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Abstract

Alzheimer’s disease (AD) is a growing global health challenge, with pathological1

changes beginning decades before clinical symptoms. Identifying non-invasive and2

interpretable biomarkers is critical for early intervention. Magnetoencephalography3

(MEG) provides access to brain oscillatory dynamics and connectivity patterns4

that are disrupted in mild cognitive impairment (MCI), a prodromal stage of AD.5

We evaluate five families of MEG-derived features and train an ensemble of 2006

feature models, achieving MCI classification with F1 72.43%. We use Shapley7

Additive Explanations (SHAP) to highlight discriminative regions and connections,8

offering interpretable insights and pointing to potential new markers. Beyond9

binary detection, model scores correlate with Mini-Mental State Examination10

(MMSE) scores, suggesting potential for continuous disease staging. Together,11

these results establish MEG-based machine learning as a promising avenue for12

robust and clinically meaningful biomarkers.13

1 Introduction14

The blessing of longer life prospects, driven by biomedical advances and better access to healthcare,15

has brought with it a rise in age-related neurological disorders such as Alzheimer’s disease (AD). By16

2050, more than 130 million people [1] are expected to live with AD, imposing a global economic17

burden of over $9 trillion [2, 3, 4, 5]. AD is a spectrum disorder in which pathological changes emerge18

long before measurable cognitive decline [6, 7, 8], making early biomarkers essential for intervention.19

Current clinical biomarkers rely on cerebrospinal fluid (CSF) measurements or PET imaging [7, 9].20

While accurate, these methods are costly, invasive, and difficult to scale. Recent progress in plasma21

biomarkers [10, 11] offers new possibilities, but electrophysiological measures such as EEG and22

MEG provide an attractive alternative: they are non-invasive, relatively inexpensive, and directly23

capture neural dynamics known to be disrupted in AD [12, 13, 14]. Particularly, alterations in spectral24

power and functional connectivity have been linked to mild cognitive impairment (MCI), a prodromal25

stage of AD. Detecting MCI is therefore critical, as it reveals early disease processes and creates an26

opportunity for timely intervention, even if not all individuals progress to AD.27

In this work, we present a systematic framework to evaluate MEG-derived features for MCI28

detection and interpretation. We show that an ensemble of 200 models trained across five feature29

families achieves an F1 score of 72.43%. We demonstrate that SHAP analysis [15] can provide30

detailed insights into early AD processes, allowing for interpretable and clinically meaningful31

biomarkers. Beyond binary classification, we find that model scores correlate with MMSE, pointing32

to the potential for regression-based disease staging.33
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Figure 1: 5 different feature inputs (F) are transformed (T) from the raw data (see section 2.1). We
train each feature model with 40 seeds (S). Finally we ensemble the 200 (SxF) models.

2 Method34

2.1 Dataset and Feature Extraction35

We use the BioFIND dataset [16], a multi-site MEG study comprising 324 resting-state recordings36

(158 MCI, 166 controls). Data was collected at the University of Cambridge (UK) and the Centre for37

Biomedical Technology (Spain). Each subject underwent 3-5 minutes of eye-closed resting-state38

MEG and individual MRI. We make use only of the MEG data. Preprocessing followed Vaghari et39

al. [16] with recordings epoched into 2-second windows, artifacts removed, and spectra estimated40

using the Welch method. It is important to note that the MEG system had two types of sensor,41

namely magnetometers (MAG) and gradiometers (GRD) which capture complementary aspects of42

the magnetic field. Using this data, we derived five feature sets:43

• Source Power (Src_Power): Spectral power for α and β frequency bands in 38 cortical44

parcels (Harvard-Oxford atlas [17]).45

• Source Amplitude Envelope Correlations (Src_AEC): Connectivity in α (8–12 Hz) and β46

(12–30 Hz) bands, orthogonalized to mitigate field spread [18].47

• Exponentiated Spectral Slopes (Exp_Grad, Exp_Mag): Aperiodic slope of the spectrum,48

extracted from GRD and MAG [19], corresponding to two feature sets.49

• Channel Power (Chan_Pow): Band-limited power for 102 MAG and 204 GRD sensors50

across eight frequency bands.51

2.2 System Architecture52

The base architecture used for all models is a 3 linear layer block with dropout followed by a self53

attention block. This results in a total of 415K trainable parameters. The input feature datasets were54

all divided into 80%, 10%, 10% splits for training, validation and testing respectively. We use Adam55

[20] as optimizer and we perform hyperparameter finetuning on learning rate and batch size per56

model, applying early stopping with a patience of 20. For each feature set, we trained 40 classifiers57

with different seeds to ensure robustness across subjects. Ensembles were then constructed both per58

feature and across features, yielding 200 models in the final ensemble following the architecture in59

Figure 1. We report our F1, accuracy, AUC, recall, and precision results for MCI classification.60

3 Results61

3.1 Classifying Mild Cognitive Impairment62

Our method trains different models on different input features corresponding to distinct pieces63

of information relating to the patients neural dynamics. By transforming the raw data into a single64

feature we can reduce noise but also relevant information. It then makes sense that individual feature65
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models on average perform significantly lower than performances reported in previous work (the66

best single feature model Src AEC performing a full 7% lower than Vaghari et al. s 68% Acc67

[21]). However, soft voting ensembles across seeds for the same feature already begin to show68

improvements with feature models achieving a boost of up to 4%. Table 1 shows results for feature69

ensembles as well as the final ensemble of all 200 models resulting in an F1 Score of 72.43%. We70

achieve state of the art results using a simple and modular architecture that enables for explainable71

methods such as SHAP.72

N Models F1 AUC Acc. Recall Precision

Source Power 40 67.95 69.65 63.55 79.49 59.33
Source AEC 40 64.12 66.56 61.99 69.87 59.24
Exp Gradiometer 40 65.08 58.35 54.21 87.82 51.7
Exp Magnetometer 40 64.62 53.13 49.84 94.23 49.16
Channel Power 40 66.86 68.33 63.86 75.0 60.31

Ensemble 200 72.43 73.88 68.22 85.9 62.62
Table 1: Results for model ensemble per Feature and across Features.

3.2 Interpretability through SHAP Values73

Our individual feature models with shorter dimensionality inputs allow us to use SHAP explanations74

effectively. Shapley Additive Values can quantify contributions per input, which provides insights75

on numerous aspects. For Source AECs they indicate which connections between regions are most76

informative in identifying MCI, while for Exponentiated Spectral Slopes it shows which sensors77

report most differing values between controls and patients with MCI. To exemplify the interpretability78

of our method we present SHAP values for the α frequency band on our Src_AEC and Source_Power79

model ensembles in Figure 2. As can be observed, our SHAP analysis revealed discriminative regions80

in the α source power band, with occipital parcels emerging as particularly informative (Fig. 2a, 2c).81
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Figure 2: SHAP Values for α frequencies extracted from model ensembles: SrcPow and SrcAEC
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(a) Model Score distributions by MMSE (b) Score distributions by MCI (c) MMSE distributions by MCI

(d) MMSE and Model Scores

Metric General MCI=0 MCI=1

Spearman -0.388 -0.272 -0.159
Pearson -0.309 -0.248 -0.134

(e) MCI and Model Scores

Metric Value

Spearman 0.415
Point Biserial 0.394

(f) MMSE and MCI

Metric Value

Spearman -0.496
Point Biserial -0.545

Figure 3: Correlations across our Model Ensemble Scores, MCI labels and MMSE scores.

In the connectivity domain, fronto-parietal and inter-temporal connections showed strong contribu-82

tions (Fig. 2b, 2d) consistent with established AD pathology [22].83

3.3 Correlation with Levels of Cognitive Function84

Beyond achieving state-of-the-art performance in MCI classification with interpretable models, our85

analysis shows that the model’s predictive scores capture clinically meaningful information about86

cognitive severity. As shown in 3d, 3e and 3f, model outputs are moderately correlated with MMSE87

scores and align with the expected association between MMSE and MCI status. Notably, while88

correlations within diagnostic subgroups are weaker, the overall trend demonstrates that higher model89

scores correspond to lower MMSE performance, suggesting that the model is sensitive not only to90

categorical impairment but also to gradations of decline. This positions our approach as more than91

a binary classifier: it provides a signal that could be leveraged to quantify disease severity or track92

progression. Although the current model is not optimized for regression, these findings highlight its93

translational potential and motivate future work on continuous modeling of cognitive decline, with94

implications for staging, monitoring, and personalized dementia interventions.95

4 Discussion and Conclusion96

This work shows that MEG-based machine learning can yield robust and interpretable biomarkers97

for Alzheimer’s disease. By evaluating five MEG-derived feature families, we achieved state-of-the-98

art MCI classification (F1 = 72.43%), while also demonstrating that model scores correlate with99

MMSE, capturing gradations of cognitive decline. SHAP analyses revealed candidate regions and100

connections that may reflect early disease processes, though further work is required to validate their101

clinical significance.102

These findings highlight MEG as a scalable, non-invasive alternative to current biomarkers, with103

potential for both early detection and disease staging. Limitations include reliance on a single dataset104

and the need for longitudinal validation, particularly to support continuous modeling of decline.105

Nonetheless, our framework establishes MEG as a promising foundation for clinically meaningful,106

non-invasive, interpretable biomarkers for early detection and staging of cognitive decline.107
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