
.janicre: A Log-Scale, Reversible Semantic-Commit Manifest
for Multi-Agent Software Reasoning

Anonymous ACL submission

Abstract001

Large language models (LLMs) promise002
repository-scale assistance, yet real projects003
routinely exceed 128 k-token windows and004
fragment key logic across heterogeneous files.005
Existing techniques—RAG pipelines, chun-006
ked retrieval, or brute-force long-context007
prompting—either leak code, stumble on008
cross-file reasoning, or incur quadratic cost.009

We realise .janicre via an arbitrary-depth010
abstraction pipeline (Stage 1 . . . k), whose cu-011
mulative JSON snapshots plus an HTML se-012
mantic map form the final manifest; stopping013
at any depth trades tokens for detail while the014
worst-case growth remains Θ(logN).015

Beyond human-to-LLM use, .janicre016
functions as a model-agnostic exchange017
layer: distinct agents (GPT-4o, Claude, Gem-018
ini, etc.) can inspect the same manifest, attach019
thinking_trace logs, and negotiate ed-020
its—enabling true agent-to-agent (A2A) col-021
laboration without exposing raw source. Cou-022
pled with git-like semantic diffs, the manifest023
becomes a living memory of design rationale024
that is auditable by both machines and hu-025
mans.026

We formalise the schema, analyse its027
compression bounds, and outline an em-028
pirical plan—HumanEval, MBPP, and029
delta-stability benchmarks—to compare030
.janicre–augmented reasoning against031
standard retrieval and full-file prompting.032

.janicre thus upgrades IR-level code033
summarisation into a universal, dialogue-034
ready substrate for large-scale, multi-agent035
software intelligence.036

Highlight: .janicre abstracts multi-037

language codebases into a logN -scale manifest038

that aligns with transformer reasoning and agent039

collaboration—without code leakage. It bridges040

human design intent and LLM reasoning via a041

real-time semantic interface.042

1 Introduction 043

1.1 Problem Context 044

LLM assistants have two systemic bottlenecks: (i) 045

token budgets (>128 k tokens are still dwarfed 046

by modern repositories) and (ii) fragmentation— 047

domain logic is scattered across files, packages, 048

and services. Current practice therefore relies on 049

ad-hoc snippets or retrieval pipelines, risking both 050

context loss and code leakage. 051

1.2 Compression Inspiration: From MP3 052

and MP4 to Code Semantics 053

Just as MP3 compresses audio by removing 054

frequencies imperceptible to humans, and MP4 055

compresses video by encoding delta frames and 056

keyframes, .janicre compresses code by ex- 057

tracting only semantically relevant units. These 058

units represent the purpose and behavior of the 059

system in a compact and interpretable form. This 060

mirrors the design goal of enabling LLMs to fo- 061

cus on core logic rather than superficial syntax, 062

providing an efficient input representation aligned 063

with human intuition and transformer attention. 064

1.3 Limitations of Existing Approaches 065

Retrieval-augmented generation (RAG) retrieves 066

relevant snippets (Lewis et al., 2020) but strug- 067

gles with cross-file reasoning due to limitations in 068

context aggregation, such as chunk-based retrieval 069

that fragments inter-file dependencies. Long- 070

context models (Dong et al., 2023) reduce manual 071

selection but incur quadratic computational costs 072

in transformer attention and degrade on gigabyte- 073

scale repositories due to inefficiencies in scaling 074

long sequences. 075

1.4 Transformer-centric Abstraction 076

Rather than a fixed three-step recipe, we allow a 077

variable-depth cascade: Stage 0 (raw code) → 078

Stage 1 (AST) → Stage 2 (purpose) → · · · → 079

1

Figure 1: High-level overview of .janicre: (left) multi-stage semantic compression with Θ(logN) attention;
(right) mapping to the classical SDLC V-model.

Stage k (intent, theory). Each step retains only080

the attention-anchoring tokens (names, types, key-081

words), analogously to how MP3 preserves audi-082

tory maskers. Each stage is stored as a reversible083

semantic commit, enabling loss-bounded round-084

trip across abstraction depths. Because k can085

be capped at O(logN), the pipeline still yields086

Θ(logN) tokens in the worst case, yet lets prac-087

titioners exit early when smaller windows suffice.088

To enhance transformer alignment, we define a089

soft attention prior between semantic units based090

on their abstraction depths. Specifically, we com-091

pute the attention weight between unit i and j as:092

wi,j = exp(−α · |di − dj |), Ai,j =
wi,j∑
j wi,j

093

where di denotes the abstraction depth of unit i,094

and α is a tunable decay factor. This encourages095

intra-stage attention and smooths cross-stage tran-096

sitions, aligning the attention pattern with the un-097

derlying semantic hierarchy.098

1.5 Our Contribution099

A Unified Time-Aware Interface for LLM100

Reasoning101

Unlike static representations, .janicre intro-102

duces a time-aware, dialogue-based manifest that103

models not just software structure, but its de-104

sign rationale across time. This enables LLMs105

to interpret codebases as evolving conversa-106

tions—aligning each unit with a reasoning turn 107

and associated expectation. 108

Moreover, .janicre supports dynamic com- 109

pression control, allowing the manifest to adapt its 110

granularity based on context: high-detail traces for 111

chain-of-thought reasoning, and compact struc- 112

tural summaries for fast inference or retrieval. 113

This flow-sensitive abstraction turns .janicre 114

into a scalable LLM interface, bridging software 115

design, memory, and attention cost. 116

Together, these features establish .janicre 117

as a temporal-semantic interface between software 118

systems and large language models. 119

1.6 Our Contribution 120

1. Schema. We define .janicre, a man- 121

ifest that compresses repository intent into 122

O(logN) tokens. 123

2. CLI. An open-source generator produces man- 124

ifests for Python / C++ projects; Rust/Go plug- 125

ins are planned. 126

3. Security. Only derived metadata crosses the 127

firewall, preventing proprietary code exposure. 128

2 Prompt-oriented DSLs 129

Syntactic IRs. Early LLM-for-code studies rely 130

on syntactic representations such as ASTs (Code- 131

BERT) or CFGs (GraphCodeBERT). These IRs 132

expose parse-tree structure but seldom encode in- 133

tent, semantics, or cross-module relationships. 134

2

Prompt-oriented DSLs. More recent work135

shifts to prompt engineering DSLs (e.g., agent136

scripts, Toolformer graphs). While flexible, these137

DSLs are imperative and often tied to a specific138

runtime, limiting reuse across projects.139

.janicre: a semantic, declarative IR. Our140

schema occupies the gap between the two trends:141

• Semantic layer – captures purpose, I/O con-142

tracts, and module hierarchy, not just syntax.143

• Declarative form – JSON/YAML manifest144

aligns with transformer attention, enabling145

token-efficient reasoning (O(logN) tokens).146

• LLM-friendly graph – unit-level nodes and147

explicit edges mirror token-level attention148

(Vaswani et al., 2017).149

Recent frameworks such as PDL (Chen et al.,150

2024), LangGPT (Wang et al., 2024), and Doc-151

CGen (Pimparkhede et al., 2024) define declar-152

ative layers for modular LLM interaction and153

document-conditioned code generation. These ap-154

proaches improve prompt composability, yet typ-155

ically remain imperative, runtime-tied, or file-156

local. In contrast, semantic-commit and time-157

aware intermediate representations—structured to158

persist abstraction history—remain largely unex-159

plored.160

The .janicre schema is not merely a de-161

scriptive manifest, but a structurally optimized in-162

termediate format for LLM-based reasoning.163

First, we choose JSON/YAML as the base for-164

mat for the following reasons:165

• LLM Compatibility: Transformer-based166

LLMs attend over token sequences, and167

key–value structured formats (like JSON) yield168

stable and predictable attention paths, helping169

models form logical groupings during inference.170

• Multilingual Metadata Extraction: Lan-171

guages such as Python, JavaScript, Rust, or172

Go expose ASTs that can be naturally mapped173

to JSON, enabling unified structural representa-174

tion.175

• Declarative Abstraction: Unlike impera-176

tive code, this schema allows systems to177

be described independently of runtime execu-178

tion—capturing semantics and modular rela-179

tionships.180

Moreover, we treat all software as ultimately a 181

composition of input-output transformations. This 182

aligns with the principle that LLMs operate effec- 183

tively when provided with structured descriptions 184

of units, each explicitly named and ordered. For 185

example: 186
187

"units": ["startGame", "endGame", " 188
spawnEnemy"] 189

‘‘‘ | A simplified excerpt is shown 190
below: 191

‘‘‘json 192
"units": ["startGame", "endGame", " 193

spawnEnemy"], 194
"commit_meta": { 195
"timestamp": "2025-05-20T12:34Z", 196
"depth": 3 197

} 198199

Such structure enables LLMs to attend across 200

unit boundaries and predict interactions more ac- 201

curately. 202

This design echoes attention-based reasoning, 203

as introduced in (Vaswani et al., 2017), and 204

adapts it to LLM–software interfaces. Rather than 205

prompt full source files, we create interpretable 206

hooks for the model to follow. 207

Moreover, while the core .janicre schema 208

is formally defined, we consider any simplified 209

variants (e.g., flat representations), partial modu- 210

lar forms, or implementation-specific adaptations 211

to be legitimate extensions under the same con- 212

ceptual framework. These derived or restructured 213

formats remain within the scope of our proposal as 214

long as they preserve the semantic objectives and 215

hierarchical abstraction principles defined herein. 216

2.1 Preliminary Observation 217

A manually structured Shogi engine (˜2GB) sug- 218

gests a 97% token reduction when encoded via 219

.janicre, compared with full-file prompting. 220

Schema Overview. The .janicre manifest 221

describes a software system’s purpose, compo- 222

nents, and logic in a JSON/YAML format op- 223

timized for LLM reasoning. Each manifest 224

includes fields such as global objective, 225

code sharing, and code logic, which sum- 226

marize the architecture, I/O contract, and compu- 227

tational units. 228

A simplified excerpt is shown below: 229
230

"units": ["startGame", "endGame", " 231
spawnEnemy"] 232233

The manifest’s complete structure—including 234

global objective, code sharing, and 235

3

detailed code logic units—is provided in the236

supplementary file example.janicre.json.237

Modular Composition. The .janicre238

schema is inherently composable. Multiple239

sub-manifests—e.g., ui.janicre for HTML240

layout and backend.janicre for Python/JS241

logic—can be referenced or included by a higher-242

level core.janicre. This enables distributed243

teams or tools to independently define interface,244

logic, and algorithms, yet produce a unified245

LLM-interpretable manifest. A merging protocol246

resolves shared objectives and unifies component247

trees and unit indexes across manifests.248

Merge respects commit order; higher-depth249

units are deterministically regenerated from lower-250

depth blobs, guaranteeing reversible abstraction251

quality.252

2.2 From Git Commits to Dialogue Units253

Traditional version control systems like Git de-254

compose software into a series of commits—each255

capturing a structural diff and accompanied by a256

descriptive message. These commits form a linear257

or branching history, enabling developers to track258

the evolution of code over time.259

.janicre draws inspiration from this idea,260

but shifts the focus from syntactic diffs to seman-261

tic intent. Each unit in a manifest acts like a262

commit: it is named, scoped, and justified. The263

optional thinking trace serves as a semantic264

commit message, recording the rationale, prompt265

context, and decision steps behind the unit’s cre-266

ation or modification.267

Unlike Git, which records lines of code,268

.janicre records units of purpose and reason-269

ing. This structure provides an audit trail for270

LLMs—not just for what changed, but why—and271

enables model-aware tools to interpret, revise, or272

simulate development at the semantic level.273

In this sense, .janicre is a Git-like protocol274

for software semantics, optimized for transformer-275

based reasoning systems. It captures code not276

merely as syntax but as a living dialogue of design277

decisions.278

2.3 Conversational Interface Inspiration279

Why Meaning Emerges Only in Dialogue.280

Transformer-based LLMs operate by predicting281

the next token, but prediction alone does not guar-282

antee semantic coherence. Given an underspeci-283

fied prompt such as ”Write about time”, RLHF-284

tuned models tend to regress toward a single, 285

safest average response that maximizes annotator 286

agreement. This phenomenon—semantic conver- 287

gence toward a median output—arises precisely 288

because the input lacks directional intent. The 289

less a prompt specifies expectation, the more 290

the model collapses meaning into neutrality. 291

Dialogue format resolves this degeneracy. Each 292

conversational turn embeds an expectation shaped 293

by context: the prior utterance narrows the man- 294

ifold of plausible continuations and forces the 295

model to align with a specific semantic target. 296

Only in dialogue can an LLM both imagine and 297

justify a precise value—because dialogue pro- 298

vides expectation. We thus view conversation as a 299

convergence protocol—a structure that transforms 300

token-level prediction into context-aligned reason- 301

ing. 302

Structural Properties of Dialogue. Beyond 303

convergence, dialogue also supplies inductive bi- 304

ases beneficial to transformer models: 305

• Turn-taking constrains the scope per utterance, 306

preventing attention from overextending. 307

• Intent segmentation frames each utterance as a 308

discrete, nameable semantic unit. 309

• Contextual grounding maintains a shared, 310

evolving state across steps. 311

These properties are not cosmetic—they scaf- 312

fold model behavior in alignment, memory, and 313

structured inference. 314

Empirical Support. This perspective is sup- 315

ported by empirical studies. Ouyang et al. demon- 316

strate that instruction-tuning via conversational 317

prompts improves model stability and alignment 318

with human preferences (Ouyang et al., 2022). 319

Christiano et al. show that turn-based feedback via 320

reinforcement learning yields more robust poli- 321

cies than one-shot or batch supervision (Christiano 322

et al., 2017). These results underscore that con- 323

versation is not merely interaction—it is optimiza- 324

tion. 325

Design Implication for .janicre. This 326

insight motivates the structural choices in 327

.janicre. Each unit—explicitly named, 328

scoped by input/output, and embedded in a 329

hierarchical context—acts as a semantic utterance 330

in a system-level dialogue. Rather than presenting 331

code as flat syntax, .janicre frames it as 332

4

intent-driven discourse. Software becomes a333

dialogue among components, and LLMs can334

reason over it not as text, but as communicative335

structure.336

Why Meaning Emerges Only in Dialogue.337

Transformer-based LLMs operate by predicting338

tokens—but prediction alone does not guarantee339

semantic coherence. In unconstrained text, the340

output space is vast and amorphous; without exter-341

nal structure, the model’s generation lacks a center342

of gravity.343

Conversational format resolves this. Each turn344

imposes an expected response, compressing the345

space of plausible outputs and forcing the model to346

converge toward semantically meaningful values.347

It is only within dialogue that an LLM can both348

imagine and justify a specific value—because349

dialogue embeds expectation.350

In essence, the act of dialogue is a convergence351

protocol: a structural constraint that transforms352

token-level prediction into intent-aligned imagi-353

nation. We posit that conversation is not merely354

a UX design, but the minimal viable structure355

under which large language models can produce356

grounded meaning.357

This motivates our design of .janicre. By358

treating each software unit as a scoped utter-359

ance—with name, purpose, and contract—it mir-360

rors the same structure that enables LLMs to think.361

Software becomes a dialogue between compo-362

nents, and LLMs can reason about it not as code,363

but as communicative structure.364

3 Reference Implementation &365

Multi-Stage Pipeline366

3.1 Pipeline Overview367

We implement a generator janicre-cli that368

emits Stage-i JSON files (i = 1 . . . k), each rep-369

resenting a progressively abstracted view of the370

codebase—from raw ASTs to high-level semantic371

units. This cascade allows developers to tune to-372

ken granularity, stopping at any Stage-j to fit con-373

text limits while preserving structural clarity.374

Language-Agnostic Design. Unlike language-375

specific tools, janicre is not bound to any par-376

ticular syntax or ecosystem. It supports Python,377

JavaScript, HTML, Vue, and even domain-specific378

DSLs. Each Stage-i manifest shares a unified379

schema capturing purpose, input/output contracts,380

and modular hierarchy, enabling LLMs to reason381

consistently across heterogeneous systems. Future 382

extensions may support Rust, Go, and declarative 383

formats like YAML or Terraform. 384

HTML Semantic Map. All Stage-i JSONs are 385

merged into an interactive HTML canvas powered 386

by Vue. Clicking a unit reveals its source ref, 387

editing its purpose live-updates the underly- 388

ing JSON, and exporting yields a consolidated 389

.janicre. This interface offers both machine- 390

parsable structure and human-navigable seman- 391

tics—bridging reasoning and authoring within a 392

single workflow. 393

4 Semantic Commits & Thought Trace 394

To extend .janicre beyond static manifest, we 395

introduce thinking trace—a per-unit log of 396

reasoning steps and LLM prompts that shaped 397

each commit. 398

This allows: 399

• traceable origin of unit definitions (e.g., spawn 400

logic); 401

• comparison across models (e.g., GPT vs 402

Claude); 403

• intent continuity under refactoring or future evo- 404

lution. 405

Just as Git preserves structural diffs, 406

.janicre maintains conceptual diffs across 407

units. This enables semantic scaffolding for LLM 408

pretraining, where prompt-response pairs can 409

serve as alignment records. 410

Git-style Correspondence. We model each unit 411

as a semantic commit, allowing .janicre to 412

function as a time-aware versioning interface for 413

LLMs. The correspondence is as follows: 414

• Commit message → thinking trace ratio- 415

nale 416

• Diff → semantic delta between abstraction 417

depths 418

• Timestamp → temporal ordering of abstrac- 419

tions 420

By merging structure with discourse, 421

.janicre becomes not just a snapshot—but a 422

living memory of design evolution. 423

5

5 Token and Security Analysis424

Let c (0 < c < 1) be the empirical geometric de-425

cay factor, empirically observed as c ≈ 0.25 in426

our corpus. We model the token count at abstrac-427

tion depth i as:428

Ti = ciN429

where N is the original token count at Stage 0.430

This geometric decay reflects progressive seman-431

tic pruning. At the maximum depth k, the token432

count converges to:433

Tk ≈ Θ(logN), for k =
⌈
log1/c(N)

⌉
434

Practitioners can choose any j ≤ k depend-435

ing on context window constraints. Given a maxi-436

mum token budget B (e.g., 32k tokens for GPT-4),437

the minimum required stage depth k⋆ can be com-438

puted as:439

k⋆ =

⌈
log1/c

(
N

B

)⌉
440

This enables automated tradeoffs between seman-441

tic fidelity and budget, making the system adaptive442

to various model capacities.443

Notably, the compression is not merely a prun-444

ing—it preserves transformer-aligned units such445

as attention anchors and semantic landmarks, re-446

taining the system’s functional semantics at every447

level.448

6 Planned Evaluation449

We will benchmark HumanEval and MBPP to450

measure (i) accuracy gain versus snippet base-451

lines, (ii) token savings, and (iii) zero-leakage as-452

surance by manual review.453

Strategic Value of Model-Agnostic Benchmark-454

ing. By aligning .janicre evaluation with455

standard LLM benchmarks such as SWE-bench456

and ToolBench, we enable consistent, model-457

agnostic assessment of code reasoning perfor-458

mance. Crucially, this compatibility allows users459

to switch between LLM backends (e.g., GPT-4o,460

Claude, Gemini) without restructuring the prompt461

interface or modifying the underlying manifest.462

This interchangeability reduces vendor463

lock-in and amortizes the cost of adopting464

.janicre—transforming initial investment465

in manifest structuring into a long-term asset466

reusable across evolving model ecosystems. We467

argue that this flexibility plays a pivotal role468

in enterprise-scale LLM deployment, where469

rapid model turnover and API discontinuities are 470

frequent. As such, benchmark alignment thus 471

becomes not merely an evaluation methodology, 472

but a cornerstone of long-term operability, cost 473

mitigation, and architectural agility in evolving 474

LLM ecosystems. 475

Delta Stability under Code Evolution. In- 476

spired by MP4’s delta frame model, we plan to 477

measure the stability of .janicre manifests 478

across codebase changes. Specifically, we will 479

benchmark whether small code edits (e.g., bug 480

fixes or new functions) result in local diffs within 481

the manifest. This helps evaluate the long-term vi- 482

ability of .janicre as a persistent abstraction 483

layer over evolving repositories. 484

We will also benchmark abstraction round-trip 485

fidelity (shallow → deep → shallow) to quantify 486

reversible commit accuracy and ensure semantic 487

equivalence across depth transformations. 488

Depth-Sweep Study. For j = 1 . . . k, we feed 489

{Stage ≤ j} into GPT-4o-32k and measure 490

task accuracy against token count. This allows 491

us to verify empirical geometric decay, validate 492

compression efficiency, and identify the “elbow” 493

depth—i.e., the optimal tradeoff point between to- 494

ken budget and semantic fidelity. 495

Limitations 496

While .janicre enables efficient representation 497

and reasoning, several limitations remain. 498

First, it is designed for static manifest genera- 499

tion. Dynamic behaviors—such as eval-based 500

execution, reflection via getattr, or runtime 501

mutation of control flow—cannot be fully cap- 502

tured through static analysis alone. As such, 503

runtime-specific logic may require complemen- 504

tary trace-based instrumentation. 505

Second, current support is limited to statically 506

typed or semi-structured languages; dynamically 507

reflective systems may require additional adapta- 508

tion for full semantic fidelity. 509

Third, the compression quality depends on 510

developer-authored metadata such as docstrings 511

and function modularity. Poorly documented or 512

monolithic code may yield underspecified or noisy 513

manifests, reducing the effectiveness of down- 514

stream LLM reasoning. 515

Finally, .janicre guarantees loss-bounded 516

round-trip across depths, though regenerating full 517

source from the highest abstraction may be lossy 518

6

in syntactic details.519

7 Potential Risks520

We discuss three main risks. (1) Information-521

leakage risk: even though .janicre removes522

raw source, a manifest may still expose sensitive523

architectural metadata; we propose configurable524

redaction levels and cryptographic hashes to mit-525

igate this. (2) Misuse by malicious agents: an526

attacker could inspect the manifest to craft tar-527

geted exploits; we suggest access-control wrap-528

pers when .janicre is generated from pro-529

prietary code. (3) Over-reliance on compressed530

views: developers might miss security-critical531

edge-cases that were pruned; we therefore recom-532

mend fall-back to deeper stages or full static anal-533

ysis for safety-critical code.534

8 Conclusion535

.janicre compresses software intent and struc-536

ture into a single manifest, enabling LLMs to as-537

sist on large, fragmented codebases within token538

and privacy constraints.539

Beyond practical usage, the schema may serve540

as a candidate format for future LLM pretrain-541

ing corpora. With sufficient .janicre sam-542

ples accumulated across projects, models could543

learn modular abstraction, intent classification,544

and high-level architectural reasoning—analogous545

to how code search engines or doc2vec embed-546

dings are built from structured repositories today.547

We are drafting a formal JSON Schema for548

.janicre v2.1 to enable validation and integra-549

tion into IDE tooling.550

Additionally, by abstracting software logic into551

a model-independent format and aligning it with552

benchmark-based evaluation, .janicre ensures553

long-term interoperability across evolving LLM554

architectures. This enables seamless model sub-555

stitution, minimizes prompt engineering overhead,556

and mitigates risks of vendor lock-in or platform-557

specific obsolescence.558

In doing so, .janicre delivers not only struc-559

tural and reasoning efficiency, but also economic560

sustainability—transforming initial LLM integra-561

tion efforts into a durable, reusable asset that pre-562

serves value amid a rapidly shifting model land-563

scape.564

Appendix A: .janicre Manifest 565

Blueprint 566

The fragment below illustrates the full conceptual 567

scaffold that .janicre is designed to capture. 568

It can be read as a “check-list” for repository-to- 569

LLM interaction. 570

globalobjective 571
572

• purpose: compute closed-form solutions to 573

symmetrical tiling problems 574

• technicalcategory : discrete − 575

mathalgorithms,CLIscripts 576

•• codesharing 577
578

• language: language-agnostic (supports Python, 579

JavaScript, HTML, etc.) 580

• structure.externallinks : none 581

•••• codelogic 582
583

• overview.corealgorithm : 584

combinatorialenumerationunderinversionsymmetryoverview.architecture :585

modulardecompositionwithseparationofUIandlogic 586

Frontend: 587

•• module: ui.vue 588

• component: gameUI 589

• units: startGame, endGame, spawnEnemy 590

Unit Definitions: 591

• name: startGame 592

– type: method 593

– purpose: Initialize and start game loop 594

– detail.input: - 595

– detail.output: Running game state 596

– detail.steps: 597

1. Initialize game flags and score 598

2. Reset player and bullet arrays 599

3. Setup and play background music 600

4. Launch game loop with 601

requestAnimationFrame 602

– detail.formula: - 603

– detail.theory: UI state initialization and ani- 604

mation loop 605

– detail.application: Browser-based arcade 606

games 607

• name: endGame 608

– type: method 609

– purpose: Stop the game and display results 610

– detail.input: - 611

7

– detail.output: Stopped state and final score612

shown613

– detail.steps:614

1. Pause background music615

2. Set gameOver = true616

3. Show result UI617

– detail.formula: -618

– detail.theory: State transition in game UI619

– detail.application: Game-over screen logic620

• name: spawnEnemy621

– type: method622

– purpose: Create a new enemy on canvas623

– detail.input: -624

– detail.output: Enemy rendered in game625

space626

– detail.steps:627

1. Randomize spawn coordinates628

2. Push enemy object to array629

3. Render in next animation frame630

– detail.formula: -631

– detail.theory: Procedural enemy generation632

– detail.application: Game difficulty balanc-633

ing634

researchnotes635
636

• Inspired by grid symmetry in 2023 Shogi tile637

patterns638

• Based on known complexity bounds in tiling639

theory640

References641

Tianhao Chen, Weijia Xu, and 1 others. 2024. Pdl: A642
declarative prompt programming language. arXiv643
preprint.644

Paul F Christiano, Jan Leike, Tom B Brown, Miljan645
Martic, Shane Legg, and Dario Amodei. 2017. Deep646
reinforcement learning from human preferences. In647
Advances in Neural Information Processing Sys-648
tems, volume 30, pages 4299–4307.649

Zican Dong, Tianyi Tang, Lunyi Li, and Wayne Xin650
Zhao. 2023. A survey on long text modeling with651
transformers. arXiv preprint.652

Patrick Lewis, Ethan Perez, Aleksandra Piktus,653
Fabio Petroni, Vladimir Karpukhin, Naman Goyal,654
Heinrich Küttler, Mike Lewis, Wen-tau Yih,655
Tim Rocktäschel, Sebastian Riedel, and Douwe656
Kiela. 2020. Retrieval-augmented generation for657
knowledge-intensive nlp tasks. arXiv preprint.658

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,659
and et al. 2022. Training language models to follow660
instructions with human feedback. arXiv preprint661
arXiv:2203.02155.662

Sameer Pimparkhede, Mehant Kammakomati, 663
Srikanth G. Tamilselvam, Prince Kumar, Ashok 664
Pon Kumar, and Pushpak Bhattacharyya. 2024. 665
Doccgen: Document-based controlled code genera- 666
tion. arXiv preprint. 667

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 668
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz 669
Kaiser, and Illia Polosukhin. 2017. Attention is all 670
you need. In Advances in Neural Information Pro- 671
cessing Systems, volume 30, pages 5998–6008. 672

Ming Wang, Yuanzhong Liu, and 1 others. 2024. Lang- 673
gpt: Rethinking structured reusable prompt design 674
framework for llms from the programming lan- 675
guage. arXiv preprint. 676

8

https://arxiv.org/abs/2410.19135
https://arxiv.org/abs/2410.19135
https://arxiv.org/abs/2410.19135
https://arxiv.org/abs/2302.14502
https://arxiv.org/abs/2302.14502
https://arxiv.org/abs/2302.14502
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2406.11925
https://arxiv.org/abs/2406.11925
https://arxiv.org/abs/2406.11925
https://papers.nips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2402.16929
https://arxiv.org/abs/2402.16929
https://arxiv.org/abs/2402.16929
https://arxiv.org/abs/2402.16929
https://arxiv.org/abs/2402.16929
https://arxiv.org/abs/2402.16929
https://arxiv.org/abs/2402.16929

	Introduction
	Problem Context
	Compression Inspiration: From MP3 and MP4 to Code Semantics
	Limitations of Existing Approaches
	Transformer-centric Abstraction
	Our Contribution
	Our Contribution

	Prompt-oriented DSLs
	Preliminary Observation
	From Git Commits to Dialogue Units
	Conversational Interface Inspiration

	Reference Implementation & Multi-Stage Pipeline
	Pipeline Overview

	Semantic Commits & Thought Trace
	Token and Security Analysis
	Planned Evaluation
	Potential Risks
	Conclusion

