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ABSTRACT

Common space learning, associating semantic and visual domains in a common
latent space, is essential to transfer knowledge from seen classes to unseen ones
on Zero-Shot Learning (ZSL) realm. Existing methods for common space learn-
ing rely heavily on structure alignment due to the heterogeneous nature between
semantic and visual domains, but the existing design is sub-optimal. In this pa-
per, we utilize persistent homology to investigate geometry structure alignment,
and observe two following issues: (i) The sampled mini-batch data points present
a distinct structure gap compared to global data points, thus the learned struc-
ture alignment space inevitably neglects abundant and accurate global structure
information. (ii) The latent visual and semantic space fail to preserve multiple
dimensional geometry structure, especially high dimensional structure informa-
tion. To address the first issue, we propose a Topology-guided Sampling Strategy
(TGSS) to mitigate the gap between sampled and global data points. Both the-
oretical analyses and empirical results guarantee the effectiveness of the TGSS.
To solve the second issue, we introduce a Topology Alignment Module (TAM)
to preserve multi-dimensional geometry structure in latent visual and semantic
space, respectively. The proposed method is dubbed TopoZero. Empirically, our
TopoZero achieves superior performance on three authoritative ZSL benchmark
datasets.

1 INTRODUCTION

Given a large amount of training data, deep learning has exhibited excellent performance on various
vision tasks, e.g., image recognition He et al. (2016); Dosovitskiy et al. (2020), object detection
Lin et al. (2017); Liu et al. (2021), and instance segmentation He et al. (2017); Bolya et al. (2019).
However, when considering a more realistic situation, e.g., the testing class does not appear at the
training stage, the deep learning model fails to give a prediction on these novel classes. To remedy
this, some pioneering researchers Lampert et al. (2014); Mikolov et al. (2013) point out that the
auxiliary semantic information (sentence embeddings and attribute vectors) is available for both
seen and unseen classes. Thus, by employing this common semantic representation, Zero-Shot
Learning (ZSL) was proposed to transfer knowledge from seen classes to unseen ones.

Common space learning, enabling a significant alignment between semantic and visual information
on the common embedding space, is a mainstream algorithm for ZSL. Existing approaches for com-
mon space learning can be divided into two categories: algorithms with 1) distribution alignment
and 2) structure and distribution alignment. Typical methods in the first category employ various
encoding networks to directly align the distribution between visual and semantic domains, e.g., vari-
ational autoencoder in Schönfeld et al. (2019), bidirectional latent embedding framework in Wang
& Chen (2017), and deep visual-semantic embedding network in Tsai et al. (2017). Even though
these methods encourage distribution alignment between visual and semantic domains, the align-
ment on the geometry structure is usually neglected. Note that the structure gap naturally exists in
these two domains due to their heterogeneous nature Chen et al. (2021c). To mitigate the structure
gap for promoting alignment between visual and semantic domains, HSVA Chen et al. (2021c) was
proposed and become a pioneering work in the second category. Inspired by the successful structure
alignment work Lee et al. (2019) in unsupervised domain adaptation, HSVA introduces a novel hier-
archical semantic-visual adaptation framework to align the structure and distribution progressively.
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Figure 1: Motivation Illustration. (a)-(c) Based on the same random sampled data points X(m)

in (a), the sampled batch data points from our Topological-guided Sampling Strategy (TGSS)
are closer to the global data points compared to those sampled from random sampling strategy
(DH(X,X

(m+1)
R ) < DH(X,X

(m+1)
T )). Combining this illustrator example with our theoretical

analysis guarantees that our TGSS can mitigate the structure gap between mini-batch and global data
points. (d)-(f) Compared to the input space, HSVA latent space can only preserve 0-dimensional
topological features, indicating some high dimensional structure representation is lost during the
dimension reduction phase. In contrast, our TopoZero latent space can preserve more accurate topo-
logical features by taking advantage of our proposed Topology Alignment Module.

Although HSVA empirically works well, we discover that there exist two issues in HSVA’s structure
alignment module. To clarify our findings clearly, we first introduce some background information
in terms of Persistent Homology Zomorodian & Carlsson (2005). Persistent homology is a tool
for computing topological features1 of a data set at different spatial resolutions. More persistent
features can be found over a wide range of spatial scales and represent true features of the underlying
geometry space. We first introduce the concept of simplicial homology. For a simplicial complex
R, i.e. a generalised graph with higher-order connectivity information such as cliques, simplicial
homology employs matrix reduction algorithms to assign R a family of groups, namely homology
groups. The d-th homology group Hd(R) of R contains d-dimensional topological features, such
as connected components (d = 0), cycles/tunnels (d = 1), and voids (d = 2). Homology groups are
typically summarised by their ranks, thereby obtaining a simple invariant signature of a manifold.
For example, a circle in R2 has one feature with d = 1 (a cycle), and one feature with d = 0
(a connected component). Based on these background knowledge, we further introduce how to
compute a Persistent Homology when given a point cloud X . Firstly, we denote the Vietoris-Rips
complex Vietoris (1927) of X at scale ϵ as Vϵ(X). Then, we can obtain the Persistent Homology
PH(Vϵ(X))of a Vietoris-Rips complex Vϵ(X), which consists of persistence diagrams {D1,D2, ...}
and persistence pairs {π1, π2, ...}. The d-dimensional persistence diagram Dd contains coordinates
with the form (a, b), where a refers to a threshold ϵ at which a d-dimensional topological feature
appears and b refers to a threshold ϵ′ at which it disappears. The d-dimensional persistence pairs
contains indices (i, j) corresponding to simplices si, sj ∈ Vϵ(X), which create and destroy the
corresponding topological features determined by (a, b) ∈ Dd. Note that more detailed background
knowledge (e.g., simplex, Vietoris-Rips complex) is introduced in Section A.

1Connectivity-based features, e.g., connected components in 0-dimensional, cycles in 1-dimensional, and
voids in 2-dimensional topological features
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Based on the powerful geometry feature analysis ability of Persistent Homology, we discover 2
problems in the existing state-of-the-art (sota) structure alignment module Chen et al. (2021c): (i)
Due to the limitation of batch size, the underlying geometry structure of mini-batch samples can not
represent global samples’. Thus, when applying structure alignment metric (i.e., sliced Wasserstein
discrepancy Lee et al. (2019)) on random sampled 2 mini-batch visual and semantic data points,
we can only achieve a local-level structure alignment, indicating the accurate global geometry in-
formation is lost inevitably. (ii) HSVA utilizes sliced Wasserstein discrepancy to align latent visual
and semantic space for bridging structure alignment. Actually, this implementation requires an as-
sumption that the latent visual and semantic space can represent their underlying geometry structure
adequately. To verify the correctness of this assumption, we adopt persistent homology to visualize
the underlying geometry structure of input space and latent space on the visual domain. As shown
in Fig. 1 (d) - (f), there is a distinct gap between the blue dash line and the orange dash line, which
is further expanded in the latter two images, representing that the HSVA latent visual space loses
abundant geometry structure, especially for 1-dimensional and 2-dimensional topological features.
The rationale is that after dimensionality reduction (namely curse of dimensionality Wang & Chen
(2017) ), the topological structure is difficult to maintain.

In this paper, we devise a TopoZero framework to achieve a more desirable structure alignment by
solving 2 aforementioned issues. Concretely, our TopoZero adopts CADA-VAE Schönfeld et al.
(2019) as the distribution alignment module and develops a Topology Alignment Module (TAM)
with 2 following novelties. (i) To alleviate the structure gap between the sampled mini-batch data
points and global data points, we propose a Topology-guided Sampling Strategy (TGSS) to ex-
plicitly and progressively mine the topology-preserving data point into the sampled mini-batch
data point. Moreover, the theoretical analysis illustrated in Section A guarantees the advantage
of our TGSS. Besides, as shown in Fig. 1 (b) - (c), we further visualize the advantage of our
TGSS in an illustrator example: based on the same random sampled data points X(m), X(m+1)

T and
X

(m+1)
R are constructed by our TGSS and random sampling strategy, respectively. Obviously, the

Hausdorff Distance 3 DH(X,X
(m+1)
T ) between X

(m+1)
T and global data points X is bounded by

DH(X,X
(m+1)
R ), indicating our TGSS can alleviate the gap between sampled data points and global

data points compared to random sampling strategy. (ii) To preserve the topological structure for vi-
sual and semantic latent space, we develop a dual topological-aware branch as well as a topological-
preserving loss to learn a topological-invariant latent representation. Moreover, based on the open-
source tool Ripser 4, we compute the persistent homology to analyze the multi-dimensional topo-
logical features from input space, HSVA latent structure space, and TopoZero latent structure space
on the visual domain. Given a set of data points, ripser can compute the corresponding persistent
homology, which consists of persistence diagrams {π1, π2, ...} and persistence pairs {D1, D2, ...}.
Thus based on the obtained persistence diagrams and persistence pairs, we can calculate the num-
ber of alive 0/1/2-dimensional topological features under different threshold ϵ. As such, we draw
the Fig. ·1 (d)-(f), where the line represents the trend of the number of alive topological features
under different threshold ϵ. As revealed from these visualization results, by taking advantage of our
proposed TAM, the multi-dimensional topology feature gap between our TopoZero latent space and
input space is negligible.

2 RELATED WORKS

Zero-Shot Learning. In recent years, the ZSL realm has attracted many researchers’ attention
Zhang & Saligrama (2016); Li et al. (2017); Zhu et al. (2019a); Fu et al. (2015); Ye & Guo (2017);
Yu & Lee (2019b); Chen et al. (2018). One typical branch to solve the ZSL problem is learn-
ing a common embedding space for aligning semantic and visual domains, termed common space
learning. Early common space learning methods focus on framework designation for better distribu-
tion alignment. Wang et al. Wang & Chen (2017) have proposed a bidirectional latent embedding
framework with two subsequent learning stages. Liu et al. (2018) maps visual features and seman-
tic representations of class prototypes into a common embedding space to guarantee the seen data
is compatible with seen and unseen classes. CADA-VAE Liu et al. (2018) have demonstrated that

2Existing methods all adopt random sampling strategy to generate mini-batch data points.
3A metric that can measure the bounded distance between two persistence diagrams.
4Available at https://github.com/Ripser/ripser.
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only two variational autoencoders as well as a distribution alignment loss, can achieve a significant
distribution alignment in a common space. However, as pointed out from HSVA Chen et al. (2021c),
due to the heterogeneous nature of the feature representations in semantic and visual domains, the
distribution and structure variation intrinsically exists. Motivated by this, Chen et al. Chen et al.
(2021c) propose a hierarchical semantic-visual adaptation framework for aligning structure and dis-
tribution progressively. Thus, the structure alignment in ZSL emerges with a new state-of-the-art
performance on the task of common space learning.

Persistent Homology. Persistent homology, a tool for topological data analysis, is used for un-
derstanding topological features at different dimension. Concretely, persistent homology can detect
multi-dimensional topological features (holes, circles, connected components) under various dimen-
sions for the underlying manifold of a set of sampled data points. Based on this property, persistent
homology has been applied to a vast body of scenarios, e.g., characterizing graphs in Archambault
et al. (2007); Carrière et al. (2020); Li et al. (2012), analysing underlying manifolds in Bae et al.
(2017); Futagami et al. (2019), topological preserving autoencoder in Moor et al. (2020). In this
paper, by leveraging persistent homology, we discover that the latent visual and semantic space can
not preserve multi-dimensional topological features. Furthermore, to improve the geometry repre-
sentation of latent space in both domains, we propose a Topology Alignment Module for encoding
multi-dimensional topological representation explicitly.

3 METHODOLOGY

To begin with, we formulate the task of ZSL. Assume we have a set of seen samples S for training,
and a set of unseen samples U for testing only, where S = {(xs, ys, as) | xs ∈ Xs, ys ∈ Y s, as ∈
A} be a training set. xs is seen image feature, which is extracted from the pre-trained CNN backbone
(ResNet-101 He et al. (2016) is adopted in this paper). ys and as are xs corresponding class label
and semantic vector, respectively. Analogously, let U = {(xu, yu) | xu ∈ Xu, yu ∈ Y u}. Note
that Y s ∩ Y u = ∅. The objectiveness of conventional ZSL (CZSL) is to learn a classifier for
mapping unseen image features into unseen categories, i.e., Fczsl : X u → Yu, while the challenging
generalized ZSL (GZSL) focus on learning a classifier to map image features to both seen and unseen
categories, i.e., Fgzsl : X → Yu ∪ Ys.

As shown in Fig. 2, our TopoZero contains two parallel alignment modules, Distribution Alignment
Module and Topology Alignment Module Specifically, we directly adopt the architecture of CADA-
VAE Schönfeld et al. (2019) as our Distribution Alignment Module. While for our TAD, topology-
guided sampling strategy and dual topological-aware branch are proposed to mitigate the geometry
structure gap between mini-batch and global data points and preserve multi-dimensional topological
structure on both visual and semantic domains, respectively.

3.1 TOPOLOGY-GUIDED SAMPLING STRATEGY

To bridge a structure gap between mini-batch and global data points, we propose a Topology-guided
Sampling Strategy (TGSS) as well as a theoretical analysis to guarantee its superiority.

3.1.1 DESCRIPTION

Algorithm 1 describes how our TGSS samples mini-batch samples from global data points. First,
we random sample b/2 5 data points (Xb2) from global training samples (X). After that, we select
the incremental data point xmax according to Equ. 1. Then, we construct a set of candidate set (C)
by Equ. 2 and random sample b/2 − 1 data points from C to form Cmini. Finally, the mini-batch
sampled data points are constructed by integrating Xb2, xmax and Cmini. The advantage of our
TGSS relies heavily on the selection of xmax, which is proved by the following theoretical analysis.

∃ xmax ∈ X,x′
max ∈ Xb2, s.t. dist(xmax, x

′
max) = dH(X,Xb2) (1)

C(xmax, d) = {{x0, ..., xk}, xi ∈ X,xi /∈ T || dist(xi, xmax) < d} (2)

5b represents the size of batch training samples
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Figure 2: The proposed TopoZero framework. Based on our proposed TGSS sampling strategy, we
can obtain a batch of visual features x and corresponding semantic embeddings a. Then x and a
are fed into the parallel topology alignment module and distribution alignment module. For TAD,
the encoder Et

x and Et
a first encode x and a to get latent topological visual representation ztx and

topological semantic representation zta, respectively. Then the decoder Dt
x and Dt

a decode ztx and
zta. to reconstruct visual and semantic feature, which is optimized by reconstuction loss La

AE and
Lx
AE . The visual and semantic latent topological representation is optimized by Lx

TP and La
TP

to preserve multi-dimensional structure information. LTA is also applied to align ztx and zta. For
the distribution alignment module, we adopt the framework of CADA-VAE, which consists of two
variational autoencoders and optimized by LBCE , LKL, LDA, and LCA.

where T denotes a set of sampled data points from X and dist represents distance metric (Eu-
clidean Distance in this paer). dH refers to the Hausdorff distance Huttenlocher et al. (1993)
between X and Xb2. Then, we revisit the definition of Hausdorff Distance that dH(X,Y ) =
max

{
supx∈X d(x, Y ), supy∈Y d(X, y)

}
, which measures how far two subsets of a metric space

are from each other. Informally speaking, the xmax represents the farthest data point in X to the
sampled Xb2 when adopting Hausdorff Distance metric. Thus, by integrating the xmax into Xb2 ,
the Hausdorff Distance between X and Xb2 can be reduced, indicating the gap between sampled
and global data points is also mitigated according to Theorem 1. Moreover, considering that the
advantage of our TGSS relies heavily on the selection of xmax, we provide a theoretical analysis
to guarantee its superiority. Besides, the introduction of Cmini is to maintain the representation of
local topology structure surrounding from xmax.

3.1.2 THEORETICAL ANALYSIS FOR TGSS

The core design of our TGSS is the procedure of selection xmax (line 4 in Algorithm 1), which
can eliminate the structure gap compared to random sampling strategy. Here, we further pro-
vide a theoretical analysis to guarantee the advantage of this selection procedure. Before we
carry out our analysis, we define a few important definitions and notations. For a point cloud
X := {x1, . . . , xm} ⊆ Rd, denote X(m) be a subsample of X with cardinality m. Based on X(m)

and the procedure of TGSS’s selection xmax, the constructed set is denoted as X(m+1)
T . While for

random sampling strategy, we have X
(m+1)
R . Thus, we have:

X
(m+1)
T = {X(m) ∪ x, x = xmax} (3)

X
(m+1)
R = {X(m) ∪ x, x ∈ X\X(m)} (4)

where xmax is defined in Equ. 1

Theorem 1. Moor et al. (2020). Let X be a point cloud of cardinality n and X(m) be one subsample
of X of cardinality m, i.e. X(m) ⊆ X , sampled without replacement. We can bound the probability
of the persistence diagrams of X(m) exceeding a threshold in terms of the bottleneck distance as

P(db(DX ,DX(m)

) > ϵ) ≤ P(dH(X,X(m)) > 2ϵ) (5)
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Algorithm 1 Topology-guided Sampling Strategy
Input:

X is a set of whole training samples.
b is the size of batch training samples.

Output:
T is prepared mini-batch samples for an epoch.

1: init T : T ← ∅
2: for each iteration in epoch do
3: random sample b / 2 training data from X\T : Xb2;
4: compute the incremental data point xmax by Equ. 1;
5: construct a set of data points by Equ. 2: C = C(xmax, dH(Xb2, X));
6: Xb2 = Xb2 ∪ xmax;
7: if len(C) < b/2− 1 then
8: M← random select b/2− 1− len(C) data points from X/Xb2;
9: Xb2 = Xb2 ∪ C ∪M;

10: else
11: M← random select b/2− 1 data points from C;
12: Xb2 = Xb2 ∪M;
13: end if
14: T = T ∪Xb2

15: end for
16: return T ;

Theorem 2. Let A
X,X

(m+1)
T

∈ Rn×(m+1) be the distance matrix between samples of X and

X
(m+1)
T , and A

X,X
(m+1)
R

∈ Rn×(m+1) be the distance matrix between samples of X and X
(m+1)
R .

The X
(m+1)
T and X

(m+1)
R are both sorted to ensure that the first (m+1) rows correspond to the

columns of the m subsampled points with diagonal elements aii = 0. Assume that the entries aij
in both matrix are independent and follow a same distance distribution FD when i > (m+ 1). For
A

X,X
(m+1)
T

, the minimal distances δ
′

i for rows with i > (m + 1) follow a distribution F∆′ .Letting

Z ′ := max1≤i≤n δ
′

i with a corresponding distribution F
′

Z . For A
X,X

(m+1)
R

, the minimal distances

δ
′′

i for rows with i > (m + 1) follow a distribution F∆′′ . Letting Z
′′
:= max1≤i≤n δ

′′

i with a cor-
responding distribution F

′′

Z , the expected Hausdorff distance between X and X
(m+1)
T is bounded

by:

E[dH(X,X
(m+1)
T )] ≤ E[dH(X,X

(m+1)
R )] (6)

We include its proof in Section A. Theorem. 2 illustrates that compared to random sampling strategy
(X(m+1)

R ), the sampled batch data points (X(m+1)
T ) from our TGSS are closer to the global data

points X with Hausdorff Distance metric, which constitutes the upper bound of bottleneck distance
between two persistence diagrams (Theorem 1). Thus, since bottleneck distance is usually used to
measure the distance between two persistence diagrams in the topological space Beketayev et al.
(2014); Bubenik et al. (2010), we can conclude that compared to random sampling strategy, the
sampled batch data points from our TGSS are closer to the global data points in the topological
space.

3.2 TOPOLOGY ALIGNMENT MODULE

As shown in Fig. 1 (a)-(c), HSVA, a state-of-the-art common space learning method by taking
structure alignment into account, fails to preserve multi-dimensional topological features. Specifi-
cally, the terrible structure representation in the latent space inevitably leads to a sub-optimal struc-
ture alignment. To remedy this, we propose a Topology Alignment Module, consisting of a dual
topology-aware branch and a topology-preserving loss, to encode multi-dimensional topological in-
formation into latent visual and semantic space for conducting a more desirable structure alignment.

Our Dual Topology-aware Branch is illustrated in Fig. 2, which contains two autoencoders for
obtaining topological-aware latent representation in visual and semantic domains. Specifically, the
encoder Et

x / Et
a encodes image feature (x) / semantic vector (a) into latent space and obtain visual
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and semantic topological-aware latent representation Z
(m)
a and Z

(m)
v . After that, the decoder Dt

x

/ Dt
a decodes Z

(m)
a / Z(m)

v for reconstructing the latent representation into x / a. We first apply
reconstruction loss to optimize our Dual Topology-aware Branch:

Lx
AE = LREC = ∥Dt

x(E
t
x(x))− x∥2 (7)

La
AE = LREC = ∥Dt

a(E
t
a(a))− a∥2 (8)

Then we utilize the topology-preserving loss proposed by Moor et al. (2020) to preserve multiple
dimensional topological features on the latent visual and semantic space, which is calculated by the
following steps: 1) Given a batch of visual feature X

(m)
v and semantic embeddings X(m)

a , our dual
topology-aware branch can obtain corresponding latent representation, Z(m)

v and Z
(m)
a ; 2) We cal-

culate the distance matrix between samples of X(m)
v and X

(m)
v , termed A

X
(m)
v

. The corresponding

persistent homology of X(m)
v is recorded as PH(Vϵ(X

(m)
v )) = (DX(m)

v , πX(m)
v ). Analogously, for

X
(m)
a , Z(m)

v and Z
(m)
a , we can obtain corresponding distance matrix A

X
(m)
a

, A
Z

(m)
v

and A
Z

(m)
a

,

persistence pairings πX(m)
a , πZ(m)

v and πZ(m)
a ; 3) Finally, we retrieve the value of 0-dimensional /

1-dimensional / 2-dimensional persistence diagram 6 from distance matrix with indices provided by

the persistence pairings, namely DX(m)
v

0 ≃ AX(m)
v [π

X(m)
v

0 ]. Through this computation process, we
get the 0/1/2 -dimensional persistence diagrams in X

(m)
v X

(m)
a , Z(m)

v and Z
(m)
a , which are opti-

mized by the following topology-preserving loss:

Lx
TP =

2∑
i=0

∥DX(m)
v

i −DZ(m)
v

i ∥2, (9)

La
TP =

2∑
i=0

∥DX(m)
a

i −DZ(m)
a

i ∥2 (10)

Finally, to encourage interaction between visual and semantic domains in the topological space,
we directly minimize the L2 distance between latent visual topological representation and latent
semantic topological representation:

LTA = ∥Z(m)
v − Z(m)

a ∥2 (11)
(12)

3.3 DISTRIBUTION ALIGNMENT MODULE

Since CADA-VAE Schonfeld et al. (2019) serves as our distribution alignment module, we directly
revisit it in our framework. Our distribution alignment module adopts two variational autoencoders
Kingma & Welling (2014) to obtain latent representation in visual and semantic domains, respec-
tively. Concretely, the encoder Ed

x / Ed
a encodes image feature (x) / semantic vector (a) into latent

space and obtain visual and semantic latent representation zdx and zda . Then, the decoder Dd
x / Dd

a
decodes zdx / zda for reconstructing the latent representation into x / a. We apply standard VAE loss
to optimize:

Lx
V AE = LBCE − βLKL = EEd

x(x)
[logDd

x(z
d
x)]− βDKL(E

d
x(x)||p(z)) (13)

La
V AE = LBCE − βLKL = EEd

a(a)
[logDd

a(z
d
a)]− βDKL(E

d
a(a)||p(z)) (14)

where DKL represents the Kullback-Leibler divergence and p(z) is a prior distribution (standard
Gaussian distribution N (0, 1) in this paper). The binary cross-entropy loss LBCE is served as the
reconstruction loss. Following Schonfeld et al. (2019), β serves as the balanced weight to measure
the importance of DKL.

Distribution alignment loss is formulated as:

LDA =

(
∥µx − µa∥22 +

∥∥∥(δx) 1
2 − (δa)

1
2

∥∥∥2
F

) 1
2

(15)

6Due to the page limited, we provide a more detailed computation process in Section A
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where ∥ · ∥2F is the squared matrix Frobenius norm, and cross-alignment loss is formulated as:

Lx
CA = |x−Dd

x(E
d
a(a))| (16)

La
CA = |a−Dd

a(E
d
x(x))| (17)

3.4 TOPOZERO OBJECTIVE FUNCTION

Our TopoZero is optimized by the following objective function:

LTopoZero = Lx
AE + La

AE + λ1 ∗ (Lx
TP + La

TP ) + λ2 ∗ LTA

+ λ3 ∗ (Lx
CA + La

CA + Lx
V AE + La

V AE + LDA)
(18)

where λ1, λ2, and λ3 are the balanced weight to measure the importance of each module in our
TopoZero. In the branch of TAM, Lx

AE and La
AE aim to obtain the latent visual and semantic

representation. Lx
TP and La

TP assist the latent visual and semantic representation to preserve multi-
dimensional topology structure. LTA associates semantic and visual latent representation in a com-
mon space. While for the branch of distribution alignment module, all the objective functions keep
the same with those in CADA-VAE Zhu et al. (2019a).

3.5 ZERO-SHOT PREDICTION

After the optimization of TopoZero, we need to train Fgzsl and Fczsl for predicting unseen or
seen samples. Given a seen image features xs, we can obtain the latent distribution representation
zdxs = Ed

x(x
s) with reparametrization trick Kingma & Welling (2014) and topological representation

ztxs = Et
x(x

s). Analoguously, for unseen image semantic vector au, we have zdau and ztau . Then we
concatenate zdxs and ztxs ([zdxs , ztxs ]) to serve as seen training data and ([zdau , ztau ]) for unseen one.
After training Fgzsl and Fczsl, we use [zdxs , ztxs ] and [zdxu , ztxu ] to inference.

4 EXPERIMENTS

In this section, we first elaborate on implementation details and 3 authoritative benchmark datasets
in the field of ZSL. Then we compare our TopoZero with existing state-of-the-art ZSL methods.
Finally, we provide some qualitative and quantitative analysis to illustrate the advantage of our
TopoZero. Due to the limitation of page size, several parts are placed on Appendix A.

4.1 DATASETS AND IMPLEMENTATION

Datasets. We verify our TopoZero on 3 popular ZSL benchmark datasets, including CUB Welinder
et al. (2010), SUN Patterson & Hays (2012), and AWA2 Xian et al. (2018a). CUB contains 11788
images of 200 bird classes (seen/unseen classes = 150/50) with 312 attributes. SUN consists of
14340 images from 717 classes (seen/unseen classes = 645/72) with 102 attributes. AWA2 includes
37322 images of 50 animal classes (seen/unseen classes = 40/10) with 85 attributes. Finally, we
adopt the “split version 2.0” mode Xian et al. (2018b) to conduct data splits on CUB, SUN, and
AWA2.

Network Architecture. As illustrated in Fig. 2, our TopoZero contains 2 Encoders and 2 Decoders,
which are basic Multi-Layer Perceptions with 2 fully connected (FC) layers and 4096 hidden units.
The dimension of latent variable in the distribution alignment and topology alignment module are
both set 64. The architecture of CZSL and GZEL classifier is a single FC layer.

Optimization Details. Our TopoZero is optimized by Adam optimizer with an initial learning rate
10−4 . The total training epoch of TopoZero is set 100 with a batch size 50. For training final CZSL
and GZSL classifiers, the training epoch, batch size, and initial learning rate are set 25, 28, 10−3

respectively.

Evaluation Protocols. Following the standard evaluation protocol Xian et al. (2018a), our
TopoZero is evaluated by the top-1 accuracy. For CZSL, we only compute the accuracy on
unseen classes. While for GZSL, we both calculate the accuracy of seen and unseen classes.
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Table 1: Results (%) of the state-of-the-art models on CUB, SUN and, AWA2 datasets. The best
result is masked in bold. The symbol “–” indicates no available result.

Methods
CUB SUN AWA2

CZSL GZSL CZSL GZSL CZSL GZSL
acc U S H acc U S H acc U S H

Non Common Space
QFSL Song et al. (2018) 58.8 33.3 48.1 39.4 56.2 30.9 18.5 23.1 63.5 52.1 72.8 60.7

LDF Li et al. (2018) 67.5 26.4 81.6 39.9 – – – – 65.5 9.8 87.4 17.6
SGMA Zhu et al. (2019b) 71.0 36.7 71.3 48.5 – – – – 68.8 37.6 87.1 52.5

AREN Xie et al. (2019) 71.8 38.9 78.7 52.1 60.6 19.0 38.8 25.5 67.9 15.6 92.9 26.7
LFGAA Liu et al. (2019) 67.6 36.2 80.9 50.0 61.5 18.5 40.0 25.3 68.1 27.0 93.4 41.9

SP-AEN Chen et al. (2018) 55.4 34.7 70.6 46.6 59.2 24.9 38.6 30.3 58.5 23.3 90.9 37.1
PQZSL Li et al. (2019) – 43.2 51.4 46.9 – 35.1 35.3 35.2 – 31.7 70.9 43.8

CRNet Zhang & Shi (2019) – 45.4 56.8 50.5 – 34.1 36.5 35.3 – – – –
IIR Cacheux et al. (2019) 63.8 30.4 65.8 41.2 63.5 22.0 34.1 26.7 67.9 17.6 87.0 28.9

DVBE Min et al. (2020) – 53.2 60.2 56.5 – 45.0 37.2 40.7 – 63.6 70.8 67.0
FREE Chen et al. (2021b) – 55.7 59.9 57.7 – 47.4 37.2 41.7 – 60.4 75.4 67.1

Common Space
DeViSE Frome et al. (2013) - 23.8 53.0 32.8 - 16.9 27.4 20.9 - 17.1 74.7 27.8

ReViSE Tsai et al. (2017) - 37.6 28.3 32.3 - 24.3 20.1 22.0 - 46.4 39.7 42.8
DCN Liu et al. (2018) - 28.4 60.7 38.7 - 25.5 37.0 30.2 - - - -

SGAL Yu & Lee (2019a) – 44.7 47.1 45.9 – 31.2 42.9 36.1 – 81.2 55.1 65.6
CADA-VAE Schönfeld et al. (2019) 57.9 51.6 53.5 52.4 61.6 47.2 35.7 40.6 62.6 51.6 53.5 52.4

DOE-ZEL Geng et al. (2022) - - - - - - - - 66.4 - - 57.6
VGSE Xu et al. (2022) 56.8 24.1 45.7 31.5 41.1 25.5 35.7 29.8 66.7 45.7 66.7 54.2

HSVA Chen et al. (2021c) 62.8 52.7 58.3 55.3 63.8 48.6 39.0 43.3 70.6 59.3 76.6 66.8
TopoZero (Ours) 64.3 54.9 59.9 57.3 64.7 49.4 40.9 44.7 70.6 59.1 80.0 68.0

For determining the performance of GZSL in a unified criterion, the harmonic mean (defined as
H = (2× S × U)/(S + U)) is adopted in this paper.

4.2 COMPARISON WITH STATE-OF-THE-ARTS.

Results on Conventional Zero-Shot Learning. Tab. 1 reports the CZSL results of our TopoZero
and recent state-of-the-art (sota) methods on 3 ZSL datasets. Considering that attribute-based sota
methods Huynh & Elhamifar (2020); Chen et al. (2021a) exploit the advantage of pre-trained NLP
models GloVE and generation-based sota methods Xian et al. (2018b); Yu et al. (2020) take advan-
tage of data augmentation, methods involving these 2 branches are not taken into account in this
part. Compared to methods only with distribution alignment, our TopoZero illustrates a significant
improvement of 6.4%, 3.1%, and 8.0% on CUB, SUN, and AWA2 datasets at least. While compared
to HSVA Chen et al. (2021c) with distribution and structure alignment, our TopoZero also achieves
a great improvement of 1.5%, 0.9% on CUB and SUN datasets, respectively. Such a significant
performance directly verifies the effectiveness of topology alignment for the ZSL task.

Results on Generalized Zero-Shot Learning. By looking at the challenging GZSL results in Tab.
2, our TopoZero also achieves a dominant harmonic mean performance of 57.3%, 44.7%, and 68.0%
on CUB, SUN, and AWA2 datasets, respectively. Both superiority results of TopoZero on CZSL and
GZSL settings demonstrate that our TopoZero is better than HSVA on structure alignment.

5 CONCLUSION

In this paper, we propose a TopoZero framework to improve structure alignment for common space
learning methods. To begin with, we discover that existing structure alignment approaches confront
two challenging issues: 1) sampled mini-batch data points present a distinct gap compared to global
ones; 2) latent visual and semantic space lose some high-dimensional structure information due to
the ’curse of dimensionality.’ To solve these two problems, Topology-guided sampling strategy and
Topology Alignment Module are proposed to construct our TopoZero. Furthermore, we provide
a theoretical analysis as well as visualization results to guarantee the advantage of our TopoZero,
namely excellent multi-dimensional topology-preserving and topology-alignment ability. Finally,
The extensive and superior experiment results demonstrate that our TopoZero has a great potential
to advance the ZSL community.
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A APPENDIX

B PROOF OF THEOREM 2

Proof. First, we derive the distribution F∆′ (y) and F∆′′ (y):

F∆′ (y) = P(δ
′

i ≤ y) = 1− P(δ
′

i > y) = 1− P( min
1≤j≤m+1

aij > y) (19)

= 1− P(
⋂
j

aij > y) = 1− (1− FD(y))m+1 (20)

=

{
1− (1− FD(y))m+1 , y < E[dH(X,X(m))]

1 , else
(21)

Analogously, we have:

F∆′′ (y) = P(δ
′′

i ≤ y) = 1− P(δ
′′

i > y) = 1− P(
⋂
j

aij > y) (22)

= 1− (1− FD(y))m+1 (23)
(24)

For convenience, we denote 1− (1−FD(y))m+1 as Fδ(y). Next, we derive the distribution (FZ′(z)

and FZ′′ (z) ) of Z ′ and Z
′′

, respectively:

FZ′(z) = P (Z ′ ≤ z) = P ( max
m+1<i≤n

δi ≤ z) = P (
⋂

m+1<i≤n

δi ≤ z) (25)

=

{
F∆(z)

(n−m+1) , z < E[dH(X,X(m))]
1 , else

(26)

Analogously,

FZ′′ (z) = P (Z
′′
≤ z) = P ( max

m+1<i≤n
δi ≤ z) = P (

⋂
m+1<i≤n

δi ≤ z) (27)

=

{
F∆(z)

(n−m+1) , z < E[dH(X,X(m))]
F∆(z) , else

(28)

Thus, we have:

EZ′∼FZ′ [Z
′] =

+∞∫
0

(1− FZ′(z)) dz −
∫ 0

−∞
FZ′(z) dz (29)

=

+∞∫
0

(1− FZ′(z)) dz (30)

=

∫ E[dH(X,X(m)]

0

(1− FZ′(z)) dz +

∫ +∞

E[dH(X,X(m)]

(1− FZ′(z)) dz (31)

=

∫ E[dH(X,X(m)]

0

(1− F∆(z)
n−m) dz +

∫ +∞

E[dH(X,X(m)]

(1− 1) dz (32)

=

∫ E[dH(X,X(m)]

0

(1− F∆(z)
n−m) dz (33)
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and:

EZ′′∼F
Z

′′ [Z
′′
] =

+∞∫
0

(1− FZ′′ (z)) dz (34)

=

∫ E[dH(X,X(m)]

0

(1− FZ′′ (z)) dz +

∫ +∞

E[dH(X,X(m)]

(1− FZ′′ (z)) dz (35)

=

∫ E[dH(X,X(m)]

0

(1− F∆(z)
n−m−1) dz +

∫ +∞

E[dH(X,X(m)]

(1− F∆(z)) dz (36)

(37)
Finally,

EZ′∼F
Z

′ [Z
′
]− EZ′′∼F

Z
′′ [Z

′′
] =

∫ +∞

E[dH(X,X(m)]

(F∆(z)− 1) dz ≤ 0 (38)

=>EZ′∼F
Z

′ [Z
′
] ≤ EZ′′∼F

Z
′′ [Z

′′
] (39)

=>E[dH(X,X
(m+1)
T )] ≤ E[dH(X,X

(m+1)
R )] (40)

C PERSISTENT HOMOLOGY

Here, we further provide several explanations on the definition of simplex, simplicial complex, ab-
stract simplicial complex and Vietoris-Rips complex. (a) Simplex: In geometry, a simplex is a
generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is
so-named because it represents the simplest possible polytope made with line segments in any given
dimension. For example, a 0-simplex is a point, a 1-simplex is a line segment, and a 2-simplex is
a triangle. (b) Simplicial Complex: In topology, it is common to ”glue together” simplices to form
a simplicial complex. A simplicial complex is a set composed of points, line segments, triangles,
and their n-dimensional counterparts. The strict definition of a simplicial complex is that A sim-
plicial complex K is a set of simplices that satisfies the following conditions: 1) Every face of a
simplex from K is also in K; 2) The non-empty intersection of any two simplices σ1, σ2 ∈ K is
a face of both σ1 and σ2. (c) Abstract Simplicial Complex The purely combinatorial counterpart
to a simplicial complex is an abstract simplicial complex. (d) Vietoris–Rips complex: In topology,
the Vietoris–Rips complex, also called the Vietoris complex or Rips complex, is a way of forming a
topological space from distances in a set of points. It is an abstract simplicial complex that can be
defined from any metric space M and distance δ by forming a simplex for every finite set of points
that has a diameter at most δ. That is, it is a family of finite subsets of M, in which we think of
a subset of k points as forming a (k1)-dimensional simplex (an edge for two points, a triangle for
three points, a tetrahedron for four points, etc.); if a finite set S has the property that the distance
between every pair of points in S is at most δ, then we include S as a simplex in the complex. As
illustrated in Moor et al. (2020), we can compute the persistent homology of a set of data points X
based on this background information.

D COMPUTATION PROCEDURE OF TOPOLOGY-PRESERVING LOSS

Here, we further introduce how to retrieve the value of 0-dimensional / 1-dimensional / 2-
dimensional persistence diagram from distance matrix with indices provided by the persistence

pairings, namely DX(m)
v

0 ≃ AX(m)
v [π

X(m)
v

0 ]. In essence, this retrieving procedure equals to how
to select retreival indices from 0-dimensional / 1-dimensional / 2-dimensional persistence pair-
ings. Concretely, for 0-dimensional topological features , we select the ”destroyer” simplices in
the 0-dimensional persistence pairings. For 1-dimensional topological features and 1-dimensional
topological features , we regard the maximum edge of the ”destroyer simplices” in corresponding
persistence pairings as retrieval indices.
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E EXPERIMENTS.

E.1 ABLATION STUDY

Based on the CADA-VAE Schonfeld et al. (2019), we conduct ablative experiments on CUB, SUN,
and AWA2 datasets to verify the effectiveness of our proposed Topology-guided Sampling Strategy
and Topology Alignment Module. We first clarify the notations in Tab. 2. TAD denotes our
Topology Alignment Module. TAD0 / TAD0−1 represents our Topology Alignment Module with
preserving 0-dimensional/ 0-dimensional and 1-dimensional topological features. We can see the
4th row with TAD performs a better result than the 2nd row with TAD0 and the 3rd row with
TAD0−1, indicating the effectiveness of multi-dimensional (especially high dimensional) structure
alignment. Then, with the addition of TGSS, the performance is further enhanced, demonstrating
the TGSS can achieve better structure alignment. This experiment result is highly compatible with
our provided theoretical analysis on TGSS.

Table 2: Ablation studies of TGSS and TAD on CUB, SUN, and AWA2 datasets.

Method
CUB SUN AWA2

CZSL GZSL CZSL GZSL CZSL GZSL
acc U S H acc U S H acc U S H

CADA-VAE 57.9 51.6 53.5 52.4 61.6 47.2 35.7 40.6 62.6 51.6 53.5 52.4
CADA-VAE + TAD0 59.2 51.3 58.8 54.8 61.8 48.3 37.2 42.0 67.4 55.5 71.3 63.6

CADA-VAE + TAD0−1 60.3 52.7 59.2 55.8 61.9 48.5 38.1 42.7 68.2 56.2 77.3 65.1
CADA-VAE + TAD 62.2 53.7 58.7 56.1 62.5 48.8 39.2 43.5 68.8 58.6 76.9 66.6

TopoZero (CADA-VAE + TAD + TGSS) 64.3 54.9 59.9 57.3 64.7 49.4 40.9 44.7 70.6 59.1 80.0 68.0

E.2 ANALYSIS

The effectiveness of TAM. To verify the effectiveness of single Topology Alignment Module, we
disentangle it from our overall TopoZero framework. As reported in Tab. 3, although a single TAM
can achieve great performance, there exactly exists a distinct performance gap compared with recent
sota methods Chen et al. (2021c;b). This is why we introduce an off-the-shelf distribution alignment
module into our TopoZero framework.

Table 3: The effectiveness of single TAM.
Method CUB SUN AWA
TAM 58.4 60.7 64.1

TAM + TGSS 60.5 63.1 66.4

Compatibility with sota ZSL frameworks. To verify the compatibility between our TAM branch
with sota ZSL framework, we implement our proposed TGSS and TAD on the sota open-source
method TransZero Chen et al. (2022a). The CZSL results are listed in Tab. 4. After applying the
proposed TGSS and TAM, the performance of TransZero increases to 77.6%, 67.2% and 72.6%
on CUB, SUN and AWA datasets respectively. This improvement indicates the effectiveness of the
proposed method on the sota attribute-based ZSL framework. Note that the superiority of TransZero
benefits from it utilizes semantic attribute vectors of each attribute learned by GloVe Pennington
et al. (2014) to improve semantic representation. Through this extra knowledge, recent attribute-
based ZSL methods Chen et al. (2021a; 2022b) perform better than others without extra knowledge.
Thus, we only verify the compatibility between our TopoZero and Transzero rather than comparing
performance directly.

Table 4: Compatibility with sota ZSL framework TransZero.
Method CUB SUN AWA

TransZero 76.8 65.6 70.1
TransZero + Ours 77.6 67.2 72.6

15



Under review as a conference paper at ICLR 2023

Figure 3: The coarse effects of λ1, λ2 and λ3 on the CUB dataset.

Figure 4: The fine effects of λ1, λ2 and λ3 on the CUB dataset.

Model Complexity Analysis. Our TopoZero has a clear intuition of leveraging parallel structure
and distribution for advancing ZSL. Such design thus inevitably leads to the first 5 terms in Eq. 18
for multi-dimensional structure alignment and the last 5 terms in Eq. 18 for distribution alignment.
Although TopoZero has 4 autoencoders in total, the entire training process is simultaneous and loss
weights of all terms in Eq. 18 are the same for all datasets. The consistently significant results
on all datasets show that our model is robust and easy to train. Additionally, several losses are
formulated with similar forms, which are cooperated for easy optimization, i.e. Lx

AE and La
AE ,

Lx
CA and La

CA, Lx
TP and La

TP . Finally, TAM and DAM are parallel and such disentangle design
can make the learning curve smooth and maximize the role of each branch, respectively. Benefiting
from this disentangled design, our TopoZero is easy to train compared to HSVA, where the latter
adopts coupled framework.

Hyper-parameter Analysis. In this part, we further verify the sensitivity of hyper-parameter in our
TopoZero by conducting experiments on the CUB dataset, including λ1, λ2, and λ3. As shown in
Fig. 3, the performance of TopoZero is of great robustness when varying hyper-parameter from
{0.01, 0.05, 0.1, 0.25, 0.5, 1.0}. Finally, λ1, λ2 and λ3 are set 0.05, 0.05, and 1 in this paper for the
better result.

Although this hyper-parameter configuration achieves a great performance on 3 ZSL benchmark
datasets, it also raises an interesting question: given these 3 hyper-parameters play distinct role in our
TopoZero framework, why their effects are so consistent? For instance, the green lines in Fig. 3 al-
most present a consistent trending. The reason for this question is that the configuration in the hyper-
parameter selection setting is unreasonable, where the candidate range of λ3 is small. This hides the
role of each term in the objective function since the value of 4-th term (controlled by λ3) is far larger
than that of 2-nd (controlled by λ1) and 3rd (controlled by λ2) terms, where the value of La

V AE and
La
V AE in 4-th term is extraordinarily large. Thus, to conduct a detailed hyper-parameter analysis,

we extend the range of λ3 into {0.0001, 0.0005, 0.001, 0.0050.01, 0.05, 0.1, 0.25, 0.5, 1.0}. Based
on this revision, the individual effects of the three hyper-parameters are expanded remarkably, that
is illustrated in Fig. 4. Simultaneously, our TopoZero achieves a higher CZSL accuracy of 64.9%
on the cub dataset via this step. In our opinion, this improvement benefits from this more reason-
able hyper-parameter selection procedure, which is conducive to getting rid of ”hyper-parameter
overfitting” via mining the role of each item accurately. Considering this step involves some tricks
of hyper-parameter tuning, we only discuss this situation rather than adopting this hyper-parameter
configuration for better results.

Visualization Result. As shown in Fig. 1 (a) - (c), we utilize persistent homology to visualize
the multi-dimensional topological features of TopoZero and HSVA latent structure space. We can
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see that our TopoZero topological latent space presents an almost consistent trend in terms of in-
put topological space while HSVA fails, indicating that our TopoZero can preserve more geometry
information than HSVA when handling with ’curse of dimensionality’ Wang & Chen (2017).
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