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ABSTRACT

Recent studies have demonstrated that learned Bloom filters, which combine ma-
chine learning with the classical Bloom filter, can achieve superior memory effi-
ciency. However, existing learned Bloom filters face two critical unresolved chal-
lenges: the balance between the machine learning model size and the Bloom filter
size is not optimal, and the reject time cannot be minimized effectively. We pro-
pose the Cascaded Learned Bloom Filter (CLBF) to address these issues. Our
optimization approach based on dynamic programming automatically selects con-
figurations that achieve an optimal balance between the model and filter sizes
while minimizing reject time. Experiments with real-world datasets show that
CLBF reduces memory usage by up to 24% and decreases reject time by up to 14
times compared to the state-of-the-art learned Bloom filter.

1 INTRODUCTION

Bloom filter (Bloom, 1970) is a ubiquitous data structure for approximate membership queries. By
compressing a set S into a bit array, the Bloom filter can determine whether a query q belongs to the
set S, with a small probability of false positives. Due to its high memory efficiency and fast query
performance, Bloom filters have been employed in various memory-constrained and/or latency-
sensitive applications (Broder & Mitzenmacher, 2004; Chang et al., 2008). Recently, a new class
of Bloom filter called Learned Bloom Filter (LBF) has been proposed (Kraska et al., 2018). LBFs
leverage a machine learning model that predicts whether the input belongs to the set S and achieves
a superior memory efficiency compared to traditional Bloom filters. Despite numerous attempts to
further improve memory efficiency (Mitzenmacher, 2018; Dai & Shrivastava, 2020), existing LBFs
still face two critical unresolved issues: (1) the balance between the machine learning model size
and the Bloom filter size is not optimal, and (2) the reject time cannot be minimized effectively.

(1) The Balance between Machine Learning Model Size and Bloom Filter Size: Existing LBFs
lack mechanisms to automatically adjust the balance between the machine learning model and
Bloom filter sizes. LBFs consist of a machine learning model and one or more Bloom filters, aiming
to minimize the total memory usage, i.e., the sum of memory consumed by the machine learning
model and the Bloom filters. While higher model accuracy can reduce the memory for Bloom filters,
optimizing the model size is challenging due to the complex relationship between model size and ac-
curacy. Even when increased model size improves accuracy, the balance between increased model
size and reduced Bloom filter size must be evaluated. Current LBFs focus solely on optimizing
Bloom filter configurations for a fixed model, neglecting model size optimization.

(2) The Reject Time: Existing approaches do not provide automatic methods for minimizing reject
time in LBFs. The time Bloom filter takes to reject, i.e., answer “q /∈ S,” is often more important
than the time it takes to accept, i.e., answer “q ∈ S.” This is because the accept response may be a
false positive, so a heavy verification process is often required afterward, whereas the reject response
is always correct, so such a verification process is not required. The reject time is more likely to
be a bottleneck than the accept time, so it is important to reduce the reject time of LBF. However,
the prior research on LBFs (Fumagalli et al., 2022; Malchiodi et al., 2024) provides only heuristic
guidelines to reduce reject time, and does not propose any automatic method for minimizing reject
time.

To address these issues, we propose a novel learned Bloom filter with a cascaded structure called
Cascaded Learned Bloom Filter (CLBF). CLFB has two key features: (1) CLBF achieves an optimal
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memory size balance by training a larger machine learning model and then appropriately reducing
it. (2) CLBF enables fast rejections through branching based on tentative outputs of the machine
learning model and the insertion of intermediate Bloom filters. We can set the hyperparameters to
control the trade-off between memory efficiency and reject time. Based on dynamic programming,
our optimization approach automatically adjusts the CLBF to the optimal configuration for the given
hyperparameter. Our experiments demonstrate that (1) CLBF reduces memory usage by up to 24%
compared to the Partitioned Learned Bloom Filter (PLBF) (Vaidya et al., 2021), the state-of-the-art
LBF for memory efficiency, and (2) CLBF reduces reject time by up to 14 times compared to PLBF.

2 RELATED WORK

Bloom filter (Bloom, 1970) is one of the most fundamental and widely used data structures for
approximate membership queries. Bloom filters can quickly respond to queries by only perform-
ing a few hash function evaluations and checking a few bits. Although Bloom filters may return
false positives, they never yield false negatives. This property makes Bloom filters valuable in
memory-constrained and latency-sensitive scenarios such as networks (Broder & Mitzenmacher,
2004; Tarkoma et al., 2011; Geravand & Ahmadi, 2013) and databases (Chang et al., 2008; Goodrich
& Mitzenmacher, 2011; Lu et al., 2012). The theoretical lower bound on the number of bits required
for data structures supporting approximate membership queries is known to be n log2(1/ε), where
n is the number of elements in the set, and ε is the false positive rate (Pagh et al., 2005). Bloom
filters use log2(e) · n log2(1/ε) bits, i.e., they require log2(e) times more memory than the theo-
retical lower bound. Several improved versions of the Bloom filter, such as the Cuckoo filter (Fan
et al., 2014), Vacuum filter (Wang & Zhou, 2019), Xor filter (Graf & Lemire, 2020), and Ribbon
filter (Dillinger & Walzer, 2021), have been proposed to get closer to the theoretical lower bound.

Recently, the concept of Learned Bloom Filter (LBF), which further enhances the memory efficiency
of Bloom filters using machine learning models, was introduced (Kraska et al., 2018). They pro-
posed an LBF that uses a machine learning model, which predicts whether the input is included in
the set S, as a pre-filter before a classical Bloom filter (Figure 1(a)). In this LBF, elements predicted
by the model as included in the set S are not inserted into the classical Bloom filter, while those
predicted as not included are. When this LBF answers a query, it immediately answers q ∈ S if the
model predicts the query is in the set. In contrast, if the model predicts the query is not in the set,
this LBF uses the classical Bloom filter. This design reduces the number of elements stored in the
Bloom filter, thus reducing the total memory usage. Numerous subsequent studies have sought to
improve this structure further. For example, the sandwiched LBF (Mitzenmacher, 2018) sandwiches
the machine learning model with two Bloom filters (Figure 1(b)). it is demonstrated that the mem-
ory efficiency is further improved by optimizing the size of the two Bloom filters. Ada-BF (Dai &
Shrivastava, 2020) and the Partitioned Learned Bloom Filter (PLBF) (Vaidya et al., 2021) further
enhance memory efficiency by utilizing the score, which is the prediction of the machine learning
model regarding the likelihood that an input element is included in the set (Figure 1(c)). These
LBFs employ multiple Bloom filters with different false positive rates, selecting the appropriate fil-
ter based on the score. This approach allows for a more continuous and fine-grained utilization of
the model predictions.

While most research on LBFs has focused on the optimal configuration of Bloom filters for a fixed
trained machine learning model, some studies have investigated the choice of the machine learning
model itself (Fumagalli et al., 2022; Dai et al., 2022; Malchiodi et al., 2024). These studies evaluate
various machine learning models and LBF configuration methods (such as sandwiched LBF and
PLBF) across different datasets, measuring memory efficiency and reject times. The results suggest
that the optimal machine learning model varies depending on dataset noisiness, ease of learning, and
the importance of minimizing reject time. However, these studies provide only general guidelines
based on observed trends, and no method has yet been proposed for automatically selecting the
optimal machine learning model.

Optimizing the hash functions is another approach to improving accuracy using key and non-key
data. Hash Adaptive Bloom Filter (HABF) (Xie et al., 2021b) uses a lightweight data structure
called HashExpressor to select suitable hash functions for each key, and Projection Hash Bloom
Filter (PHBF) (Bhattacharya et al., 2022a) employs projections as hash functions. Unlike LBFs,
these approaches avoid classifier training and instead pack information into a lighter structure.
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Figure 1: The architecture of Existing LBFs:
(a) Naive LBF (Kraska et al., 2018) has
a single backup Bloom filter. (b) Sand-
wiched LBF (Mitzenmacher, 2018) applies
a pre-filter before the model inference. (c)
PLBF (Vaidya et al., 2021) uses multiple
backup Bloom filters.
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Figure 2: The architecture of CLBF: CLBF alter-
nates between score-based branching and Bloom
filter-based filtering. This design generalizes the ar-
chitectures of sandwiched LBF and PLBF. Note that
g
(∗)
∗ and h

(∗)
∗ represent the proportions of keys and

non-keys passing through each root when filtering
using TBFs is not performed.

3 METHOD

This section describes the architecture and construction method of our proposed Cascaded Learned
Bloom Filter (CLBF). In Section 3.1, we describe the architecture of CLBF. Then, we formulate the
problem of constructing CLBF in Section 3.2, and the optimization method for configuring CLBF
using dynamic programming is described in Section 3.3.

3.1 ARCHITECTURE OVERVIEW

CLBF employs a cascade structure consisting of multiple machine learning models and multiple
Bloom filters arranged alternately (Figure 2). The structure of CLBF, where models are aligned
sequentially, is similar to ensemble learning techniques such as boosting (Freund & Schapire, 1997;
Friedman, 2001). In fact, the machine learning models used in our experiments (Section 4) are weak
learners trained using a boosting algorithm. By automatically determining the appropriate number
of machine learning models (weak learners) and adjusting the false positive rates of each Bloom
filter, CLBF not only balances model and filter sizes but also shortens the reject time (as detailed in
Section 3.2 and Section 3.3).

Now, we explain how the CLBF processes a query. A query q first enters the initial Trunk Bloom
filter, TBF1. If TBF1 determines that q /∈ S, CLBF immediately concludes q /∈ S. Otherwise,
the query is passed to the first machine learning model, ML1, which outputs a score indicating
how likely q is included in S. If this score exceeds a threshold θ1, a subsequent Branch Bloom filter,
BBF1, is used to make the final determination. Otherwise, q is passed to the next Trunk Bloom filter,
TBF2. In this way, CLBF alternates between branching based on the tentative score and filtering
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using a Bloom filter. When the query reaches the D-th (i.e., final) machine learning model, CLBF
adopts the same approach as PLBF. In other words, multiple thresholds are set, and based on the
range in which the query score falls, one of the K Final Bloom filters (FBF1,FBF2, . . . ,FBFK) is
selected for use. When inserting a key into CLBF, the key is inserted into all Bloom filters traversed
by the process outlined above, ensuring the absence of false negatives. The exact algorithms for key
insertion and query responses are detailed in Appendix A.

The CLBF architecture generalizes existing LBFs. CLBF with only one Trunk Bloom filter and
one Final Bloom filter is equivalent to a sandwiched LBF. Moreover, CLBF that omits both Trunk
and Branch Bloom filters while employing multiple Final Bloom filters corresponds to a PLBF. By
selecting the optimal configuration under this generalized architecture, CLBF can achieve better
memory efficiency and shorter reject time.

The notations for CLBF description are as follows (most of the variables defined here are illustrated
in Figure 2): S represents the set stored by CLBF, and n denotes the number of elements in S.
Q refers to the set of elements not in S, used for construction of CLBF. The elements in the set
S are called keys, and the elements not in the set S are called non-keys. D denotes the number of
machine learning models CLBF uses (D is a value optimized via dynamic programming). MLd (d ∈
{1, 2, . . . , D}) represents the d-th machine learning model. TBFd represents the Trunk Bloom filter
used just before MLd, and its false positive rate is denoted by f

(t)
d . BBFd (d ∈ {1, 2, . . . , D − 1})

represents the Branch Bloom filter used when the output of MLd exceeds the threshold θd, and its
false positive rate is denoted by f

(b)
d . FBFk (k ∈ {1, 2, . . . ,K}) denotes the k-th Final Bloom filter

associated with the k-th smallest score range output by MLD, and its false positive rate is denoted
by f

(f)
k , where K is the number of Final Bloom filters. Size(·) represents the memory size of the

input (e.g., Size(MLd) represents the memory size of MLd). Time(·) represents the inference time
of the input (e.g., Time(MLd) represents the inference time of MLd).

During CLBF construction, the sets S andQ (or their subsets) are used as validation data to measure
the proportion of keys and non-keys passed to each Bloom filter and machine learning model. In
this measurement, filtering using TBFs is not performed; only the branching based on the tentative
outputs of the machine learning models is applied. We define g

(t)
d and h

(t)
d as the proportions of

keys and non-keys in the validation data that are passed to TBFd, respectively. Similarly, we define
g
(b)
d and h

(b)
d as the proportions of keys and non-keys in the validation data that are passed to BBFd,

respectively. Finally, we define g
(f)
D,k and h

(f)
D,k as the proportions of keys and non-keys passed to

FBFk when the number of machine learning models used by CLBF is D.

3.2 PROBLEM FORMULATION

The following components must be provided to construct the CLBF: several pre-trained machine
learning models, two hyperparameters, and a validation dataset. The machine learning models are
trained to perform binary classification between key and non-key using all or part of the sets S
and Q. The number of pre-trained models is denoted by D̄. Among these, only the first D (≤ D̄)
models are used in the CLBF, where D is a parameter optimized during CLBF construction. The two
hyperparameters are F (∈ (0, 1)), which represents the target false positive rate for the CLBF, and
λ (∈ [0, 1]), which controls the trade-off between memory efficiency and reject time. The CLBF is
optimized to minimize memory usage and reject time, subject to the constraint that the expected false
positive rate does not exceed F . As λ increases, greater emphasis is placed on memory efficiency;
specifically, when λ = 1, only memory efficiency is optimized, while when λ = 0, only reject time
is minimized.

The following four kinds of parameters are optimized for constructing the CLBF: (i) D, i.e., the
depth of the CLBF, (ii) f

(t)
d (d ∈ {1, 2, . . . , D}), i.e., the false positive rate of TBFd, (iii)

f
(b)
d (d ∈ {1, 2, . . . , D−1}), i.e., the false positive rate of BBFd, and (iv) f (f)

k (k ∈ {1, 2, . . . ,K}),
i.e., the false positive rate of FBFk. Another parameter, θd, which represents the threshold for
branching based on the tentative score output by MLd (d ∈ {1, . . . , D − 1}), should also be
optimized. However, jointly optimizing θd with the other parameters is too challenging, as the
value of θd affects the score distributions output by MLd+1 and subsequent models, and captur-
ing these effects is difficult. Thus, we adopt a heuristic approach, evaluating several candidates

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

θ (= [θ1, θ2, . . . , θD̄−1]) and selecting the one that minimizes the objective function. Specifically,
for each α (∈ {0.5, 0.2, 0.1, . . . , 0.0001, 0.0}), we evaluate θ such that θd is the top-α (ratio) score
of non-keys output by MLd. For the final machine learning model, MLD, the thresholds are set to
maximize the KL divergence between the score distributions of keys and non-keys, following the
same method as in the PLBF (Vaidya et al., 2021).

The following objective function is minimized under the constraint that the “expected” false positive
rate does not exceed F :

λ

M
· (Memory Size) +

1− λ

R
· E[Reject Time]. (1)

Here, MemorySize represents the memory usage of the CLBF, and E[RejectTime] denotes the “ex-
pected” time to reject a non-key query. The “expected” values are calculated under the assumption
that the validation data and the query are sampled from the same distribution. The constants M and
R are scaling factors to align the units of the two terms, with M representing the memory usage and
R representing the reject time of a standard classic Bloom filter under the same settings of n and
F . These constants are measured using the validation dataset. Each term of the objective function,
Equation (1), can be written as follows:

Memory Size =

D∑
d=1

Size(MLd) +
D∑

d=1

Size(TBFd) +
D−1∑
d=1

Size(BBFd) +
K∑

k=1

Size(FBFk), (2)

E[Reject Time] =

D∑
d=1

(
Time(MLd) · h(t)

d

d∏
i=1

f
(t)
i

)
. (3)

In the formula for the expected reject time, Equation (3), it is assumed that the reject time can be
approximated by the total time taken by the inference of the machine learning models. Time(MLd)
is a constant obtained by performing several inference runs and averaging the observed inference
times. Here, note that the factor h(t)

d

∏d
i=1 f

(t)
i in Equation (3) represents the expected proportion

of non-key queries inferred by MLd. This expected proportion is expressed by this factor because
only non-keys that have passed through all of TBFi (i ∈ {1, . . . , d}) as false positives are inferred
by MLd.

3.3 DYNAMIC PROGRAMMING SOLUTION FOR CLBF CONSTRUCTION

Here, we introduce the dynamic programming method for finding the parameters that minimize
the objective function given in Equation (1). The following is a crucial insight for the dynamic
programming approach: once D and f (t) (= [f

(t)
1 , f

(t)
2 , . . . , f

(t)
D ]) are obtained, the optimal values

for the remaining parameters, f (b) (= [f
(b)
1 , f

(b)
2 , . . . , f

(b)
D−1]) and f (f) (= [f

(f)
1 , f

(f)
2 , . . . , f

(f)
K ]),

can be determined immediately. This conclusion follows from two observations. First, the expected
reject time, given in Equation (3), depends only on D and f (t). Second, once D and f (t) are given,
the proportions of keys and non-keys entering each Bloom filter become known. Following the
PLBF approach, we can optimize the false positive rates of each Bloom filter to minimize the total
memory size, given in Equation (2). For a Bloom filter where the proportion of g from S and the
proportion of h from Q are entered, it is often optimal to set the false positive rate to Fg/h (more
precisely, it is necessary to consider cases where this exceeds 1). Therefore, once D and f (t) are
determined, the parameters f (b) and f (f) are immediately determined, so from now on we focus on
optimizing D and f (t).

Now, we explain the dynamic programming approach to optimize D and f (t). In determining the
false positive rate of the Bloom filters under TBFd—that is, BBFd,BBFd+1, . . . ,BBFD−1 and
FBF1,FBF2, . . . ,FBFK—, the factor

∏d−1
i=1 f

(t)
i plays a key role because the proportion of non-

key queries that enter these Bloom filters is proportional to this factor. Therefore, we introduce the
function dp(d, T ) : {1, 2, . . . , D̄}× (0, 1]→ R, which is defined intuitively (but informally) as “the
minimum value of the objective function under TBFd, subject to the constraint that

∏d−1
i=1 f

(t)
i = T .”

More precisely, dp(d, T ) is defined as follows:

dp(d, T ) := min
D,f(t)

s.t.
∏d−1

i=1 f
(t)
i =T

(
λ

M
· (M.S. under TBFd) +

1− λ

R
· (R.T. under TBFd)

)
, (4)
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ML𝑑  

…
FBF1 FBF2 FBF𝐾  

dp(𝑑, 𝑇)
TBF𝑑  

FPR: 𝑓𝑑
(𝑡)

ො 

(a) d̂p(d, T ) is the minimum objective function value
under TBFd subject to the constraint that D = d.

ML𝑑  

TBF𝑑+1 
…

dp 𝑑 + 1, 𝑇𝑓𝑑
(𝑡)

BBF𝑑  

TBF𝑑  
FPR: 𝑓𝑑

(𝑡)

dp(𝑑, 𝑇) ු

(b) ďp(d, T ) is the minimum objective function value
under TBFd subject to the constraint that D > d.

Figure 3: The value of dp(d, T ) is calculated by selecting the appropriate value from the case where
D = d, i.e., d̂p(d, T ), and the case where D > d, i.e., ďp(d, T ). The value of dp(d + 1, T f

(t)
d ) is

used recursively to calculate ďp(d, T ).

where (M.S. under TBFd) is defined as

D∑
i=d

Size(MLi) +

D∑
i=d

Size(TBFi) +

D−1∑
i=d

Size(BBFi) +

K∑
k=1

Size(FBFk), (5)

and (R.T. under TBFd) is defined as

D∑
i=d

Time(MLi) · h(t)
i T

i∏
j=d

f
(t)
j

 . (6)

Here, by substituting d = 1, T = 1 into Equation (4), we can see that dp(1, 1) is equivalent to the
minimum value of Equation (1) because the constraint

∏d−1
i=1 f

(t)
i = T is no longer in effect when

d = 1, T = 1 and the objective function for min in Equation (4) is the same as Equation (1) when
d = 1. In order to find dp(1, 1), we perform dynamic programming, setting the false positive rate
of the BBFs and the FBFs to be min(Fg/h, 1), where g and h are the expected ratios of keys and
non-keys that are input to the Bloom filter, taking into account the filtering of the TBFs.

Here, we define two functions, f̃(g, h) and s̃(g, ϵ), which we use to explain how to calculate
dp(d, T ), as follows:

f̃(g, h) = min

(
Fg

h
, 1

)
, s̃(g, ϵ) = cng · log2

(
1

ϵ

)
. (7)

In other words, f̃(g, h) represents the false positive rate that is tentatively set when performing
dynamic programming for BBF and FBF, where g and h are the expected ratios of keys and non-
keys that are input to the Bloom filter. s̃(g, ϵ) represents the memory usage of a Bloom filter with a
false positive rate of ϵ held by n · g keys (c = log2(e) for the standard Bloom filter, and if a variant
of the Bloom filter is used instead of the Bloom filter as TBFs, BBFs, and FBFs, then c will be a
different value).

Next, we explain how to calculate dp(d, T ). We consider two cases and adopt the one that yields
the better result as dp(d, T ). The first case is when D = d, i.e., where the elements are distributed
across the K FBFs according to the output of MLd (Figure 3a). Subject to the constraint that
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∏d−1
i=1 f

(t)
i = T and D = d, the minimum objective function value under TBFd is

d̂p(d, T ) = min
f
(t)
d ∈(0,1]

λ

M
·

(
Size(MLd) + s̃(g

(t)
d , f

(t)
d ) +

K∑
k=1

s̃
(
g
(f)
d,k , f̃(g

(f)
d,k , h

(f)
d,kTf

(t)
d )
))

+

1− λ

R
· Time(MLd) · h(t)

d Tf
(t)
d . (8)

The second case is when D > d, i.e., where the elements are distributed across TBFd+1 and BBFd

according to the output of MLd (Figure 3b). Under the condition that
∏d−1

i=1 f
(t)
i = T and D > d,

the minimum objective function value under TBFd can be computed using dp(d + 1, T f
(t)
d ) as

follows:

ďp(d, T ) = min
f
(t)
d ∈(0,1]

λ

M
·
(
Size(MLd) + s̃(g

(t)
d , f

(t)
d ) + s̃

(
g
(b)
d , f̃(g

(b)
d , h

(b)
d Tf

(t)
i )
))

+

1− λ

R
· Time(MLd) · h(t)

d Tf
(t)
d + dp(d+ 1, T f

(t)
d ). (9)

Then, we can compute dp(d, T ) as follows:

dp(d, T ) =

min
(
d̂p(d, T ), ďp(d, T )

)
d ∈ {1, . . . , D̄ − 1},

d̂p(d, T ) d = D̄.
(10)

Now, we explain the implementation of dynamic programming and the procedure for determining
the configuration of CLBF. Although we have defined d̂p(d, T ) and ďp(d, T ) as the minimum values
of a complex function over f (t)

d ∈ (0, 1], finding the exact minimum is challenging. Therefore, we
approximate the minimum by evaluating P discrete values for f

(t)
d and selecting the best result.

Specifically, we evaluate f
(t)
d over the discrete set {p0, p1, . . . , pP−1}. Similarly, we treat T—the

second argument of dp—as taking values from the same set, i.e., T ∈ {p0, p1, . . . , pP−1}. By
recursively calculating dp(1, 1), we can determine the optimal D and f (t). Once D and f (t) are
fixed, the optimal f (b) and f (f) can be determined using the PLBF approach. Through this dynamic
programming method, we can find the optimal configuration of CLBF.

Here, we show that the computational complexity of this dynamic programming is O(D̄P 2 +
D̄PK). The number of possible values for d—the first argument of dp—is D̄, and the number
of possible values for T—the second argument of dp—is P . For each pair (d, T ), up to P values
of f (t)

d are considered. In the definition of d̂p(d, T ), i.e., Equation (8), the function inside the min
contains a summation from k = 1 to k = K, so if we compute it naively, O(K) computations are
required to evaluate the function. However, by precomputing this summation for each d and “Tf (t)

d ,”
we can evaluate this function in O(1). The time complexity of this precomputation is O(D̄PK), as
there are D̄ values for d, P values for “Tf (t)

d ”, and O(K) computations are required for each case.
Additionally, the function inside the min in the definition of ďp(d, T ), i.e., Equation (9), can be
evaluated in O(1). Therefore, the total computational complexity of this dynamic programming is
O(D̄P 2 + D̄PK). This dynamic programming method is repeated for different sets of parameters
θ, and the θ that minimizes the objective function, Equation (1), is selected.

4 EXPERIMENTS

In this section, we evaluate the memory efficiency, reject time, and construction time of CLBF by
comparing it with a standard Bloom filter and existing learned Bloom filters. The memory usage
of learned Bloom filters includes the size of the machine learning model. In the following, training
data refers to the data used for training the machine learning model, validation data refers to the data
used for configuring the LBF, and test data refers to the data used to measure the accuracy and reject
time of the Bloom filter and LBF. We conducted experiments using the following two datasets:

Malicious URLs Dataset: Following the previous studies on learned Bloom filters (Dai & Shri-
vastava, 2020; Vaidya et al., 2021), we used the Malicious URLs dataset (Siddhartha, 2021). This

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300 350
Memory Usage [kB]

10 3

10 2

10 1

Fa
lse

 P
os

iti
ve

 R
at

e

(a) Malicious URLs Dataset

0 100 200 300 400 500 600 700
Memory Usage [kB]

10 3

10 2

10 1

Fa
lse

 P
os

iti
ve

 R
at

e

(b) EMBER Dataset

CLBF (Proposed)
Bloom Filter
PLBF (D=100)
PLBF (D=10)
PLBF (D=1)

Figure 4: Trade-off between memory usage and accuracy (lower-left is better): CLBF achieves equal
to or better memory efficiency than any other PLBF with D.

dataset contains 223,088 malicious URLs and 428,103 benign URLs. The set of all malicious URLs
constitutes the set S , which the Bloom filters aim to store. We divided the benign URLs into 80%
as training data, 10% as validation data, and 10% as test data. All malicious URLs were used as
training data and validation data.

EMBER Dataset: Following the previous studies on learned Bloom filters (Vaidya et al., 2021;
Sato & Matsui, 2023), we used the EMBER dataset (Anderson & Roth, 2018). This dataset contains
400,000 malicious files and 400,000 benign files, their vectorized features, and sha256 hashes (the
200,000 unlabeled files were not used in this experiment). We used 10% of the benign files as
training data, 10% as validation data, and 80% as test data. For the malicious files, 10% were
used as training data, while all were used as validation data. This split ratio was adopted to avoid
excessive training time due to the high dimensionality of the features in the EMBER dataset.

All experiments were implemented in C++ and conducted on a Linux machine equipped with an
Intel® Core™ i9-11900H CPU @ 2.50 GHz and 62 GB of memory. The code was compiled using
GCC version 11.4.0 with the -O3 optimization flag, and all experiments were performed in single-
threaded mode. Although any machine learning model can be used, we employed XGBoost (Chen &
Guestrin, 2016), a widely used implementation of gradient boosting. Each weak learner in XGBoost
corresponds to the machine learning models ML1, . . . ,MLD̄ in our proposed method. Here, to
clearly demonstrate the effectiveness of our CLBF, we have omitted the results of some baselines.
For more extensive experimental results, please see Appendix C.

4.1 MEMORY AND ACCURACY

We compared the trade-off between memory usage and accuracy of CLBF with that of a standard
Bloom filter and existing learned Bloom filters, specifically PLBF (Vaidya et al., 2021). Sandwiched
LBF (Mitzenmacher, 2018) is omitted here, as it performs worse than PLBF in this trade-off. This
trade-off is controlled by varying the hyperparameter F from 0.1 to 0.001. In this evaluation, we
set λ = 1.0, meaning CLBF is optimized solely for memory efficiency. The number of boosting
rounds used for training XGBoost in constructing CLBF, i.e., D̄, was set to 100. For PLBF, we
present results using XGBoost with training rounds D ∈ {1, 10, 100}, as PLBF lacks a mechanism
for automatically adjusting the model size.

Figure 4 presents the results. It shows that CLBF consistently achieves equal or better memory
efficiency than PLBF, while CLBF does not need to evaluate different D values as PLBF does. In
the Malicious URLs dataset, PLBF achieves optimal memory efficiency with D = 1 or D = 10,
while CLBF closely matches this efficiency. Specifically, the optimal D selected by CLBF in the
Malicious URLs dataset ranges from 1 to 18. On the other hand, in the EMBER dataset, PLBF
performs best with D = 10 when F > 10−2 and with D = 100 when F < 10−2. Across all values
of F , CLBF outperforms PLBF in terms of memory efficiency. The optimal D chosen by CLBF in
the EMBER dataset ranges from 18 to 38. At F = 0.01, CLBF achieves a 24% reduction in memory
usage compared to PLBF with D = 10 and D = 100. These results indicate that the optimal model
size D for achieving the best memory efficiency varies depending on both the dataset and the value
of F , and that our CLBF can automatically select the optimal D.
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Figure 5: Trade-off between memory usage and average reject time (lower-left is better): Compared
to PLBF with similar memory efficiency, CLBF achieves a significantly shorter average reject time
(up to 14 times shorter).

4.2 MEMORY AND REJECT TIME

We compared the trade-off between memory usage and reject time in CLBF against existing learned
Bloom filters and the standard Bloom filter. This trade-off in CLBF is controlled by varying the
hyperparameter λ within the range [0, 1]. We set the false positive rate F for all methods to 0.001.
The number of XGBoost training rounds (corresponding to D̄ in our method) was set to 100 for
CLBF. Since the standard Bloom filter lacks a parameter to control this trade-off, it is represented as
a point. For sandwiched LBF and PLBF, we observed the changes in memory usage and reject time
when varying D from 1 to 100.

Figure 5 illustrates the results. We can see that CLBF greatly outperforms sandwiched LBF in terms
of memory efficiency, and that CLBF greatly outperforms PLBF in terms of reject time. While
the reject time of sandwiched LBF tends to be shorter than that of PLBF, its memory efficiency is
inferior to both PLBF and CLBF. For example, in the EMBER dataset, CLBF achieves a minimum
memory usage of approximately 400 kB, whereas no sandwiched LBF configuration uses less than
500 kB. On the other hand, although PLBF can achieve comparable memory efficiency to CLBF,
it suffers from significantly slower reject times. Specifically, when the memory usage is around
500 kB in the EMBER dataset, the average reject time of CLBF is approximately 14 times shorter
than that of PLBF.

Additionally, we can see that the CLBF plot forms a curve that is almost a Pareto front. In most cases,
no other learned or non-learned Bloom filter can achieve both lower memory usage and shorter reject
time than CLBF. Moreover, for CLBF itself, improving memory efficiency (or worsening it) results
in a corresponding worsening (or improvement) of reject time. By contrast, in other LBFs, both the
memory efficiency and reject time worsen as D increases when D is too large. Since it is impossible
to know this turning point for D in advance, an imprudent choice of D risks constructing an LBF
that is inefficient in terms of both memory and reject time. Our CLBF has the advantage of avoiding
the risk of setting such a needlessly large D.

4.3 CONSTRUCTION TIME

This section compares the time required to construct CLBF with other existing LBFs and the stan-
dard Bloom filter. The comparison is made with fast PLBF (Sato & Matsui, 2023), a method that
constructs the same data structure as PLBF more quickly.

The results are shown in Figure 6. Here, “Scoring Time” refers to the time taken to measure the
score of each sample against each machine learning model by passing validation data through them.
“Configuration Time” refers to the time required to compute the optimal configuration using the
results of the scoring phase. In the case of CLBF, the configuration process involves dynamic pro-
gramming, as described in Section 3.3. Similarly, the configuration for sandwiched LBF and fast
PLBF involves determining the optimal thresholds and false positive rates for each Bloom filter
based on the scoring.

The results indicate that CLBF requires a longer configuration time than other existing LBFs.
Compared to the construction time of existing LBFs with the same machine learning model size
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Figure 6: Construction time: CLBF requires additional computation time of 10% to 41% compared
to the construction time of existing LBFs using the same size machine learning model (D = 100).

(D = 100), the construction time of CLBF is approximately 10% to 40% longer. However, we
believe that this additional overhead is a minor drawback. Considering that the construction time
for the smallest sandwiched LBF is already about 100 times longer than that of a standard Bloom
filter, we can assume that LBF is not something that is used in scenarios where construction speed
is sensitive. LBFs should be used in contexts where the frequency of reconstruction is low (once an
hour or less). For example, the (learned) Bloom filter used to filter malicious URLs does not need to
be rebuilt frequently because the set of malicious URLs does not change that quickly. In such cases,
the construction time of CLBF, which is 1.4 times longer than that of the sandwiched LBF, is not a
problem, and the benefits of the optimal configuration obtained by searching virtually all cases of
D ∈ {1, 2, . . . , 100} are considered to be greater.

5 LIMITATION

Although our method is highly compatible with learning models composed of multiple weak learn-
ers, such as boosting, it cannot be directly applied to models composed of a single large learner (e.g.,
a single deep learning model). To extend our approach for such models, it is necessary to introduce
an additional mechanism that outputs tentative scores from intermediate layers. A critical challenge
is mitigating the memory and time overhead introduced by this mechanism. Furthermore, a novel
optimization algorithm tailored to this framework may be required, and promising directions include
leveraging advanced generic optimization techniques, such as Bayesian optimization or Adam.

Additionally, our current optimization method does not always select the optimal intermediate layer
thresholds, i.e., θ. While our experimental results demonstrate that selecting the best-performing
thresholds from a set of candidates is sufficient to outperform existing LBFs in terms of memory
efficiency and reject time, further improvements in threshold optimization could lead to even greater
performance gains. Furthermore, while we currently discretize the false positive rates of Trunk
Bloom filters, i.e., f (t), at a certain granularity, future work could achieve better results by exploring
more precise solutions.

Moreover, the configuration time of our approach is longer compared to existing methods such as
sandwiched LBF or PLBF, which may pose a problem for specific applications. Therefore, acceler-
ating the optimization process is another important direction for future work.

6 CONCLUSION

In this research, we proposed CLBF, solving two critical issues existing LBFs face. (1) By training a
large machine learning model and reducing it optimally, CLBF achieves an optimal balance between
model and filter sizes. (2) By branching based on tentative scores and the insertion of intermediate
Bloom filters, CLBF significantly reduces reject time. As a result, CLBF not only broadens the
applicability of LBFs but also establishes a strong foundation for addressing these issues.
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REPRODUCIBILITY STATEMENT

We provide a comprehensive description of our method, with a detailed algorithm presented in Ap-
pendix A. The full source code, including dataset downloading, data preprocessing, model imple-
mentation, training, and evaluation, is available as supplementary material. Instructions for running
the code are included in the README.md file within the package, ensuring that our results can be
easily replicated.
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Algorithm 1 Key Insertion into CLBF

1: Input: Key q
2: Function: GetFBFIndex(s) returns the index of FBF corresponding to the score s.

3: for d = 1, 2, . . . , D do
4: TBFd.Insert(q)
5: s← MLd(q)
6: if d = D then
7: k ← GetFBFIndex(s)
8: FBFk.Insert(q)
9: break

10: if s ≥ θd then
11: BBFd.Insert(q)
12: break

Algorithm 2 Query Processing in CLBF

1: Input: Query q
2: Output: NotFound or Found
3: Function: GetFBFIndex(s) returns the index of FBF corresponding to the score s.

4: for d = 1, 2, . . . , D do
5: if TBFd(q) = NotFound then
6: return NotFound
7: s← MLd(q)
8: if d = D then
9: k ← GetFBFIndex(s)

10: return FBFk(q)

11: if s ≥ θd then
12: return BBFd(q)

A ALGORITHM DETAILS

The pseudocode for the algorithm that inserts keys into the CLBF is shown in Algorithm 1. First,
the key q is inserted into the first Trunk Bloom filter, i.e., TBF1. Next, the output score from the
first machine learning model, i.e., ML1, is obtained for the key q. If this score exceeds the threshold
θ1 corresponding to ML1, the algorithm branches to a Branch Bloom filter; q is inserted into BBF1,
and the process terminates. Otherwise, q is passed to the next depth. If q does not branch into any
Branch Bloom filters by the final depth d = D, it is inserted into the appropriate Final Bloom filter
based on the final score. This process is repeated for all keys q contained in S, the set stored by the
CLBF.

Next, the pseudocode for the query algorithm in the CLBF is shown in Algorithm 2. Similar to
key insertion, the query q is first checked against TBF1. If TBF1 returns a NotFound result, it is
certain that q /∈ S, and this result is returned immediately. Otherwise, the output score from ML1 is
obtained for q. If this score exceeds the threshold θ1, the algorithm branches to the Branch Bloom
filter; the algorithm queries BBF1 for q, and the result from this filter is used as the final result.
Otherwise, q is passed to the next depth d. If q does not branch into any Branch Bloom filters by the
final depth d = D, it is queried against the appropriate Final Bloom filter based on the final score.
This approach leverages the tentative and final scores of the machine learning models to provide fast
query responses while preserving the false-negative-free property.

B ANALYSIS OF MODEL-FILTER MEMORY SIZE BALANCE

Here, we give observations of the model-filter memory size balance selected as a result of optimiza-
tion by CLBF. Figure 7 illustrates the model-filter memory size balance selected by CLBF for each
dataset and false positive rate configuration (here, we always set D̄ = 100). These results show that
the optimal machine learning model size varies depending on the dataset and the target false positive
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Figure 7: The model-filter memory size balance selected by CLBF for various F values: The optimal
model size changes depending on the target false positive rate and the dataset.

0 20 40 60 80 100
D

0
25
50
75

100
125
150
175
200

M
em

or
y 

Us
ag

e 
[k

B]

(a) Malicious URLs Dataset

0 20 40 60 80 100
D

0

100

200

300

400

500

600
M

em
or

y 
Us

ag
e 

[k
B]

(b) EMBER Dataset

ML Model
Bloom Filter
Total Model

Figure 8: The model-filter memory size balance selected by CLBF for various D̄ values: Beyond a
certain point, increasing D̄ further does not change the results.

rate. For the Malicious URLs dataset, where learning is relatively easy, the proportion of memory
occupied by the machine learning model is quite small, with the majority of the memory allocated
to the Bloom filter. In contrast, for the EMBER dataset, which is relatively difficult to learn, the
machine learning model occupies a relatively larger portion of the memory. Furthermore, across
both datasets, as the target false positive rate decreases, the optimal machine learning model size
tends to increase.

Next, we show in Figure 8 the relationship between the number of machine learning models used to
construct CLBF, i.e., D̄, and the model-filter memory size balance chosen as a result of optimization
(we always set F = 0.001 here). When D̄ is small, increasing D̄ monotonically decreases the
overall memory usage and monotonically increases the size of the machine learning model used. On
the other hand, for a certain range of large values of D̄, the size of the Bloom filter and the machine
learning models used do not change. This is because CLBF only uses D, i.e., the number of machine
learning models selected by optimization, from the given D̄ machine learning models. Therefore,
when using CLBF, it is assumed that users can obtain the optimal D by making D̄ larger than the
expected optimal D.

In contrast, in the case of PLBF (Vaidya et al., 2021), setting a larger D can lead to a decrease in
memory efficiency. The relationship between the number of machine learning models given when
constructing PLBF, i.e., D, and the memory usage of PLBF and its breakdown is shown in Figure 1
(we always set F = 0.001 here). As D increases, of course, the memory usage of the PLBF machine
learning models increases, because PLBF uses all of the D machine learning models given. On the
other hand, the memory usage of the backup Bloom Filter used by PLBF tends to decrease. This
is because the accuracy of the machine learning model tends to improve as the size of the machine
learning model increases, and even a small Bloom Filter can achieve the target false positive rate.
The overall memory usage decreases in the range of a certain small D, and increases in the range of
a certain large D. The optimal D varies depending on the dataset, but in all cases, CLBF (shown as
a red dot) selects a D close to the optimal value.
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Figure 9: The model and filter memory size achieved by PLBF for various D values: Up to a certain
point, increasing D reduces the overall memory usage, but beyond that point, increasing D starts to
increase the overall memory usage.
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Figure 10: Trade-off between memory usage and accuracy (lower-left is better).

C COMPARISON EXPERIMENTS WITH OTHER BASELINES

Here, we present the comparison experiments with other baselines, which we omitted from the main
text to avoid overly complicated result figures and to clearly demonstrate the effectiveness of our pro-
posed method. In addition to the PLBF (Vaidya et al., 2021), the Sandwiched LBF (Mitzenmacher,
2018), and the Bloom filter (Bloom, 1970), we compare our CLBF with disjoint Ada-BF (Dai &
Shrivastava, 2020) and Projection Hash Bloom Filter (PHBF) (Bhattacharya et al., 2022a), and Hash
Adaptive Bloom Filter (HABF) (Xie et al., 2021b). We implemented the disjoint Ada-BF in C++
based on the Python implementation published by the authors (Dai & Shrivastava, 2024). For PHBF,
we conducted experiments using the Python implementation published by the authors (Bhattacharya
et al., 2022b), so note that the speed comparison for PHBF is not fair. The hyperparameter of PHBF,
the sampling factor s, is always set to 10. For HABF, we used the C++ implementation published
by the authors (Xie et al., 2021a).

C.1 MEMORY AND ACCURACY

First, the trade-off between memory usage and accuracy for each method is shown in Figure 10.
For CLBF, we always set D̄ = 100, and for PLBF, disjoint Ada-BF, and sandwiched LBF, we show
the results for D = 1, 10, 100. For PHBF, the results for k = 10, 20, 30 are shown, where k is the
number of hash functions used in PHBF. For HABF, the results for bits per key = 1, 2, . . . , 15
are shown. For HABF, the false positive rate in the training data is also displayed, not just the false
positive rate in the test data.

We can see that sandwiched LBF and disjoint Ada-BF always show inferior trade-offs compared to
PLBF and CLBF with the same machine learning model size. In addition, the false positive rate for
PHBF was always almost 1. This is thought to be because the mechanism of using the projection as
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Figure 11: Trade-off between memory usage and average reject time (lower-left is better).

a hash function results in false positives when there are keys in the set that have features similar to
the non-key query. It is possible to improve the accuracy by increasing the PHBF hyperparameters
k, i.e., the number of hashes, and s, i.e., the sampling factor, but this will lead to an increase in
construction time. As we will show later, the construction time for PHBF is currently very long, so
this approach is considered unacceptable.

C.2 MEMORY AND REJECT TIME

Next, the trade-off between memory usage and reject time for each method is shown in Figure 11.
For PLBF, sandwiched LBF, and Bloom filter, we show the results for F = 0.001. Because the
hyperparameter that controls the accuracy of disjoint Ada-BF is the total memory usage (instead of
the target false positive rate, as in PLBF and CLBF), it is difficult to compare them under consistent
conditions. Therefore, for disjoint Ada-BF, we constructed models with various total memory usages
and Ds, and then plotted only those with a false positive rate close to 0.001 (more precisely, greater
than 0.75 × 0.001 and less than 1.25 × 0.001). For PHBF, we were unable to obtain a case with
a sufficiently small false positive rate, so we have displayed the results for various memory usage
when constructed with k = 10, 20, 30 by connecting the results for each k. Please note that it is not
a fair comparison because the false positive rate is completely different between PHBF and other
methods and because PHBF is implemented in Python while the others are implemented in C++.

For disjoint Ada-BF, when comparing with the same amount of memory usage, it was found that the
reject time tended to be longer than PLBF. PHBF showed a very long reject time compared to the
other methods. While the reject time for a Bloom filter was around 20 ns and LBFs were between
20 ns and 1, 000 ns, PHBF had a reject time of over 100, 000 ns.

C.3 CONSTRUCTION TIME

Finally, the construction times for each method are shown in Figure 12. For PLBF, sandwiched LBF,
and Bloom filter, we show the results for F = 0.001. For disjoint Ada-BF, we show the results for
total memory usage is 1.6Mbit, and for HABF, we show for bits per key = 8. For PHBF, we
show the results for k = 10, 20, 30.

We can see that the construction time for disjoint Ada-BF is almost the same as that for sandwiched
LBF. This is because CLBF and PLBF use dynamic programming to find the optimal parameters,
whereas disjoint Ada-BF uses heuristics to determine the parameters, as in sandwiched LBF. Also,
we can see that the construction time for PHBF is much longer than those of the other methods.
We can see that the construction time of HABF is much faster than that of the other methods. The
construction time of HABF is 0.01 to 0.08 times that of PHBF.
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Figure 12: Construction time.

D ABLATION STUDY ON HYPERPARAMETERS OF MACHINE LEARNING
MODELS

Our CLBF improves memory efficiency and reduces reject time by optimizing the configuration, but
it is possible to achieve the same effect by tuning the machine learning model (e.g., hyperparameter
tuning, distillation, and quantization). These two approaches can be used at the same time. In other
words, it is possible to construct a CLBF with superior performance by the optimization hyperpa-
rameters of the machine learning model followed by the optimization of the cascade structure. Here,
we show the results of our observations on how the hyperparameters of the machine learning model
XGBoost, in particular, the value of max depth, affect the performance of LBF. The smaller the
max depth, the smaller each weak learner becomes, and while the size is smaller and inference
time is shorter, the discriminative power of each weak learner becomes weaker.

The trade-off between memory usage and false positive rate for max depth = 1, 2, 4, 6 is shown
in Figure 13, and the trade-off between memory usage and reject time is shown in Figure 14, and the
construction time is shown in Figure 15. We confirmed that the properties of CLBF, as shown in the
main text, consistently appear for any value of max depth: (1) better memory-accuracy trade-off
than existing LBFs, (2) better memory-reject time trade-off than existing LBFs, (3) slightly (up to
1.8 times) longer construction time than existing LBFs.
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Figure 13: Trade-off between memory usage and accuracy (lower-left is better).

We find that there is a performance range that cannot be achieved by either the CLBF method
or hyperparameter tuning alone, i.e., there is a performance that can only be achieved by us-
ing CLBF after selecting the ML model’s hyperparameters appropriately. For example, in Fig-
ure 14, the performance of (Memory Usage,Reject Time) = (500 kB, 30 ns) can be achieved
when max depth = 4 and CLBF is used, but it cannot be achieved when max depth = 1 or
PLBF is used. These experimental results suggest the effectiveness of a hybrid method that com-
bines machine learning model tuning and CLBF optimization.
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Figure 14: Trade-off between memory usage and average reject time (lower-left is better).
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(b) max depth is 2.
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Figure 15: Construction time.
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