Self-MoE: Self Mixture of Experts in between decoder layers

Anonymous EMNLP submission

Abstract

Mixture of Experts is a well-known tech-
nique in machine learning and is widely
used to empower large language models.
Unfortunately, it requires a lot of resources
to train experts. To weaken this require-
ment, we propose a modification to the
architecture of pretrained LLMs we call self
Mixture of Experts (self-MoE), which is
a mixture of experts with all the experts
being the same exact model. This adjust-
ment adds a handful of weights and yields
a significant improvement in model perfor-
mance. We evaluated self-MoE on mathe-
matical reasoning and code generation and
observed significant improvements across
various benchmarks. We plan to publish
the training code and the model weights
upon acceptance.

1 Introduction

Over the past three years, the field of large lan-
guage models has experienced rapid advancements
with the introduction of the Generative Pre-trained
Transformer (GPT) [3]. These models have demon-
strated exceptional performance across a wide range
of tasks, capturing the attention of researchers and
practitioners worldwide. A significant leap in the
development of large language models was marked
by the emergence of other models such as Gemini,
Llama, and Mistral, which aimed to build upon the
achievements of the GPT series.

Mistral Al, a company specializing in language
models, took a novel approach with the release of
their latest model Mixtral [15]. This is a sparse
mixture-of-experts network that combines multiple
Mistral models, each trained on specific domains,
into a single unified model. Mixtral uses a feed-
forward block as a router network, which selects
two of eight groups to process each token and com-
bines their outputs, increasing model parameters
while controlling cost and latency. This results in a
model that performs exceptionally well across mul-
tiple tasks, providing a more comprehensive and
versatile solution for a wide array of applications.

Our proposed idea is inspired by two recent pub-
lished works, the aforementioned Mixtral of Ex-
perts [15] and LASER [26] papers. The first paper
demonstrates that the incorporation of multiple
MLP layers to the decoder in the model’s architec-
ture can significantly improve its ability to handle a
wide range of tasks. By allowing each decoder layer
to contribute to the final output, the model can
better adapt to different input domains, leading to
improved performance and generalization capabili-
ties. The LASER paper highlights a potential issue
in LLMs, where information from earlier decoder
layers can be forgotten or distorted as the model
progresses through subsequent layers.

We propose a novel addition to the LLMs archi-
tectures called self Mixture of Experts (self-MoE).
This method combines the output of each decoder
layer with the output of the previous decoding layer
through additional gates. By merging each two se-
quential decoder layers as two experts from a single
model, we aim to improve the performance of the
model while reducing its complexity. The use of
gates enables the model to selectively merge the out-
puts of each decoder layer, creating a more dynamic
and adaptive system.

We evaluate our method on code generation and
natural language mathematics benchmarks and
demonstrate significant quality boost for self-MoE
compared to baselines. In general, our contribu-
tions can be summarized into following:

1. We propose self-MoE, a simple and effective ap-
proach to improve pretrained language model
performance.

2. We present a thorough investigation of various
gate types and demonstrate their impact on the
evaluation benchmarks, while also introducing
a method for gates positioning selection.

3. We show that our method achieves improved
results on diverse benchmarks, including math
problem solving and code generation.

2 Related work

Routing Networks. In routing networks input to-
kens are transformed by dynamically engaging with

a select subset of network parameters. This charac-
teristic is commonly found in sparsely-activated net-
works, but also applies to networks featuring early
exits. This concept resembles out gating mecha-
nism, since both methods are skipping intermediate
layers, but instead of routing we use averaging.

In papers exploring early exits, models learn
to determine the optimal point to terminate com-
putation, enabling the token to bypass subsequent
transformer layers. This idea first emerged in CNNs
[29], where branch modules are inserted at various
exit points within a deep learning network. In
[13, 20] authors explored idea of anytime predic-
tions in convolutional networks, which reduced total
computation. Then early exiting was explored in
language models for both its inference [25, 8|, where
it is proposed to use early exit loss or local confi-
dence measures to speed-up inference, and training
[7, 19], where dedicated LM head was added for
each decoder layer in an encoder-decoder model.
In [24] routers are used to choose among potential
computational paths. This approach shares similar-
ities with ours, but differs in its use of probabilistic
routing mechanisms, whereas we employ summa-
tion. Moreover, our primary focus is on improving
the quality of generations, rather than optimizing
computational efficiency.

Mixture of Experts was explored in [6] as a
component of deeper networks, enabling large and
efficient models. Idea of dynamic component activa-
tion based on input tokens led to [27] where the idea
was scaled to a 137B LSTM by introducing spar-
sity, achieving fast inference at high scale. However,
this work faced challenges like high communication
costs and training instabilities. Currently in the
usual sense MoE consists of two main components:
sparse MoE layers that replace traditional dense
feed-forward network layers, and a gate network
or router that determines which tokens are sent to
which expert. Mixtral proposed in [15] uses router
network which selects two experts to process the cur-
rent state and combine their outputs for each token.
In such method information is extracted from de-
coders broadwise, leveraging parallel outputs from
multiple experts; in contrast, our approach involves
extracting information from decoders by going in
depth, combining outputs from sequential decoders.

2.1 Knowledge from earlier layers

Language models have been observed to suffer from
forgetting, where knowledge acquired in earlier lay-
ers is lost as the model progresses to later layers
[26]. Recent studies shows that specific knowledge
is preserved in intermediate layers, for example
space and time representations [11] are learned and
stored across multiple scales. Experiments in [17]
reveal that LLMs encode more context knowledge
in upper layers, initially focus on knowledge-related

entity tokens in lower layers, and gradually forget
earlier context knowledge in intermediate layers
when presented with irrelevant evidence. Results
from [16] show that simpler tasks can be probed in
shallow layers, while more complex tasks require
deeper layers for accurate understanding. The pre-
sented works suggest that earlier layers of the model
often contain information that would be useful for
forming the final generation.

3 Method

In this section, we briefly discuss the latest Large
Language Models (LLMs) architectures, focusing
on Llama and Mistral. We present additional gates
as addition to transformer acrhitecture and explain
how to build a self-MoE model and utilize it. Lastly,
we examine various types of gates that we’ve ex-
plored in our research.

3.1 LLMs review

The LLMs architectures we examined are vast
decoder-only transformer models with billions of
parameters. These models are trained on extensive
datasets, containing billions or even trillions of to-
kens [23]. The design of these models encompasses
an embedding layer that transforms each token into
a latent vector. These vectors are then processed
through decoder layers to forecast the succeeding
token. This process is repeated (autoregressively)
to produce the final answer. Each transformer
decoder layer comprises a self-attention layer, an
MLP block, and a normalization layer [31]. The
model concludes with a head layer that translates
the output embedding vector into the distributed
probabilities of the upcoming token. In essence,
the primary distinction between the Llama [30] and
Mistral [14] models lies in their attention mecha-
nisms. While both models share a highly similar
overall architecture, Mistral distinguishes itself by
employing grouped query attention (GQA) and
sliding window attention.

3.2 self-MoE

In essence, the self-MoE concept is an extension of
the traditional Mixture of Experts (MoE) model.
However, rather than combining different models in
the MLP section, self-MoE merges decoder layers.
This is achieved by incorporating gates between
them, leading to a minimal increase in the number
of training parameters - approximately 200M for
7B models. Fig. 1 shows the integration of the gates
into the LLMs architecture as we mentioned above.
Assuming we have a standard transformer de-
coder model consisting of n blocks, the conven-
tional large language model (LLM) during forward
pass at each transforms the the input n times by
sequentially applying blocks on previous outputs:

h; = Bi(hi—1). (1)

Multi Head Attention

Input

£

)
X
(o)
k<!
o E
= 2
= S
kel o
[0}
9
©
) |
|
—
|
|
|
____________ Y I
_____ Gate e
J

Figure 1: The figure schematically shows the architecture of a modified transformer decoder block. The
proposed adjustment is an additional trainable gate, which is a direct connection between the input and
output of a decoder. In section 3.3 we demonstrate how gates differ from skip-connections.

Within each block, there are self-attention and MLP
blocks with skip connections.

Self-MoE introduces an additional G gate layer
that takes the output of the previous decoder layer
and combines it with the output of the current
decoder layer as follows:

When it comes to applying this concept to an
LLM with n layers, it necessitates the use of n — 1
gates, following the same approach. There are
two primary paths to pursue from this point. The
first is to concentrate on accelerating the model’s
inference by enabling it to select a single path, either
through the gate or the subsequent decoder layer,
rather than employing both. However, this would
necessitate training the initial model from scratch
with the gates or, at the very least, on a substantial
amount of data. Our primary objective, though, is
to achieve performance comparable to Mixtral with
a minimal increase in the number of parameters

and nearly the same latency as the base 7B model.

To accomplish this, we initialize the Gates’ weights
to zero, causing 2 to revert to the base model’s 1
at the beginning of the training.

3.3 Gates

In this section, we will discuss two distinct subjects.
Firstly, we will examine the types of gates utilized
in our system. Subsequently, we will illustrate the

process of determining which gates to retain or
discard following the training phase.

Gates type We experimented with three distinct
gate types to demonstrate that the self-MoE con-
cept is not solely dependent on the additional skip
connection, but also on the specific type of gate
utilized.

1. Matrix Linear Gate Layer: The input dimen-
sion of this layer corresponds to the input di-
mension of the decoder layer, while the output
dimension is equivalent to the output dimen-
sion of the decoder.

2. Vector Linear Gate Layer: Each channel of the
input dimension in this layer has a single value
that is allowed to pass through.

3. Single value Gate layer: The output of the
previous layer is multiplied element-wise by a
single trainable parameter and then added to
the output of the subsequent layer.

Gates selection After training we can eliminate
certain gates that do not significantly contribute to
model performance. To accomplish this, we employ
a simple yet effective approach of evaluating the
changes in perplexity throughout the layers for a
portion of the training set (calibration data). We
utilize language model head as a projection layer
to map each hidden state, both before and after
incorporating the gates’ output, into the output
space. Subsequently, we compute the perplexity for

Model GSM8k MATH MMLU-STEM
mistralai/Mistral-7B-v0.1 0.378 0.129 -
w/o self-MoE 0.398 0.147 0.65
with self-MoE 0.419 0.146 0.67
mistralai/Mistral-7B-Instruct-v0.2 0.400 0.103 -
w/o self-MoE 0.410 0.123 0.60
with self-MoE 0.431 0.125 0.60
meta-llama/Meta-Llama-3-8B 0.458 0.150 -
w/o self-MoE 0.434 0.150 0.61
with self-MoE 0.476 0.167 0.64
microsoft /Phi-3-mini-128k-instruct 0.695 0.224 -
w/o self-MoE 0.699 0.265 0.62
with self-MoE 0.700 0.269 0.62

Table 1: Comparison of fully trained base models and same models trained with self-MoE. Our method
demonstrates quality improvements across all baselines. For the base Meta-Llama-3-8B, full training
degrades its mathematical problem-solving abilities, whereas self-MoE provides a significant boost.

both scenarios and determine the average across
all calibration data. Finally, we discard the gates
that exhibit minor changes in perplexity values. In
other words, assume that we have a two hidden
states h; and h;_1, let us denote to the gates as G
function, and the lm _head as proj. For an input
x we calculate the perplexity perp as follows:

pi1 = perp(proj(hy)z, x), (3)

where proj(h:), is the projection of the hidden
state at layer number ¢ of an input z, p;; is the
perplexity value without gates at layer t.

pia = perp(proj(hy + G(hi—1))x,). (4)

Then we decide to keep the gates or drop as follows
for each decoder layer t:

. - {Ov
Gta

Gates vs skip connections Let us dive into the
changes through the hidden state h;_; as an input
to a decoder layer. At the first attention part Att

if pro <pu
otherwise.

(5)

we can define the intermediate output A as follows:

A = Att(normy (hi—1)) + hi—1. (6)

We pass the attention output to the MLP layer mlip
with another skip connection so the current hidden
state h; is calculated as follows:

h; = mlp(normy(A4)) + A, (7)
substituting 6 in 7 we get:

h; = mlp(normsy(A)) + Att(normy (h;—1)) + hi—1.
(8)
It is obvious that adding a skip connection will not

have any impact. From 2 and 8, we can formulate
self-MoE as follows:

h; = mlp(normsy(A))+
Att(norml(hi_l)) + hi—l + Gz(hz_l) (9)

The self-MoE can be perceived as a trainable lin-
ear selector that assigns weights to the previously
obtained information. This approach offers two
primary advantages:

1. When the weighting values are high, it can be
considered as two experts collaborating to gen-
erate the output, similar to the MoE method.

2. When the weighting values are low, it can be
perceived as a trainable Laser method.

4 Experiments

To assess the efficiency of the self-MoE we do full-
model training of various architectures across a
range of tasks. We focus on two domains while
comparing our proposed architectures with base
transformer models trained on specific data. The
two tasks are mathematical problem-solving and
code generation.

4.1 Math Evaluation

The first domain is mathematical problem-solving.
We use benchmarks which are commonly used for
evaluating mathematical and logical abilities in
language models [2, 18]: GSMS8K [5] - one of the
benchmarks listed on the Open LLM Leaderboard,
MMLU-STEM - a subset of STEM subjects defined
in MMLU, and MATH, consisting of challenging
competition mathematics problems [12].

Our goal is to test the hypothesis that the adding
of gates enhances the model’s task understanding,
independent of its architecture. To validate this
assertion, we select a diverse set of baselines of
varying size, which is used for evaluation. During
evaluation we minimize the base model capabilities

Model Params Python C++4 Java JS Go AVG
deepseek-coder-1.3b 1.3B 33.8 20.2 30.7 283 30.1 28.62
w/o self-MoE 1.3B 34.1 23.5 31.7 278 30.3 2948

with self-MoE 1.4B 37.3 24.1 33.1 31.6 30.9 31.40
deepseek-coder-6.7b 6.7B 40.1 30.3 38.7 356 398 36.90
w/o seli-MoE 6.7B 43.6 31.5 40.0 34.2 39.3 37.72

with self-MoE 7.3B 44.2 32.7 41.8 333 387 38.14

Table 2: Pass@1 scores for base models and self-MoE models across different programming languages in
HumanEval-X. For smaller deepseek model training with self-MoE enhances code generation for each
of the six selected programming languages. For model with 6.7B parameters, the baseline model shows

better results for JavaScript and Go.

Model Params GSM8k MATH MMLU-STEM
Meta-Llama-3-8B 8B 0.458 0.150 -
Matrix Linear Gate 8.5B 0.476 0.170 0.64
Vector Linear Gate 8B 0.489 0.161 0.62
Single value Gate 8B 0.489 0.162 0.62

Table 3: Comparison of different gate types for meta-llama/Meta-Llama-3-8B model on math benchmarks.
Vector Linear and Single value Gate types demonstrate a significant improvement in quality on the GSM8K
benchmark, despite having nearly as many parameters as the baseline model.

in a particular task, which allows us to isolate the
impact of fine-tuning and architectural features on
task performance. We deliberately choose models
with a low likelihood of having mathematical data
from the benchmarks in their training sets. No-
tably, our selection of models comprises some of
the most recent and compact open-source models,
including Mistral-7B-v0.1, Meta-Llama-3-8B, Phi-
3-mini-128k-instruct, and Mistral-7B-Instruct-v0.2,
which represent the latest top-performing models
in their class.

Models are trained on Orca-Math [22], which
is a high quality synthetic dataset of 200K math
problems. We choose to train models with Matrix
Linear Gates. All models are trained on A100 40Gb
GPUs, using a combination of data and model
parallelism. Models are trained with a context
length of 1024, a batch size of 1, and gradient
accumulation of 64, spanning 128000 iterations (~2
epoches). Optimization is performed with AdamW
[21] with a learning rate of 2.5 x 1075 and 12800
warmup steps.

Results are provided in Table 1. The self-MoE
improves the performance of all base models, par-
ticularly the Mistral models. Our method signifi-
cantly enhances the model’s abilities compared to
models trained without gates.More specifically, the
improvement on GSM8K benchmark for Mistral is
10% for 0.5B additional parameters.

4.2 Code Evaluation

For evaluating the effectiveness of the self-MoE ap-
proach in code generation tasks, we utilized the
HumanEval-X [32] benchmark. This benchmark is

designed to assess the multilingual capabilities of
code generation models by focusing on the func-
tional correctness of the generated programs, rather
than just semantic similarity.

HumanEval-X comprises 820 high-quality human-
crafted samples, each accompanied by test cases.
The benchmark covers multiple programming lan-
guages, including Python, C++, Java, JavaScript,
and Go. Each sample in HumanEval-X consists of
a declaration, docstring, and solution, which can
be combined in various ways to support different
downstream tasks such as code generation. The
model uses the declaration and docstring as input
to generate the solution.

The primary metric used for evaluation is the un-
biased pass@1 metric proposed in Codex [4], which
measures the functional correctness of the generated
code across multiple attempts.

We trained and evaluated DeepSeek models [10].
The training data was mined from GitHub and fil-
tered using heuristics and a code embedding model
to closely match the distribution of HumanEval-like
data.

The filtering approach involves using a pretrained
unsupervised CCT [28] encoder to select [1] rele-
vant data by measuring vector similarity between
embeddings of mined GitHub code and multilingual
data from MBPP and similar benchmarks. This
resulted in a dataset that is more aligned with the
tasks presented in HumanEval-X and consist of 20k
examples .

We observed improvements in code generation
quality across most programming languages when

Python C++ Java JS Go

deepseek-coder-1.3b 33.8 20.2 30.7 283 30.1
Matrix Linear Gate 37.3 24.1 33.1 316 309
Vector Linear Gate 33.8 24.7 35.7 32.8 30.3
Single Value Gate 35.3 24.7 329 29.0 31.5

Table 4: Comparison of different gate types for deepseek-ai/deepseek-coder-1.3b model in HumanEval-X.
On average, Vector Linear Gate provides the highest improvement to the metric values.

applying the self-MoE approach. The self-MoE
models demonstrated better performance in terms
of functional correctness compared to their base
counterparts. This improvement can be attributed
to the enhanced ability of the self-MoE architecture
to capture and utilize information from earlier layers
more effectively.

The results are summarized in Table 2, showing
the pass@1l scores for different models and config-
urations. More specifically, the improvement on
C++ benchmark for the 1.3B deepseek model is
about 20% for 0.1B additional parameters.

Overall, the self-MoE approach consistently en-
hances the performance of the models, particularly
in complex code generation tasks, demonstrating
its efficacy in improving the quality of generated
code.

4.3 Ablation Study

We find that adding self-MoE improves performance
over the base model, therefore we investigate if we
can further improve by changing the gates configu-
ration. In this section we conduct an ablation study
where we experiment with the type of gate and its
selection, and find the most optimal self-MoE struc-
ture.

4.3.1 Gates Type

We compare different types of gates proposed in
section 3.3 on both math solving (Table 3.3) and
code generation (Table 4) tasks. Our results show
that no single type of gate consistently outperforms
others across all benchmarks. However, Vector
Linear Gate and Single Value Gate have signifi-
cantly fewer parameters, with approximately the
same number as the base model. This suggests that
these type of gates can be used to save resources
without sacrificing performance.

4.3.2 MoE vs Self-MoE

In Table 5 we compare our method with origi-
nal Mixture of Experts on mathematical problem-
solving task. We pick the original Mistral-7B model
and modify it as follows: the first model is enhanced
with the self-MoE method, while the second is ob-
tained by merging two identical base models using
MergeKit [9] into an MoE model. Both versions
are trained on the Orca-Math data with same pa-
rameters as described in section 4.1.

The comparison on all three benchmarks reveals
a significant improvement in mathematical problem
solving, with the self-MoE model achieving this
improvement with a substantially smaller number
of parameters (8.5B vs 13B).

4.3.3 Gates selection

Based on our earlier discussion in Section 3.3, we
employ perplexity analysis across all layers to de-
termine whether to retain or discard gate for each
decoder layer in the model. By comparing the per-
plexity changes with and without gates across the
layers we find that the disparity in perplexity be-
comes evident beyond the 18th layer for Mistral and
16th layer for Llama3. Therefore, we eliminate all
Gates preceding these layers for models we trained
with self-MoE. The outcomes of implementing our
proposed method are depicted in Table 6.

4.4 Qualitative results

The proposed adjustment demonstrated enhanced
performance across a diverse range of tasks, but
it is equally crucial to evaluate its efficacy on fun-
damental mathematical tasks, as an example we
show on Fig. 2 a comparison of solving a quadratic
equation with two variables. we present the gener-
ated answers using three distinct Mistral models.
The first model is trained with the proposed gates,
the second model is a hybrid Mixtral-based model
combining two Mistral models, and the third model
is a Mistral model trained with additional gates.

5 Conclusion

We present the self-MoE method based on incorpo-
rating gates between decoder layers in LLM archi-
tecture and show its versatility across various base
models. Proposed method demonstrate significant
improvement in performance on different bench-
marks in mathematical reasoning and code genera-
tion, while requiring minimal additional resources
to train. Notably, our approach outperforms the
Mixtral of Experts model, which requires training
multiple distinct experts, thereby making it a more
efficient and effective solution for empowering large
language models.

Qualitative results

- XY = 0. CHOOSE A, B, C

OR D THAT SATISFY THE EQUATION

A x= 11 AND ¥=1, B) X=2 AND Y=3, C) X=7 AND Y=5 D) X=0 AND Y=ANY VALUE

with Gates

THE GIVEN EQUATION I8 X2 - XY = 0.
TO FIND THE VALUES OF A, B, C, OR D THAT SATISFY THE
EQUATION, WE CAN SET EACH OF THE GIVEN VALUES FOR
X AND Y AND CHECK IF THEY SATISFY THE EQUATION.

LET'S CHECK EACH OF THE GIVEN VALUES:
A)X=11ANDY =1
(112 - 11)(1) = 121 - 11 = 110

SINCE 110 18 NOT EQUAL TO O, THE VALUES X = 11 AND
¥ = 1 DO NOT SATISFY THE EQUATION.

B)X=2ANDY=
(2)"2-(2)3)=4-
SINCE -2 IS NOT EQUAL TO G, THE VALUES X = 2 AND Y =
3 DO NOT SATISFY THE EQUATION.

=7 Al =8
" 2 - [7)[5] - 45 35=14

SINCE 14 IS NOT EQUAL TO B, THE VALUES X = 7 AND Y =
S DO NOT SATISFY THE EQUATION.

D) X = 0 AND Y = ANY VALUE:
(©)"2 - (O)(ANY VALUE) =0 -0 =0

SINCE 0 IS EQUAL TO O, THE VALUE X = @ SATISFIES THE
EQUATION FOR ANY VALUE OF Y.

THEREFORE, THE CORRECT ANSWER 18 D) X = 0 AND ¥ =
ANY VALUE.

®

MoE

ANSWER & EXPLANATION

STEP 1
THE EQUATION I8 $X(X-Y)=0$
STEP 2

THIS CAN BE REWRITTEN AS
$(x)"(2)-xy=08%
8 3

THIS 18 A QUADRATIC EQUATION IN THE FORM
$A{x}"(2)+BX+C=0%

WE CAN FIND THE VALUES OF A,B,C BY COMPARING
THE COEFFICIENTS OF THE EQUATION.
=1B=-y,0=
STEP §
THE DISCRIMINANT IS GIVEN BY $(B}"(2)-4Ac$
$((-¥))"(2)-4(1)(@)=(v)*(2}$
STEP B
THE ROOTS OF THE EQUATION ARE GIVEN BY
$x=\FRAC({-B\PM \SORT{(B}"(2]-4AC}}{2A}$
$X=\FRAC{-| (¥)\PM \SORT{{Y}" (2]}}{2(1)}$

$x \FRAC(2Y}(2}$
X=Y'

STEP 7
'WE CAN SEE THAT THE EQUATION IS SATISFIED WHEN
$X=¥$

STEP 8
WE CAN CHOOSE ANY VALUES FOR $x5 AND Y AS LONG
AS THEY ARE EQ
FOR EXAMPLE, $X=2Y=2$ UR $x 11y=11$

Mean Activations for Layer 30

0.010

0.005

0.000

Activation

-0.005

-0.010

-0.015

@
]

Figure

of two Mistrals.

N+
°

with gates
without gates

2: The figure showcases the performance of three distinct models when tested with a basic
mathematical problem. The left-hand side displays the solution provided by a Mistral model equipped
with the proposed gates. The middle section shows the response from a Mixtral model, which is comprised
Lastly, the right-hand side showcases the answer given by a Mistral model that was
trained without gates. The bottom left corner highlights the mean activation of the final layers for Mistral

models, both with and without gates.

without Gates

TO SOLVE FOR X AND Y, WE CAN SET THE EQUATION
EQUAL TO ZERO AND FACTOR IT:

X*2-XY =0
THIS EQUATION CAN BE FACTORED AS:
X(x-v)=0

SETTING EACH FACTOR EQUAL TO ZERO GIVES US THE
SOLUTIONS:

X=00RX-Y=0

LET'S EXAMINE EACH SOLUTION:

X =0
SUBSTITUTING X = @ INTO THE ORIGINAL EQUATION, WE
GET:

0"2-0v=0

SINCE 8”2 18 ALWAYS O, THIS EQUATION 18 SATISFIED
FOR ANY VALUE OF Y. THEREFORE, X = 0 I8 A VALID

X-Y=0
THIS EQUATION IMPLIES THAT X AND Y ARE EQUAL.
HOWEVER, SINCE WE ARE LOOKING FOR SPECIFIC
VALUES OF X AND Y THAT SATISFY THE EQUATION, WE
NEED TO FIND VALUES THAT MAKE THE LEFT SIDE OF
THE EQUATION EQUAL TO 0.

LET'S TRY SOME VALUES FOR X AND Y THAT SATISFY X -
Y=0

IFX=11ANDY =11, THENX-Y=11-11=0.

THEREFORE, A) X = 11 AND Y = 11 IS ALSO A VALID
SOLUTION.

NOW LET'S CHECK THE OTHER OPTIONS:

B)X=2ANDY=3:
2°2-2"3=4-86

2

THIS I8 NOT EQUAL TO 0, 80 B) IS NOT A VALID
SOLUTION.

C)X=7ANDY =5
7°2-7*5=49-35=14

THIS I8 NOT EQUAL T0 0, 80 C) 18 NOT A VALID
SOLUTION.

X = 0 AND Y = ANY VALUE:
©"2 - @Y = O, WHICH IS ALWAYS TRUE. THEREFORE, D) I8
A VALID SOLUTION, BUT IT IS ALREADY INCLUDED IN THE
SOLUTION X = 0.

SO, THE CORRECT ANSWER 1S A) X = 11 AND Y = 11 OR X
= 0 AND Y = ANY VALUE

GSMS8k

MATH MMLU-STEM

Mistral-7B-v0.1 0.378
MoE 0.407
self-MoE 0.419

0.129 -
0.135 0.65
0.146 0.67

Table 5: Comparison between MoE and self-MoE methods when trained on the same dataset. Our method
outperforms on mathematical benchmarks, despite having nearly half the number of parameters compared

to the Mixtral model.

Model Gates Selective Gates GSMS8k
Mistral-7B-Instruct-v0.2 0.410
Mistral-7B-Instruct-v0.2 0.431
Mistral-7B-Instruct-v0.2 v 0.437
Meta-Llama-3-8B 0.458
Meta-Llama-3-8B 0.476
Meta-Llama-3-8B v 0.480

Table 6: The impact of gates and selective gates based on perplexity analysis. Removing gates from earlier

decoders boosts models’ performance.

Limitations

The methodology and experiments detailed in
this paper have certain limitations. Notably, our
method shows a significant improvement in perfor-
mance only on specific tasks and we cannot guar-
antee that this advance will transfer entirely to
more general tasks. Moreover adding gates to the
model is associated with increase of model size and
therefore higher resource consumption, however we
provide various gate types where such increase is
minimal.

References

[1] Dmitry Abulkhanov, Nikita Sorokin, Sergey
Nikolenko, and Valentin Malykh. Lapca:
Language-agnostic pretraining with cross-lingual
alignment. In Proceedings of the 46th Interna-
tional ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR
23, page 2098-2102, New York, NY, USA, 2023.
Association for Computing Machinery.

2

Zhangir Azerbayev, Hailey Schoelkopf, Keiran
Paster, Marco Dos Santos, Stephen McAleer,
Albert @ Jiang, Jia Deng, Stella Biderman,
and Sean Welleck. Llemma: An open lan-
guage model for mathematics. arXiv preprint
arXiv:2310.10631, 2023.

[3] Tom Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neu-
ral information processing systems, 33:1877-1901,
2020.

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.08374, 2021.

[5

Karl Cobbe, Vineet Kosaraju, Mohammad Bavar-
ian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton,
Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint
arXiv:2110.1/168, 2021.

[6] David Eigen, Marc’Aurelio Ranzato, and Ilya
Sutskever. Learning factored representations in
a deep mixture of experts. 2014.

[7] Maha Elbayad, Jiatao Gu, Edouard Grave, and
Michael Auli. Depth-adaptive transformer. 2020.

[8] Mostafa Elhoushi, Akshat Shrivastava, Diana
Liskovich, Basil Hosmer, Bram Wasti, Liangzhen
Lai, Anas Mahmoud, Bilge Acun, Saurabh Agar-
wal, Ahmed Roman, et al. Layer skip: Enabling
early exit inference and self-speculative decoding.
arXiv preprint arXiw:2404.16710, 2024.

9

Charles Goddard, Shamane Siriwardhana, Ma-
likeh Ehghaghi, Luke Meyers, Vlad Karpukhin,
Brian Benedict, Mark McQuade, and Jacob So-
lawetz. Arcee’s mergekit: A toolkit for merg-

ing large language models. arXiv preprint
arXiv:2408.13257, 2024.

[10] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda
Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong,
and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming — the
rise of code intelligence, 2024.

[11] Wes Gurnee and Max Tegmark. Language mod-
els represent space and time. arXiv preprint
arXiww:2310.02207, 2023.

[12] Dan Hendrycks, Collin Burns, Saurav Kadavath,
Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathe-
matical problem solving with the MATH dataset.
2021.

[13] Gao Huang, Danlu Chen, Tianhong Li, Felix
Wu, Laurens van der Maaten, and Kilian Q. Wein-
berger. Multi-scale dense networks for resource
efficient image classification. 2018.

[14] Albert Q Jiang, Alexandre Sablayrolles, Arthur
Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna
Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825,
2023.

[15] Albert Q Jiang, Alexandre Sablayrolles, An-
toine Roux, Arthur Mensch, Blanche Savary,
Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Emma Bou Hanna, Florian Bres-

sand, et al. Mixtral of experts. arXiw preprint
arXiv:2401.04088, 2024.

[16] Mingyu Jin, Qinkai Yu, Jingyuan Huang,
Qingcheng Zeng, Zhenting Wang, Wenyue Hua,
Haiyan Zhao, Kai Mei, Yanda Meng, Kaize Ding,
et al. Exploring concept depth: How large lan-
guage models acquire knowledge at different lay-
ers? arXiww preprint arXiv:2404.07066, 2024.

[17] Tianjie Ju, Weiwei Sun, Wei Du, Xinwei
Yuan, Zhaochun Ren, and Gongshen Liu. How
large language models encode context knowl-
edge? a layer-wise probing study. arXiv preprint
arXiv:2402.16061, 2024.

[18] Aitor Lewkowycz, Anders Andreassen, David
Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol
Schlag, Theo Gutman-Solo, et al. Solving quanti-
tative reasoning problems with language models.
Advances in Neural Information Processing Sys-
tems, 35:3843-3857, 2022.

[19] Yijin Liu, Fandong Meng, Jie Zhou, Yufeng
Chen, and Jinan Xu. Faster depth-adaptive
transformers. In Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of
Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial
Intelligence, EAAI 2021, Virtual Event, Febru-
ary 2-9, 2021, pages 13424-13432. AAAI Press,
2021.

[20] Zhuang Liu, Zhigiu Xu, Hung-Ju Wang, Trevor
Darrell, and Evan Shelhamer. Anytime dense
prediction with confidence adaptivity. 2022.

[21] Ilya Loshchilov and Frank Hutter. Decoupled
weight decay regularization. 2019.

[22] Arindam Mitra, Hamed Khanpour, Corby Ros-
set, and Ahmed Awadallah. Orca-math: Unlock-
ing the potential of slms in grade school math.
arXiww preprint arXiv:2402.14830, 2024.

[23] Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqgi Zhou, Wei Li, and Peter J Liu. Exploring
the limits of transfer learning with a unified text-

to-text transformer. Journal of machine learning
research, 21(140):1-67, 2020.

[24] David Raposo, Samuel Ritter, Blake A.
Richards, Timothy P. Lillicrap, Peter Conway
Humphreys, and Adam Santoro. Mixture-of-
depths: Dynamically allocating compute in
transformer-based language models. CoRR,
abs/2404.02258, 2024.

[25] Tal Schuster, Adam Fisch, Jai Gupta, Mostafa
Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and
Donald Metzler. Confident adaptive language
modeling. Advances in Neural Information Pro-
cessing Systems, 35:17456-17472, 2022.

[26] Pratyusha Sharma, Jordan T Ash, and Dipen-
dra Misra. The truth is in there: Improving
reasoning with layer-selective rank reduction. In
The Twelfth International Conference on Learn-
ing Representations, 2023.

[27] Noam Shazeer, Azalia Mirhoseini, Krzysztof
Maziarz, Andy Davis, Quoc V. Le, Geoffrey E.
Hinton, and Jeff Dean. Outrageously large neural
networks: The sparsely-gated mixture-of-experts
layer. 2017.

[28] Nikita Sorokin, Dmitry Abulkhanov, Sergey
Nikolenko, and Valentin Malykh. Cct-code:
Cross-consistency training for multilingual clone
detection and code search, 2023.

[29] Surat Teerapittayanon, Bradley McDanel, and
Hsiang-Tsung Kung. Branchynet: Fast infer-
ence via early exiting from deep neural networks.
In 2016 23rd international conference on pat-
tern recognition (ICPR), pages 2464-2469. IEEE,
2016.

[30] Hugo Touvron, Thibaut Lavril, Gautier Izacard,
Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Roziére, Naman Goyal,
Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv
preprint arXiw:2302.13971, 2023.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Fukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information
processing systems, 30, 2017.

[32] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong,
Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and
Jie Tang. Codegeex: A pre-trained model for
code generation with multilingual evaluations on
humaneval-x, 2023.

