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Abstract

Deep neural networks often exhibit poor performance on data that is unlikely under1

the train-time data distribution, for instance data affected by corruptions. Previous2

works demonstrate that test-time adaptation to data shift, for instance using entropy3

minimization [1], effectively improves performance on such shifted distributions.4

This paper focuses on the fully test-time adaptation setting, where only unlabeled5

data from the target distribution is required. This allows adapting arbitrary pre-6

trained networks. Specifically, we propose a novel loss that improves test-time7

adaptation by addressing both premature convergence and instability of entropy8

minimization. This is achieved by replacing the entropy by a non-saturating surro-9

gate and adding a diversity regularizer based on batch-wise entropy maximization10

that prevents convergence to trivial collapsed solutions. Moreover, we propose11

to prepend an input transformation module to the network that can partially undo12

test-time distribution shifts. Surprisingly, this preprocessing can be learned solely13

using the fully test-time adaptation loss in an end-to-end fashion without any target14

domain labels or source domain data. We show that our approach outperforms15

previous work in improving the robustness of publicly available pretrained image16

classifiers to common corruptions on such challenging benchmarks as ImageNet-C.17

1 Introduction18

Deep neural networks achieve impressive performance on test data, which has the same distribution19

as the training data. Nevertheless, they often exhibit a large performance drop on test (target) data20

which differs from training (source) data; this effect is known as data shift [2] and can be caused for21

instance by image corruptions. There exist different methods to improve the robustness of the model22

during training [3, 4, 5]. However, generalization to different data shifts is limited since it is infeasible23

to include sufficiently many augmentations during training to cover the excessively wide range of24

potential data shifts [6]. Alternatively, in order to generalize to the data shift at hand, the model can be25

adapted during test-time. Unsupervised domain adaptation methods such as [7] use both source and26

target data to improve the model performance during test-time. In general source data might not be27

available during inference time, e.g., due to legal constraints (privacy or profit). Therefore we focus28

on the fully test-time adaptation setting [1]: the model is adapted to the target data given only the29

arbitrarily pretrained model parameters and the unlabeled target data that share the same label space30

as source data. We extend the work of Wang et al. [1] by introducing a novel loss function, using31

a diversity regularizer, and prepending a parametrized input transformation module to the network.32

We show that our approach outperform previous works and make pretrained models robust against33

common corruptions on image classification benchmarks as ImageNet-C [8] and ImageNet-R [9].34

Sun et al. [10] investigate test-time adaptation using a self-supervision task. Wang et al. [1] and35

Liang et al. [11] use the entropy minimization loss that uses maximization of prediction confidence as36

self-supervision signal during test-time adaptation. Wang et al. [1] has shown that such loss performs37
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better adaptation than a proxy task [10]. When using entropy minimization, however, high confidence38

predictions do not contribute to the loss significantly anymore and thus provide little self-supervision.39

This is a drawback since high-confidence samples provide the most trustworthy self-supervision.40

We mitigate this by introducing two novel loss functions that ensure that gradients of samples with41

high confidence predictions do not vanish and learning based on self-supervision from these samples42

continues. Our losses do not focus on minimizing entropy but on minimizing the negative log43

likelihood ratio between classes; the two variants differ in using either soft or hard pseudo-labels. In44

contrast to entropy minimization, the proposed loss functions provide non-saturating gradients, even45

when there are high confident predictions. We refer to Figure 1 for an illustration of the losses and the46

resulting gradients. Using these new loss functions, we are able to improve the network performance47

under data shifts in fully test-time adaptation.48

In general, self-supervision by confidence maximization can lead to collapsed trivial solutions, which49

make the network to predict only a single or a set of classes independent of the input. To overcome50

this issue a diversity regularizer [11, 12] can be used, that acts on a batch of samples. It encourages51

the network to make different class predictions on different samples. We extend the regularizer by52

including a moving average, in order to include the history of the previous batches and show that this53

stabilizes the adaptation of the network to unlabeled test samples. Furthermore we also introduce a54

parametrized input transformation module, which we prepend to the network. The module is trained55

in a fully test-time adaptation manner using the proposed loss function, i. e. without the need of any56

target domain labels or source data. It aims to partially undo the data shift at hand. This helps to57

further improve the performance on image classification benchmark with corruptions.58

Since our method does not change the training process, it allows to use any pretrained models. This59

is beneficial because any good performing pretrained network can be readily reused, e.g., a network60

trained on some proprietary data not available to the public. We show, that our method significantly61

improves performance on models that are trained on clean ImageNet data such as a ResNet50 [13],62

as well as robust models such as ResNet50 models trained using DeepAugment+AugMix [9].63

In summary our main contributions are as follows: we propose non-saturating losses based on the64

negative log likelihood ratio, such that gradients from high confidence predictions still contribute to65

test-time adaptation. We extend the diversity regularizer that acts on a batch of samples to a moving66

average version, which includes the history of the previous batch samples. This prevents the network67

from collapsing to trivial solutions. Furthermore we also introduce an input transformation module,68

which partially undoes the data shift at hand. We show that the performance of different pretrained69

models can be significantly improved on challenging benchmarks like ImageNet-C and ImageNet-R.70

2 Related work71

Common image corruptions are potentially stochastic image transformations motivated by real-72

world effects that can be used for evaluating a model’s robustness. One such benchmark, ImageNet-C73

[8], contains simulated corruptions such as noise, blur, weather effects, and digital image transforma-74

tions. Additionally, Hendrycks et al. [9] proposed three data sets containing real-world distribution75

shifts, including Imagenet-R. The ImageNet-C have been further extended to MNIST [14], several76

object detection datasets [15], and image segmentation [16], reflecting the interest of the robustness77

community. Most proposals for improving robustness involve special training protocols, requiring78

time and additional resources. This includes data augmentation like Gaussian noise [17, 18, 9],79

CutMix [19], AugMix [4], training on stylized images [3, 20] or against adversarial noise distribu-80

tions [21]. Mintun et al. [22] pointed out that many improvements on ImageNet-C are due to data81

augmentations which are too similar to the test corruptions, that is: overfitting to ImageNet-C occurs.82

Thus, the model might be less robust to corruptions not included in the test set of ImageNet-C.83

Unsupervised domain adaptation methods train a joint model of the source and target domain by84

cross-domain losses, with the hope to find more general and robust features. These losses optimize85

feature alignment [23, 24] between domains, adversarial invariance [25, 5, 26, 27], shared proxy86

tasks [28] or adapting the entropy minimization via an adversarial loss [7]. While these approaches87

are effective, they require explicit access to source and target data at the same time, which may not88

always be feasible. Our approach works with any pretrained model and only needs target data.89

Test-time adaptation (also termed source free adaptation in some literature) is a setting, when90

training (source) data is unavailable at test-time. Several works use generative models [29, 30, 31, 32]91
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for the source free adaptation and require several thousand epochs to adapt to the target data [30, 32].92

Besides, there is another line of work [10, 33, 34, 35, 1] that interpret the common corruptions as93

data shift and aim to improve the model robustness against these corruptions with efficient test-time94

adaptation strategy to facilitate online adaptation. Such setting refrain the usage of generative models95

or methods that require larger number of adaptation steps. Our work also falls in this line of research96

and aims to test-time adapt the model to common corruptions with less computational overhead.97

Sun et al. [10] update feature extractor parameters at test-time via a self-supervised proxy task98

(predicting image rotations). However, Sun et al. [10] alter the training procedure by including the99

proxy loss into the optimization objective as well, hence arbitrary pretrained models cannot be used100

directly for test-time adaptation. Inspired by the domain adaptation strategies [36, 37], several works101

[33, 34, 35] replace the estimates of Batch Normalization (BN) activation statistics with the statistics102

of the corrupted test images. Fully test time adaptation, studied by Wang et al. [1] (TENT) uses103

entropy minimization to update the channel-wise affine parameters of BN layers on corrupted data104

along with the batch statistics estimates. SHOT [11] also uses entropy minimization and a diversity105

regularizer to avoid collapsed solutions. SHOT modifies the model from the standard setting by106

adopting weight normalization at the fully connected classifier layer during training to facilitate their107

pseudo labeling technique. Hence, SHOT is not readily applicable to arbitrary pretrained models.108

We show that pure entropy minimization [1, 11] results in vanishing gradients for high confidence109

predictions, thus inhibiting learning. Our work addresses this issue by proposing a novel non-110

saturating loss, that provides non-vanishing gradients for high confidence predictions. We show111

that our proposed loss function improves the network performance after test-time adaptation. In112

particular, performance on corruptions of higher severity improves significantly. Furthermore, we113

add and extend the diversity regularizer [11, 12] to avoid collapse to trivial, high confidence solutions.114

Note that the existing diversity regularizers [11, 12] act on a batch of samples, hence the number of115

classes has to be smaller than the batch size. We mitigate this problem by extending the regularizer116

to a running average version. Prior work [5, 38, 39] transformed inputs by an additional module117

to overcome domain shift, obtain robust models, and also to learn to resize. In our work, we also118

prepend an input transformation module to the model, but in contrast to former works, this module is119

trained purely at test-time to partially undo the data shift at hand and thus aids the adaptation.120

3 Method121

We propose a novel method for fully test-time adaption. For this, we assume that a neural network122

fθ with parameters θ is available that was trained on data from some distribution D, as well a set of123

(unlabeled) samples X ∼ D′ from a target distribution D′ 6= D (importantly, no samples from D are124

required). We frame fully test-time adaption as a two-step process: (i) Generate a novel network gφ125

based on fθ, where φ denotes the parameters that are adapted. A simple variant for this is g = f and126

φ ⊆ θ [1]. However, we propose a more expressive and flexible variant in Section 3.1. (ii) Adapt the127

parameters φ of g on X using an unsupervised loss function L. We propose two novel losses Lslr128

and Lhlr in Section 3.2 that have non-vanishing gradients for high-confidence self-supervision.129

3.1 Input Transformation130

We propose to define the adaptable model as g = f ◦ d. That is: we preprend a trainable network d131

to f . The motivation for the additional component d is to increase expressivity of g such that it can132

learn to (partially) undo the domain shift D → D′.133

Specifically, we choose d(x) = γ · [τx+ (1− τ)rψ(x)] + β, where τ ∈ R, (β, γ) ∈ Rnin with134

nin being the number of input channels, rψ being a network with identical input and output shape,135

and · denoting elementwise multiplication. Specifically, β and γ implement a channel-wise affine136

transformation and τ implements a convex combination of unchanged input and the transformed input137

rψ(x). By choosing τ = 1, γ = 1, and β = 0, we ensure d(x) = x and thus g = f at initialization.138

In principle, rψ can be chosen arbitrarily. In this work, we choose rψ as a simple stack of 3 × 3139

convolutions, group normalization, and ReLUs (for details, we refer to the appendix). However,140

exploring other choices would be an interesting avenue for future work.141

Importantly, while the motivation for d is to learn to partially undo a domain shift D → D′, we train142

d end-to-end in the fully test-time adaptation setting on data X ∼ D′, without any access to samples143
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from the source domain D, based on the losses proposed in Section 3.2. The modulation parameters144

of gφ are φ = (β, γ, τ, ψ, θ′), where θ′ ⊆ θ. That is, we adapt only a subset of the parameters θ of145

the pretrained network f . We largely follow Wang et al. [1] in adapting only the affine parameters of146

normalization layers in f while keeping parameters of convolutional kernels unchanged. Additionally,147

batch normalization statistics (if any) are adapted to the target distribution.148

Please note that the proposed method is applicable to any pretrained network that contains normaliza-149

tion layers with a channel-wise affine transformation. Even for networks that do not come with such150

affine transformation layers, one can add affine transformation layers into f that are initialized to151

identity as part of model augmentation.152

3.2 Adaptation Objective153

We propose a loss function L = Ldiv + δLconf for fully test-time network adaptation that consists of154

two components: (i) a term Ldiv that encourages predictions of the network over the adaptation dataset155

X that match a target distribution pD′(y). This can help avoiding test-time adaptation collapsing156

to too narrow distributions such as always predicting the same or very few classes. If pD′(y) is157

(close to) uniform, it acts as a diversity regularizer. (ii) A term Lconf that encourages high confidence158

prediction on individual datapoints. We note that test-time entropy minimization (TENT) [1] fits into159

this framework by choosing Ldiv = 0 and Lconf as the entropy.160

3.2.1 Class Distribution Matching Ldiv161

Assuming knowledge of the class distribution pD′(y) on the target domain D′, we propose to add a162

term to the loss that encourages the empirical distribution of (soft) predictions of gφ on X to match163

this distribution. Specifically, let p̂gφ(y) be an estimate of the distribution of (soft) predictions of gφ.164

We use the Kullback-Leibler divergence Ldiv = DKL(p̂gφ(y)|| pD′(y)) as loss term. In a special case165

of pD′(y) being a uniform distribution over the classes, this corresponds to maximizing the entropy166

H(p̂gφ(y)). Similar assumption has been made in SHOT [11] to circumvent the collapsed solutions.167

Since the estimate p̂gφ(y) depends on φ, which is continuously adapted, it needs to be re-estimated168

on a per-batch level. Since re-estimating p̂gφ(y) from scratch would be computational expensive, we169

propose to use a running estimate that tracks the changes of φ as follows: let pt−1(y) be the estimate at170

iteration t−1 and pempt = 1
n

∑n
k=1 ŷ

(k), where ŷ(k) are the predictions (confidences) of gφ on a mini-171

batch of n inputs x(k) ∼ X . We update the running estimate via pt(y) = κ ·pt−1(y)+(1−κ) ·pempt .172

The loss becomes Ldiv = DKL(pt(y)|| pD′(y)) accordingly. We use κ = 0.9 in the experiments.173

3.2.2 Confidence Maximization Lconf174

We motivate our choice of Lconf step-by-step from the (unavailable) supervised cross-entropy loss:175

for this, let ŷ = gφ(x) be the predictions (confidences) of model gφ and H(ŷ, yr) = −∑
c y

r
c log ŷc176

be the cross-entropy between prediction ŷ and some reference yr. Moreover, let the last layer of g be177

a softmax activation layer softmax. That is ŷ = softmax(o), where o are the network’s logits. We178

note that we can rewrite the cross-entropy loss in terms of the logits o and a one-hot reference yr as179

follows: H(softmax(o), yr) = −ocr + log
∑ncl
i=1 e

oi where cr is the index of the 1 in yr and ncl is180

the number of classes.181

In the case of labels being available for the target domain (which we do not assume) in the form of a182

one-hot encoded reference yt for data xt, one could use the supervised cross-entropy loss by setting183

yr = yt and using Lsup(ŷ, yr) = H(ŷ, yr) = H(ŷ, yt). Since fully test-time adaptation assumes184

no label information being available, the supervised cross-entropy loss is not applicable and other185

options for yr need to be used.186

One option are (hard) pseudo-labels. That is, one defines the reference yr based on the network pre-187

dictions ŷ via yr = onehot(ŷ), where onehot creates a one-hot reference with the 1 corresponding to188

the class with maximal confidence in ŷ. This results in Lpl(ŷ) = H(ŷ, onehot(ŷ)) = − log ŷc∗ , with189

c∗ = argmax ŷ. One disadvantage with this loss is that the (hard) pseudo-labels ignore uncertainty190

in the network predictions during self-supervision. This results in large gradient magnitudes with191

respect to the logits |∂Lpl∂oc∗
| being generated in situations where the network is highly unconfident (see192
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Figure 1: Illustration of different losses for confidence maximization. Losses (left, shifted such that
maxima of all losses are at 0) and the resulting gradients with respect to the first logit (right) as a
function of the first classes confidence are shown for the case of a binary classification problem.
Both entropy and hard pseudo-labels have vanishing gradients for high confidence predictions.
Accordingly, both have maximum gradient amplitude for low-confidence self-supervision, with
this effect being stronger for the hard pseudo-labels. Hard Likelihood Ratio has constant gradient
amplitude for any confidence and thus takes into account low- and high-confidence self-supervision
equally. Soft Likelihood Ratio also shows non-vanishing (albeit non-maximum) gradients for high-
confidence self-supervision and additionally produces small gradient amplitudes from low-confidence
self-supervision. Since the likelihood ratio-based losses are unbounded, the design of the model
needs to ensure that logits cannot grow unbounded.

Figure 1). This is undesirable since it corresponds to the network being affected most by data points193

where the network’s self-supervision is least reliable.194

An alternative is to use soft pseudo-labels, that is yr = ŷ. This takes uncertainty in network195

predictions into account during self-labelling and results in the entropy minimization loss of TENT196

[1]: Lent(ŷ) = H(ŷ, ŷ) = H(ŷ) = −∑
c ŷc log ŷc. However, also for the entropy the logits’197

gradient magnitude |∂Lent∂o | goes to 0 when one of the entries in ŷ goes to 1 (see Figure 1). For198

a binary classification task, for instance, the maximal logits’ gradient amplitude is obtained for199

ŷ ≈ (0.82, 0.18). This implies that during later stages of test-time adaptation where many predictions200

typically already have very high confidence, i. e. above 0.82, gradients are also dominated by201

datapoints with relative low confidence in self-supervision.202

While both hard and soft pseudo-labels are clearly motivated, they are not optimal in conjunction with203

a gradient-based optimizer since the self-supervision from low confidence predictions dominates (at204

least during later stages of training). To address this issue, we propose two losses that are analogous205

to Lpl and Lent, but are not based on the cross-entropy H but instead on the negative log likelihood206

ratios207

R(ŷ, yr) = −
∑
c

yrc log
ŷc∑
i6=c ŷi

= −
∑
c

yrc (log ŷc − log
∑
i 6=c

ŷi) = H(ŷ, yr) +
∑
c

yrc log
∑
i 6=c

ŷi

Note that while the entropy H is lower bounded by 0, R can get arbitrary small if yrc → 1 and the208

sum
∑
i 6=c ŷi → 0 and thus log

∑
i 6=c ŷi → −∞. This property will induce non-vanishing gradients209

for high confidence predictions.210

The first loss we consider is the hard likelihood ratio loss that is defined similarly to the hard211

pseudo-labels loss Lpl:212

Lhlr(ŷ) = R(ŷ, onehot(ŷ)) = − log(
ŷc∗∑
i 6=c∗ ŷi

) = − log(
eoc∗∑
i 6=c∗ e

oi
) = −oc∗ + log

∑
i 6=c∗

eoi ,

where c∗ = argmax ŷ. We note that ∂Lhlr
∂oc∗

= −1, thus also high-confidence self-supervision213

contributes equally to the maximum logits’ gradients. This loss was also independently proposed as214

negative log likelihood ratio loss by Yao et al. [40] as a replacement to the fully-supervised cross215

entropy loss for classification task. However, to the best of our knowledge, we are the first to motivate216

and identify the advantages of this loss for self-supervised learning and test-time adaptation due to its217

non-saturating gradient property.218
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In addition to Lhlr, we also account for uncertainty in network predictions during self-labelling in a219

similar way as for the entropy loss Lent, and propose the soft likelihood ratio loss:220

Lslr(ŷ) = R(ŷ, ŷ) = −
∑
c

ŷc · log(
ŷc∑
i 6=c ŷi

) = −
∑
c

ŷc log(
eoc∑
i 6=c e

oi
)

=
∑
c

ŷc(−oc + log
∑
i 6=c

eoi)

We note that as ŷc∗ → 1, Lslr(ŷ) → Lhlr(ŷ). Thus the asymptotic behavior of the two likelihood221

ratio losses for high confidence predictions is the same. However, the soft likelihood ratio loss222

creates lower amplitude gradients for low confidence self-supervision. We provide illustrations of the223

discussed losses and the resulting logits’ gradients in Figure 1.224

We note that both likelihood ratio losses would typically encourage the network to simply scale225

its logits larger and larger, since this would reduce the loss even if the ratios between the logits226

remain constant. However, when finetuning an existing network and restricting the layers that are227

adapted such that the logits remain approximately scale-normalized, these losses can provide a228

useful and non-vanishing gradient signal for network adaptation. We achieve this appproximate229

scale normalization by freezing the top layers of the respective networks. In this case, normalization230

layers such as batch normalization prohibit “logit explosion”. However, predicted confidences can231

presumably become overconfident; calibrating confidences in a self-supervised test-time adaptation232

setting is an open and important direction for future work.233

4 Experimental settings234

Datasets We evaluate our method on image classification datasets for corruption robustness and235

domain adaptation. We evaluate on the challenging benchmark ImageNet-C [8], which includes a236

wide variety of 15 different synthetic corruptions with 5 severity levels that attribute to data shift.237

This benchmark also includes 4 additional corruptions as validation data. For domain adaptation, we238

choose ImageNet trained models to adapt to ImageNet-R proposed by Hendrycks et al. [9]. This239

dataset contains various naturally occurring artistic renditions of object classes from the original240

ImageNet. ImageNet-R comprises 30,000 image renditions for 200 ImageNet classes. Please refer241

Sec. A.5 for the experiments on other domain adaptation datasets VisDA-C [41], Office-Home [42].242

Models Our method operates in a fully test-time adaptation setting that allows us to use any arbitrary243

pretrained model. We use publicly available ImageNet pretrained models ResNet50, DenseNet121,244

ResNeXt50, MobileNetV2 from torchvision [43]. We also test on a robust ResNet50 model trained245

using DeepAugment+AugMix 1 [9].246

Baseline for fully test-time adaptation Since TENT from Wang et al. [1] outperformed competing247

methods and fits the fully test-time adaptation setting, we consider it as a baseline and compare248

our results to this approach. Similar to TENT, we also adapt model features by estimating the249

normalization statistics and optimize only the channel-wise affine parameters on the target distribution.250

Settings We conduct test-time adaptation on a target distribution for 5 epochs with batch size 64 and251

use the Adam optimizer with cosine decay scheduler of the learning rate with initial value 0.0006.252

We set the weight of Lconf in our loss function to δ = 0.025 and κ = 0.9 in the running estimate253

pt(y) of Ldiv (we investigate the effect of κ in the Sec. A.3). Similar to SHOT [11], we also choose254

the target distribution pD′(y) in Ldiv as a uniform distribution over the available classes. We found255

that the models converge during 3 to 5 epochs and do not improve further.256

For TENT, we use SGD with momentum 0.9 at constant learning rate 0.00025 with batch size 64.257

These values correspond to the ones of Wang et al. [1]; alternative settings of optimizer and learning258

rates for TENT did not improve performance. TENT is originally optimized only for 1 epoch. For a259

fair comparison to our method, we optimize TENT also for 5 epochs. Similar to Wang et al. [1], we260

also control for ordering by data shuffling and sharing the order across the methods.261

Note that all the hyperparameter settings are tuned solely on the validation corruptions of ImageNet-C262

that are disjoint from the test corruptions. As discussed in Section 3.2.2, we freeze all trainable263

parameters in the top layers of the networks to prohibit “logit explosion”. Note that normalization264

1From https://github.com/hendrycks/imagenet-r. Owner permitted to use it for research/commercial purposes.
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Table 1: Test-time adaptation of ResNet50 on ImageNet-C at highest severity level 5. Ground truth
labels are used to adapt the model in supervised manner to obtain empirical upper bound performance.

Method Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

No Adaptation 2.44 2.99 1.96 17.92 9.82 14.78 22.50 16.89 23.31 24.43 58.93 5.43 16.95 20.61 31.65
Pseudo Labels 2.44 2.99 1.96 17.92 9.82 14.78 22.50 16.89 23.31 24.43 58.93 5.43 16.95 20.61 31.65

Epoch 1

TENT 32.70 35.34 35.11 32.79 31.80 47.22 53.02 51.82 43.42 60.44 68.82 27.53 58.47 61.63 55.98
TENT+ 33.96 36.66 35.75 33.70 33.33 47.73 53.22 52.16 44.79 60.62 68.91 35.60 58.81 61.82 56.23

HLR (ours) 38.39 41.11 40.28 38.25 38.18 51.63 55.55 55.45 48.96 62.19 68.17 49.47 60.34 62.51 57.42
SLR (ours) 39.51 42.09 41.58 39.35 39.02 52.67 55.80 55.92 49.64 62.62 68.47 50.27 60.80 63.01 57.80

Epoch 5

TENT 16.04 23.22 25.85 19.05 17.40 49.02 52.78 52.72 34.31 61.19 68.54 1.26 59.26 62.15 56.17
TENT+ 33.97 37.95 36.93 32.69 33.36 51.42 54.33 54.55 45.80 62.09 69.03 24.08 60.36 63.10 57.21

HLR (ours) 41.37 44.04 43.68 41.74 41.09 54.26 56.43 57.03 50.81 63.05 68.29 50.98 61.15 63.08 58.13
SLR (ours) 41.52 42.90 44.07 41.69 40.78 54.76 56.59 57.35 51.01 63.53 68.72 50.65 61.49 63.46 58.32
Groundtruth 55.68 58.10 61.27 55.84 55.08 65.83 67.22 67.56 62.60 72.49 76.97 65.04 70.86 72.51 68.56

Table 2: SSIM and SLR-adapted ResNet50 accuracy without and with input transformation (IT).
Corruption Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

SSIM 0.123 0.147 0.135 0.623 0.648 0.622 0.676 0.517 0.575 0.619 0.653 0.545 0.625 0.786 0.800
SSIM+IT 0.173 0.188 0.347 0.605 0.638 0.603 0.670 0.580 0.628 0.626 0.676 0.765 0.616 0.776 0.795

SLR 41.59 43.49 43.90 41.70 41.10 54.86 56.39 57.47 50.90 63.51 68.70 51.06 61.36 63.39 58.35
SLR+IT 43.09 44.39 64.05 41.98 40.99 55.73 56.75 58.56 51.68 63.64 68.85 55.01 61.32 63.59 58.24

statistics are still updated in these layers. Please refer Sec. A.2 for more details regarding which265

layers are frozen in different networks.266

Furthermore, we prepend a trainable input transformation module d (cf. Sec. 3.1) to the network to267

partially counteract the data-shift. Note that the parameters of this module discussed in Sec. 3.1 are268

trainable and subject to optimization. This module is initialized to operate as an identity function prior269

to adaptation on a target distribution by choosing τ = 1, γ = 1, and β = 0. We adapt the parameters270

of this module along with the channel-wise affine transformations and normalization statistics in271

an end-to-end fashion, solely using our proposed loss function along with the optimization details272

mentioned above. The architecture of this module is discussed in Sec. A.1.273

Since Ldiv is independent of Lconf, we also propose to combine Ldiv with TENT, i. e. L = Ldiv +Lent.274

We denote this as TENT+ and also set κ = 0.9 here. Note that TENT optimizes all channel-wise275

affine parameters in the network (since entropy is saturating and does not cause logit explosion).276

For a fair comparison to our method, we also freeze the top layers of the networks in TENT+. We277

show that adding Ldiv and freezing top layers significantly improves the networks performance over278

TENT. Note that SHOT [11] is the combination of TENT, batch-level diversity regularizer, and their279

pseudo labeling strategy. TENT+ can be seen as a variant of SHOT but without their pseudo labeling280

technique. Please refer to Sec. A.4 for the test-time adaptation of pretrained models with SHOT.281

Note that each corruption and each severity in ImageNet-C is treated as a different target distribution282

and in all settings we reset model parameters to their pretrained values before every adaptation. We283

run our experiments for three times with different random seeds (2020, 2021, 2022) in PyTorch and284

report the average accuracies.285

5 Results286

Evaluation on ImageNet-C We adapt different models on the ImageNet-C benchmark using TENT,287

TENT+, and both hard likelihood ratio (HLR) and soft likelihood ratio (SLR) losses. Figure 2288

(top row) depicts the mean corruption accuracy (mCA%) of each model computed across all the289

corruptions and severity levels. It can be observed that TENT+ improves over TENT, showcasing the290

importance of a diversity regularizer Ldiv. Importantly, our methods HLR and SLR outperform TENT291

and TENT+ across DenseNet121, MobileNetV2, ResNet50, ResNeXt50 and perform comparable292

with TENT+ on robust ResNet50-DeepAugment+Augmix model. This shows that the mCA% of293

robust DeepAugment+Augmix model can be further increased from 58% (before adaptation) to294

68.6% using test-time adaptation techniques. Here, the average of mCA obtained from three different295
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Figure 2: Test-time adaptation results on (top row) ImageNet-C, averaged across all 15 corruptions and
severities, (middle row) ImageNet-R, (bottom row) clean ImageNet. NA refers to "No Adaptation".
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Figure 3: Test-time adaptation of ResNet50 using (top row) a subset of classes, and (bottom row) a
subset of samples per class on 4 different corruptions at severity 5. Accuracy is computed based on
the evaluation of adapted model on the entire target data. Note that error bars are smaller to visualize.

random seeds are depicted along with the error bars. These smaller error bars represent that the296

test-time adaptation results are not sensitive to the choice of random seed.297

We also illustrate the performance of ResNet50 on the highest severity level across all 15 test298

corruptions of ImageNet-C in Table 1. Here, the adaptation results after epoch 1 and 5 are reported.299

It can be seen that a single epoch of test-time adaptation improves the performance significantly300

and makes minor improvements until epoch 5. TENT adaptation for more than one epoch result301

in reduced performance and TENT with Ldiv (TENT+) prevents this behavior. We note that both302

HLR and SLR clearly and consistently outperform TENT and TENT+ on the ResNet50. We also303

compare our results with the hard pseudo-labels (PL) objective and also with an oracle setting where304

the groundtruth labels of the target data are used for adapting the model in a supervised manner (GT).305

Note that this oracle setting is not of practical importance but illustrates the empirical upper bound on306

fully test-time adaptation performance under the chosen modulation parametrization. The reported307

numbers in the table are the average of three random seeds.308
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ImageNet-R We evaluate different adapted models on ImageNet-R and depict the results in Figure 2309

(middle row). Results show that our methods significantly improve performance of all the models,310

including the model pretrained with DeepAugment+Augmix. Moreover, both HLR and SLR clearly311

outperform TENT and TENT+.312

Evaluation with data subsets In the above experiments, the model is evaluated on the same data313

that is also used for the test-time adaptation. Here, we test model generalization by adapting on a314

subset of target data and evaluate the performance on the whole dataset, which also includes unseen315

data that is not used for adaptation. We conduct two case studies: (i) adapt on the data from a subset316

of ImageNet classes and evaluate the performance on the data from all the classes. (ii) Adapt only on317

a subset of data from each class and test on all seen and unseen samples from the whole dataset.318

Figure 3 illustrates generalization of a ResNet50 adapted on different proportions of the data across319

different corruptions, both in terms of classes and samples. We observe that adapting a model on320

a small subset of samples and classes is sufficient to achieve reasonable accuracy on the whole321

target data. This suggests that the adaptation actually learns to compensate the data shift rather than322

overfitting to the adapted samples or classes. The performance of TENT decreases as the number of323

classes/samples increases, because Lent can converge to trivial collapsed solutions and more data324

corresponds to more updates steps during adaptation. Adding Ldiv such as in TENT+ stabilizes the325

adaptation process and reduces this issues. Reported are the average of random seeds with error bars.326

Input transformation We investigate whether the input transformation (IT) module, trained end-to-327

end with a ResNet50 and SLR loss on data of the respective distortion without seeing any source328

(undistorted) data, can partially undo certain domain shifts of ImageNet-C and also increase accuracy329

on corrupted data. We measure domain shift via the structural similarity index measure (SSIM) [44]330

between the clean image (unseen by the model) and its distorted version/the output of IT on the331

distorted version. Table 2 shows that IT increases the SSIM considerably on certain distortions such as332

Impulse, Contrast, Snow, and Frost. IT increases SSIM also for other types of noise distortions, while333

it slightly reduces SSIM for the blur distortions, Elastic, Pixelate, and JPEG. When combined with334

SLR, IT considerably increases accuracy on distortions for which also SSIM increased significantly335

(for instance +20 percent points on Impulse, +4 percent points on Contrast) and never reduces336

accuracy by more than 0.11 percent points. We provide illustrations of effect of IT in the appendix.337

Clean images As a sanity check, we investigate the effect of test-time adaptation when target data338

comes from the same distribution as training data. For this, we adapt pretrained models on clean339

validation data of ImageNet. The results in Figure 2 (bottom row) depict that the performance of340

SLR/HLR adapted models drops by 1.5 to 2.5 percent points compared to the pretrained model.341

We attribute this drop to self-supervision being less reliable than the original full supervision on in-342

distribution training data. The drop is smaller for TENT and TENT+, presumably because predictions343

on in-distribution target data are typically highly confident such that there is little gradient and thus344

little change to the pretrained networks by TENT. In summary, while self-supervision by confidence345

maximization is a powerful method for adaptation to domain shift, the observed drop when adapting346

to data from the source domain indicates that there is “no free lunch” in test-time adaptation.347

6 Conclusion348

We propose a method to improve corruption robustness and domain adaptation of models in a fully349

test-time adaptation setting. Unlike entropy minimization, our proposed loss functions provide350

non-vanishing gradients for high confident predictions and thus attribute to improved adaptation351

in a self-supervised manner. We also show that additional diversity regularization on the model352

predictions is crucial to prevent trivial solutions and stabilize the adaptation process. Lastly, we353

introduce a trainable input transformation module that partially refines the corrupted samples to354

support the adaptation. We show that our method improves corruption robustness on ImageNet-C and355

domain adaptation to ImageNet-R on different ImageNet models. We also show that adaptation on a356

small fraction of data and classes is sufficient to generalize to unseen target data and classes.357

Ethical and Societal Impact Our non-saturating loss increases accuracy but might result in over-358

confident predictions, which can cause harm in safety-critical downstream applications when not359

properly calibrated. At the same time, self-supervised confidence maximization might amplify bias in360

pretrained models. We hope that the diversity regularizer in the loss partially compensates this issue.361
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