. janicre: A Log-Scale, Reversible Semantic-Commit Manifest
for Multi-Agent Software Reasoning

Anonymous ACL submission

Abstract

Large language models (LLMs) promise
repository-scale assistance, yet real projects
routinely exceed 128 k-token windows and
fragment key logic across heterogeneous files.
Existing techniques—RAG pipelines, chun-
ked retrieval, or brute-force long-context
prompting—either leak code, stumble on
cross-file reasoning, or incur quadratic cost.

We realise . janicre via an arbitrary-depth
abstraction pipeline (Stage 1. .. k), whose cu-
mulative JSON snapshots plus an HTML se-
mantic map form the final manifest; stopping
at any depth trades tokens for detail while the
worst-case growth remains O (log V).

Beyond human-to-LLM use, .janicre
functions as a model-agnostic exchange
layer: distinct agents (GPT-40, Claude, Gem-
ini, efc.) can inspect the same manifest, attach
thinking_trace logs, and negotiate ed-
its—enabling true agent-to-agent (A2A) col-
laboration without exposing raw source. Cou-
pled with git-like semantic diffs, the manifest
becomes a living memory of design rationale
that is auditable by both machines and hu-
mans.

We formalise the schema, analyse its
compression bounds, and outline an em-
pirical plan—HumanEval, @ MBPP, and
delta-stability =~ benchmarks—to compare
. Janicre—augmented reasoning against
standard retrieval and full-file prompting.

.janicre thus upgrades IR-level code
summarisation into a universal, dialogue-
ready substrate for large-scale, multi-agent
software intelligence.

Highlight: .janicre abstracts multi-
language codebases into a log N-scale manifest
that aligns with transformer reasoning and agent
collaboration—without code leakage. It bridges
human design intent and LLM reasoning via a
real-time semantic interface.

1 Introduction

1.1 Problem Context

LLM assistants have two systemic bottlenecks: (i)
token budgets (>128k tokens are still dwarfed
by modern repositories) and (ii) fragmentation—
domain logic is scattered across files, packages,
and services. Current practice therefore relies on
ad-hoc snippets or retrieval pipelines, risking both
context loss and code leakage.

1.2 Compression Inspiration: From MP3
and MP4 to Code Semantics

Just as MP3 compresses audio by removing
frequencies imperceptible to humans, and MP4
compresses video by encoding delta frames and
keyframes, . janicre compresses code by ex-
tracting only semantically relevant units. These
units represent the purpose and behavior of the
system in a compact and interpretable form. This
mirrors the design goal of enabling LLMs to fo-
cus on core logic rather than superficial syntax,
providing an efficient input representation aligned
with human intuition and transformer attention.

1.3 Limitations of Existing Approaches

Retrieval-augmented generation (RAG) retrieves
relevant snippets (Lewis et al., 2020) but strug-
gles with cross-file reasoning due to limitations in
context aggregation, such as chunk-based retrieval
that fragments inter-file dependencies. Long-
context models (Dong et al., 2023) reduce manual
selection but incur quadratic computational costs
in transformer attention and degrade on gigabyte-
scale repositories due to inefficiencies in scaling
long sequences.

1.4 Transformer-centric Abstraction

Rather than a fixed three-step recipe, we allow a
variable-depth cascade: Stage 0 (raw code) —
Stage 1 (AST) — Stage 2 (purpose) — --- —

shared

~ manifest
'R Q De 0
Jjanicre
L———0(log V)
ttention -0 one
-— a
Desig A e & Data
— [create | 5 =
Lhtml] Fmark
[.json] <« FiEit D atio
Cpurpose ~ blob
~purpose Fuse_case S tree 4 fproject
- interface Fmodule —commit oot
- constraints [- componnet Hthink_trace /project-root
- unit — abstraction —_—
) index.html
F1/0 P Fmark Il:__ main.php
| detail Fsplit_merge)
stagek | output | Fproject — ess/
L .
reversible | . main.css
F——"s/
AT responsibility | L——main.s
m boundary layer l incremental /
.« - ete..

#ISO/IEC/IEEE 29148:2018

Figure 1: High-level overview of . janicre: (left) multi-stage semantic compression with ©(log V) attention;

(right) mapping to the classical SDLC V-model.

Stage k (intent, theory). Each step retains only
the attention-anchoring tokens (names, types, key-
words), analogously to how MP3 preserves audi-
tory maskers. Each stage is stored as a reversible
semantic commit, enabling loss-bounded round-
trip across abstraction depths. Because k can
be capped at O(log N), the pipeline still yields
©(log N) tokens in the worst case, yet lets prac-
titioners exit early when smaller windows suffice.
To enhance transformer alignment, we define a
soft attention prior between semantic units based
on their abstraction depths. Specifically, we com-
pute the attention weight between unit ¢ and j as:

Wi,j

2o Wi

where d; denotes the abstraction depth of unit 4,
and « is a tunable decay factor. This encourages
intra-stage attention and smooths cross-stage tran-
sitions, aligning the attention pattern with the un-
derlying semantic hierarchy.

wij =exp(—a-|d; —dj|), Ai; =

1.5 Our Contribution

A Unified Time-Aware Interface for LLM
Reasoning

Unlike static representations, .janicre intro-
duces a time-aware, dialogue-based manifest that
models not just software structure, but its de-
sign rationale across time. This enables LLMs
to interpret codebases as evolving conversa-

tions—aligning each unit with a reasoning turn
and associated expectation.

Moreover, . janicre supports dynamic com-
pression control, allowing the manifest to adapt its
granularity based on context: high-detail traces for
chain-of-thought reasoning, and compact struc-
tural summaries for fast inference or retrieval.
This flow-sensitive abstraction turns . janicre
into a scalable LLM interface, bridging software
design, memory, and attention cost.

Together, these features establish . janicre
as a temporal-semantic interface between software
systems and large language models.

1.6 Our Contribution

1. Schema. We define .janicre, a man-
ifest that compresses repository intent into
O(log N) tokens.

2. CLI. An open-source generator produces man-
ifests for Python / C++ projects; Rust/Go plug-
ins are planned.

3. Security. Only derived metadata crosses the
firewall, preventing proprietary code exposure.

2 Prompt-oriented DSLs

Syntactic IRs. Early LLM-for-code studies rely
on syntactic representations such as ASTs (Code-
BERT) or CFGs (GraphCodeBERT). These IRs
expose parse-tree structure but seldom encode in-
tent, semantics, or cross-module relationships.

Prompt-oriented DSLs. More recent work
shifts to prompt engineering DSLs (e.g., agent
scripts, Toolformer graphs). While flexible, these
DSLs are imperative and often tied to a specific
runtime, limiting reuse across projects.

.janicre: a semantic, declarative IR. Our
schema occupies the gap between the two trends:

* Semantic layer — captures purpose, I/O con-
tracts, and module hierarchy, not just syntax.

* Declarative form — JSON/YAML manifest
aligns with transformer attention, enabling
token-efficient reasoning (O(log N) tokens).

e LLM-friendly graph - unit-level nodes and
explicit edges mirror token-level attention
(Vaswani et al., 2017).

Recent frameworks such as PDL (Chen et al.,
2024), LangGPT (Wang et al., 2024), and Doc-
CGen (Pimparkhede et al., 2024) define declar-
ative layers for modular LLM interaction and
document-conditioned code generation. These ap-
proaches improve prompt composability, yet typ-
ically remain imperative, runtime-tied, or file-
local. In contrast, semantic-commit and time-
aware intermediate representations—structured to
persist abstraction history—remain largely unex-
plored.

The .janicre schema is not merely a de-
scriptive manifest, but a structurally optimized in-
termediate format for LLM-based reasoning.

First, we choose JSON/YAML as the base for-
mat for the following reasons:

* LLM Compatibility: Transformer-based
LLMs attend over token sequences, and
key—value structured formats (like JSON) yield
stable and predictable attention paths, helping
models form logical groupings during inference.

* Multilingual Metadata Extraction: Lan-
guages such as Python, JavaScript, Rust, or
Go expose ASTs that can be naturally mapped
to JSON, enabling unified structural representa-
tion.

* Declarative Abstraction: Unlike impera-
tive code, this schema allows systems to
be described independently of runtime execu-
tion—capturing semantics and modular rela-
tionships.

Moreover, we treat all software as ultimately a
composition of input-output transformations. This
aligns with the principle that LLMs operate effec-
tively when provided with structured descriptions
of units, each explicitly named and ordered. For
example:

"units": ["startGame", "endGame", "
spawnEnemy"]
**V| A simplified excerpt is shown
below:
*YYjson
"units": ["startGame", "endGame", "
spawnEnemy"],
"commit_meta": {
"timestamp": "2025-05-20T12:34z2",
"depth": 3

}

Such structure enables LLMs to attend across
unit boundaries and predict interactions more ac-
curately.

This design echoes attention-based reasoning,
as introduced in (Vaswani et al., 2017), and
adapts it to LLM—software interfaces. Rather than
prompt full source files, we create interpretable
hooks for the model to follow.

Moreover, while the core . janicre schema
is formally defined, we consider any simplified
variants (e.g., flat representations), partial modu-
lar forms, or implementation-specific adaptations
to be legitimate extensions under the same con-
ceptual framework. These derived or restructured
formats remain within the scope of our proposal as
long as they preserve the semantic objectives and
hierarchical abstraction principles defined herein.

2.1 Preliminary Observation

A manually structured Shogi engine ("2GB) sug-
gests a 97% token reduction when encoded via
. janicre, compared with full-file prompting.

Schema Overview. The .janicre manifest
describes a software system’s purpose, compo-
nents, and logic in a JSON/YAML format op-
timized for LLM reasoning. = Each manifest
includes fields such as global_objective,
code_sharing, and code_logic, which sum-
marize the architecture, I/O contract, and compu-
tational units.
A simplified excerpt is shown below:

"units": ["startGame",
spawnEnemy"]

"endGame", "

The manifest’s complete structure—including

global_objective, code_sharing, and

detailed code_logic units—is provided in the
supplementary file example. janicre. json.

Modular Composition. The .janicre
schema is inherently composable. Multiple
sub-manifests—e.g., ui.janicre for HTML
layout and backend. janicre for Python/JS
logic—can be referenced or included by a higher-
level core. janicre. This enables distributed
teams or tools to independently define interface,
logic, and algorithms, yet produce a unified
LLM-interpretable manifest. A merging protocol
resolves shared objectives and unifies component
trees and unit indexes across manifests.

Merge respects commit order; higher-depth
units are deterministically regenerated from lower-
depth blobs, guaranteeing reversible abstraction
quality.

2.2 From Git Commits to Dialogue Units

Traditional version control systems like Git de-
compose software into a series of commits—each
capturing a structural diff and accompanied by a
descriptive message. These commits form a linear
or branching history, enabling developers to track
the evolution of code over time.

.Jjanicre draws inspiration from this idea,
but shifts the focus from syntactic diffs to seman-
tic intent. Each unit in a manifest acts like a
commit: it is named, scoped, and justified. The
optional thinking_trace serves as a semantic
commit message, recording the rationale, prompt
context, and decision steps behind the unit’s cre-
ation or modification.

Unlike Git, which records lines of code,
. janicre records units of purpose and reason-
ing. This structure provides an audit trail for
LLMs—not just for what changed, but why—and
enables model-aware tools to interpret, revise, or
simulate development at the semantic level.

In this sense, . janicre is a Git-like protocol
for software semantics, optimized for transformer-
based reasoning systems. It captures code not
merely as syntax but as a living dialogue of design
decisions.

2.3 Conversational Interface Inspiration

Why Meaning Emerges Only in Dialogue.
Transformer-based LLMs operate by predicting
the next token, but prediction alone does not guar-
antee semantic coherence. Given an underspeci-
fied prompt such as "Write about time”, RLHF-

tuned models tend to regress toward a single,
safest average response that maximizes annotator
agreement. This phenomenon—semantic conver-
gence toward a median output—arises precisely
because the input lacks directional intent. The
less a prompt specifies expectation, the more
the model collapses meaning into neutrality.

Dialogue format resolves this degeneracy. Each
conversational turn embeds an expectation shaped
by context: the prior utterance narrows the man-
ifold of plausible continuations and forces the
model to align with a specific semantic target.
Only in dialogue can an LLLM both imagine and
justify a precise value—because dialogue pro-
vides expectation. We thus view conversation as a
convergence protocol—a structure that transforms
token-level prediction into context-aligned reason-
ing.

Structural Properties of Dialogue. Beyond
convergence, dialogue also supplies inductive bi-
ases beneficial to transformer models:

* Turn-taking constrains the scope per utterance,
preventing attention from overextending.

* Intent segmentation frames each utterance as a
discrete, nameable semantic unit.

e Contextual grounding maintains a shared,
evolving state across steps.

These properties are not cosmetic—they scaf-
fold model behavior in alignment, memory, and
structured inference.

Empirical Support. This perspective is sup-
ported by empirical studies. Ouyang et al. demon-
strate that instruction-tuning via conversational
prompts improves model stability and alignment
with human preferences (Ouyang et al., 2022).
Christiano et al. show that turn-based feedback via
reinforcement learning yields more robust poli-
cies than one-shot or batch supervision (Christiano
et al., 2017). These results underscore that con-
versation is not merely interaction—it is optimiza-
tion.

Design Implication for .janicre. This
insight motivates the structural choices in
.janicre. Each unit—explicitly named,
scoped by input/output, and embedded in a
hierarchical context—acts as a semantic utterance
in a system-level dialogue. Rather than presenting
code as flat syntax, .janicre frames it as

intent-driven discourse. Software becomes a
dialogue among components, and LLMs can
reason over it not as text, but as communicative
structure.

Why Meaning Emerges Only in Dialogue.
Transformer-based LLMs operate by predicting
tokens—but prediction alone does not guarantee
semantic coherence. In unconstrained text, the
output space is vast and amorphous; without exter-
nal structure, the model’s generation lacks a center
of gravity.

Conversational format resolves this. Each turn
imposes an expected response, compressing the
space of plausible outputs and forcing the model to
converge toward semantically meaningful values.
It is only within dialogue that an LLM can both
imagine and justify a specific value—because
dialogue embeds expectation.

In essence, the act of dialogue is a convergence
protocol: a structural constraint that transforms
token-level prediction into intent-aligned imagi-
nation. We posit that conversation is not merely
a UX design, but the minimal viable structure
under which large language models can produce
grounded meaning.

This motivates our design of . janicre. By
treating each software unit as a scoped utter-
ance—with name, purpose, and contract—it mir-
rors the same structure that enables LL.Ms to think.
Software becomes a dialogue between compo-
nents, and LLMs can reason about it not as code,
but as communicative structure.

3 Reference Implementation &
Multi-Stage Pipeline

3.1 Pipeline Overview

We implement a generator janicre—cli that
emits Stage-i JSON files (¢ = 1...k), each rep-
resenting a progressively abstracted view of the
codebase—from raw ASTs to high-level semantic
units. This cascade allows developers to tune to-
ken granularity, stopping at any Stage-j to fit con-
text limits while preserving structural clarity.

Language-Agnostic Design. Unlike language-
specific tools, janicre is not bound to any par-
ticular syntax or ecosystem. It supports Python,
JavaScript, HTML, Vue, and even domain-specific
DSLs. Each Stage-¢ manifest shares a unified
schema capturing purpose, input/output contracts,
and modular hierarchy, enabling LLMs to reason

consistently across heterogeneous systems. Future
extensions may support Rust, Go, and declarative
formats like YAML or Terraform.

HTML Semantic Map. All Stage-i JSONs are
merged into an interactive HTML canvas powered
by Vue. Clicking a unit reveals its source_ref,
editing its purpose live-updates the underly-
ing JSON, and exporting yields a consolidated
.janicre. This interface offers both machine-
parsable structure and human-navigable seman-
tics—bridging reasoning and authoring within a
single workflow.

4 Semantic Commits & Thought Trace

To extend . janicre beyond static manifest, we
introduce thinking_trace—a per-unit log of
reasoning steps and LLM prompts that shaped
each commit.

This allows:

* traceable origin of unit definitions (e.g., spawn
logic);

* comparison across models (e.g., GPT vs

Claude);

* intent continuity under refactoring or future evo-
lution.

Just as Git preserves structural diffs,
.janicre maintains conceptual diffs across
units. This enables semantic scaffolding for LLM
pretraining, where prompt-response pairs can
serve as alignment records.

Git-style Correspondence. We model each unit
as a semantic commit, allowing .janicre to
function as a time-aware versioning interface for
LLMs. The correspondence is as follows:

¢ Commit message — thinking_trace ratio-
nale

e Diff — semantic delta between abstraction
depths

* Timestamp — temporal ordering of abstrac-
tions

By merging structure with discourse,
. janicre becomes not just a snapshot—but a
living memory of design evolution.

5 Token and Security Analysis

Let ¢ (0 < ¢ < 1) be the empirical geometric de-
cay factor, empirically observed as ¢ ~ 0.25 in
our corpus. We model the token count at abstrac-
tion depth ¢ as:

T,=c'N

where NV is the original token count at Stage O.
This geometric decay reflects progressive seman-
tic pruning. At the maximum depth k, the token
count converges to:

T, ~O(logN), for k= [bgl /C(N)]

Practitioners can choose any j < k depend-
ing on context window constraints. Given a maxi-
mum token budget B (e.g., 32k tokens for GPT-4),
the minimum required stage depth £* can be com-

puted as:
N
k= |1 —=
vue(5)

This enables automated tradeoffs between seman-
tic fidelity and budget, making the system adaptive
to various model capacities.

Notably, the compression is not merely a prun-
ing—it preserves transformer-aligned units such
as attention anchors and semantic landmarks, re-
taining the system’s functional semantics at every
level.

6 Planned Evaluation

We will benchmark HumanEval and MBPP to
measure (i) accuracy gain versus snippet base-
lines, (ii) token savings, and (iii) zero-leakage as-
surance by manual review.

Strategic Value of Model-Agnostic Benchmark-
ing. By aligning .janicre evaluation with
standard LLM benchmarks such as SWE-bench
and ToolBench, we enable consistent, model-
agnostic assessment of code reasoning perfor-
mance. Crucially, this compatibility allows users
to switch between LLM backends (e.g., GPT-4o,
Claude, Gemini) without restructuring the prompt
interface or modifying the underlying manifest.
This interchangeability reduces vendor
lock-in and amortizes the cost of adopting
. janicre—transforming initial investment
in manifest structuring into a long-term asset
reusable across evolving model ecosystems. We
argue that this flexibility plays a pivotal role
in enterprise-scale LLM deployment, where

rapid model turnover and API discontinuities are
frequent. As such, benchmark alignment thus
becomes not merely an evaluation methodology,
but a cornerstone of long-term operability, cost
mitigation, and architectural agility in evolving
LLM ecosystems.

Delta Stability under Code Evolution. In-
spired by MP4’s delta frame model, we plan to
measure the stability of .janicre manifests
across codebase changes. Specifically, we will
benchmark whether small code edits (e.g., bug
fixes or new functions) result in local diffs within
the manifest. This helps evaluate the long-term vi-
ability of . janicre as a persistent abstraction
layer over evolving repositories.

We will also benchmark abstraction round-trip
fidelity (shallow — deep — shallow) to quantify
reversible commit accuracy and ensure semantic
equivalence across depth transformations.

Depth-Sweep Study. For j = 1...k, we feed
{Stage < j} into GPT-40-32k and measure
task accuracy against token count. This allows
us to verify empirical geometric decay, validate
compression efficiency, and identify the “elbow”
depth—i.e., the optimal tradeoff point between to-
ken budget and semantic fidelity.

Limitations

While . janicre enables efficient representation
and reasoning, several limitations remain.

First, it is designed for static manifest genera-
tion. Dynamic behaviors—such as eval-based
execution, reflection via getattr, or runtime
mutation of control flow—cannot be fully cap-
tured through static analysis alone. As such,
runtime-specific logic may require complemen-
tary trace-based instrumentation.

Second, current support is limited to statically
typed or semi-structured languages; dynamically
reflective systems may require additional adapta-
tion for full semantic fidelity.

Third, the compression quality depends on
developer-authored metadata such as docstrings
and function modularity. Poorly documented or
monolithic code may yield underspecified or noisy
manifests, reducing the effectiveness of down-
stream LLM reasoning.

Finally, .janicre guarantees loss-bounded
round-trip across depths, though regenerating full
source from the highest abstraction may be lossy

in syntactic details.

7 Potential Risks

We discuss three main risks. (1) Information-
leakage risk: even though . janicre removes
raw source, a manifest may still expose sensitive
architectural metadata; we propose configurable
redaction levels and cryptographic hashes to mit-
igate this. (2) Misuse by malicious agents: an
attacker could inspect the manifest to craft tar-
geted exploits; we suggest access-control wrap-
pers when .janicre is generated from pro-
prietary code. (3) Over-reliance on compressed
views: developers might miss security-critical
edge-cases that were pruned; we therefore recom-
mend fall-back to deeper stages or full static anal-
ysis for safety-critical code.

8 Conclusion

. Janicre compresses software intent and struc-
ture into a single manifest, enabling LLMs to as-
sist on large, fragmented codebases within token
and privacy constraints.

Beyond practical usage, the schema may serve
as a candidate format for future LLM pretrain-
ing corpora. With sufficient . janicre sam-
ples accumulated across projects, models could
learn modular abstraction, intent classification,
and high-level architectural reasoning—analogous
to how code search engines or doc2vec embed-
dings are built from structured repositories today.

We are drafting a formal JSON Schema for
. janicre v2.1 to enable validation and integra-
tion into IDE tooling.

Additionally, by abstracting software logic into
a model-independent format and aligning it with
benchmark-based evaluation, . janicre ensures
long-term interoperability across evolving LLM
architectures. This enables seamless model sub-
stitution, minimizes prompt engineering overhead,
and mitigates risks of vendor lock-in or platform-
specific obsolescence.

In doing so, . janicre delivers not only struc-
tural and reasoning efficiency, but also economic
sustainability—transforming initial LLM integra-
tion efforts into a durable, reusable asset that pre-
serves value amid a rapidly shifting model land-
scape.

Appendix A: . janicre Manifest
Blueprint

The fragment below illustrates the full conceptual
scaffold that . janicre is designed to capture.
It can be read as a “check-list” for repository-to-
LLM interaction.

global,bjective

e purpose: compute closed-form solutions to
symmetrical tiling problems

technical ategory

mathalgorithms, C LIscripts

discrete —

code haring

* language: language-agnostic (supports Python,
JavaScript, HTML, etc.)

structure.external;inks : none

code;ogic

overview.core,lgorithm

combinatorialenumerationunderinversionsymmetryevervie
modulardecompositionwithseparationo fU Iandlogic

Frontend:

* module: ui.vue
* component: gameUI
* units: startGame, endGame, spawnEnemy

Unit Definitions:

* name: startGame
— type: method
— purpose: Initialize and start game loop
— detail.input: -
— detail.output: Running game state
— detail.steps:
1. Initialize game flags and score
2. Reset player and bullet arrays
3. Setup and play background music
4. Launch game loop
requestAnimationFrame
— detail.formula: -
— detail.theory: UI state initialization and ani-
mation loop
— detail.application:
games
* name: endGame
— type: method
— purpose: Stop the game and display results
— detail.input: -

with

Browser-based arcade

— detail.output: Stopped state and final score
shown

— detail.steps:
1. Pause background music
2. Set gameOver = true
3. Show result UI

— detail.formula: -

— detail.theory: State transition in game UI

— detail.application: Game-over screen logic

* name: spawnkEnemy

— type: method

— purpose: Create a new enemy on canvas

— detail.input: -

— detail.output:
space

— detail.steps:
1. Randomize spawn coordinates
2. Push enemy object to array
3. Render in next animation frame

— detail.formula: -

— detail.theory: Procedural enemy generation

— detail.application: Game difficulty balanc-
ing

Enemy rendered in game

research,otes

* Inspired by grid symmetry in 2023 Shogi tile
patterns

* Based on known complexity bounds in tiling
theory

References

Tianhao Chen, Weijia Xu, and 1 others. 2024. Pdl: A
declarative prompt programming language. arXiv
preprint.

Paul F Christiano, Jan Leike, Tom B Brown, Miljan
Martic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. In
Advances in Neural Information Processing Sys-
tems, volume 30, pages 4299-4307.

Zican Dong, Tianyi Tang, Lunyi Li, and Wayne Xin
Zhao. 2023. A survey on long text modeling with
transformers. arXiv preprint.

Patrick Lewis, Ethan Perez, Aleksandra Piktus,
Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih,
Tim Rocktischel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive nlp tasks. arXiv preprint.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
and et al. 2022. Training language models to follow
instructions with human feedback. arXiv preprint
arXiv:2203.02155.

Sameer Pimparkhede, @ Mehant Kammakomati,
Srikanth G. Tamilselvam, Prince Kumar, Ashok
Pon Kumar, and Pushpak Bhattacharyya. 2024.
Doccgen: Document-based controlled code genera-
tion. arXiv preprint.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Fukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998-6008.

Ming Wang, Yuanzhong Liu, and 1 others. 2024. Lang-
gpt: Rethinking structured reusable prompt design
framework for llms from the programming lan-
guage. arXiv preprint.

https://arxiv.org/abs/2410.19135
https://arxiv.org/abs/2410.19135
https://arxiv.org/abs/2410.19135
https://arxiv.org/abs/2302.14502
https://arxiv.org/abs/2302.14502
https://arxiv.org/abs/2302.14502
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2406.11925
https://arxiv.org/abs/2406.11925
https://arxiv.org/abs/2406.11925
https://papers.nips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2402.16929
https://arxiv.org/abs/2402.16929
https://arxiv.org/abs/2402.16929
https://arxiv.org/abs/2402.16929
https://arxiv.org/abs/2402.16929
https://arxiv.org/abs/2402.16929
https://arxiv.org/abs/2402.16929

	Introduction
	Problem Context
	Compression Inspiration: From MP3 and MP4 to Code Semantics
	Limitations of Existing Approaches
	Transformer-centric Abstraction
	Our Contribution
	Our Contribution

	Prompt-oriented DSLs
	Preliminary Observation
	From Git Commits to Dialogue Units
	Conversational Interface Inspiration

	Reference Implementation & Multi-Stage Pipeline
	Pipeline Overview

	Semantic Commits & Thought Trace
	Token and Security Analysis
	Planned Evaluation
	Potential Risks
	Conclusion

