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ABSTRACT

Algorithms for solving the linear classification problem have a long history, dat-
ing back at least to 1936 with linear discriminant analysis. For linearly separable
data, many algorithms can obtain the exact solution to the corresponding 0-1 loss
classification problem efficiently, but for data which is not linearly separable, it
has been shown that this problem, in full generality, is NP-hard. Alternative ap-
proaches all involve approximations of some kind, such as the use of surrogates
for the 0-1 loss (for example, the hinge or logistic loss), none of which can be
guaranteed to solve the problem exactly. Finding an efficient, rigorously proven
algorithm for obtaining an exact (i.e., globally optimal) solution to the 0-1 loss
linear classification problem remains an open problem.
By analyzing the combinatorial and incidence relations between hyperplanes and
data points, we derive a rigorous construction algorithm, incremental cell enu-
meration (ICE), that can solve the 0-1 loss classification problem exactly in
O
(
ND+1

)
—exponential in the data dimension D. To the best of our knowledge,

this is the first standalone algorithm—one that does not rely on general-purpose
solvers—with rigorously proven guarantees for this problem. Moreover, we fur-
ther generalize ICE to address the polynomial hypersurface classification problem
in O

(
NG+1

)
time, where G is determined by both the data dimension D and

the polynomial degree K defining the hypersurface. The correctness of our algo-
rithm is proved by the use of tools from the theory of hyperplane arrangements
and oriented matroids.
We demonstrate the effectiveness of our algorithm on real-world datasets, achiev-
ing optimal training accuracy for small-scale datasets and higher test accuracy
on most datasets. Furthermore, our complexity analysis shows that the ICE al-
gorithm offers superior computational efficiency compared with state-of-the-art
branch-and-bound algorithm.

1 INTRODUCTION

Increasingly, machine learning (ML) is being used for high-stakes prediction applications that deeply
impact human lives. Many of these ML models are “black boxes” with highly complex, inscrutable
functional forms. In high-stakes applications such as healthcare and criminal justice, black box
ML predictions have incorrectly denied parole (Wexler, 2017), misclassified highly polluted air as
safe to breathe (McGough, 2018), and suggested poor allocation of valuable, limited resources in
medicine and energy reliability (Varshney & Alemzadeh, 2017). In such high-stakes applications of
ML, we always want the best possible prediction, and we want to know how the model makes these
predictions so that we can be confident the predictions are meaningful (Rudin, 2022). In short, the
ideal model is simple enough to be easily understood (interpretable), and optimally accurate (exact).

Another compelling reason why simple models are preferable is because such low complexity models
usually provide better statistical generality, in the sense that a classifier fit to some training dataset,
will work well on another dataset drawn from the same distribution to which we do not have access
(works well out-of-sample). The VC dimension is a key measure of the complexity of a classification
model. The simple D-dimensional linear hyperplane classification model, which we discuss in
detail below, has VC dimension D + 1 which is the lowest of other widely used models such as the
decision tree model (axis-parallel hyper-rectangles, VC dimension 2D), the K-degree polynomial
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(VC dimension O
(
DK

)
) and the L-layer, W -weight piecewise linear deep neural networks (VC

dimension O (WL log (W ))), for instance (Vapnik, 1999; Blumer et al., 1989; Bartlett et al., 2019).

Assume a dataset of size N is drawn i.i.d (independent and identically distributed) from the same
distribution as the training dataset, according to Vapnik (1999)’s generalization bound theorem, for
the hyperplane classifier we have, with high probability,

Etest≤Eemp +O

(√
log (N/ (D + 1))

N/ (D + 1)

)
, (1)

where Etest, Eemp are the test 0-1 loss and empirical 0-1 loss of on training dataset, respectively
(Mohri et al., 2018). Equation (1) motivates finding the exact (gloablly optimal) 0-1 loss on the
training data and simplest model, as the lower the training accuracy and the model complexity
(defined by VC-dimension) the more likely the model will obtain a better result on testing dataset.
If a data set is simple enough, a linear classifier can deliver an accurate enough solution. In which
case, no other model can outperform the exact linear classifier.

Training a model to global optimality on a training dataset is known as the empirical risk minimiza-
tion problem. However, even for perhaps the simplest case—the linear model—training a model to
global optimality is intractable. It has long been proven that empirical risk minimization for 0-1 loss
(i.e., minimizing the number of misclassifications) in linear classification is NP-hard (Ben-David
et al., 2003) as a function of the data dimension (Mohri et al., 2018).

Consequently, most algorithms proposed for this problem focus on optimizing approximate variants
of the 0-1 loss, such as the logistic loss (Cox, 1958; 1966), and hinge loss (Cortes & Vapnik, 1995).
By contrast, relatively little attention has been given to exact algorithms for the 0-1 loss classification
problem (0-1 LCP). One approach is to formulate the problem as a mixed-integer program (MIP)
and solve it using general-purpose solvers, such as Gurobi (Gurobi Optimization, LLC, 2024). For
instance, Tang et al. (2014) employed a MIP formulation to obtain the maximum-margin boundary
under 0-1 loss, while Brooks (2011) optimized the “ramp loss” and the hard-margin loss—both
closely related to 0-1 loss—using a quadratic mixed-integer program (QMIP).

Alternatively, combinatorial methods such as the branch-and-bound (BnB) approach have also been
applied. Nguyen & Sanner (2013) for example, proposed several BnB-based algorithms for solving
the 0-1 LCP. However, a common problem in BnB research is the lack of formal proofs of exhaus-
tiveness, making the correctness of such algorithms uncertain. Although Nguyen & Sanner (2013)
present several interesting methods, none of them are accompanied with a formal correctness proof.

Nevertheless, the well-known Cover’s functional counting theorem (Cover, 1965) rigorously estab-
lished that there are

Cover (N,D + 1) = 2

D∑
d=0

(
N − 1

d

)
= O

(
ND

)
(2)

possible linear dichotomies of N points in RD. This result suggests that, in principle, one could
solve the 0-1 LCP exactly by exhaustively enumerating these partitions. However, Cover’s result is
purely combinatorial and does not provide any method for performing this enumeration.

Interestingly, Nguyen & Sanner (2013) observed that selecting hyperplanes formed by choosing D
out of N data samples suffices to solve the 0-1 loss LCP exactly. This procedure has a combinatorial

complexity of
(

N
D

)
, which appears to be smaller than the complexity derived from Cover’s

analysis. At the same time, in the context of the hyperplane decision tree problem, Murthy et al.

(1994); Dunn (2018) observed that all possible linear partitions can be enumerated in 2D
(

N
D

)
,

which is larger than the bound implied by Cover’s result. These three distinct combinatorial analyses
yield seemingly inconsistent complexity estimates. This naturally raises the question:

Which of these analyses is correct for solving the 0-1 loss linear classification
problem? If all are valid, how are they connected?

This paper is dedicated to addressing these questions formally. Our key contributions are as follows:
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• Combinatorial foundations for classification in Euclidean space: We establish the com-
binatorial and incidence relationships between hyperplane arrangements and point config-
urations in the ordinary vector space RD. Unlike the classical treatment in combinatorial
geometry and oriented matroid theory—which is based on homogeneous coordinates—we
work directly in inhomogeneous (Euclidean) coordinates1 (Edelsbrunner, 1987; Fukuda,
2016).

• A novel 0-1 loss linear classification theorem: We present a new Theorem 3 for solving
the 0-1 LCP, which rigorously proves why Nguyen & Sanner (2013)’s prioritized combi-
natorial search (PCS) algorithm can exactly solve the 0-1 LCP. The supporting lemmas
of Theorem 3 reveal deep connections between the three distinct combinatorial analyses
Cover (1965), Murthy et al. (1994); Dunn (2018), and Nguyen & Sanner (2013).

• The first rigorously proven standalone algorithm for 0-1 linear classification problem:
By combining Theorem 3 with the efficient combination generator introduced by He &
Little (2025), we construct the first rigorously proven, standalone algorithm—one that does
not rely on general-purpose solvers—for solving the 0-1 LCP. Empirical results (see Figure
5) show that, for example, when N = 150 data size with D = 3, ICE would take 1.2
seconds worst-case whereas Nguyen and Sanner (2013)’s BnB would take approximately
1010 seconds (nearly 317 years), clearly demonstrating the superiority of our approach.

• Extension to polynomial hypersurface classification: We extend our theoretical frame-
work to polynomial hypersurfaces, resulting in an optimal algorithm for solving the 0-1
loss hypersurface classification problem.

• Empirical insights on generalization: Our experiments show that solutions with lower
training accuracy often generalize better to unseen test data. This observation refutes the
conventional belief that exact algorithms overfit and is consistent with Vapnik (1999)’s
generalization bound theorem.

The paper is organized as follows. In Section 2, we provide a detailed geometric analysis of the linear
classification problem and develop novel theorems for solving the 0-1 loss linear and hypersurface
classification problems. This result leads to a new class of algorithms capable of solving these
problems exactly. Section 3 presents empirical results comparing the ICE algorithm with standard
approximate methods on real-world datasets from the UCI Machine Learning Repository, evaluating
both training accuracy and out-of-sample generalization performance. Finally, Section 4, discusses
our contributions and the limitations of the proposed algorithm, and outlines potential directions for
future research.

2 THEORY

2.1 PROBLEM DEFINITION

Assume a dataset consists of N data points (or data items) xn, ∀n ∈ {1, . . . , N} = N , where the
data points xn ∈ RD and D is the dimension of the feature space. Each data point has a unique true
label ln ∈ {−1, 1}, ∀n ∈ N . All true labels in this dataset are stored in set l = {l1, l2, ..., lN}. The
data points and their labels are packaged together into the dataset D, denoted as Dl. The 0-1 LCP
can be defined as

ŵ = argmin
w∈RD+1

E0-1 (w,Dl) =
∑
n∈N

1
[
sign

(
wT x̄n

)
̸= ln

]
. (3)

where E0-1 (w,Dl) =
∑

n∈N 1
[
sign

(
wT x̄n

)
̸= ln

]
is the 0-1 loss objective function which counts

the number of misclassified data points given the parameter w, we denote E0-1 (w,Dl) as E0-1 (w)
whenDl is clear from the context. The supervised classification problem is solved by computing (3)
which is a sum of 0-1 loss functions 1 [ ], each taking the value 1 if the Boolean argument is true,
and 0 if false. The function sign returns +1 is the argument is positive, and −1 if negative (and zero
otherwise). The linear decision function wT x̄ with parameters w ∈ RD+1 and x̄ = (x, 1) is a data

1Informally a dataset in RD is in inhomogeneous coordinates, whereas x̄ = (x, 1) represents the same
point in homogeneous coordinates (projective space)

3
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2 × | |
| | + 2 × | | = 𝐶𝑜𝑣𝑒𝑟(4, 3) 22 × | |

Two ways to enumerate all possible cells of
an arrangement,
exhaustive enumeration of which solves
linear classification problem with arbitrary
objective (Theorem 2)

Cover’s count: Murthy’s count: PCS algorithm:

Exhaustive enumeration solves 0-1
linear classification problem
(Theorem 3)

| |

ICE algorithm:

Exhaustive enumeration solves
0-1 linear classification problem
(Theorem 5)

Figure 1: Novel theoretical contributions enabling the ICE algorithm: identifying the necessary and
sufficient dual-arrangement faces that must be enumerated to solve the 0-1 LCP. The black × marks
(unbounded cells) and red × marks (bounded cells) represent all the cells of a dual arrangement,
with |·| denoting their size. In Theorem 2, we show that exhaustively enumerating all cells and the
reversals of unbounded cells (with total size |×|+2 |×|) yields a number exactly matching Cover’s
counting function Cover for possible linear dichotomies (as proved in Lemma 1). This procedure
solves the linear classification problem for any objective function, filling the gap in Cover’s theo-
rem, which provides only a counting formula without specifying how to enumerate the dichotomies.
Theorem 3 demonstrates that the 0–1 LCP can be solved exactly by exhaustively enumerating all
blue circles in the figure and their corresponding reversed sign vectors, formally proving the cor-
rectness of Nguyen & Sanner (2013)’s PCS algorithm, which had only been empirically observed
to be optimal. Finally, Theorem 5 shows that it suffices to enumerate only the blue circles, without
their reversed signs, reducing the number of configurations and enabling the construction of our
incremental cell enumeration (ICE) algorithm.

point in homogeneous coordinates. Although apparently simple, this is a surprisingly challenging
optimization problem. Considered as a continuous optimization problem, the standard ML opti-
mization technique, gradient descent, is not applicable (since the gradients of E0-1 with respect to w
are zero everywhere they exist), and the problem is non-convex so there are a potentially very large
number of local minima in which gradient descent can become trapped. Nevertheless, the finiteness
of the dataset implies that only a finite number of partitions are possible. In particular, we are con-
cerned with those partitions that can be induced by hyperplanes—i.e., linear dichotomies. The next
subsection explains how to identify these linear dichotomies using a geometric dual transformation,
which can then be applied to solve (3).

A diagrammatic summary of the key geometric results is presented in Figure 1.

2.2 POINT CONFIGURATIONS AND HYPERPLANE ARRANGEMENTS

A point configuration is synonymous with a dataset and is denoted by P =
{
pn ∈ RD : n ∈ N

}
.

A finite hyperplane arrangement is a finite set of hyperplanesH = {h1, ..., hk}, where each hyper-
plane is defined as hn =

{
x ∈ RD : wTx = c

}
for some constant c ∈ R. A point configuration

or hyperplane arrangement in general position is called simple if no k of them lie in a (k − 2)-
dimensional affine subspace of RD and the intersection of any k hyperplanes is contained in a
(D − k)-dimensional flat, for 1 ≤ k ≤ D. For example, if D = 2 then a set of lines is in gen-
eral position if no two are parallel and no three meet at a point.

Definition 1. Faces of a hyperplane arrangement. Let FH be the set of all sign vectors signH (x)
in RD for arrangementH, which is defined as

FH =
{

signH (x) : x ∈ RD
}
, (4)

A face f (connected component) of an arrangement f ⊆ RD is a maximal subset of RD, such
that all x ∈ f have the same sign vector signH (x) ∈ FH. Given a sign vector signH (x) =

(δ1 (x) , δ2 (x) , . . . , δI (x)), the connected region of f can be defined as f =
⋂

i∈I h
δi(f)
i . In

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

fact, f defines an equivalence class in RD. Since any point x ∈ f has the same sign vector, then
signH (f) is the sign vector for any point in f . A face is said to be k-dimensional if it is contained
in a k-flat for −1 ≤ k ≤ D + 1. Some special faces are given specific names vertices (k = 0),
edges (k = 1), and cells (k = D). A k-face g and a (k − 1)-face f are said to be incident if f is
contained in the boundary of face g, for 1 ≤ k ≤ D. In that case, face g is called a superface of f ,
and f is called a subface of g. The cells in an arrangement can be further split into two classes, the
bounded cells and unbounded cells. Informally, a cell is bounded if it is a closed region surrounded
by hyperplanes (the boundaries are not contained in cells), and unbounded otherwise.

Superficially, a hyperplane arrangement might seem to contain more information or structure than a
set of data points (a point configuration). However, a valuable approach to studying geometric ob-
jects involving points and hyperplanes is to explore the transformations between these two objects.
By studying the dual transformation between point configurations and hyperplane arrangements, it
will later be seen that the superficial impression of the structural information contained in hyper-
plane arrangement and point configuration is incorrect. Both hyperplane arrangements and point
configurations possess equally rich combinatorial structure.

In the next section, we examine the geometric relationships among points, hyperplanes, and di-
chotomies, with a focus on their combinatorial and incidence relations, leading to a new perspective
on the linear classification problem. This enables the development of an efficient and general al-
gorithm capable of solving linear classification problems. Detailed proofs of all theorems and
lemmas in next section are provided in the Appendix A.

2.3 LINEAR CLASSIFICATION AND POINT-HYPERPLANE DUALITY

The geometric dual transformation ϕ : RD → RD maps a point p to a non-vertical affine hyperplane
ϕ (p), defined by the equation

p1x1 + p2x2 + ...+ pD−1xD−1 − xD = pD, (5)
and conversely, the function ϕ−1 transforms a (non-vertical) hyperplane h defined by polynomial
w1x1 +w2x2 + ...+wD−1xD−1− xD = wD to a point ϕ−1 (h) = (w1, w2, . . . , wD)

T . The terms
primal space, and dual space refer to the spaces before and after transformation by ϕ and ϕ−1. The
dual transformation is naturally extended to a set of points ϕ (P) and a set of hyperplanes ϕ (H) by
applying it to all points and hyperplanes in the set. We have the following important theorem which
is the foundation for analysising the incidence and combinatorial relations between data points and
linear dichotomies.
Theorem 1. Incidence relations of the dual transformation. Let p be a point and a non-vertical
affine hyperplane h =

{
x : wTx = 0

}
in RD. Under the dual transformation ϕ, p and H satisfy

the following properties:

1. Incidence preservation: Point p belongs to hyperplane h if and only if point ϕ−1 (h) belongs to
hyperplane ϕ (p) = p,

2. Order preservation: Point p lies above (below) hyperplane h if and only if point ϕ−1 (h) lies
above (below) hyperplane ϕ (p).

That the dual transformation preserves the incidence relations above can be proved by examining
the relationship between the dual transformation ϕ and the unit paraboloid (Edelsbrunner, 1987).
The incidence preservation property described above implies a duality between the definitions of
general position for point configurations and hyperplane arrangements. For instance, when D = 2,
three points lying in the same 1-flat l (a line) correspond to three lines in the dual space intersecting
at the same point ϕ (l), these three lines are mutually parallel if the line l is vertical.

It can be difficult to visualize how Cover’s dichotomies form equivalence classes for decision hyper-
planes, but the same decision hyperplanes in the dual space ϕ (P), ∀p ∈ RD partition the space into
different cells, where each cell corresponds to an equivalence class of dichotomies (Fig. 2). More-

over, this explains why the prediction by Murthy et al. (1994); Dunn (2018), of 2D
(

N
D

)
possible

linear classifications is correct: the most straightforward way to enumerate all cells in a hyperplane

arrangement is to first enumerate the
(

N
D

)
vertices—each determined by a unique combination

5
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Figure 2: A point configuration D (left-panel) and its dual arrangement HD (right-panel). The
yellow hyperplanes w4, w5 with two points lying on them in RD correspond to the yellow points
in the dual space, which are the intersection of corresponding dual hyperplanes ϕ (w4), ϕ (w5). For
(blue) hyperplanes w1, w2, w3 with the same prediction labels (+,+,−,−), their corresponding
dual points ϕ (w1), ϕ (w2), ϕ (w2) lie in the same cell of dual arrangement ϕ (D).

of D hyperplanes in general position—and then consider the 2D adjacent cells associated with each
vertex. This enumeration relies on the general position assumption, which guarantees that every
D-combination of hyperplanes defines a distinct vertex with exactly 2D neighboring regions.

Importantly, we present the following lemma, which explains the combinatorial relationship between
linear dichotomies and the cells of the dual arrangement. This lemma is the basis for an alternative
approach to proving Cover’s counting theorem.
Lemma 1. For a set pointsD =

{
xn ∈ RD : n ∈ N

}
in general position, the total number of linear

dichotomies in Cover’s function counting theorem, is the same as the number of cells of the dual
arrangement HD, plus the number of bounded cells of HD. In other words, denote the number of
dichotomies for N data items in RD as Cover (N,D + 1) (D + 1 denote the dimension of data in
homogeneous coordinates) and the number of cells and bounded cells of an hyperplane arrangement
in RD as BD (HD) and CD (HD). Then

Cover (N,D + 1) = BD (HD) + CD (HD) (6)

Another, previously reported, geometric analysis on the combinatorial relations between the hyper-
plane arrangement and the point configuration is based on homogeneous coordinates, where all cells
of the dual arrangement are unbounded (Edelsbrunner, 1987; Fukuda, 2016).

The equivalence between the number of dichotomies and the sum of the number of bounded cells
and the number of cells may initially seem unclear. The intuition lies in the fact that not every
dichotomy in the primal space corresponds to a cell in the dual space. Specifically, decision bound-
aries associated with unbounded cells correspond to two dichotomies, whereas those associated with
bounded cells correspond to only one. This relationship is clarified by the following lemma.
Lemma 2. For a dataset D in general position, each of Cover’s dichotomies corresponds to a cell in
the dual space, and dichotomies corresponding to bounded cells have no complement cell (cells with
reverse sign vector). Dichotomies corresponding to the unbounded cells in the dual arrangements
ϕ (D) have a complement cell.

Since each of Cover’s dichotomies corresponds to a cell in the dual space, and dichotomies cor-
responding to bounded cells have no complement cell (cells with reverse sign vector), lemma 2
demonstrates that all possible Cover’s dichotomies of a given dataset D can be obtained by enumer-
ating the cells of an arrangement and the complemented cells of the bounded cells. The enumeration
of the complements of the bounded cells requires an additional process, as the bounded cells within
the arrangement do not have complementary cells. This result leads directly to the following theo-
rem.
Theorem 2. Linear classification theorem. Let D be a data set in general position in RD. If an
O
(
ND+1

)
-time cell enumeration algorithm exists, then exact solutions for the linear classification

problem with an arbitrary objective function can be obtained in at most O
(
teval ×ND+1

)
time

by exhaustively enumerating the cells of the dual arrangement HD, where teval represents the time
required to evaluate the classification objective.

Theorem 2 gives us a method for solving the linear classification problem over arbitrary objective
function. However, as we interested in only the LCP with 0-1 loss objective (3), the properties

6
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below helps us to solve the LCP over 0-1 loss more efficiently. The next lemma explains not only
that Cover’s dichotomies have corresponding dual cells for the dual hyperplane arrangement, but
also that hyperplanes containing 0 ≤ k ≤ D data points have corresponding dual faces.
Lemma 3. For a dataset D in general position, a hyperplane with k data items lying on it, 0 ≤ k ≤
D correspond to a (D − k)-face in the dual arrangement HD. Hyperplanes with D points lying on
it, correspond to vertices in the dual arrangement.
Definition 2. Given a hyperplane arrangement H = {hn : n ∈ N}. The separation set sep (f, g)
for two faces f , g is defined by

sep (f, g) = {n ∈ N : δn (f) = −δn (g) ̸= 0} , (7)

using which, we say that the two faces f , g are conformal if sep (f, g) = ∅.
That two faces that are conformal is essentially the same thing as saying that two faces have consis-
tent classification assignments.
Lemma 4. Given a hyperplane arrangement H = {hn : n ∈ N}, two faces f , g are conformal if
and only if f and g are subfaces of a common face or one face is a subface of the other.

A similar result is described in oriented matroid theory (Björner, 1999). The following lemma will
be instrumental in the analysis, presented later, of the linear classification problem with the 0-1 loss
objective. It suggests that the optimal cell, with respect to 0-1 loss, is conformal to the optimal
vertex.
Lemma 5. Given a hyperplane arrangement H = {hn : n ∈ N}, for an arbitrary maximal face
(cell) f , the sign vector of f is signH (f). For an arbitrary (D − d)-dimension face g, 0 < d ≤ D,
the number of different signs of signH (g) with respect to signH (f) is larger than or equal to d,
where equality holds only when g is conformal to f (g is a subface of f ).

Now we have all receipts to prove the final result, for the linear classification problem over 0-1 loss,
we can solve it by exhuastively searching all D-combinations of data points. The following theorem
formally proves Nguyen & Sanner (2013)’s observation.
Theorem 3. 0-1 loss linear classification theorem. Consider a dataset Dl of N data points of
dimension D in general position, along with their associated labels. Let Skcombs denote the set of all
D-combinations with respect to dataset D. Then we have following relation

argmin
s∈Skcombs(D,D)

min(E0-1(ws,Dl) , E0-1(−ws,Dl)) ⊆ argmin
w∈RD+1

E0-1(w,Dl) (8)

where ws represents the normal vector of the hyperplane that pass through the D-combination of
data s, and −ws is the negation of ws. The inner min on the left-hand side ensures that s ∈
Skcombs (D,D) for each s , where Skcombs (D,D) denote all possible D-combinations of the set D.
We take the smaller of E0-1 (ws) and E0-1 (−ws), and the outer argmin selects one of the values of
that minimizes this quantity over all s ∈ Skcombs (D,D).

2.4 NON-LINEAR (POLYNOMIAL HYPERSURFACE) CLASSIFICATION

Based on the point-hyperplane duality, equivalence relations for linear classifiers on finite sets of
data were established above. However, a linear classifier is often too restrictive in practice, as many
problems require more complex decision boundaries. It is natural to ask whether it is possible to ex-
tend the theory to non-linear classification. This section examines a well-known concept in algebraic
geometry, the K-tuple Veronese embedding, which allows the generalization of the previous strat-
egy for solving classification problem with hyperplane classifier to problems involving hypersurface
classifiers.

Importantly, we present the following theorem, which describes the relationship between hyperplane
and hypersurface classification problems.
Theorem 4. The K-tuple Veronese embedding. Given variables x0, x1, . . . xD in projective space
PD (which is isomorphic to the affine space RD when ignoring the points at infinity (Cox et al.,
1997)), let M0,M1, . . .MG be all monomials of degree K with variables x0, x1, . . . xD, where

G =

(
D +K

D

)
− 1 (see Appendix A for the formal definition of monomials and poly-

nomials and explanation of G). Define a mapping ρK : PD → PG which sends the point

7
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Algorithm 1 Incremental cell enumeration (ICE) algorithm
Input: D: input dataset which consists of N data points in RD in general position; l: label vector; K: degree of the polynomial;
Output: The optimal normal vector w∗ : RD+1 and optimal 0-1 loss E∗

0-1

1: D′ = ρK (D) // calculating embedded datasets
2: w∗ ← svm

(
D′

l

)
3: ds ← reorder(w∗,D′) // sort by |w⊤x|
4: Css ← [ [ ], [ ], . . . , [ ] ] // K+1 empty lists for 0 to K-combinations
5: for n = 0 to N − 1 do
6: for k = min (K,n + 1) down to 0 do
7: Css[k]← Css[k] ∪map(λS. S ++ [n] , Css[k − 1]) // incremental combination generation
8: end for
9: ws← map(genModel(ds), Css[D]) // generate normal vectors from combinations
10: for all w′ ∈ ws do
11: if E0-1(w

′) ≤ E0-1(w
∗) then

12: w∗, E∗
0-1 ← w′, E0-1(w

′)

13: end if
14: if N −D − E0-1(w

′) ≤ E0-1(w
∗) then

15: w∗, E∗
0-1 ← −w′, N −D − E0-1(w

′) // symmetric fusion law

16: end if
17: end for
18: Css[D]← [ ] // eliminate D-combinations after use
19: end for
20: return w∗, E∗

0-1

p̄ = (p0, p1, . . . pD) ∈ PD to the point ρK (p̄) = (M0 (p̄) ,M1 (p̄) , . . .MG (p̄)). This is called
the K-tuple Veronese embedding of PD in PG. The hyperplane classification over the embedded
datasets ρK (D) is isomorphic to the polynomial hypersurface classification (defined by a degree K
polynomial) over the original dataset D.

It is now straightforward to extend Theorem 3 to the following polynomial hypersurface classifica-
tion theorem.

Corollary 1. 0-1 loss polynomial hypersurface classification theorem. Consider a dataset xs of N
data points in RD in general position, along with their associated labels. Let ρK (D) be the K-tuple
Veronese embedding defined by monomials of degree K, we have following relation

argmin
s∈Skcombs(G,ρK(D))

min(E0-1(ws, ρK (Dl)) , E0-1(−ws, ρK (Dl))) ⊆ argmin
w∈RG+1

E0-1(w, ρK (Dl)) (9)

where ws ∈ RG denote as the normal vector determined by s (G data points).

2.5 INCREMENTAL CELL ENUMERATION (ICE) ALGORITHM

Due to the symmetry of the 0-1 loss, where a data item is assigned a label of either 1 or −1, the 0-1
loss for the negative orientation of a hyperplane can be directly derived from the positive orientation
of the same hyperplane without calculating it explicitly. The following theorem formalizes this
relationship.

Theorem 5. Symmetry fusion theorem. Consider a dataset D of N data points of dimension D in
general position, along with their associated labels. Let h be a hyperplane which goes through D out
of N data points in the datasetD, separating the dataset into two disjoint setsD+ andD−. If the 0-1
loss for the positive orientation of this hyperplane is l, then the 0-1 loss for the negative orientation
of this hyperplane is N − l −D.

Therefore, the 0-1 loss linear classification problem can be solved by enumerating only the positive
or negative-oriented hyperplanes, rather than both.

We now have all the necessary components to construct our algorithm, which enumerates all linear
classification decision hyperplanes and thus solves (3). Theorem 3 states that all globally optimal
solutions to this problem are equivalent (in terms of 0-1 loss) to the optimal solutions contained
within the set of positive and negatively oriented linear classification decision hyperplanes (vertices
in the dual space) passing through D out of N data points in the dataset D. There exist numerous
algorithms for enumerating combinations; for example, Nguyen & Sanner (2013)’s PCS algorithm
employed a one-by-one enumeration strategy. However, such a one-by-one approach is inefficient

8
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Table 1: Comparison of the accuracy of our novel ICE algorithm, against approximate methods on
real-world datasets. Best performing algorithm is marked bold.

dataset N D ICE(%) SVM(%) LR(%) LDA(%)
HA 283 3 77.03 72.08 73.14 73.85
CA 72 5 80.6 77.2 73.6 75.0
CR 89 6 95.51 91.10 89.89 89.89
VP 704 2 97.30 96.88 96.59 96.59
BT 502 4 78.69 74.50 75.50 74.10
SP 975 3 94.46 94.05 94.05 94.05

and unsuitable for optimization tasks, as it is non-recursive and therefore precludes the use of bound-
ing methods for further acceleration.

He (2025) and He & Little (2025) provide an extensive discussion of various combination gener-
ators defined in both sequential and divide-and-conquer styles. We adopt the sequential generator
introduced by He & Little (2025). The pseudocode is presented in Algorithm 1. The algorithm has
a complexity of O

(
NG+1 ×G3

)
, where G is the dimension of the embedded space (with G = D if

K = 1). Since in line 18 of Algorithm 1 we eliminate D-combinations at every recursive step, the
algorithm’s memory usage is O

(
NG

)
.

3 EMPIRICAL EXPERIMENTS

In this section, we analyze the performance of our ICE algorithm empirically. Our evaluation aims
to test the following hypotheses: (a) the ICE algorithm consistently achieves the highest training
accuracy among competing algorithms when allowing ICE to run to termination; (b) the solutions
with significantly higher training accuracy (learned using the ICE algorithm) also achieve higher
accuracy on the test datasets, and (c) the observed wall-clock runtime aligns with the worst-case
time complexity analysis.

Exact linear (hyperplane) classification We first compare our exact algorithm, ICE, against sup-
port vector machines (SVM)2, logistic regression (LR), and linear discriminant analysis (LDA) on
linear setting, using binary classification datasets from the UCI machine learning repository (Dua &
Graff, 2019). As shown in Table 1, the ICE algorithm consistently finds solutions with lower 0-1
loss than approximate algorithms.

Due to space constraints, the results of the runtime complexity analysis and out-of-sample tests are
presented in Appendix B. Figure 4 shows that the empirical wall-clock runtime agrees closely with
the theoretical predictions. In Figure 5, we compare ICE against the state-of-the-art BnB algorithm
by Nguyen & Sanner (2013) for solving the 0-1 LCP. Our empirical analysis demonstrates that
Nguyen & Sanner (2013)’s algorithm exhibits exponential complexity in the worst-case.

Additionally, we also compare the performance of the ICE and BnB algorithms with that of a mixed-
integer programming (MIP) solver for the 0–1 LCP, implemented in MATLAB using the GLPK
solver, results shown in Figure (Figure 6.). These show that while the MIP solver is more efficient
than BnB on small datasets, its performance is less predictable compared with ICE and BnB.

From (1), we anticipate that exact solutions will not only achieve lower 0-1 loss on training datasets
but are also more likely to generalize better, yielding lower 0-1 loss on test datasets. To evaluate this
hypothesis, Table 2 reports the out-of-sample performance of the ICE algorithm using 5-fold cross-
validation, compared against approximate algorithms. The results indicate that training a linear
model with substantially lower training error than the approximate algorithms also leads to stronger
generalization in out-of-sample tests, thereby refuting the notion that the optimal solution necessar-
ily overfits the data.

Exact hypersurface (quadratic hypersurface) classification To evaluate the algorithm beyond
linear classification, we test the ICE algorithm on synthetic datasets whose ground truth is a noisy

2We tuned the SVM hyperparameters using a standard coarse grid search, testing a set of widely spaced
values (e.g., [0.01, 0.1, 1, . . . , 10000]) on a logarithmic scale.

9
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Figure 3: Optimal quadratic classifiers learned by the ICE algorithm (top four panels) achieve 0–1
losses of 9, 16, 17, and 16, while the approximate quadratic classifiers learned by an SVM with a
degree-2 polynomial kernel (bottom four panels) obtain 0–1 losses of 17, 26, 21, and 22.

quadratic boundary with label noise. We compute the exact solution (learned by ICE) on four
datasets of size N = 100 and D = 2 and compare it against approximate solutions (learned by
SVM with a degree-2 polynomial kernel). The results are shown in Figure 3. Similarly, the out-of-
sample generalization performance on real-world datasets for the quadratic classifier is reported in
Table 3.

4 SUMMARY, DISCUSSION AND FUTURE WORK

In this paper, we have presented incremental cell enumeration, ICE, the first provably correct, worst-
case polynomial O

(
ND+1

)
, which is polynomial in N and exponential in varying D, run-time

complexity algorithm for solving the 0-1 loss linear classification problem (3). Our empirical inves-
tigations show that the exact solution often significantly outperforms the best approximate solutions
on the training dataset and also yields lower test error. This finding is critically important because
it demonstrates that, contrary to widely held belief, globally optimal solutions to the 0-1 LCP can
generalize well to unseen data. Prior to the development of ICE, provably correct exact algorithms—
such as those proposed by Nguyen & Sanner (2013)—were computationally intractable even for
moderate N and small D, and their optimality had not been rigorously proved.

The immediate shortcoming of the algorithm is its exponential complexity in the data dimension D.
This combinatorial complexity is further compounded in the hypersurface case, where the embed-
ding space has dimension O

(
DK

)
, resulting in a final hypersurface classification algorithm with

time complexity
(
NDK

)
. However, since this problem is NP-hard, the exponential dependence

on D and K is unlikely to be eliminated unless NP=P. Notably, the ICE algorithm relies solely on
matrix operations, allowing for full vectorization and parallelization. Our current implementation
uses simple parallelization via the PyTorch library. More sophisticated parallel implementations can
be achieved by adopting the divide-and-conquer (D&C) combination generator introduced in (He
& Little, 2025). A parallel implementation based on D&C-style recursion, executed on massively
parallel GPUs, is expected to yield significantly better performance.
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A PROOFS AND DEFINITIONS

Definition 3. Monomial. A monomial with respect to a D-tuple x = (x1, x2 . . . , xD) is a product
of the form

M = xα = xα1
1 · x

α2
2 . . . · xαD

D , (10)

where α = (α1, α2 . . . , αD) and α1, α2 . . . , αD are nonnegative integers. The total degree of this
monomial is the sum |α| = α1 + · · ·+ αn. When α = 0 = (0, . . . , 0), x0 = 1.

Definition 4. Polynomial. A polynomial P in x1, x2 . . . , xD with coefficients in R is a finite linear
combination (with coefficients in the field R) of monomials. A polynomial P (x), or P in short,
will be given in the form

P (x) =
∑
i

wix
αi , wi ∈ R, (11)

where i is finite. The set of all polynomials with variables x1, x2 . . . , xD and coefficients in R is
denoted by R [x1, x2 . . . , xD] or R [x].

Let P =
∑

i wix
αi be a polynomial in R [x]. Then αi is called the coefficient of the monomial

xαi . If wi ̸= 0, then wix
αi is called a term of P . The maximal degree of P , denoted deg (P ), is

the maximum |αi| such that the coefficient αi is nonzero. For instance, the polynomial P (x) =
5x2

1 + 3x1x2 + x2
2 + x1 + x2 + 3 for x ∈ R2 has six terms and maximal degree two. Note that,

since |αi| is defined as the sum of monomial degree, so polynomial P ′ (x) = 5x2
1x

2
2 + 3x1x2 has

degree four.

The number of possible monomial terms of a degree K polynomial is equivalent to the number of
ways of selecting K variables from the multisets of D+1 variables3. This is equivalent to the size K
combinations of D+1 elements taken with replacement. In other words, selecting K variables from
the variable set (x0, x1, . . . , xD) in homogeneous coordinates with repetition, leads to the following
fact.

Fact 1. If polynomial P in R [x1, x2 . . . , xD] has maximal degree K, then polynomial P has(
D +K

D

)
monomial terms at most.

Lemma. For a set points D =
{
xn ∈ RD : n ∈ N

}
in general position, the total number of linear

dichotomies in Cover’s function counting theorem, is the same as the number of cells of the dual
arrangement HD, plus the number of bounded cells of HD. In other words, denote the number of
dichotomies for N data items in RD as Cover (N,D + 1) (D + 1 denote the dimension of data in
homogeneous coordinates) and the number of cells and bounded cells of an hyperplane arrangement
in RD as BD (HD) and CD (HD). Then

Cover (N,D + 1) = BD (HD) + CD (HD) (12)

3There are D+1 variables considering polynomials in homogeneous coordinates, i.e. projective space PD .
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Proof. Given a set of points D =
{
xn ∈ RD : n ∈ N

}
in general position. Cover, 1965’s function

counting theorem states that the number of linearly separable dichotomies given by affine hyper-
planes is

Cover (N,D + 1) = 2

D∑
d=0

(
N − 1

d

)
. (13)

The original Cover’s function counting theorem counts the number of linearly separable dichotomies
given by linear hyperplanes. However, the dual arrangement HD consists of a set of affine hyper-
planes. Nevertheless, the number of dichotomies given by affine hyperplanes in RD for dataset D is
equivalent to the number of dichotomies given by linear hyperplanes for dataset D̄ in RD+1 (where
D̄ is the homogeneous dataset, which is obtained by embedding D in homogeneous space. Recall
that, x̄ = (x, 1) is the data in homogeneous coordinates).

Alexanderson & Wetzel (1978) (and see also Edelsbrunner et al., 1986) show that shows that for a

simple arrangement H = {hn : n ∈ N} in RD, the number of cells is CD (H) =
∑D

d=0

(
N
d

)
,

and the number of bounded regions is BD (H) =
(

N − 1
D

)
.

Putting these two pieces of information together, obtains

BD (HD) + CD (HD)

=

(
N − 1
D

)
+

D∑
d=0

(
N
d

)

=

(
N − 1
D

)
+

D∑
d=0

[(
N − 1

d

)
+

(
N − 1
d− 1

)]

=

D∑
d=0

(
N − 1

d

)
+

D∑
d=0

(
N − 1

d

)

=2

D∑
d=0

(
N − 1

d

)
=Cover (N,D + 1) .

(14)

Lemma. For a dataset D in general position, each of Cover’s dichotomies corresponds to a cell in
the dual space, and dichotomies corresponding to bounded cells have no complement cell (cells with
reverse sign vector). Dichotomies corresponding to the unbounded cells in the dual arrangements
ϕ (D) have a complement cell.

Proof. The first statement is true because of the order preservation property – data item x lies above
(below) hyperplane h if and only if point ϕ−1 (h) lies above (below) hyperplane ϕ (x). For a dataset
D and hyperplane h, assume h has a normal vector w (in homogeneous coordinates) and there
is no data item lying on h. Then, hyperplane h will partition the set D into two subsets D+

h ={
xn : wTx > 0

}
and D−

h =
{
xn : wTx < 0

}
, and according to the Thm. 1, D has a unique asso-

ciated dual arrangement ϕ (D). Thus, the sign vector of the point ϕ−1 (h) with respect to arrange-
ment ϕ (D) partitions the arrangement into two subsets ϕh (D)+ =

{
ϕ (xn) : ν

T
ϕ(xn)

ϕ−1 (h) > 0
}

and ϕh (D)− =
{
νT
ϕ(xn)

ϕ−1 (h) < 0
}

, where νT
ϕ(xn)

is the normal vector to the dual hyperplane

ϕ (xn), in other words, point ϕ−1 (h) lies in a cell of arrangement ϕ (D).
Next, it is necessary to prove that bounded cells have no complement cell. The reverse assignment
of the bounded cells of the dual arrangements ϕ (D) cannot appear in the primal space since the
transformation ϕ can only have normal vector ν pointing in one direction, in other words, transfor-
mation ϕ: xD = p1x1+ p2x2+ ...+ pD−1xD−1− pD implies the Dth component of normal vector

13
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ν is −1. For unbounded cells, in dual space, every unbounded cell f associates with another cell
g, such that g has an opposite sign vector to f . This is because every hyperplane ϕ (xn) is cut by
another N − 1 hyperplanes into N + 1 pieces (since in a simple arrangement no two hyperplanes
are parallel), and each of the hyperplanes contains two rays, call them r1,r2. These two rays point
in opposite directions, which means that the cell incident with r1 has an opposite sign vector to r2
with respect to all other N−1 hyperplanes. Therefore, it is only necessary to take the cell f incident
with r1, and in the positive direction with respect to ϕ (xn), take g to be the cell incident with r2,
and in the negative direction with respect to ϕ (xn). In this way, two unbounded cells f and g are
obtained with opposite sign vectors. This means that, for point ϕ−1 (h) in these unbounded cells,
this hyperplane h partitions the dataset to D+

h and D−
h , and it is possible to move the position of

hyperplane h in the primal space. So, there exists a new hyperplane h′ obtained by moving h, and
it partitions the dataseto D+

h′ = D−
h and D−

h′ = D+
h . In other words, h′ has opposite assignment

compared to hyperplane h. This corresponds, in the dual space, to moving a point ϕ−1 (h) inside
the cell f , to cell g. For instance, in the simplest case, a hyperplane can be moved from left-most
to the right-most to obtain an opposite assignment without changing the direction of the normal
vector.

Since each of Cover’s dichotomies corresponds to a cell in the dual space, and dichotomies cor-
responding to bounded cells have no complement cell (cells with reverse sign vector), lemma 2
demonstrates that all possible Cover’s dichotomies of a given dataset D can be obtained by enumer-
ating the cells of an arrangement and the complemented cells of the bounded cells. The enumeration
of the complements of the bounded cells requires an additional process, as the bounded cells within
the arrangement do not have complementary cells. This result directly leads to the following theo-
rem.
Lemma. For a datasetD in general position, a hyperplane with k data items lying on it, 0 ≤ k ≤ D
correspond to a (D − k)-face in the dual arrangement HD. Hyperplanes with D points lying on it,
correspond to vertices in the dual arrangement.

Proof. According to the incidence preservation property, k data items lying on a hyperplane will
intersect with k hyperplanes, and the intersection of k hyperplanes will create a (D−k)-dimensional
space, which is a (D − k)-face, and the 0-faces are the vertices of the arrangement.

Lemma. Given a hyperplane arrangementH = {hn : n ∈ N}, for an arbitrary maximal face (cell)
f , the sign vector of f is signH (f). For an arbitrary (D − d)-dimension face g, 0 < d ≤ D, the
number of different signs of signH (g) with respect to signH (f) is larger than or equal to d, where
equality holds only when g is conformal to f (g is a subface of f ).

Proof. Denote the number of different signs of signH (g) with respect to signH (f) by E0-1 (g).
In a simple arrangement, the sign vector signH (f) of a cell f has no zero signs, and a (D − d)-
dimension face has d zero signs. Thus the number of different signs of signH (g) with respect to
signH (f) must be larger than or equal to d, i.e., E0-1 (f) ≥ d. If sep (f, g) = ∅, then E0-1 (g) = d
according to the definition of sep (f, g) = ∅. In this case, f , g are conformal. By contrast, if f , g are
not conformal, i.e. sep (f, g) ̸= ∅, and assuming |sep (f, g)| = C, then according to the definition of
the objective function and conformal faces, E0-1 (signH (f)) = d+C. Hence, E0-1 (signH (g)) ≥ d,
and equality holds only when g is conformal to f .

Theorem. Consider a dataset D of N data points of dimension D in general position, along with
their associated labels, denote Skcombs as the set of all D-combinations with respect to dataset D.
Then we have following inequality

argmin
s∈Skcombs

min (E0-1 (ws) , E0-1 (−ws)) ⊆ argmin
w∈RD+1

E0-1 (w) (15)

where ws represents the normal vector of the hyperplane that pass through the D-combination of
data s, and−ws is the negation of ws. The inner min on the left-hand side ensures that for each s ∈
Skcombs, we take the smaller of E0-1 (ws) and E0-1 (−ws), the outer argmin finds one of the value of
that minimizes this quantity over all s ∈ Skcombs. In other words, (15) means that all globally optimal
solutions to problem (3), are equivalent (in terms of 0-1 loss) to the optimal solutions contained in
the set of solutions of all positive and negatively-oriented linear classification decision hyperplanes
(vertices in the dual space) which go through D out of N data points in the dataset D.
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Figure 4: Log-log wall-clock run time (seconds) for the ICE algorithm in 1D to 4D synthetic
datasets, against dataset size N , where the approximate upper bound is disabled (by setting it to
N ). The run-time curves from left to right (corresponding to D = 1, 2, 3, 4 respectively), have
slopes 2.0, 3.1, 4.1, and 4.9, a very good match to the predicted worst-case run-time complexity of
O
(
N2
)
, O
(
N3
)
, O
(
N4
)
, and O

(
N5
)

respectively.

Proof. First, transform a datasetD to its dual arrangement. According to Lemma 2 and Lemma
3, each dichotomy has a corresponding dual cell and if the sign vectors for all possible cells in
the dual arrangement and their reverse signs are evaluated, the optimal solution for the 0-1 loss
classification problem can be obtained. Assume the optimal cell is f , it is required to prove that,
one of the adjacent vertices for this cell is also the optimal vertex. Then, finding an optimal vertex
is equivalent to finding an optimal cell since the optimal cell is one of the adjacent cells of this
vertex. According to Lemma 5, any vertices that are non-conformal have corresponding 0-1 loss
with respect to signH (f) which is strictly greater than D. Since f is optimal, any sign vectors with
larger sign difference (with respect to signH (f)) will have larger 0-1 loss value (with respect to true
label t). Therefore, vertices that are conformal to f will have smaller 0-1 loss value, thus one can
evaluate all vertices (and the reverse sign vector for these vertices) and choose the best one, which,
according to Lemma 3, is equivalent to evaluating all possible positive and negatively-oriented linear
classification decision hyperplanes and choosing one linear decision boundary with the smallest 0-1
loss value.

Theorem 6. Symmetry fusion theorem. Consider a dataset D of N data points of dimension D in
general position, along with their associated labels. Let h be a hyperplane which goes through D out
of N data points in the datasetD, separating the dataset into two disjoint setsD+ andD−. If the 0-1
loss for the positive orientation of this hyperplane is l, then the 0-1 loss for the negative orientation
of this hyperplane is N − l −D.

Proof. Assume there are m+ and m− data points misclassified in D+ and D−, then the 0-1 loss for
h equals l = m+ +m−. Denote the hyperplane h with negative orientation as h−. In the partition
introduced by h−, all correctly classified data by h will be misclassified in h−. Thus the 0-1 loss of
h− is |D+|−m++ |D−|−m−. Since |D+|+ |D−| = N −D, we obtain the 0-1 loss for h− which
is N −D − l.

B ADDTIONAL EXPERIMENTS

B.1 RUN-TIME COMPLEXITY ANALYSIS

We test the wall clock time of our novel ICE algorithm on four different synthetic datasets with
dimension ranging from 1D to 4D. The 1D-dimensional dataset has data size ranging from N =

15
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datasets N D ICE (%) SVM (%) LR (%) LDA (%)

HA 283 3 *77.35/74.39
(0.58)/(2.66)

72.21/71.23
(0.58)/(2.00)

72.39/72.28
(0.92)/(0.15)

73.10/74.74
(0.85)/(2.66)

CA 72 5 * 81.75/61.33
(2.66)/(5.58)

71.93/60.00
(7.85)/(0816)

76.49/58.67
(4.40)/(7.30)

76.14/58.67
(6.75)/(7.30)

CR 89 6 *95.49/83.33
(1.18)/(7.86)

92.11/85.56
(1.89)/(10.09)

90.99/82.22
(2.36)/(9.13)

90.99/82.22
(2.36)/(12.67)

VP 704 2 *96.93/97.59
(0.44)/(0.15)

96.77/97.02
(0.49)/(2.32)

96.02/96.03
(0.00)/(0.29)

96.48/96.88
(0.63)/(2.28)

BT 502 4 *79.50/74.06
(0.82)/(2.36)

74.96/72.67
(0.82)/(2.85)

76.06/73.27
(0.79)/(3.50)

75.81/73.07
(1.09)/(3.53)

SP 975 3 *94.49/94.15
(0.27)/(1.00)

94.13/93.74
(0.33)/(1.33)

94.13/93.74
(0.33)/(0.13)

94.13/93.74
(0.33)/(1.33)

Ai4i 10000 6 97.45/97.40
(0.10)/(0.36)

96.62/96.57
(0.33)/(0.53)

96.99/96.90
(0.10)/(0.44)

97.00/96.75
(0.13)/(0.33)

AIDS 2139 23 87.75/87.61
(1.09)/(1.12)

86.84/86.49
(0.32)/(1.24)

86.56/86.58
(0.19)/(1.23)

85.71/84.90
(0.25)/(1.30)

AL 243 14 98.45/98.36
(0.92)/(2.37)

95.77/95.10
(0.89)/(3.05)

96.18/95.51
(1.06)/(4.16)

94.53/88.57
(0.53)/(4.21)

AV 2043 7 88.94/88.31
(0.25)/(2.21)

87.14/87.33
(0.41)/(1.64)

86.94/87.04
(0.36)/(1.51)

86.27/86.70
(0.42)/(1.39)

RC 3810 7 93.86/92.55
(0.29)/(1.05)

92.83/92.78
(0.18)/(0.78)

92.86/92.81
(0.25)/(0.67)

93.14/92.65
(0.17)/(0.59)

DB 1146 19 79.48/79.74
(1.76)/(0.70)

69.63/67.65
(0.01)/(0.03)

70.57/69.39
(0.01)/(0.03)

73.93/70.61
(0.01)/(0.02)

SO 1941 27 77.70/76.04
(0.45)/(0.84)

73.03/73.62
(0.01)/(0.01)

72.78/72.96
(0.00)/(0.02)

73.81/74.81
(0.01)/(0.03)

SS 51433 3 86.58/86.68
(0.04)/(0.19)

82.78/82.71
(0.00)/(0.00)

79.69/79.65
(0.00)/(0.00)

80.31/80.32
(0.00)/(0.00)

Table 2: Comparison of the accuracy of our novel incremental cell enumeration (ICE) algorithm,
against approximate methods: SVM, logistic regression (LR), and linear discriminant analysis
(LDA) on real-world datasets. Results are reported as mean accuracy loss over training and test
sets in the format: Training Error / Test Error (Standard Deviation: Train / Test). Exact solutions are
marked with *, otherwise approximate, obtained using stochastic coreset selection for tractability
purposes (C). Best performing algorithm is marked bold.
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Figure 5: Log-linear wall-clock run time (seconds) plot comparing the ICE algorithm against the
branch-and-bound (BnB) algorithm of Nguyen & Sanner (2013) (Matlab implementation provided
by the authors) on three dimensional synthetic data. On this log-linear scale exponential run time
appears as a linear function of problem size N , whereas, polynomial run time is a logarithmic func-
tion of N . Fitting appropriate models (lines) to the computational experiment data (dots) provides
clear evidence of this prediction.

1000 to 60000, the 2D-dimensional ranges from 150 to 2400, 3D-dimensional from 50 to 500,
and 4D-dimensional data ranging from 30 to 200. The worst-case predictions are well-matched
empirically (see Figure 4).

All decision boundaries computed by exact algorithms entail the same, globally optimal 0-1 loss.
Therefore, the only meaningful comparison between ICE and any other exact algorithms is in terms
of time complexity. Here, we compare the wall-clock run time of our ICE algorithm with the exact
branch-and-bound (BnB) algorithm of Nguyen & Sanner (2013). As a branch-and-bound algorithm,
in the worst case it must test all possible assignments of data points to labels which requires an ex-
ponential number of computations, by comparison to ICE’s worst case polynomial time complexity
arising from the enumeration of dichotomies instead. Empirical computations confirm this reasoning
(see Figure 5), predicting for instance that for the N = 150 data size with D = 3, ICE would take
1.2 seconds worst-case whereas BnB would take approximately 1010 seconds (nearly 317 years),
demonstrating the clear superiority of our approach.

Additionally, we compare the performance of the ICE and BnB algorithms with that of a mixed-
integer programming (MIP) solver for the 0-1 LCP, the results is shown in Figure 6. The results
show that while the MIP solver is more efficient than BnB on small datasets, its performance is less
predictable compared with ICE and BnB. This is highlighted by the fact that the number of sampling
points explored by the MIP solver is smaller than those of BnB and ICE, as the MIP solver had not
yet terminated to obtain the exact solution within our three-hour time limit.

B.2 OUT-OF-SAMPLE GENERALIZATION TEST

Due to the inherent combinatorial complexity of the 0-1 loss classification problem, the ICE algo-
rithm becomes computationally intractable for high-dimensional datasets. In Table 2 , except for
datasets that are tractable for ICE algorithm (those datasets evaluated in Table 1), we train all other
datasets using the coreset selection method (ICE-coreset) introduced by (He et al., 2025). This
method acts as a randomized wrapper for exact algorithms (pseudocode is provided in Appendix
C). In brief, the coreset selection method reduces the dataset by eliminating subsets associated with
solutions exhibiting higher 0-1 loss. This process is repeated until the reduced dataset (the coreset)
becomes tractable for the ICE algorithm. As predicted, the solutions obtained by the ICE-coreset
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Figure 6: Log-linear wall-clock run time (seconds) plot comparing the ICE algorithm against the
branch-and-bound (BnB) algorithm of Nguyen & Sanner (2013) (MATLAB implementation pro-
vided by the authors) and the mixed-integer programming (MIP) solver (implemented in MATLAB
using GLPK solver) on three dimensional synthetic data. On this log-linear scale exponential run
time appears as a linear function of problem size N , whereas, polynomial run time is a logarithmic
function of N . Fitting appropriate models (lines) to the computational experiment data (dots) pro-
vides clear evidence of this prediction. The smaller sampling size of the MIP solver compared with
BnB and ICE is due to the solver not terminating within the three-hour time limit, highlighting its
much less predictable performance.

datasets N D ICE (%) SVM (%)

HA 283 3 77.35/73.68
(0.20/0.00)

73.01/66.67
(0.00/0.00)

CA 72 5 78.95/86.66
(0.01/0.00)

70.18/46.67
(0.02/0.01)

CR 89 6 92.96/94.44
0.20/0.13

91.55/94.44
(0.00/0.00)

VP 704 2 97.12/96.45
(0.01/0.00)

96.63/95.74
(0.00/0.01)

BT 502 4 78.30/80.00
0/0.44

73.56/75.25
(0.01/0.02)

SP 975 3 95.13/91.79
(0.00/0.00)

94.74/91.28
(0.00/0.00)

Table 3: Empirical comparison of the training accuracy of our ICE algorithm against an approxi-
mate SVM with a degree-2 polynomial kernel on real-world datasets. Results are reported as mean
accuracy over training and test sets in the format: Training Accuracy / Test Accuracy (Standard
Deviation: Train / Test). Best performing algorithm is marked bold.

algorithm not only perform well on training data but also demonstrate higher test accuracy, refuting
the misconception that exact algorithms necessarily overfit the training set.

B.3 HYPERSURFACE CLASSIFICATION

The out-of-sample generalization performance on real-world datasets for the quadratic classifier is
reported in Table 3.
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Algorithm 2 ICE with coreset filtering
Input: M : block size; R: number of shuffles in each filtering round; L: max-heap size; Bmax:
maximum input size for ICE algorithm; c ∈ (0, 1]: heap shrinking factor
Output: Max-heap HL containing top L configurations and associated data
blocks

1: C ← ds // initialize coreset with dataset
2: while |C| ≤ Bmax do
3: Divide C into

⌈
|C|
M

⌉
blocks: CB = {C1, C2, . . . , C⌈ |C|

M ⌉}
4: Initialize max-heapHL of size L
5: for r = 1 to R do
6: for all C ∈ CB do
7: cnfg ← ICE (Dl,K)
8: HL.push(cnfg , C)
9: end for

10: C ← unique(HL) // merge blocks and remove duplicates
11: L← L× c // shrink heap size
12: end for
13: end while
14: cnfg ← ICE (Dl,K) // final refinement
15: HL.push(cnfg , C)
16: returnHL

C CORESET SELECTION METHOD

Algorithm 2 shows the structure of the coreset selection method.
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