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Abstract

In the context of the NeurIPS 2019 Reproducibility Challenge’s Baselines Track,
the baseline algorithm of Ginart et al.’s "Making Al Forget You: Data Deletion in
Machine Learning" was re-implemented. Ginart et al. proposed two algorithms
to support efficient data deletion for k-means clustering. Because the baseline
was Lloyd’s algorithm initialized by k-means++ seeding (k-means), we proceeded
to re-implement the baseline. We also implemented three additional baselines,
including bisecting k-means , weighted k-means and Gaussian mixture model.
Among our implemented baselines, our Lloyd’s algorithm initialized by k-means++
performed the best. It achieved similar clustering quality as the baseline imple-
mented by Ginart et al. However, our implementation of the baseline lead to lower
amortized runtimes, which can be attributed to a more computationally optimal
implementation.

1 Background

Numerous machine learning models, particularly those pertaining to healthcare applications, are
trained using data from individuals. One of the main ethical and legal issues that arise is the right
of an individual to control the use of their data. In fact, an individual may request for their data to
not be used anymore for a machine learning model. That request may be legally supported by laws
such as the European Union’s General Data Protection Regulation (GDPR), also known as the "Right
to be forgotten". If a machine model is already trained, to respect the deletion request, the model
would have to be retrained on the remaining data. Consequently, additional computational resources
would be required to do so. However, retraining from scratch is not feasible or practical for many
models requiring nonstop weeks worth of energy and computational expenditure [7]]. Thus, efficient
approaches to data deletion are required.

In "Making AI Forget You: Data Deletion in Machine Learning", Ginart et al. proposed two
algorithms to support efficient data deletion for k-means clustering[7]]. The baseline was Lloyd’s
algorithm initialized by k-means++ seeding (k-means). They proposed a quantized version of Lloyd’s
algorithm called Quantized k-means (Q-k-means): the centroids are quantized at each iteration such
that each point is mapped to the nearest vertex of a uniform e-lattice and the optimization state is
memoized into the metadata of the model [7]. The metadata indicates whether the deletion of a
specific datum would result in a different quantized centroid, which would require retraining from
scratch [7]]. They also proposed a another variant of Lloyd’s algorithm called "Divide-and-Conquer
k-Means" (DC-k-means) [7]]. The algorithm consists of partitioning a dataset into subsets where each
subset is trained as an independent k-means instance [7]]. The resulting instances are merged [/7].
Thus, a deletion of a datum would only require a sub-k-means instance to be retrained from scratch.
In their paper, compared to the baseline , they empirically claimed that Q-k-means and DC-k-means
produced clusters of similar statistical quality while leading to improvements of amortized times of
over an 100-fold for five publicly available datasets and 1 simulated dataset.
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1.1 Related Work

Sebastian Schelter addressed the data deletion problem by proposing ways to detrimentally update
trained models [[17]. The approach, which was implemented on collaborative filtering, ridge regression
and k-nearest neighbors with locality sensitive hashing, lead to an average of one-fold improvement
for ridge regression and an average of two-fold improvement for the other two aforementioned
algorithms [[17]]. Similarly, Masayuki Karasuyama and Ichiro Takeuchi proposed a multiple decre-
mental implementation of support vector machines (SVM) to add or delete multiple data points[/10].
However, the aforementioned works specifically refer to deterministic learning algorithms. Ginart et.
al specifically tried to address deletion efficiency for general learning algorithms, including stochastic
models.

1.2 Task

The main goal of this report was to asses of the reproductibility of the experiments described in
"Making Al Forget You: Data Deletion in Machine Learning", which was selected from a list of
accepted 2019 Conference on Neural Information Processing Systems (NeurIPS) papers. Track 1
(Baselines Track) was chosen. The canonical baseline of the paper, Lloyd’s algorithm initialized
by k-means++ seeding, was re-implemented and fine-tuned. In addition, the following variants of
k-means clustering were implemented and rigorously analyzed:

1. Bisecting K-Means
2. Weighed K-Means

3. Gaussian Mixture Models with Expectation Maximization

2 Methodology

2.1 Proposed Baselines

We re-implemented the baseline of the paper, which was Lloyd’s algorithm initialized with k-means++.
We also re-implemented three additional baselines, including bisecting k-means, weighed k-means
and Gaussian mixture models with expectation maximization.

2.1.1 Lloyd’s algorithm initialized with k-means++

k-means clustering is canonically done using Lloyd’s algorithm, which was proposed by Stuart Lloyd
in 1957 [12]. It consists of representing each cluster by a centroid and assigning each data point
to the geometrically closest (smallest Euclidean distance) centroid. The first step of the algorithm
consist of randomly assigning the centroids. The algorithm proceeds to iteratively update the cluster
membership of each datum. During each iteration, the centroids are recomputed to be the center
of the data in the corresponding cluster. The last two steps are repeated until convergence. While
the algorithm is relatively straightforward to understand and implement, it converges to a local
minima solution and it can therefore lead to poor clustering quality [9]. It also leads to suboptimal
computation speeds [9]]. Thus, in 2007, David Arthur and Sergei Vassilvitskii proposed a way to
initialize the centroids in order to improve clustering quality while minimizing computation times
[1]. The k-means++ initialization consists of first uniformly picking a first centroid from data [/1].
The next centroids are picked from the remaining non-centroid data: the probability of each datum
being picked is proportional to the squared distance to the closest centroid that has already been
picked [1]. The k-means++ initialization guarantees an O(log k) approximation ratio [1]]. The major
hyperparameter to explore is the convergence criteria. Examples include a maximum number of
iterations and setting the threshold for the minimum difference between subsequent iterations to
continue.

2.1.2 Bisecting K-means

Bisecting K-means uses principles of hierarchical clustering to improve the clustering quality and
the runtime of the canonical clustering algoritm [[19]. The bisecting step of the algorithm consists of
splitting a cluster into 2 [19]] The bisecting step is repeated for a certain number of iterations and the



best split (best clustering quality) is returned. The two previous steps are repeated until the desired
number of clusters is reached [[19].

2.1.3 Weighed K-means

Weighted K-means takes into account the weights of each of the data points in the dataset[21]]. That
is, a datapoint with a bigger weight will contribute more heavily to the computation of each new
centroid. At each centroid computation step, a weighted mean is used to calculated the new location
of the centroid[21]].

2.1.4 Gaussian Mixture Models with Expectation Maximization

The aforementioned K-means algorithms are hard clustering algorithms, meaning that each datum is
associated to a single cluster without considering probabilities [20]. In contrast, Gaussian Mixture
Model (GMM) is a soft clustering algorithm which considers different probabilities. GMM consist of
representing the set of clusters with a weighed multivariate Gaussian distribution. Each cluster is
represented by a Gaussian distribution and each Gaussian distribution has an associated weight. The
parameters representing the Gaussian distribution of each cluster include the mean/mean matrix and
the variance/covariance matrix. The maximum likelihood parameters are found using the expectation
maximization algorithm, which was proposed in 1977 by Arthur Dempster, Nan Laird, and Donald
Rubin [4]. The algorithm can be initialized by randomly picking the mean/mean matrix and picking
the variance/covariance matrix in a way to reflect the entire dataset. The algorithm consists of a
expectation step and a maximization step. The expectation step is to compute the probability of each
point being assigned to a cluster. The maximization step consists of changing the mean/mean matrix
and variance/covariance matrix of the distribution representing each cluster in a way to maximize the
probabilities of each datum being assigned to its corresponding cluster.

2.2 Datasets
Ginart and Zou ran their experiments on the following five publicly available datasets:

Celltype (N = 12,009, D = 10, K = 4), a dataset of mouse cell types [8]

Covtype (N = 15,120, D = 52, K = 7), a dataset of forest covertypes [2]]

MNIST (N = 60,000, D = 784, K = 10), a dataset of handwritten digits [11]]
Postures (N = 74,975, D = 15, K =5), a dataset of static hand postures [5]]

Botnet (N = 1,018,298, D = 115, K = 11), a dataset of raw network traffic data [14]]

A

Each dataset was associated with a certain number of clusters, denoted by K. Each dataset had
ground-truth labels, which were used to evaluate the statistical quality of each model. The datasets
were normalized, such that each element was between 0 and 1. We evaluated our proposed baselines
on those datasets.

2.3 Performance Metric
2.3.1 Evaluation of Amortized Runtime

Ginart et al. used a stream of 1000 deletion uniformly random requests to calculate the amortized
runtime for each algorithm [7]]. The baseline required re-training the model from scratch for each
deletion operation. However, due to time constraints, we only used only a stream of 10 deletion
operations.

2.4 Evaluation of Clustering Quality
Ginart et al. evaluated the quality of clustering via three criteria [7]]:

1. Optimization loss of the k-means objective
2. Silhouette Coefficient
3. Normalized Mutual Information (NMI)



The optimization loss of the k-means objective correspond to the sum of the squared Euclidean
distance from each data point to its nearest centroid [/]. The Silhouette Coefficient is a number
between -1 and 1 that represents how dense and well-separated the clusters are: denser and better
separated clusters give way to higher scores [[7]. NMI is a number indicating how well each cluster
matches the ground-truth labels while considering permutations: higher scores indicate higher
correspondences between the assigned clusters and the ground truth labels [7]].

3 Implementation Details

The aforementioned baselines were implemented on Python3, particularly using the Numpy library
[15,|16]. Visualization was done using the matplotlib library [[13]]. The silhouette coefficient and NMI
was evaluated using the sklearn library [18]]. In addition, in order to accurately compare Ginart’s
implementations of k-means, Q-k-means and DC-means were compared to our implementations of
various baselines, we also re-ran his codes[6]. A Google Compute Engine backend (12.72 GB of
RAM), also known as "Google Collaboratory", was used to train and test the models. In contrast,
Ginart et al. ran their experiments on a computer with an Intel Xeon E5-2640v4 processor [6]. For
Q-k-means, the epsilon parameter was chosen for each dataset to be 2~10g10(n/(k*d"*)=3 \hile for
DC-k-means, the depth parameter was chosen for each dataset to be w = round(n * x0.3)) where n
corresponds to the number of examples in the dataset, k corresponds to the number of clusters and d
corresponds to the dimension of each feature in the dataset [3]] .

4 Results

4.1 Determination of Optimal Hyperparameters
4.1.1 Maximum number of iterations

One of the most important hyperparameters in the k-means algorithm is the maximum number of
iterations, which dictates how many times it will compute the centroids before converging. This
hyperparameter was tuned on the baseline k-means with each dataset, and evaluated using the loss
metric. Table 1 shows a decrease in loss in most datasets as the maximum iterations is increased from
5 to 20. Namely the MNIST dataset improved the most with a reduction in loss of 0.15. In order to
get the best metrics, a max iteration hyperparameter of 20 was used in the subsequent experiments.

Table 1: Loss of k-means using different numbers of maximum iterations

Dataset | 5 iterations 10 iterations | 20 iterations
Botnet 0.18 +£0.01 0.17 + 0.00 0.18 £0.01
Celltype | 0.01 +0.00 0.01 + 0.00 0.01 + 0.00
Covtype | 1.01 +0.03 1.01 +0.04 0.992 £ 0.03
MNIST | 39.654+0.26 | 39.52+0.19 | 39.40 £0.17
Postures | 0.20 4= 0.00 0.20 £+ 0.00 0.21 +£0.00

4.2 Comparison of Performance

4.2.1 Amortized Runtime

Table 2: The amortized runtimes were computed for Ginart’s implementation of k-means, Q-k-means
and DC-k-means

Dataset | k-means [[7]] Q-k-means [7] | DC-k-means [7] |
Botnet 61.9 +0.444 62.99+33.56 787 +£0.146 |
Celltype | 5.08 +0.0201 | 0.512 4+0.0226 | 0.892 £ 0.0204
Covtype | 7.70 £0.0212 | 2.74 +0.384 1.26 4+ 0.0824
MNIST | 70.3 4+ 0.109 22.89 +10.5 9.792 £ 0.0768
Postures | 33.2 +0.192 14.603 £1.72 4.47 £+ 0.393




Table 3: The amortized runtimes were computed our implementations of k-mean, bisecting k-means,
weighed k-means and Gaussian mixture model

Dataset | k-means b. k-means w. k-means | GMM

Botnet 79.87 +5.39 | 484.57 +28.86 | NA NA

Celltype | 1.34 +0.26 7.28 +£0.30 5.154+0.05 3.42 4+ 0.00696
Covtype | 0.93 £ 0.04 4.63 +0.14 6.23+0.11 133.70 £ 0.0599
MNIST | 17.494+1.46 | 103.82 £1.01 NA NA

Postures | 16.40 & 5.21 | 50.20 +1.39 33.574+0.05 | NA

4.2.2 Clustering Quality
The following experiments were run in triplicates
Optimization loss of the k-means objective

Table 4: The optimization losses of the k-means objective were computed for Ginart’s implementation
of k-means, Q-k-means and DC-k-means

Dataset | k-means [7] Q-k-means [[7]] DC-k-means [7]
Botnet 0.216 4+ 0.0275 0.2144+0.0118 0.2194-0.0354
Celltype | 0.0159 £ 000282 | 0.0182 + 0.00168 | 0.0254 + 0.000563
Covtype | 0.994 + 0.0180 1.05 £ 0.0340 1.00 = 0.0276
MNIST | 39.8 4+ 0.0981 43.74+0.252 39.9 +0.0572
Postures | 0.208 = 0.00173 | 0.211 & 0.00382 0.210 £ 0.000567

Table 5: The optimization losses of the k-means objective were computed for our implementations of
k-mean, bisecting k-means, weighed k-means and Gaussian mixture model

Dataset | k-means b. k-means | w. k-means GMM

Botnet 0.175 £ 0.00544 NA 0.23340.0703 NA

Celltype | 0.0157 £+ 0.000111 | 0.01 £ 0.00 | 0.0164+0.0005 0.0247 + 0.000653

Covtype | 0.992 4+ 0.0306 1.12+0.03 | 1.0054+0.0153 NA

MNIST | 39.4 +0.169 NA 39.338+0.0940 | NA

Postures | 0.206 £ 0.0066 NA 0.207+0.0011 0.258 £ 0.00769
Silhouette Coefficient

Table 6: The silhouette coefficients were computed for Ginart’s implementation of k-means, Q-k-
means and DC-k-means

Dataset | k-means [7]] Q-k-means [7] DC-k-means [7]
Botnet 0.608 £ 0.00940 0.585 +0.0315 0.647 £0.0151 |
Celltype | 0.391 +£0.00966 | 0.4114+0.0194 0.484 +0.0267
Covtype | 0.210 +0.004914 | 0.239 £ 0.0308 0.183 £0.0122
MNIST | 0.0665 + 0.00196 | 0.0512 4+ 0.00722 | 0.0695 4+ 0.00314
Postures | 0.0990 + 0.00246 | 0.101 £ 0.00367 | 0.106 £ 0.000730

Table 7: The silhouette coefficients were computed for our implementations of k-mean, bisecting
k-means, weighed k-means and Gaussian mixture mode

Dataset | k-means b. k-means w. k-means GMM

Botnet 0.641 + 0.0316 NA 0.591+0.0298 | NA

Celltype | 0.390 £ 0.00761 | —0.01 & 0.00 | 0.3754+0.0258 | 0.151 £ 0.0361
Covtype | 0.203 £ 0.00306 | —0.05 +0.01 | 0.2054+0.0144 | 0.0126 4+ 0.0129
MNIST | 0.0611 £ 0.010 NA 0.061£0.0034 | NA

Postures | 0.105 £0.00498 | NA 0.111£0.0016 | 0.0320 £ 0.0200




Normalized Mutual Information (NMI)

Table 8: The NMIs were computed for Ginart’s implementation of k-means, Q-k-means and DC-k-
meansl

Dataset | k-means [[7] Q-k-means [7] DC-k-means [7] |
Botnet 0.704 + 0.0297 0.692 + 0.00992 | 0.704 £ 0.0297 |
Celltype | 0.356 £ 0.00645 | 0.307 &+ .0704 0.356 &+ 0.00646
Covtype | 0.307 £0.0174 0.330 4+ 0.0267 0.307 = 0.0174
MNIST | 0.473 4+ 0.0122 0.454 4+ 0.0203 0.473 £+ .0122
Postures | 0.163 = 0.0138 0.158 = 0.0111 0.163 - 0.0138

Table 9: The NMIs were compared for our implementations of k-mean, bisecting k-means, weighed
k-means and Gaussian mixture model

Dataset | k-means b. k-means | w. k-means GMM

Botnet 0.734 £+ 0.0204 NA 0.691£0.0278 | NA

Celltype | 0.351 +0.0132 0.00 & 0.00 | 0.357£0.0348 | 0.407 £ 0.0625
Covtype | 0.350 +0.00887 | 0.02 4+ 0.01 | 0.312+0.0158 | 0.0884 + 0.0385
MNIST | 0.487 £ 0.0161 NA 0.4934+0.0032 | NA

Postures | 0.167 =0.0114 NA 0.166+0.0115 | 0.243 4 0.00690




5 Discussion

The code provided by Ginart et al. was first explored in order to determine whether his code would
produce similar results and in order to obtain values obtained from the same source of computation
as our implemented baselines. The speedups were not as drastic as those reported by Ginart et al.
However, the specific parameters used to generate those performance values were not reported. In
addition, Ginart et al. used 1000 deletion operations whereas we only used 10 deletion operations
because of time constraints. The reported clustering qualities are similar for all the metrics (losses,
NMIs and silhouette coefficients).

Comparing Tables [2] with the exception of the Botnet dataset, our implementation of the baseline
achieved lower amortized run times for the deletion operation. This can be mainly attributed to
optimized code implementation. With respect to hyperparameter tuning, we explored some of it for a
single dataset, but as stated in Ginart et al’s paper|[|6], hyperparameter tuning may often be dependent
on the dataset, as the parameters may be optimal for some datasets but not others. For this reason,
the reproducibility challenge was performed with fixed hyperparameters to keep the variance to a
minimum.

Our implementation of the Gaussian mixed model lead to singular matrices. In addition, it involved
unstable numerical computation values, which were handled by forcing values. Despite extensive
(several days-worth) of debugging, the numerical instability errors remained. Thus, it was unable to
cluster the MNIST and the Botnet dataset. Similarly, our bisecting k-means was unable to compute
the label association of each point in a computationally tractable way.

Comparing the performance of all of our baselines, our implementation of Lloyd’s algorithm with
k-means ++ initialization generally lead to best clustering quality and the lowest runtime.

6 Conclusion

The baseline set by Ginart et al.[6] for the k-means algorithm with k-means++ initialization was
reproducible when considering the loss, the silhouette coefficient and the NMI. In fact, we were
able to achieve similar metrics for the various datasets. The original implementation of the baseline
k-means algorithm with k-means++ initialization was very barebone and transparent, which allowed
us to reproduce it with confidence. Using various variation of the barebone k-means algorithm with
k-means++ initialization, we explored the possible variations of the algorithm and its effect on the
metrics used to evaluate the model. Future directions include optimizing our Gaussian mixed model
to be more numerically stable as well as doing an extensive ablation study on the hyperparameters of
DC-k-means and Q-k-means.
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