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Abstract

Alzheimer’s disease (AD) is a growing global health challenge, with pathological
changes beginning decades before clinical symptoms. Identifying non-invasive and
interpretable biomarkers is critical for early intervention. Magnetoencephalography
(MEGQG) provides access to brain oscillatory dynamics and connectivity patterns
that are disrupted in mild cognitive impairment (MCI), a prodromal stage of AD.
We evaluate five families of MEG-derived features and train an ensemble of 200
feature models, achieving MCI classification with F1 72.43%. We use Shapley
Additive Explanations (SHAP) to highlight discriminative regions and connections,
offering interpretable insights and pointing to potential new markers. Beyond
binary detection, model scores correlate with Mini-Mental State Examination
(MMSE) scores, suggesting potential for continuous disease staging. Together,
these results establish MEG-based machine learning as a promising avenue for
robust and clinically meaningful biomarkers.

1 Introduction

The blessing of longer life prospects, driven by biomedical advances and better access to healthcare,
has brought with it a rise in age-related neurological disorders such as Alzheimer’s disease (AD). By
2050, more than 130 million people [|1]] are expected to live with AD, imposing a global economic
burden of over $9 trillion [2} 3,4, 5]. AD is a spectrum disorder in which pathological changes emerge
long before measurable cognitive decline [6| |7} 8], making early biomarkers essential for intervention.
Current clinical biomarkers rely on cerebrospinal fluid (CSF) measurements or PET imaging [7, 9].
While accurate, these methods are costly, invasive, and difficult to scale. Recent progress in plasma
biomarkers [ 10, |11] offers new possibilities, but electrophysiological measures such as EEG and
MEG provide an attractive alternative: they are non-invasive, relatively inexpensive, and directly
capture neural dynamics known to be disrupted in AD [12}|13],|14]]. Particularly, alterations in spectral
power and functional connectivity have been linked to mild cognitive impairment (MCI), a prodromal
stage of AD. Detecting MCI is therefore critical, as it reveals early disease processes and creates an
opportunity for timely intervention, even if not all individuals progress to AD.

In this work, we present a systematic framework to evaluate MEG-derived features for MCI
detection and interpretation. We show that an ensemble of 200 models trained across five feature
families achieves an F1 score of 72.43%. We demonstrate that SHAP analysis [15] can provide
detailed insights into early AD processes, allowing for interpretable and clinically meaningful
biomarkers. Beyond binary classification, we find that model scores correlate with MMSE, pointing
to the potential for regression-based disease staging.
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Figure 1: 5 different feature inputs (F) are transformed (T) from the raw data (see section . We
train each feature model with 40 seeds (S). Finally we ensemble the 200 (SxF) models.

2 Method

2.1 Dataset and Feature Extraction

We use the BioFIND dataset [|16], a multi-site MEG study comprising 324 resting-state recordings
(158 MCI, 166 controls). Data was collected at the University of Cambridge (UK) and the Centre for
Biomedical Technology (Spain). Each subject underwent 3-5 minutes of eye-closed resting-state
MEG and individual MRI. We make use only of the MEG data. Preprocessing followed Vaghari et
al. [16] with recordings epoched into 2-second windows, artifacts removed, and spectra estimated
using the Welch method. It is important to note that the MEG system had two types of sensor,
namely magnetometers (MAG) and gradiometers (GRD) which capture complementary aspects of
the magnetic field. Using this data, we derived five feature sets:

* Source Power (Src_Power): Spectral power for « and S frequency bands in 38 cortical
parcels (Harvard-Oxford atlas [[17])).

* Source Amplitude Envelope Correlations (Src_AEC): Connectivity in « (8—12 Hz) and
(12-30 Hz) bands, orthogonalized to mitigate field spread [/18]].

* Exponentiated Spectral Slopes (Exp_Grad, Exp_Mag): Aperiodic slope of the spectrum,
extracted from GRD and MAG |[[19], corresponding to two feature sets.

* Channel Power (Chan_Pow): Band-limited power for 102 MAG and 204 GRD sensors
across eight frequency bands.

2.2 System Architecture

The base architecture used for all models is a 3 linear layer block with dropout followed by a self
attention block. This results in a total of 415K trainable parameters. The input feature datasets were
all divided into 80%, 10%, 10% splits for training, validation and testing respectively. We use Adam
[20] as optimizer and we perform hyperparameter finetuning on learning rate and batch size per
model, applying early stopping with a patience of 20. For each feature set, we trained 40 classifiers
with different seeds to ensure robustness across subjects. Ensembles were then constructed both per
feature and across features, yielding 200 models in the final ensemble following the architecture in
Figure E} We report our F1, accuracy, AUC, recall, and precision results for MCI classification.

3 Results

3.1 Classifying Mild Cognitive Impairment

Our method trains different models on different input features corresponding to distinct pieces
of information relating to the patients neural dynamics. By transforming the raw data into a single
feature we can reduce noise but also relevant information. It then makes sense that individual feature
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models on average perform significantly lower than performances reported in previous work (the
best single feature model Src AEC performing a full 7% lower than Vaghari et al. s 68% Acc
[21])). However, soft voting ensembles across seeds for the same feature already begin to show
improvements with feature models achieving a boost of up to 4%. Table [T]shows results for feature
ensembles as well as the final ensemble of all 200 models resulting in an F1 Score of 72.43%. We

achieve state of the art results using a simple and modular architecture that enables for explainable
methods such as SHAP.

N Models F1 AUC  Acc. Recall Precision

Source Power 40 67.95 69.65 63.55 7949 59.33
Source AEC 40 64.12 66.56 6199 69.87 59.24
Exp Gradiometer 40 65.08 58.35 5421 87.82 51.7

Exp Magnetometer 40 64.62 53.13 49.84 9423 49.16
Channel Power 40 66.86 6833 63.86 75.0 60.31
Ensemble 200 7243 73.88 6822 859 62.62

Table 1: Results for model ensemble per Feature and across Features.

3.2 Interpretability through SHAP Values

Our individual feature models with shorter dimensionality inputs allow us to use SHAP explanations
effectively. Shapley Additive Values can quantify contributions per input, which provides insights
on numerous aspects. For Source AECs they indicate which connections between regions are most
informative in identifying MCI, while for Exponentiated Spectral Slopes it shows which sensors
report most differing values between controls and patients with MCI. To exemplify the interpretability
of our method we present SHAP values for the o frequency band on our Src_AEC and Source_Power
model ensembles in Figure[2] As can be observed, our SHAP analysis revealed discriminative regions
in the o source power band, with occipital parcels emerging as particularly informative (Fig. 2a] [2¢).
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Figure 2: SHAP Values for « frequencies extracted from model ensembles: SrcPow and SrcAEC



82
83

84

85
86
87
88
89
90
91
92
93
94
95

96

97
98
99
100
101
102

103
104
105
106
107

108

109
110

0.60 = 070
- 0.65 30

0.55 =
¢ — o 0.60 2
s
b3

0.50 L 055

g

me
0.40 1 = o
=11

Logit
MMSE
S

10 13 14 17 18 20 21 22 23 24 25 26 27 28 29 30 Non-MCl Ml Non-MCI MCI

(a) Model Score distributions by MMSE  (b) Score distributions by MCI (c) MMSE distributions by MCI

(d) MMSE and Model Scores (e) MCI and Model Scores (f) MMSE and MCI
Metric General MCI=0 MCI=1 Metric Value Metric Value
Spearman -0.388 -0.272 -0.159 Spearman 0.415 Spearman -0.496
Pearson -0.309 -0.248 -0.134 Point Biserial 0.394 Point Biserial -0.545

Figure 3: Correlations across our Model Ensemble Scores, MCI labels and MMSE scores.

In the connectivity domain, fronto-parietal and inter-temporal connections showed strong contribu-
tions (Fig. [2b] 2d) consistent with established AD pathology [22].

3.3 Correlation with Levels of Cognitive Function

Beyond achieving state-of-the-art performance in MCI classification with interpretable models, our
analysis shows that the model’s predictive scores capture clinically meaningful information about
cognitive severity. As shown in[3d] [3¢]and 3T} model outputs are moderately correlated with MMSE
scores and align with the expected association between MMSE and MCI status. Notably, while
correlations within diagnostic subgroups are weaker, the overall trend demonstrates that higher model
scores correspond to lower MMSE performance, suggesting that the model is sensitive not only to
categorical impairment but also to gradations of decline. This positions our approach as more than
a binary classifier: it provides a signal that could be leveraged to quantify disease severity or track
progression. Although the current model is not optimized for regression, these findings highlight its
translational potential and motivate future work on continuous modeling of cognitive decline, with
implications for staging, monitoring, and personalized dementia interventions.

4 Discussion and Conclusion

This work shows that MEG-based machine learning can yield robust and interpretable biomarkers
for Alzheimer’s disease. By evaluating five MEG-derived feature families, we achieved state-of-the-
art MCI classification (F1 = 72.43%), while also demonstrating that model scores correlate with
MMSE, capturing gradations of cognitive decline. SHAP analyses revealed candidate regions and
connections that may reflect early disease processes, though further work is required to validate their
clinical significance.

These findings highlight MEG as a scalable, non-invasive alternative to current biomarkers, with
potential for both early detection and disease staging. Limitations include reliance on a single dataset
and the need for longitudinal validation, particularly to support continuous modeling of decline.
Nonetheless, our framework establishes MEG as a promising foundation for clinically meaningful,
non-invasive, interpretable biomarkers for early detection and staging of cognitive decline.
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