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Abstract

Mixture of Experts is a well-known tech-001
nique in machine learning and is widely002
used to empower large language models.003
Unfortunately, it requires a lot of resources004
to train experts. To weaken this require-005
ment, we propose a modification to the006
architecture of pretrained LLMs we call self007
Mixture of Experts (self-MoE), which is008
a mixture of experts with all the experts009
being the same exact model. This adjust-010
ment adds a handful of weights and yields011
a significant improvement in model perfor-012
mance. We evaluated self-MoE on mathe-013
matical reasoning and code generation and014
observed significant improvements across015
various benchmarks. We plan to publish016
the training code and the model weights017
upon acceptance.018

1 Introduction019

Over the past three years, the field of large lan-020
guage models has experienced rapid advancements021
with the introduction of the Generative Pre-trained022
Transformer (GPT) [3]. These models have demon-023
strated exceptional performance across a wide range024
of tasks, capturing the attention of researchers and025
practitioners worldwide. A significant leap in the026
development of large language models was marked027
by the emergence of other models such as Gemini,028
Llama, and Mistral, which aimed to build upon the029
achievements of the GPT series.030

Mistral AI, a company specializing in language031
models, took a novel approach with the release of032
their latest model Mixtral [15]. This is a sparse033
mixture-of-experts network that combines multiple034
Mistral models, each trained on specific domains,035
into a single unified model. Mixtral uses a feed-036
forward block as a router network, which selects037
two of eight groups to process each token and com-038
bines their outputs, increasing model parameters039
while controlling cost and latency. This results in a040
model that performs exceptionally well across mul-041
tiple tasks, providing a more comprehensive and042
versatile solution for a wide array of applications.043

Our proposed idea is inspired by two recent pub- 044
lished works, the aforementioned Mixtral of Ex- 045
perts [15] and LASER [26] papers. The first paper 046
demonstrates that the incorporation of multiple 047
MLP layers to the decoder in the model’s architec- 048
ture can significantly improve its ability to handle a 049
wide range of tasks. By allowing each decoder layer 050
to contribute to the final output, the model can 051
better adapt to different input domains, leading to 052
improved performance and generalization capabili- 053
ties. The LASER paper highlights a potential issue 054
in LLMs, where information from earlier decoder 055
layers can be forgotten or distorted as the model 056
progresses through subsequent layers. 057

We propose a novel addition to the LLMs archi- 058
tectures called self Mixture of Experts (self-MoE). 059
This method combines the output of each decoder 060
layer with the output of the previous decoding layer 061
through additional gates. By merging each two se- 062
quential decoder layers as two experts from a single 063
model, we aim to improve the performance of the 064
model while reducing its complexity. The use of 065
gates enables the model to selectively merge the out- 066
puts of each decoder layer, creating a more dynamic 067
and adaptive system. 068

We evaluate our method on code generation and 069
natural language mathematics benchmarks and 070
demonstrate significant quality boost for self-MoE 071
compared to baselines. In general, our contribu- 072
tions can be summarized into following: 073

1. We propose self-MoE, a simple and effective ap- 074
proach to improve pretrained language model 075
performance. 076

2. We present a thorough investigation of various 077
gate types and demonstrate their impact on the 078
evaluation benchmarks, while also introducing 079
a method for gates positioning selection. 080

3. We show that our method achieves improved 081
results on diverse benchmarks, including math 082
problem solving and code generation. 083

2 Related work 084

Routing Networks. In routing networks input to- 085
kens are transformed by dynamically engaging with 086

1



a select subset of network parameters. This charac-087
teristic is commonly found in sparsely-activated net-088
works, but also applies to networks featuring early089
exits. This concept resembles out gating mecha-090
nism, since both methods are skipping intermediate091
layers, but instead of routing we use averaging.092

In papers exploring early exits, models learn093
to determine the optimal point to terminate com-094
putation, enabling the token to bypass subsequent095
transformer layers. This idea first emerged in CNNs096
[29], where branch modules are inserted at various097
exit points within a deep learning network. In098
[13, 20] authors explored idea of anytime predic-099
tions in convolutional networks, which reduced total100
computation. Then early exiting was explored in101
language models for both its inference [25, 8], where102
it is proposed to use early exit loss or local confi-103
dence measures to speed-up inference, and training104
[7, 19], where dedicated LM head was added for105
each decoder layer in an encoder-decoder model.106
In [24] routers are used to choose among potential107
computational paths. This approach shares similar-108
ities with ours, but differs in its use of probabilistic109
routing mechanisms, whereas we employ summa-110
tion. Moreover, our primary focus is on improving111
the quality of generations, rather than optimizing112
computational efficiency.113

Mixture of Experts was explored in [6] as a114
component of deeper networks, enabling large and115
efficient models. Idea of dynamic component activa-116
tion based on input tokens led to [27] where the idea117
was scaled to a 137B LSTM by introducing spar-118
sity, achieving fast inference at high scale. However,119
this work faced challenges like high communication120
costs and training instabilities. Currently in the121
usual sense MoE consists of two main components:122
sparse MoE layers that replace traditional dense123
feed-forward network layers, and a gate network124
or router that determines which tokens are sent to125
which expert. Mixtral proposed in [15] uses router126
network which selects two experts to process the cur-127
rent state and combine their outputs for each token.128
In such method information is extracted from de-129
coders broadwise, leveraging parallel outputs from130
multiple experts; in contrast, our approach involves131
extracting information from decoders by going in132
depth, combining outputs from sequential decoders.133

2.1 Knowledge from earlier layers134

Language models have been observed to suffer from135
forgetting, where knowledge acquired in earlier lay-136
ers is lost as the model progresses to later layers137
[26]. Recent studies shows that specific knowledge138
is preserved in intermediate layers, for example139
space and time representations [11] are learned and140
stored across multiple scales. Experiments in [17]141
reveal that LLMs encode more context knowledge142
in upper layers, initially focus on knowledge-related143

entity tokens in lower layers, and gradually forget 144
earlier context knowledge in intermediate layers 145
when presented with irrelevant evidence. Results 146
from [16] show that simpler tasks can be probed in 147
shallow layers, while more complex tasks require 148
deeper layers for accurate understanding. The pre- 149
sented works suggest that earlier layers of the model 150
often contain information that would be useful for 151
forming the final generation. 152

3 Method 153

In this section, we briefly discuss the latest Large 154
Language Models (LLMs) architectures, focusing 155
on Llama and Mistral. We present additional gates 156
as addition to transformer acrhitecture and explain 157
how to build a self-MoE model and utilize it. Lastly, 158
we examine various types of gates that we’ve ex- 159
plored in our research. 160

3.1 LLMs review 161

The LLMs architectures we examined are vast 162
decoder-only transformer models with billions of 163
parameters. These models are trained on extensive 164
datasets, containing billions or even trillions of to- 165
kens [23]. The design of these models encompasses 166
an embedding layer that transforms each token into 167
a latent vector. These vectors are then processed 168
through decoder layers to forecast the succeeding 169
token. This process is repeated (autoregressively) 170
to produce the final answer. Each transformer 171
decoder layer comprises a self-attention layer, an 172
MLP block, and a normalization layer [31]. The 173
model concludes with a head layer that translates 174
the output embedding vector into the distributed 175
probabilities of the upcoming token. In essence, 176
the primary distinction between the Llama [30] and 177
Mistral [14] models lies in their attention mecha- 178
nisms. While both models share a highly similar 179
overall architecture, Mistral distinguishes itself by 180
employing grouped query attention (GQA) and 181
sliding window attention. 182

3.2 self-MoE 183

In essence, the self-MoE concept is an extension of 184
the traditional Mixture of Experts (MoE) model. 185
However, rather than combining different models in 186
the MLP section, self-MoE merges decoder layers. 187
This is achieved by incorporating gates between 188
them, leading to a minimal increase in the number 189
of training parameters - approximately 200M for 190
7B models. Fig. 1 shows the integration of the gates 191
into the LLMs architecture as we mentioned above. 192

Assuming we have a standard transformer de- 193
coder model consisting of n blocks, the conven- 194
tional large language model (LLM) during forward 195
pass at each transforms the the input n times by 196
sequentially applying blocks on previous outputs: 197

hi = Bi(hi−1). (1) 198
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Figure 1: The figure schematically shows the architecture of a modified transformer decoder block. The
proposed adjustment is an additional trainable gate, which is a direct connection between the input and
output of a decoder. In section 3.3 we demonstrate how gates differ from skip-connections.

Within each block, there are self-attention and MLP199
blocks with skip connections.200

Self-MoE introduces an additional G gate layer201
that takes the output of the previous decoder layer202
and combines it with the output of the current203
decoder layer as follows:204

hi = Bi(hi−1) +Gi(hi−1). (2)205

206

When it comes to applying this concept to an207
LLM with n layers, it necessitates the use of n− 1208
gates, following the same approach. There are209
two primary paths to pursue from this point. The210
first is to concentrate on accelerating the model’s211
inference by enabling it to select a single path, either212
through the gate or the subsequent decoder layer,213
rather than employing both. However, this would214
necessitate training the initial model from scratch215
with the gates or, at the very least, on a substantial216
amount of data. Our primary objective, though, is217
to achieve performance comparable to Mixtral with218
a minimal increase in the number of parameters219
and nearly the same latency as the base 7B model.220
To accomplish this, we initialize the Gates’ weights221
to zero, causing 2 to revert to the base model’s 1222
at the beginning of the training.223

3.3 Gates224

In this section, we will discuss two distinct subjects.225
Firstly, we will examine the types of gates utilized226
in our system. Subsequently, we will illustrate the227

process of determining which gates to retain or 228
discard following the training phase. 229

Gates type We experimented with three distinct 230
gate types to demonstrate that the self-MoE con- 231
cept is not solely dependent on the additional skip 232
connection, but also on the specific type of gate 233
utilized. 234

1. Matrix Linear Gate Layer: The input dimen- 235
sion of this layer corresponds to the input di- 236
mension of the decoder layer, while the output 237
dimension is equivalent to the output dimen- 238
sion of the decoder. 239

2. Vector Linear Gate Layer: Each channel of the 240
input dimension in this layer has a single value 241
that is allowed to pass through. 242

3. Single value Gate layer: The output of the 243
previous layer is multiplied element-wise by a 244
single trainable parameter and then added to 245
the output of the subsequent layer. 246

Gates selection After training we can eliminate 247
certain gates that do not significantly contribute to 248
model performance. To accomplish this, we employ 249
a simple yet effective approach of evaluating the 250
changes in perplexity throughout the layers for a 251
portion of the training set (calibration data). We 252
utilize language model head as a projection layer 253
to map each hidden state, both before and after 254
incorporating the gates’ output, into the output 255
space. Subsequently, we compute the perplexity for 256
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Model GSM8k MATH MMLU-STEM

mistralai/Mistral-7B-v0.1 0.378 0.129 -
w/o self-MoE 0.398 0.147 0.65
with self-MoE 0.419 0.146 0.67

mistralai/Mistral-7B-Instruct-v0.2 0.400 0.103 -
w/o self-MoE 0.410 0.123 0.60
with self-MoE 0.431 0.125 0.60

meta-llama/Meta-Llama-3-8B 0.458 0.150 -
w/o self-MoE 0.434 0.150 0.61
with self-MoE 0.476 0.167 0.64

microsoft/Phi-3-mini-128k-instruct 0.695 0.224 -
w/o self-MoE 0.699 0.265 0.62
with self-MoE 0.700 0.269 0.62

Table 1: Comparison of fully trained base models and same models trained with self-MoE. Our method
demonstrates quality improvements across all baselines. For the base Meta-Llama-3-8B, full training
degrades its mathematical problem-solving abilities, whereas self-MoE provides a significant boost.

both scenarios and determine the average across257
all calibration data. Finally, we discard the gates258
that exhibit minor changes in perplexity values. In259
other words, assume that we have a two hidden260
states ht and ht−1, let us denote to the gates as G261
function, and the lm_head as proj. For an input262
x we calculate the perplexity perp as follows:263

pt1 = perp(proj(ht)x, x), (3)264

where proj(ht)x is the projection of the hidden265
state at layer number t of an input x, pt1 is the266
perplexity value without gates at layer t.267

pt2 = perp(proj(ht +G(ht−1))x, x). (4)268

Then we decide to keep the gates or drop as follows269
for each decoder layer t:270

Gt =

{
0, if pt2 ≤ pt1

Gt, otherwise.
(5)271

Gates vs skip connections Let us dive into the272
changes through the hidden state hi−1 as an input273
to a decoder layer. At the first attention part Att274
we can define the intermediate output A as follows:275

A = Att(norm1(hi−1)) + hi−1. (6)276

We pass the attention output to the MLP layer mlp277
with another skip connection so the current hidden278
state hi is calculated as follows:279

hi = mlp(norm2(A)) +A, (7)280

substituting 6 in 7 we get:281

hi = mlp(norm2(A)) + Att(norm1(hi−1)) + hi−1.
(8)282

It is obvious that adding a skip connection will not283
have any impact. From 2 and 8, we can formulate284
self-MoE as follows:285

hi = mlp(norm2(A))+ 286

Att(norm1(hi−1)) + hi−1 +Gi(hi−1). (9) 287

The self-MoE can be perceived as a trainable lin- 288
ear selector that assigns weights to the previously 289
obtained information. This approach offers two 290
primary advantages: 291

1. When the weighting values are high, it can be 292
considered as two experts collaborating to gen- 293
erate the output, similar to the MoE method. 294

2. When the weighting values are low, it can be 295
perceived as a trainable Laser method. 296

4 Experiments 297

To assess the efficiency of the self-MoE we do full- 298
model training of various architectures across a 299
range of tasks. We focus on two domains while 300
comparing our proposed architectures with base 301
transformer models trained on specific data. The 302
two tasks are mathematical problem-solving and 303
code generation. 304

4.1 Math Evaluation 305

The first domain is mathematical problem-solving. 306
We use benchmarks which are commonly used for 307
evaluating mathematical and logical abilities in 308
language models [2, 18]: GSM8K [5] - one of the 309
benchmarks listed on the Open LLM Leaderboard, 310
MMLU-STEM - a subset of STEM subjects defined 311
in MMLU, and MATH, consisting of challenging 312
competition mathematics problems [12]. 313

Our goal is to test the hypothesis that the adding 314
of gates enhances the model’s task understanding, 315
independent of its architecture. To validate this 316
assertion, we select a diverse set of baselines of 317
varying size, which is used for evaluation. During 318
evaluation we minimize the base model capabilities 319
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Model Params Python C++ Java JS Go AVG

deepseek-coder-1.3b 1.3B 33.8 20.2 30.7 28.3 30.1 28.62
w/o self-MoE 1.3B 34.1 23.5 31.7 27.8 30.3 29.48
with self-MoE 1.4B 37.3 24.1 33.1 31.6 30.9 31.40

deepseek-coder-6.7b 6.7B 40.1 30.3 38.7 35.6 39.8 36.90
w/o self-MoE 6.7B 43.6 31.5 40.0 34.2 39.3 37.72
with self-MoE 7.3B 44.2 32.7 41.8 33.3 38.7 38.14

Table 2: Pass@1 scores for base models and self-MoE models across different programming languages in
HumanEval-X. For smaller deepseek model training with self-MoE enhances code generation for each
of the six selected programming languages. For model with 6.7B parameters, the baseline model shows
better results for JavaScript and Go.

Model Params GSM8k MATH MMLU-STEM
Meta-Llama-3-8B 8B 0.458 0.150 -

Matrix Linear Gate 8.5B 0.476 0.170 0.64
Vector Linear Gate 8B 0.489 0.161 0.62
Single value Gate 8B 0.489 0.162 0.62

Table 3: Comparison of different gate types for meta-llama/Meta-Llama-3-8B model on math benchmarks.
Vector Linear and Single value Gate types demonstrate a significant improvement in quality on the GSM8K
benchmark, despite having nearly as many parameters as the baseline model.

in a particular task, which allows us to isolate the320
impact of fine-tuning and architectural features on321
task performance. We deliberately choose models322
with a low likelihood of having mathematical data323
from the benchmarks in their training sets. No-324
tably, our selection of models comprises some of325
the most recent and compact open-source models,326
including Mistral-7B-v0.1, Meta-Llama-3-8B, Phi-327
3-mini-128k-instruct, and Mistral-7B-Instruct-v0.2,328
which represent the latest top-performing models329
in their class.330

Models are trained on Orca-Math [22], which331
is a high quality synthetic dataset of 200K math332
problems. We choose to train models with Matrix333
Linear Gates. All models are trained on A100 40Gb334
GPUs, using a combination of data and model335
parallelism. Models are trained with a context336
length of 1024, a batch size of 1, and gradient337
accumulation of 64, spanning 128000 iterations (∼2338
epoches). Optimization is performed with AdamW339
[21] with a learning rate of 2.5 × 10−6 and 12800340
warmup steps.341

Results are provided in Table 1. The self-MoE342
improves the performance of all base models, par-343
ticularly the Mistral models. Our method signifi-344
cantly enhances the model’s abilities compared to345
models trained without gates.More specifically, the346
improvement on GSM8K benchmark for Mistral is347
10% for 0.5B additional parameters.348

4.2 Code Evaluation349

For evaluating the effectiveness of the self-MoE ap-350
proach in code generation tasks, we utilized the351
HumanEval-X [32] benchmark. This benchmark is352

designed to assess the multilingual capabilities of 353
code generation models by focusing on the func- 354
tional correctness of the generated programs, rather 355
than just semantic similarity. 356

HumanEval-X comprises 820 high-quality human- 357
crafted samples, each accompanied by test cases. 358
The benchmark covers multiple programming lan- 359
guages, including Python, C++, Java, JavaScript, 360
and Go. Each sample in HumanEval-X consists of 361
a declaration, docstring, and solution, which can 362
be combined in various ways to support different 363
downstream tasks such as code generation. The 364
model uses the declaration and docstring as input 365
to generate the solution. 366

The primary metric used for evaluation is the un- 367
biased pass@1 metric proposed in Codex [4], which 368
measures the functional correctness of the generated 369
code across multiple attempts. 370

We trained and evaluated DeepSeek models [10]. 371
The training data was mined from GitHub and fil- 372
tered using heuristics and a code embedding model 373
to closely match the distribution of HumanEval-like 374
data. 375

The filtering approach involves using a pretrained 376
unsupervised CCT [28] encoder to select [1] rele- 377
vant data by measuring vector similarity between 378
embeddings of mined GitHub code and multilingual 379
data from MBPP and similar benchmarks. This 380
resulted in a dataset that is more aligned with the 381
tasks presented in HumanEval-X and consist of 20k 382
examples . 383

We observed improvements in code generation 384
quality across most programming languages when 385
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Python C++ Java JS Go

deepseek-coder-1.3b 33.8 20.2 30.7 28.3 30.1
Matrix Linear Gate 37.3 24.1 33.1 31.6 30.9
Vector Linear Gate 33.8 24.7 35.7 32.8 30.3
Single Value Gate 35.3 24.7 32.9 29.0 31.5

Table 4: Comparison of different gate types for deepseek-ai/deepseek-coder-1.3b model in HumanEval-X.
On average, Vector Linear Gate provides the highest improvement to the metric values.

applying the self-MoE approach. The self-MoE386
models demonstrated better performance in terms387
of functional correctness compared to their base388
counterparts. This improvement can be attributed389
to the enhanced ability of the self-MoE architecture390
to capture and utilize information from earlier layers391
more effectively.392

The results are summarized in Table 2, showing393
the pass@1 scores for different models and config-394
urations. More specifically, the improvement on395
C++ benchmark for the 1.3B deepseek model is396
about 20% for 0.1B additional parameters.397

Overall, the self-MoE approach consistently en-398
hances the performance of the models, particularly399
in complex code generation tasks, demonstrating400
its efficacy in improving the quality of generated401
code.402

4.3 Ablation Study403

We find that adding self-MoE improves performance404
over the base model, therefore we investigate if we405
can further improve by changing the gates configu-406
ration. In this section we conduct an ablation study407
where we experiment with the type of gate and its408
selection, and find the most optimal self-MoE struc-409
ture.410

4.3.1 Gates Type411

We compare different types of gates proposed in412
section 3.3 on both math solving (Table 3.3) and413
code generation (Table 4) tasks. Our results show414
that no single type of gate consistently outperforms415
others across all benchmarks. However, Vector416
Linear Gate and Single Value Gate have signifi-417
cantly fewer parameters, with approximately the418
same number as the base model. This suggests that419
these type of gates can be used to save resources420
without sacrificing performance.421

4.3.2 MoE vs Self-MoE422

In Table 5 we compare our method with origi-423
nal Mixture of Experts on mathematical problem-424
solving task. We pick the original Mistral-7B model425
and modify it as follows: the first model is enhanced426
with the self-MoE method, while the second is ob-427
tained by merging two identical base models using428
MergeKit [9] into an MoE model. Both versions429
are trained on the Orca-Math data with same pa-430
rameters as described in section 4.1.431

The comparison on all three benchmarks reveals 432
a significant improvement in mathematical problem 433
solving, with the self-MoE model achieving this 434
improvement with a substantially smaller number 435
of parameters (8.5B vs 13B). 436

4.3.3 Gates selection 437

Based on our earlier discussion in Section 3.3, we 438
employ perplexity analysis across all layers to de- 439
termine whether to retain or discard gate for each 440
decoder layer in the model. By comparing the per- 441
plexity changes with and without gates across the 442
layers we find that the disparity in perplexity be- 443
comes evident beyond the 18th layer for Mistral and 444
16th layer for Llama3. Therefore, we eliminate all 445
Gates preceding these layers for models we trained 446
with self-MoE. The outcomes of implementing our 447
proposed method are depicted in Table 6. 448

4.4 Qualitative results 449

The proposed adjustment demonstrated enhanced 450
performance across a diverse range of tasks, but 451
it is equally crucial to evaluate its efficacy on fun- 452
damental mathematical tasks, as an example we 453
show on Fig. 2 a comparison of solving a quadratic 454
equation with two variables. we present the gener- 455
ated answers using three distinct Mistral models. 456
The first model is trained with the proposed gates, 457
the second model is a hybrid Mixtral-based model 458
combining two Mistral models, and the third model 459
is a Mistral model trained with additional gates. 460

5 Conclusion 461

We present the self-MoE method based on incorpo- 462
rating gates between decoder layers in LLM archi- 463
tecture and show its versatility across various base 464
models. Proposed method demonstrate significant 465
improvement in performance on different bench- 466
marks in mathematical reasoning and code genera- 467
tion, while requiring minimal additional resources 468
to train. Notably, our approach outperforms the 469
Mixtral of Experts model, which requires training 470
multiple distinct experts, thereby making it a more 471
efficient and effective solution for empowering large 472
language models. 473
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Figure 2: The figure showcases the performance of three distinct models when tested with a basic
mathematical problem. The left-hand side displays the solution provided by a Mistral model equipped
with the proposed gates. The middle section shows the response from a Mixtral model, which is comprised
of two Mistrals. Lastly, the right-hand side showcases the answer given by a Mistral model that was
trained without gates. The bottom left corner highlights the mean activation of the final layers for Mistral
models, both with and without gates.
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GSM8k MATH MMLU-STEM

Mistral-7B-v0.1 0.378 0.129 -
MoE 0.407 0.135 0.65
self-MoE 0.419 0.146 0.67

Table 5: Comparison between MoE and self-MoE methods when trained on the same dataset. Our method
outperforms on mathematical benchmarks, despite having nearly half the number of parameters compared
to the Mixtral model.

Model Gates Selective Gates GSM8k

Mistral-7B-Instruct-v0.2 0.410
Mistral-7B-Instruct-v0.2 ✓ 0.431
Mistral-7B-Instruct-v0.2 ✓ ✓ 0.437
Meta-Llama-3-8B 0.458
Meta-Llama-3-8B ✓ 0.476
Meta-Llama-3-8B ✓ ✓ 0.480

Table 6: The impact of gates and selective gates based on perplexity analysis. Removing gates from earlier
decoders boosts models’ performance.

Limitations474

The methodology and experiments detailed in475
this paper have certain limitations. Notably, our476
method shows a significant improvement in perfor-477
mance only on specific tasks and we cannot guar-478
antee that this advance will transfer entirely to479
more general tasks. Moreover adding gates to the480
model is associated with increase of model size and481
therefore higher resource consumption, however we482
provide various gate types where such increase is483
minimal.484
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