objects) > 0:
16 # Place the grabbed object in the specified location or container.

A.4 DISTANCE-BASED PLANNING

When only an available action list is provided, LLM agents often struggle to account for efficient
movement paths or division of labor that enhances cooperative efficiency during planning. There-
fore, following prior studies, we also employ physical distance as a key cognitive factor. Specifically,
the Memory Module computes the agent–object distance and collaborator–object distance based on
the location of the target object for each available action, the most recently observed collaborator
position, and the agent’s own position. These distance annotations are incorporated into the textual
descriptions of available actions, thereby guiding the Planner to consider both spatial efficiency and
task allocation when selecting an action. Ultimately, the Planner takes the augmented text prompt
as input and selects the action from the available action list that is most suitable for achieving the
common goal.

A.5 ADDITIONAL ABLATION STUDY RESULTS

Uncertainty Handling. We analyze the cost–gain trade-off between physical actions and com-
munication actions, which employ contrasting strategies for handling uncertainty. To this end, we
compare four baselines: PCE, Phy-act only, Com-act only, and Planner only. Specifically, Phy-
act only relies solely on physical actions by the Composer to resolve uncertainty, while Com-act
only employs only communication actions. For all baselines, we use GPT-4o mini as the backbone
LLM. The results, presented in Table 8-(Uncertainty Handling), demonstrate that PCE achieves the
joint goal with fewer Steps than the other baselines. In particular, Phy-act only eliminates com-
munication costs entirely, but must compensate through physical exploration, resulting in excessive
movements and delayed goal achievement. In the Com-act only condition, the agent tries to pri-
oritize resolving all uncertainties through communication before executing any physical actions.
Specifically, the Evaluator first inspects all scenarios in the decision tree that can be clarified via
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Table 8: Ablation results in C-WAH. Best result in bold; second-best underlined.

PCE Com-act only Phy-act only Planner only

Uncertainty Handling
Total Steps ↓ 42.76 46.69 45.38 46.69
Comm 1.70 4.78 0.0 2.39
Usages ↓ 44353.56 49051.36 45536.14 26678.88

PCE CoT ToT SC

Reasoning Enhancements
Total Steps ↓ 42.76 55.40 50.96 54.86
Comm 1.70 6.56 1.22 1.94
Usages ↓ 44353.56 130633.3 149666.80 129134.10

Table 9: Hyperparameter sensitivity analysis results.

Variant 1 Total Steps Variant 2 Total Steps

Tree Max Depth (D) D = 2 44.6 D = 4 42.4
Cost Weight (α) α = 0.5 50.1 α = 1.5 45.5
Cost Weight (β) β = 0.5 48.6 β = 1.5 44.6
Global Penalty (λ) λ = 0.5 58.7 λ = 1.5 45.4
Memory History (Kaction) Kaction = 5 44.4 Kaction = 15 44.3
Memory History (Kmessage) Kmessage = 2 49.5 Kmessage = 4 49.7

communication. After each communication action, the PCE framework is invoked again, and the
Composer reconstructs the decision tree to examine whether additional information can be obtained
through dialogue. This iterative process continues until the Composer determines that no further
meaningful information can be acquired from the collaborator. Only when no scenario in the de-
cision tree can yield additional benefits through communication does the agent proceed to perform
physical actions. Consequently, Com-act only enables rapid acquisition of collaborator information,
but redundant communication delays goal completion and increases token costs. Moreover, Planner
only, lacking any explicit uncertainty handling, exhibits the lowest overall cooperative performance.
Taken together, these findings indicate that approaches biased toward a single mode of uncertainty
resolution suffer from inherent structural limitations in cost–efficiency. By contrast, PCE leverages
both strategies in a balanced manner through the Composer–Evaluator, thereby minimizing costs
while simultaneously enhancing uncertainty handling and cooperative performance.

Reasoning Enhancements. We analyze the effectiveness of different reasoning enhancement
strategies in cooperative planning under partial observability. To this end, we compare four base-
lines: PCE, Chain-of-Thought (CoT), Tree of Thought (ToT), and Self-Consistency (SC). Specif-
ically, CoT performs planning through a single linear chain of thought, ToT expands reasoning
into multiple branches using a tree of thought and explores candidates via tree search, and SC ap-
plies self-consistency by sampling multiple reasoning traces and aggregating them through majority
voting. For all baselines, we use GPT-4o mini as the backbone LLM. The results, presented in Ta-
ble 8-(Reasoning Enhancements), demonstrate that PCE consistently achieves the joint goal more
efficiently and reliably than the reasoning-only baselines. In particular, CoT provides stable rea-
soning but lacks diversity, often leading to brittle plans under uncertainty. ToT increases diversity
by exploring multiple branches, but incurs significant token costs and sometimes selects suboptimal
branches due to the absence of explicit uncertainty evaluation. SC improves robustness by aggre-
gating multiple sampled plans, yet fails to distinguish between conflicting assumptions, resulting in
inconsistent decision-making. Taken together, these findings indicate that simply enhancing reason-
ing through scale or sampling is insufficient for cooperative planning under uncertainty. Moreover,
the absence of explicit structuring and evaluation of uncertainty can cause erroneous assumptions to
be amplified as reasoning depth increases, thereby leading to the accumulation of hallucinations and
the propagation of errors. By contrast, PCE explicitly structures and evaluates assumptions through
the Composer–Evaluator, enabling principled uncertainty-aware planning that balances efficiency,
robustness, and cost-effectiveness.
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Table 10: Representative interview responses from user study participants.

Participant Feedback

w/o Com

“There was no conversation at all, which was convenient in some sense, but it did
not feel like collaboration.”
“Since the agent did not speak, it was difficult to know what it was doing, and I
could not trust it.”
“There was no collaboration at all.”

Com always

“The agent talked too much, and my workflow was constantly interrupted.”
“Frequent communication had some benefits, but constant talking was uncomfort-
able.”
“Division of labor was easier, but frequent conversations made it hard to concen-
trate and felt frustrating.”

PCE

“There was no unnecessary communication, and I did not feel any inconvenience.”
“The amount of communication was appropriate, and the agent answered kindly
when asked.”
“I think the agent worked efficiently and effectively.”

Hyperparameter Sensitivity Analysis. To examine how each hyperparameter influences plan-
ning depth, communication frequency, and execution efficiency, we conducted a comprehensive
sensitivity analysis on the C-WAH benchmark. Each parameter was varied independently while
keeping all others fixed. The full numerical results are provided in Table 9. Under the default con-
figuration (D = 3, α = 1, β = 1, λ = 1,Kaction = 10, and Kmessage = 3), the model achieves
42.76 total steps. A shallower tree (D = 2) limits exploration of alternative assumption scenarios,
resulting in degraded performance. Increasing the depth (D = 4) provides only marginal gains (42.4
steps) while incurring exponential tree growth in the worst case that increases hallucination risk and
computational cost. These results identify D = 3 as an effective balance between expressiveness
and robustness. The coefficients α and β control the relative impact of physical and communicative
action costs. Lower α or higher β causes the agent to underestimate physical actions, leading to
excessive exploration. Conversely, higher α or lower β biases decisions toward communication-
heavy strategies, also degrading performance. The default values (α=1, β=1) provide a balanced
weighting across modalities. The global penalty λ regulates the trade-off between expected util-
ity and execution cost. A smaller value overemphasizes likelihood and gain, often pushing the
agent toward optimistic yet risky branches. A larger value enforces overly conservative behavior.
The empirical trend shows that λ=1 provides a stable middle ground. Varying the memory-history
windows (Kaction,Kmessage) shows that both shorter and longer lengths negatively impact per-
formance. Shorter histories weaken long-horizon consistency, while longer histories incorporate
irrelevant context and inflate input size. Sensitivity is particularly pronounced for Kmessage, where
deviations from the default disrupt coordination under partial observability.

A.6 ADDITIONAL USER STUDY RESULTS

To conduct comparative analyses, we first tested the normality of the data using Shapiro–Wilk and
Kolmogorov–Smirnov tests at a 5% significance level. As the results showed that the data were not
normally distributed, we employed the Wilcoxon signed-rank test for pairwise comparisons. The
results are presented in Figure 6.

The analysis revealed that PCE significantly outperformed w/o Com in terms of Trust and Appropri-
ateness, indicating that appropriately timed communication improved user trust and alignment with
user intentions. Furthermore, PCE achieved significantly higher scores than Com always in Use-
fulness and Efficiency, suggesting that excessive communication hindered collaborative efficiency,
while our approach enhanced cooperation by providing information only when necessary.

In addition, to provide a richer account, we report selected interview responses from the user study
in Table 10. Participants consistently noted that under the w/o Com condition, the absence of di-
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Total Steps ↓

GPT-4o mini
PCE 72.42
w/o Com 75.67
Com always 114.25

Table 11: User study results in C-WAH environment.
Best result in bold; second-best underlined.
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Com always

Figure 6: User study results with C-
WAH. This figure illustrates the mean
scores and associated standard errors
for responses to four research questions.
Statistical significance was denoted as *
for p < 0.05.

alogue made it difficult to feel as though they were collaborating with the agent, which in turn
reduced their trust. Under the Com always condition, participants reported that frequent questions
and information requests disrupted the workflow and delayed goal completion. In contrast, with
PCE, participants stated that they were able to receive necessary information through appropriately
timed dialogue, which facilitated faster goal achievement and resulted in minimal discomfort despite
interacting with an agent.

As shown in Table 11, PCE required fewer Total steps than both baselines. In the w/o Com condi-
tion, the absence of dialogue did not consume time for communication, but the lack of information
sharing led to substantially more steps to achieve the goal, resulting in lower efficiency. In contrast,
the Com always condition increased the number of steps due to frequent interruptions in the work-
flow caused by excessive communication. By comparison, PCE leveraged timely communication
to obtain necessary information and reduce redundant movements, thereby enabling more efficient
task completion.

The results of the user study revealed that communication actions go beyond mere information ex-
change, serving as a key factor in shaping how human users experience and trust their interactions
with agents. While unnecessary communication hindered collaborative efficiency, contextually ap-
propriate communication accelerated goal achievement and strengthened trust in the collaboration.

A.7 QUALITATIVE CASE STUDIES

In this section, we present qualitative case studies to illustrate how the PCE framework operates
in practice. Specifically, we analyze scenarios where the baseline Planner suggests suboptimal or
illogical actions due to hallucinations, and demonstrate how PCE corrects these through structured
assumption generation and multi-criteria evaluation. These cases highlight PCE’s versatility in han-
dling spatial uncertainty, social inference, and cost-benefit analysis.

Case 1: Correction of Illogical Physical Search Scenario: Agent Alice has successfully col-
lected most items, with only one target item, a loaf bread, remaining. She is currently in the Liv-
ingroom (ID: 4000). The Bedroom (ID: 8000) has already been thoroughly searched and found to
contain only a bed (no target items). Meanwhile, the Kitchen (ID: 5000) and Office (ID: 7000)
remain completely unexplored.

Planner Failure: Relying on a simple heuristic that the remaining item must be somewhere, the
Planner hallucinates a potential gain in the previously visited room and proposes returning to the
Bedroom to search again, ignoring the negative observation history.

PCE Resolution: The Composer identifies the core uncertainty: “Where is the remaining loaf bread
located?” It constructs a scenario tree with competing assumptions: (A) “The bread is in the Bed-
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room” and (B) “The bread is in the Kitchen.” The Evaluator then scores these paths. The path
containing Assumption A receives an extremely low Scenario likelihood score because the history
log confirms the Bedroom was already checked. Conversely, Assumption B is assigned a high Sce-
nario likelihood (as the area is unexplored) and high Conditionl gain. Consequently, PCE overrides
the Planner’s decision and selects [goexplore] <Kitchen>, ensuring logical consistency in
the search strategy.

Case 2: Optimizing Transport Efficiency Scenario: Alice is in the Livingroom holding a target
item. The final drop-off location (Coffee Table) is within her immediate vicinity. The Kitchen,
which typically contains many objects, is far away.

Planner Failure: Driven by a commonsense prior that “Kitchens contain food,” the Planner suggests
navigating to the distant Kitchen to gather more items before returning. This is greedy and inefficient
because (1) Alice can only carry limited items, and (2) the travel cost is high.

PCE Resolution: The Composer expands the reasoning trace by introducing a critical assumption
not present in the Planner’s trace: “Collaborator Bob may have already cleared the Kitchen.” The
Evaluator weighs the scenarios. The path to the Kitchen incurs a high Execution cost (travel time)
and carries a risk that the Conditionl gain is zero (if Bob took the items). In contrast, the path leading
to the immediate drop-off has zero risk and guaranteed Conditional gain for the current item. PCE
thus pivots the action to [goput], prioritizing the globally optimal behavior of securing the current
point over uncertain exploration.

Case 3: Strategic Resource Management Scenario: Agent Bob has finished searching the Bed-
room (ID: 5000) and is currently in the Livingroom (ID: 4000). He has spotted two containers (e.g.,
a wood basket) but no target items yet. Other rooms remain unexplored. The containers are located
far away (210 steps), while an unexplored section of the Livingroom (ID: 3000) is much closer (140
steps).

Planner Failure: The Planner focuses on the long-term utility of carrying more items and decides to
execute [gograsp] <wood basket>. However, it fails to account for the immediate travel cost
or the uncertainty of whether the container will actually be useful given the unknown item locations.

PCE Resolution: The Composer explicitly questions the utility of the tool, branching into scenarios
where “The container aids collection” versus “Direct exploration yields items faster.” The Evaluator
conducts a cost-benefit analysis. It determines that investing 210 steps for a container of uncertain
utility is less efficient than investing 140 steps to resolve the high entropy of the nearby unexplored
area. As a result, PCE selects [goexplore] <Livingroom> (3000), favoring immediate
information gain and lower cost over a speculative long-term investment.

Table 12: Comparison of Average Total Steps on the C-WAH Benchmark. Best result in bold.

Total Steps (↓)

MHP (MCTS-based) 64.90
PCE 42.76

A.8 ADDITIONAL BASELINES: COMPARISON WITH MCTS-BASED PLANNER

To provide a comprehensive evaluation of planning efficiency, we compare PCE against a traditional
tree-search baseline: the MCTS-based Hierarchical Planner (MHP). Adapted from the approaches
in the Watch-And-Help challenge (Puig et al., 2020), MHP utilizes MCTS to find optimal action
trajectories. It functions by minimizing graph traversal costs and step counts, optimizing plans
primarily based on the topological connectivity of the environment and predefined action costs.

Analysis. As presented in Table 12, PCE demonstrates superior efficiency, completing tasks with
significantly fewer steps compared to MHP. While MHP is effective at minimizing traversal costs
based on the topological structure, it struggles with the high uncertainty inherent in partially observ-
able settings. Relying on topological connectivity and action costs, MHP tends to perform inefficient
exhaustive searches when target locations are semantically ambiguous. In contrast, PCE leverages
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the semantic reasoning capabilities of LLMs to explicitly model likelihoods from context (e.g., in-
ferring that an apple is likely in the kitchen without physical verification) and prioritizes actions
based on expected utility rather than proximity alone. These results highlight that in embodied
DEC-POMDPs, resolving semantic uncertainty through reasoning is a more critical bottleneck for
efficiency than topological path optimization.

A.9 SCALABILITY ANALYSIS: IMPACT OF NUMBER OF AGENTS

A fundamental challenge in multi-agent planning is the potential for combinatorial explosion as
the number of agents (N ) increases. In this section, we analyze the scalability of PCE from both
structural and empirical perspectives, demonstrating how the framework manages complexity in
teams larger than two agents.

Structural Efficiency via Semantic Aggregation. Extracting uncertainty directly from the full
joint state of all agents would lead to combinatorial complexity in decision tree construction. In
contrast, our Composer is designed to extract uncertainty solely from the Planner’s reasoning trace,
observations, and memory. Because the Planner inherently filters out irrelevant details to focus on
salient uncertainties, the Composer’s search space scales with the complexity of the uncertainty
itself, rather than linearly with the number of agents.

We observe that LLMs naturally employ a semantic aggregation when reasoning about multiple col-
laborators. Rather than generating separate assumptions for each individual agent (e.g., “Did Agent
A check?” vs. “Did Agent B check?”), the Planner tends to abstract these into collective predicates
(e.g., “Has any collaborator checked the kitchen?”). Because the decision tree is constructed based
on these aggregated semantic assumptions, a max tree depth (e.g., D = 3) remains sufficient to
model critical uncertainties without becoming intractable, even as the number of agents grows.

Empirical Validation (N = 3, 4). To empirically validate this scalability, we extended our exper-
iments on the C-WAH benchmark to include scenarios with 3 and 4 agents, maintaining the same
tree depth hyperparameter (D = 3).

Table 13: Performance of PCE with increasing number of agents on C-WAH. Total Steps decrease
as agents are added, indicating effective coordination without planning overhead.

Number of Agents (N ) Total Steps (↓)

N = 2 42.76
N = 3 34.60
N = 4 28.50

As shown in Table 13, the average Total Steps required to complete the task decreased monoton-
ically as the number of agents increased from 2 to 4. This improvement indicates that PCE suc-
cessfully coordinates labor division among a larger team without being overwhelmed by planning
complexity. The framework effectively converts the increased manpower into task efficiency.

Limitations. While PCE scales robustly to small-to-medium-sized teams (up to N = 4), we ac-
knowledge that simple semantic aggregation may face limitations in scenarios involving massive
numbers of agents or tasks with strict sequential dependencies between heterogeneous agents. We
leave the exploration of such extreme scaling conditions to future work.

A.10 ACCURACY AND STABILITY OF LLM-GENERATED SCORES

A critical component of PCE is the Evaluator’s ability to assign reliable scores to generated sce-
narios. To quantitatively verify the stability of these LLM-generated scores and address concerns
regarding the reliability of LLM-as-a-Judge, we conducted a quantitative evaluation.

Experimental Setup. We sampled execution logs from 10 tasks in the C-WAH benchmark. Four
domain experts, familiar with the benchmark mechanics, served as annotators. These experts were
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provided with the same context inputs and scenario trees as the Evaluator and were asked to manually
assign scores on a discrete scale of 1 to 5 for three criteria: Scenario likelihood, Conditional gain,
and Execution cost.

Quantitative Results. We measured the agreement between human annotations and the Evalua-
tor’s outputs using Mean Absolute Error (MAE).

Table 14: Mean Absolute Error (MAE) between Human Experts and the LLM Evaluator on a 5-
point scale. Low MAE values indicate strong alignment between the model’s judgment and expert
intuition.

MAE
Scenario likelihood 0.91
Conditional gain 1.10
Execution cost 0.88

As shown in Table 14, the Evaluator demonstrates strong alignment with human judgment. The
Execution cost metric shows the highest precision (0.88), likely because physical distance and time
are objective measures. Scenario likelihood also shows high agreement (0.91), as it relies on task
progress stored in the agent’s memory to judge the rationality of each scenario. While Conditional
gain exhibits a slightly higher error (1.10), this is within an acceptable margin given the inherently
subjective nature of estimating future utility in partial observable settings.

Correlation with Model Scaling. Furthermore, as illustrated in our main experiment results (see
Table 1, Table 2), stronger backbone models (e.g., GPT-4o-mini) consistently yield superior plan-
ning outcomes compared to smaller models (e.g., Gemma). This trend confirms that as the reasoning
capability of the underlying LLM improves, the precision of the Evaluator’s scoring increases, di-
rectly translating to higher system stability and more rational decision-making.

A.11 RELIABILITY ANALYSIS OF THE COMPOSER MODULE

The Composer takes the Planner’s free-form reasoning trace as input, restructures it into explicit
assumptions, and uses them to construct a decision tree. Therefore, its reliability is critical: if the
Composer extracts incorrect information or generates hallucinations, the subsequent decision tree
becomes invalid. To rigorously assess this reliability, we conducted two complementary analyses:
1) a quantitative stress test at the assumption level, and 2) an expert evaluation at the decision-tree
level. The first experiment focuses on how effectively the Composer identifies critical assumptions
even when the Planner’s reasoning trace is vague. The second experiment evaluates whether these
assumptions are organized into a coherent decision-tree structure.

A.11.1 QUANTITATIVE STRESS TEST AT THE ASSUMPTION LEVEL

To evaluate whether the Composer reliably identifies critical assumptions, including in cases where
the Planner’s reasoning trace is vague or incomplete, we designed a quantitative stress test at the
level of individual assumption nodes. Since the correctness of extracted or generated assumptions is
inherently semantic and context-dependent, it cannot be reliably validated by rule-based metrics or
environment rewards alone. Human experts are therefore required to serve as the only trustworthy
reference for judging whether an assumption genuinely reflects the Planner’s intent or constitutes a
reasonable hypothesis in ambiguous contexts. The primary outcome metric for this experiment is
the proportion of assumptions judged valid by human experts, which we refer to as the Composer’s
hit rate.

Experimental Setup The experiment utilized execution logs collected from 10 C-WAH tasks. For
each log, we modified the Composer’s prompt so that every assumption node explicitly self-labels
as one of the following types:

• Extracted: Assumptions directly grounded in the Planner’s reasoning trace.
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• Generated: Assumptions newly created based on the environment, goal, and memory in-
formation.

Next, four domain experts categorized each instance into easy, medium, or hard based on trace
clarity. Easy cases contain assumptions explicitly stated with minimal noise. Medium cases involve
assumptions that are inferable but embedded in ambiguous or cluttered reasoning. Hard cases
correspond to vague traces where the critical assumption is not directly mentioned, requiring implicit
inference or hypothesis generation.

Using this categorized dataset, each assumption was independently evaluated by three additional
experts. Extracted assumptions were considered valid only if explicitly supported by the trace,
while Generated assumptions were considered valid if they formed a contextually plausible hy-
pothesis given the environment, goal, and agent memory, and collaborator state. Final labels were
determined by majority vote among the three evaluators. The resulting hit rate, reported separately
for each difficulty level, quantifies how consistently the Composer’s assumptions align with human
judgment.

Table 15: Composer assumption validity across difficulty levels.

Easy Medium Hard Overall
Hit Rate (%) 84.3 77.8 76.7 80.6

Composer Hit Rate Results. Table 15 summarizes the Composer’s assumption validity across
different difficulty levels. Overall, the Composer achieved a validity rate of 80.6%, and it maintained
a hit rate of 76.7% even in the Hard cases. Although explicit cues diminish and implicit inference
becomes increasingly necessary from Easy to Hard, the performance decreases only gradually rather
than collapsing. This pattern shows that the Composer is not merely producing plausible-sounding
text but is instead reliably identifying uncertainties that are genuinely relevant to the task. It also
demonstrates that even when the Planner’s reasoning trace contains noise, omissions, or ambiguity,
the Composer can still generate assumptions that remain contextually appropriate and aligned with
the agent’s goals. In summary, the results of this stress test demonstrate that the Composer remains
robust even when the quality of its input reasoning trace is degraded.

Additional Evaluation for System-level Stability. Additionally, because assumption-level accu-
racy alone does not fully explain system-level stability, we conducted a complementary analysis
using the same dataset to examine how effectively the Evaluator suppresses erroneous assumptions.
We separated scenarios into two categories: those in which all assumptions were judged valid by
experts, and those that contained at least one invalid assumption. For each scenario, we compared
the Evaluator’s assigned Scenario likelihood and Final score.

Table 16: Evaluator scores for scenarios with and without invalid assumptions.

Scenario likelihood Final score
Valid assumptions only 3.28 3.63
Contains invalid assumptions 2.85 2.51

Table 16 reports the average Scenario likelihood and Final score produced by the Evaluator for
each group. Scenarios containing invalid assumptions show clear degradation in both metrics. The
Scenario likelihood drops from 3.28 to 2.85, indicating that the Evaluator detects inconsistencies
or contradictions in the underlying knowledge state. The Final score shows an even larger decline,
from 3.63 to 2.51, which reflects the Evaluator’s active suppression of these flawed scenarios during
action selection. These results demonstrate that PCE is not a fragile system that relies on perfect as-
sumption extraction from the Composer. Instead, the Evaluator functions as a structural safety layer
that prevents unintended errors from propagating into the final action decision, thereby maintaining
stable overall performance.
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Table 17: Expert evaluation of composer-generated decision trees (7-point Likert Scale).

Metric Composer Human Evaluation Focus
Q1: Extraction Accuracy 6.27 6.64 Does the extracted assumption actually

exist in the trace?
Q2: Generation Capability 6.39 6.73 Are new assumptions generated appro-

priately when the trace is vague?
Q3: Ranking Logic 5.83 6.23 Are nodes ordered by uncertainty re-

duction & impact?
Q4: Logical Consistency 6.18 6.55 Are there contradictions in the

decision-tree?
Q5: Action Appropriateness 5.98 6.15 Do leaf actions match the scenario

path?

A.11.2 EXPERT EVALUATION AT THE DECISION-TREE LEVEL

While the assumption-level analysis shows how accurately the Composer constructs individual
nodes, it does not by itself guarantee that these nodes form a coherent strategy when assembled
into a full decision tree. This limitation is particularly important in multi-agent planning: even when
each assumption is locally correct, the agent may still choose suboptimal actions if the assumptions
are misprioritized, placed at inconsistent levels of abstraction, or misaligned with corresponding
actions. To assess this risk, we evaluated the structural and logical quality of the decision trees
produced by the Composer by comparing them against those constructed by human experts.

Using the same execution logs from the 10 C-WAH tasks employed in the stress test, four domain
experts independently constructed decision trees based on identical inputs (environment state, goal,
and the Planner’s reasoning trace). These human-generated trees were then combined to form a
Decision Trees Dataset, and we conducted a blind cross-review on this dataset using a 7-point Likert
scale across five evaluation dimensions.

The results are presented in Table 17. While it is expected that human experts achieve slightly higher
scores overall, the Composer attains scores of 5.83 or higher across all dimensions, indicating a level
of quality that is broadly comparable to expert performance. The strong results in Generation Ca-
pability and Logical Consistency show that the Composer not only faithfully reflects the Planner’s
reasoning but also generates new assumptions when necessary while maintaining coherence with
previously established assumptions. The Ranking Logic scores illustrate that the Composer effec-
tively prioritizes key uncertainties, enabling efficient uncertainty reduction during decision making.
The Action Appropriateness results further suggest that the Composer correctly interprets the se-
mantics of each scenario path and assigns suitable actions to the corresponding leaf nodes.
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A.12 PROMPT TEMPLATE

Communication 

I'm $AGENT_NAME$. My collaborator $OPPO_NAME$ just sent a message and I must reply concisely and helpfully 

to keep us coordinated on the shared goal.

Goal: $GOAL$

My Progress: $PROGRESS$

Dialogue history:

$DIALOGUE_HISTORY$

Previous actions: $ACTION_HISTORY$

Last incoming message from $OPPO_NAME$:

$LAST_MESSAGE$

First, directly ANSWER any explicit question in the last message.

Then, provide exactly ONE short follow-up (status, location, or confirmation) that reduces uncertainty most relevant to 

the goal (e.g., where an item is, who will grab it, whether a room was checked).

If making/confirming commitments, reference specific objects with their full notation <name> (id) ONLY if that exact 

id is known from context; otherwise use just the name without inventing ids.

Keep it brief. Be polite, action-oriented, and unambiguous.

OUTPUT FORMAT: return exactly one action string in this format:

[send_message] <'...'>

Do not add any extra text before or after.

Answer:

Figure 7: Prompts template for Communication.

I'm $AGENT_NAME$. I'm in a hurry to finish the housework with my friend $OPPO_NAME$ together. Given our 

shared goal, dialogue history, and my progress and previous actions, please help me choose the best available action to 

achieve the goal as soon as possible. Do not choose actions related to goals that have already been achieved or are 

likely to have been achieved by the opponent. Note that I can hold two objects at a time. All objects are denoted as 

<name> (id), such as <table> (712).

Goal: $GOAL$

Progress: $PROGRESS$

Dialogue history:

$DIALOGUE_HISTORY$

Previous actions: $ACTION_HISTORY$

Available actions:

$AVAILABLE_ACTIONS$

Answer:

Planner

Figure 8: Prompts template for Planner.
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I'm $AGENT_NAME$. I'm examining my reasoning trace for uncertainties before acting.

Reasoning Trace = the planner's internal chain-of-thought used to select the next action in the previous planning step.

Goal: $GOAL$

Progress: $PROGRESS$

Dialogue history:

$DIALOGUE_HISTORY$

Previous actions: $ACTION_HISTORY$

Available Actions:

$AVAILABLE_ACTIONS$

Reasoning Trace:

$REASONING_TRACE$

Your task is to convert the Reasoning Trace into a deeper tree-of-thinking that enumerates major uncertainties 

(including multi-agent cases), where each leaf maps to exactly one next action (copied verbatim from Available 

Actions). The evaluator will score each scenario leaf (Likelihood, Performance) versus cost (distance/communication) 

to select the best action.

Rules:

1. Identify the uncertain statements in the Reasoning Trace that materially affect action choice.

   - Uncertain = assumptions, guesses, speculation, or information that may be invalid due to collaborators’ past actions.

   - Example: 'The apple might be in the kitchen.' or 'Bob probably already checked the cabinet.'

2. For each uncertain statement, create a binary branch and limit the maximum tree depth to 3.

   - 'True': the assumption is correct.

   - 'False': the assumption is incorrect.

3. Expand the tree in order of (i) higher uncertainty, then (ii) greater expected impact on goal success, steps, or token 

usage.

   - Include multi-agent third-cases (e.g., the object existed but was already taken by the collaborator and my 

information is stale).

   - For each branch, continue with the next uncertainty; if none remain, attach exactly one action string copied verbatim 

from Available Actions.

4. Ground leaf nodes using only actions from Available Actions.

   - Do not invent new objects/IDs. Use only entities present in Reasoning Trace, Progress, or Available Actions.

   - You may communicate with the collaborator via [send_message] <'...'> even if it is not listed in Available Actions. 

All other actions must come from Available Actions.

   - If two different scenarios lead to the same action, keep separate leaves (the evaluator still needs distinct scenarios 

for expected-value computation).

5. Output only the nested JSON object that represents the scenario tree (no extra text).

   - Keys = uncertain statements (or chosen actions).

   - Values = dicts with 'True' and 'False' branches OR direct action strings.

   - Each action must preserve its full format: <name> (id), copied verbatim.

Example (paired with Reasoning Trace and Available Actions):

Example Reasoning Trace:

- You are in the bathroom and holding nothing. Goal: put 3 cutlery forks into the dishwasher.

- Distances — Kitchen: 7.38m, Living room: 13.89m, Bedroom: 8.39m.

- Checking the bathroom cabinet is cheapest (3.35m) and might contain a fork.

Available Actions:

- [gocheck] <bathroomcabinet> (190) - my cost: 3.35 meters

- [goexplore] <kitchen> (11) - my cost: 7.38 meters

- [goexplore] <livingroom> (267) - my cost: 13.89 meters

- [goexplore] <bedroom> (172) - my cost: 8.39 meters

- [send_message]

Composer
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Example Output (valid JSON):

{

  'type': 'hypothesis',

  'text': 'The <bathroomcabinet> (190) contains a <cutleryfork>',

  'reason': 'Nearby low-cost container; utensils may be stored here.',

  'True': {

    'type': 'action',

    'action': '[gocheck] <bathroomcabinet> (190) - my cost: 3.35 meters'

  },

  'False': {

    'type': 'hypothesis',

    'text': 'Bob already took a <cutleryfork> from the <bathroomcabinet> (190)',

    'reason': 'Lack of observation about collaborator’s past actions; object could have been collected earlier.',

    'True': {

      'type': 'action',

      'action': '[send_message] <\'Bob, did you already take a fork from the bathroom cabinet?\'>'

    },

    'False': {

      'type': 'hypothesis',

      'text': 'Forks are in the <Kitchen> (11) (more likely than other rooms)',

      'reason': 'Utensils are commonly in the kitchen; cost to kitchen (7.38m) is lower than living room (13.89m).',

      'True': {

        'type': 'action',

        'action': '[goexplore] <kitchen> (11) - my cost: 7.38 meters'

      },

      'False': {

        'type': 'hypothesis',

        'text': 'Next best room to explore (by distance) is the <Bedroom> (172) over the <Living room> (267)',

        'reason': 'Bedroom cost (8.39m) < Living room cost (13.89m); both unexplored.',

        'True': {

          'type': 'action',

          'action': '[goexplore] <bedroom> (172) - my cost: 8.39 meters'

        },

        'False': {

          'type': 'action',

          'action': '[goexplore] <livingroom> (267) - my cost: 13.89 meters'

        }

      }

    }

  }

}

Figure 9: Prompts template for Composer.

I'm $AGENT_NAME$. I have received a Scenario Tree produced by the checker. Each leaf corresponds to a concrete 

next-action choice under a specific set of assumptions (including multi-agent cases such as collaborator-taken objects 

or stale information).

Tree format you may receive:

- Hypothesis node:

  {'type': 'hypothesis', 'text': '<assumption>', 'reason': '<why this is considered>', 'True': {..}, 'False': {..}}

- Action node (leaf):

  {'type': 'action', 'action': '[action_string]'}

Your task: Evaluate all actionable leaves (each leaf that contains a concrete action) and return a compact mapping that 

the selector can rank. For each scenario (leaf), provide:

1. Likelihood (1–5):

   - How plausible it is that this branch (set of assumptions) is true.

   - 1 = very unlikely, 5 = highly likely.

Evaluator
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2. Gain (1–5):

   - How much this action advances/satisfies the goal under this branch.

   - 5 = directly satisfies or the most impactful next step; 3 = moderate progress; 1 = marginal.

3. CostPenalty (1–5):

   - How costly, risky, or burdensome this action is to perform (in terms of effort, time, or communication overhead).

   - Consider physical movement, communication, and resource usage

   - 1 = very low cost: communication ([send_message]), or a short move less than 3m

   - 3 = moderate cost: physical move less than 10m, or multiple small actions combined.

   - 5 = very high cost: long movement across multiple rooms (>15m), heavy resource usage, or actions likely to waste 

significant time/effort.

4. Action:

   - Exactly one action from Available Actions that corresponds to this scenario branch.

   - Copy the full action string verbatim (e.g., '[gograb] <apple> (36)'). If the leaf already contains a concrete action 

string, use that.

Constraints:

- Use only actions that appear in Available Actions (verbatim match; do not invent objects/IDs).

- You may communicate with the collaborator via [send_message] <'...'> even if it is not listed in Available Actions.

- Evaluate every leaf that contains an action. If the Scenario Tree has N actionable leaves, return N scenarios.

- Provide Likelihood, Gain, and CostPenalty as defined above. Performance will be computed by the system.

- Number scenarios in a stable order (e.g., left-to-right depth-first traversal): 'Scenario 1', 'Scenario 2', ...

Input:

Goal: $GOAL$

Progress: $PROGRESS$

Dialogue history:

$DIALOGUE_HISTORY$

Previous actions: $ACTION_HISTORY$

Available Actions:

$AVAILABLE_ACTIONS$

Scenario Tree:

$SCENARIO_TREE$

Output Format:

Return a JSON dictionary (no extra text) where:

- Keys = scenario identifiers (e.g., 'Scenario 1', 'Scenario 2', ...).

- Values = a dictionary with:

  - 'Likelihood': integer (1–5)

  - 'Gain': integer (1–5)

  - 'CostPenalty': integer (1–5)

  - 'Action': string

Example Output:

{

  'Scenario 1': {

    'Likelihood': 4,

    'Gain': 5,

    'CostPenalty': 3,

    'Action': '[gograb] <cutleryfork> (373)'

  },

  'Scenario 2': {

    'Likelihood': 3,

    'Gain': 4,

    'CostPenalty': 5,

    'Action': '[gocheck] <kitchencabinet> (75)'

  },

  'Scenario 3': {

    'Likelihood': 4,

    'Gain': 2,

    'CostPenalty': 1,

    'Action': '[send_message] <''Bob, did you check the kitchen?''>'

  }

}

Figure 10: Prompts template for Evaluator.
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A.13 LLM USAGE

In this paper, Large Language Models (LLMs) were used in a limited manner as auxiliary tools
to refine wording and improve readability. The core contributions, including research ideation,
methodology design, experimentation, and analysis, were carried out entirely by the authors. The
authors take full responsibility for all contents of this paper.
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