
Under review as a conference paper at ICLR 2022

FACTORED WORLD MODELS FOR ZERO-SHOT
GENERALIZATION IN ROBOTIC MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

World models for environments with many objects face a combinatorial explosion
of states: as the number of objects increases, the number of possible arrangements
grows exponentially. In this paper, we learn to generalize over robotic pick-and-
place tasks using object-factored world models, which combat the combinatorial
explosion by ensuring that predictions are equivariant to permutations of objects.
We build on one such model, C-SWM, which we extend to overcome the assump-
tion that each action is associated with one object. To do so, we introduce an
action attention module to determine which objects are likely to be affected by an
action. The attention module is used in conjunction with a residual graph neural
network block that receives action information at multiple levels. Based on RGB
images and parameterized motion primitives, our model can accurately predict
the dynamics of a robot building structures from blocks of various shapes. Our
model generalizes over training structures built in different positions. Moreover
crucially, the learned model can make predictions about tasks not represented in
training data. That is, we demonstrate successful zero-shot generalization to novel
tasks, with only a minor decrease in model performance. Furthermore, we evalu-
ate our model on a dataset collected on a physical robot.

1 INTRODUCTION

Figure 1: PyBullet environment with a UR5 arm.

From assembly to household robots, current
state-of-the-art robot learning agents cannot
generalize beyond a specific training task. One
important aspect of generalization is the ability
to understand any novel combination of known
factors, a so-called combinatorial or composi-
tional generalization. Applied to objects, com-
binatorial generalization ideally allows an agent
to understand any arrangement of objects from
only a limited number of interactions with its
environment. The two key steps such agents
need to perform are (a) decomposing a scene
into individual objects and (b) modeling rela-
tive interactions between objects. The latter is
particularly important when learning to predict
the dynamics of the environment (i.e. learning
a world model).

The purpose of our paper is to learn a world model that accurately predicts the effects of actions
in the context of robotic manipulation, and generalizes to novel tasks. We assume the state of the
environment is already factored into individual images for each object, and focus on learning a latent
code for each object and predicting the effect of pick-and-place actions. Our model is trained using
a self-supervised contrastive loss. It can predict accurate manipulation physics by using multiple
graph neural network layers (GNNs) and action attention. GNNs consider pairwise interactions,
usually between every possible pair of objects, in order to predict the state of each object one step
into the future. GNNs achieve combinatorial generalization (to the extent that pairwise interactions
are expressive enough) by equivariance to the order in which objects are presented–permutation
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equivariance. That is, they cannot overfit to a particular ordering of objects. It is a common choice
to use a single GNN layer (in some cases called an Interaction Network (Battaglia et al., 2016)).
But, as shown in previous work (Kipf et al., 2018; Sanchez-Gonzalez et al., 2018) and confirmed by
our experiments, stacking multiple GNN layers leads to much more accurate physics predictions.

The ability to integrate information about actions with latent states of individual objects has been
underexplored in prior work. Previous object-factored world models either assume object-action
association (a factored action space) (Veerapaneni et al., 2019; Kipf et al., 2020; Huang et al., 2020)
or only model sequences of states without actions (Janner et al., 2019; Bakhtin et al., 2019; Qi
et al., 2021). We represent actions as pick(x,y) and place(x,y) with continuous (x,y)
coordinates; this representation is integrated into our latent transition model through action attention
and iterative refinement by a stack of residual graph neural networks. Our action attention module
compares action information with the latent state of each object in order to predict the probability
that an object is affected by the action. Each node in a GNN then receives a different action based
on the predicted attention weights. Since each GNN in our transition model has access to the action,
the responsibility for deciding which object is affected by the action and modeling its effect on said
object can be distributed across the transition model.

Figure 2: Example of generalization.

We train and evaluate our factored world model
in a simulated environment involving a UR5
robotic arm manipulating blocks of various
shapes (Figure 1). We instantiate two environ-
ments: Cubes includes six cubes arranged into
five different structures, which take up to ten ac-
tions to build, and Shapes includes eight blocks
of four types (cube, brick, triangle, roof), which
are arranged into sixteen different structures
(Figure 3). To test zero-shot generalization —
the main result of our paper — we partition the
tasks into training and generalization sets. We
ensure that the world model never sees the goal
state of any generalization task during training.
Nevertheless, our model transfers to the testing tasks in Cubes and Shapes with only a very minor
drop in accuracy (Table 1). The mechanism behind successful zero-shot transfer is the ability of
our model to understand the state of each object independently of others, and the ability to model
sparse interactions. For example, if our model understands the interaction ”stack a triangle on top
of a cube” based on the first training task in Shapes (Figure 3, bottom row), it can use it when
generalizing to four different held out tasks (Figure 2).

In summary, we contribute the following:

1. We develop a factored wold model for robotic pick-and-place tasks. This model does not
require a known factored action-object association (as was used in related models), owing
to its use of an action-attention network.

2. We demonstrate that the learned world model accurately predicts the outcomes of se-
quences of actions. Moreover, the model achieves zero-shot generalization to sequences
of actions tasks and object configurations that were not seen during training, including se-
quences that are longer (up to 10 actions) than those in the training data (up to 10 actions).
Finally, we demonstrate transfer to a real-world dataset.

2 FACTORED WORLD MODEL FOR ROBOTIC PICK-AND-PLACE

The modeling task is to predict the effect of a sequence of actions a1, a2, ..., aT in an environment
that is initialized to a state s0. We will assume a setting in which the state of the world is represented
as an image, which has been pre-processed into a factorized state s = 〈s1, s2, ..., sK〉 in which each
si is an image centered on the ith object. The number of objects K can vary between episodes.
This postulated factorization can be implemented using an object detection module that predicts a
bounding box for each object and a tracking module that corresponds bounding boxes across time.
Both problems are well-studied for natural images in computer vision (Zhao et al., 2019; Greff et al.,
2020).
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Figure 3: Breakdown of tasks in Cubes (top row) and Shapes (bottom row) environments. In Cubes,
we train on the task of making a stack of four blocks and test on two wall stacking and two stair
stacking tasks. In shapes, we instantiate 16 tasks with structures of height of three and a roof and
top, and split them 50/50 training/testing. We provide expert demonstrations for training tasks and
test zero-shot generalization in prediction on testing tasks.

Our goal is to learn a factorized latent representation z = 〈z1, z2, ..., zK〉, along with a world model
that predicts the state z′ that results from taking an action a at state z. We will show that the
learned latent code is low-dimensional; it represents object identity and position while abstracting
over irrelevant features such as object color. Our world model is implemented using a graph neural
network (Gori et al., 2005) that represents action-conditioned pair-wise interactions of latent factors.
It is able to perform several rounds of message passing, each successively refining the prediction of
the physics of picking and placing objects. We do not learn a mapping from z to s (i.e. the world
model only predicts the future within its latent code); nevertheless, we show the latent transition
model successfully solves prediction and action ranking tasks.

Both the state encoder and the latent transition model are equivariant to the permutation of factors.
That is, we can provide objects in any order as long as it is consistent within an episode. Moreover,
the model is agnostic to the number of objects present in a scene — no parameters in the model are
dependent on the number of objects — although the weights of the latent transition model might
overfit if the number does not vary during training. We describe our world model in detail in Section
2.1 and the training procedure in Section 2.2.

2.1 FACTORED VISUAL WORLD MODEL WITH ACTION ATTENTION

Encoder. Given a factored state s = 〈s1, s2, ..., sk〉, the encoder fφ processes each factor (image of
an object) separately. That is, z = 〈fφ(s1), fφ(s2), ..., fφ(sK)〉. The encoder uses three convolu-
tional layers followed by average pooling and three fully-connected layers. In principle, the use of
average pooling enables the encoder to process images of any size, although we use a fixed image
size. As described in Section 3, the per-object image si includes both an RGB component and a
coordinate grid component, which marks the location where the crop was taken (Figure 4).

Transition Model. The transition model gθ accepts a factored latent state z = 〈z1, z2, ..., zK〉,
zi ∈ RDz and an action a ∈ RDa . It predicts the next latent state by outputting a residual:

ẑt+1 = zt + gθ(z
t, at). (1)

We implement gθ(zt, at) as a stack of graph neural network layers with skip connections. Denot-
ing the ith graph neural network layer as GNNi and the ith intermediate representation as yi, the
computation with L layers is as follows:

y1 = z + GNN1(z, a)

y2 = y1 + GNN2(y1, a)

...

gθ(z, a) = yL−1 + GNNL(yL−1, a) (2)
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Our implementation of individual graph neural network layers follows Kipf et al. (2020): the net-
work models pairwise interactions between latent state factors (corresponding to objects in the envi-
ronment) using a fully-connected node network hn and an edge network he. Both are implemented
as MLPs with one hidden layer. The edge network outputs an embedding for each directed edge
ei,j = he(zi, zj). The edge embeddings are then aggregated using the node network in order to
update the state of each node. Finally, the graph neural network outputs a vector of updated factors
z′ = 〈z′1, z′2, ..., z′K〉 with

z′i = hn

(
zi, a,

∑
j 6=i

ej,i

)
. (3)

The summation over edges in the input of the node network assures permutation equivariance, an
important property that aids generalization to novel combinations of factors. Given a permutation of
factors π, we have

GNN(π(z), a) = π(GNN(z, a)). (4)

The permutation equivariance property also holds for a stack of GNN layers as well as the state
encoder and action attention.

Action Attention. When picking or placing objects in our experiments, the robotic arm and gripper
will usually interact with only one or a small number of objects. The transition model needs to learn
which latent factors change and which stay the same when an action is performed. Previous work
simplified this problem by assuming that the action space is also factorized (Sanchez-Gonzalez et al.,
2018; Veerapaneni et al., 2019; Kipf et al., 2020), which is to say that actions are performed relative
to individual objects or parts. This assumption is not realistic in typical robotics applications, where
actions correspond to motor primitives that cannot trivially be associated with effects on individual
objects. We use pick(x,y) and place(x,y) actions with continuous (x,y) coordinates.

We overcome this limitation by introducing an action attention layer. Instead of the action being the
same for each node in the graph neural network, we create K transformations of the action that are
attenuated based on how likely they are to interact with each latent factor. The mechanism follows
single-head self-attention (Vaswani et al., 2017) with the following key k, query q and value v:

k = 〈jk(z1), jk(z2), ..., jk(zK)〉,
q = jq(a),

v = jv(a). (5)

Here, jk, jq and jv are Multi-Layer Perceptrons with one hidden layer. The factored action space
a′ = 〈a′1, a′2, ..., a′K〉 is composed of v weighted by attention weights αi with i ∈ {1, ...,K}:

αi = softmax(kT1 q, k
T
2 q, ..., k

T
Kq)i,

a′i = αiv. (6)

Note the new actions are all equal up to a multiplicative factor. Figure 7 visualizes α.

2.2 LEARNING BY CONTRASTIVE LOSS

We train the encoder and latent transition model using a single-step contrastive loss. We use a
contrastive loss with a single positive and negative example (Kipf et al., 2020). Given a transition
〈st, at, st+1〉, we encode the current and next state (zt = fφ(st), zt+1 = fφ(st+1), ẑt+1 = zt +
gθ(z

t, at)) and make a prediction about the next latent state. The contrastive loss minimizes the
distance between the real and predicted next latent state, while maximizing the encoding distance
between the current state and a negative state (z̄ = fφ(s̄)) up to a margin γ:

L(zt, zt+1, ẑt+1, z̄) =
1

2Kσ2

K∑
i=1

∥∥∥zt+1
i − ẑit+1

∥∥∥2
2

+ max

0, γ − 1

2Kσ2

K∑
i=1

∥∥zti − z̄i∥∥22
 . (7)

The negative state s̄ is sampled by randomly permuting a training batch of current states. It is a
proxy for sampling a random state from the entire dataset (without needing to increase the batch
size). Intuitively, we want the encoder to capture the minimum information required to distinguish
a randomly sampled pair of states while enabling the latent transition model to be accurate.
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3 EXPERIMENTS

Our empirical evaluation focuses on pick-and-place robotic manipulation tasks performed in simu-
lation as well as on a real-world robotic arm (Figure 1 and Figure 8). The environments involve
a robotic arm manipulating objects of four shapes (cube, brick, triangle, roof) in a 30×30 cm
workspace. The agent controlling the arm uses pre-defined pick and place motion primitives:
it chooses a particular (x, y) location (continuous action space) in the workspace in which the arm
executes a top-down pick or place action depending on if it is holding an object.

The state of the environment is captured by two RGB cameras pointed at the workspace and a third
RGB camera that captures the content of the robotic gripper. We assume access to a bounding box
for each object. The factored state s = 〈s1, s2, ..., sK〉 is created by cropping the contents of each
bounding box with added padding and resizing the resulting image to an 18×18 square. We add
bounding box coordinates into the cropped image in the form of four additional coordinate grids
channels (Figure 4, Section A.1). Hence, each view of each object results in an 18×18 image with
3 RGB and 4 coordinate grid channels. Note that we only require object bounding boxes within the
images taken by side-viewing cameras. We do not need the ground-truth (x, y, z) object positions
in order to generate the factored state. We concatenate the two views of each object channel-wise,
creating a 14-channel image for each object. If an object is held by the robotic gripper, we replace
the two views with two images of the gripper — one from the front and one from the side. These
two images can be captured by a single camera by rotating the robotic arm in between images. The
coordinate grids for hand images are set to zero.

The environment poses a difficult exploration problem: a sequence of random actions is unlikely
to create a large structure without knocking it over. A model-free agent with a random exploration
policy fails to learn to build structures involving more than two objects (Biza et al. (2021), Table
2, ”DQN RS”). Therefore, we collect a dataset of demonstrations from an experiment with added
randomness. We evaluate both the ability of our model to fit tasks with expert trajectories as well as
the ability to generalize to a set of held-out tasks without fine-tuning (zero-shot transfer, Figure 3).

We aim to answer the following questions:
• Can the Factored World Model fit physics of robotic manipulation? (Section 3.1)
• Does permutation equivariance in the Factored World Model facilitate generalization to

unseen tasks? (Section 3.2)
• What is the contribution of the individual components of our model to its performance?

Which component of the factored state is the most important? (Section 3.3)
• Can we use a model trained in simulation to make prediction by trajectories generated by a

physical robot? (Section 3.4).

3.1 LEARNING ROBOTIC MANIPULATION DYNAMICS

Setup. To train the Factored World Model, we collect datasets from the training tasks in the Cubes
and Shapes environments (Figure 3). Each dataset consists of 200k transitions collect by an expert
with added randomness, see Appendix A.2 for details. The Factored World Model learns for 200
epochs using contrastive learning, and is subsequently evaluated both on the training and testing
tasks. We use a block position prediction metric to evaluate the quality of the learned representation
as well as the latent transition model. We also evaluate the model in a setting where it predicts
the outcomes of several action sequences. The action sequences are similar, but only one of them
reaches the goal state of a given task. By predicting the outcome of each sequence, the model
guesses which one it is. We use this setting as a proxy for planning.

Block position prediction (RMSE): After training, we freeze the model and train an additional de-
coder to predicts the (x, y, z) position of the center of each object from its latent representation. The
decoder, a Multi-Layer Perceptron with two hidden layers, is trained for five epochs. It is trained
using additional supervision (pairs of states and position labels) not available during training of the
Factored World Model. We evaluate both the model’s ability to represent block positions in the cur-
rent state (t = 0) and its ability to make predictions for trajectories (t > 0). We report the root mean
squared error in centimeters. The quantity predicted in this setting is different than the bounding
box coordinates provided to the model as input. The bounding box coordinates index into a flat 2D
images; the model needs to account for perspective to predict the (x,y,z) positions of objects.
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Method Cubes–Test Set Shapes–Test Set
RMSE (cm) Hits@1 (%) RMSE (cm) Hits@1 (%)

RPIN (Qi et al. (2021)) 20.0 0 - -
C-SWM (Kipf et al. (2020)) 11.39±0.02 0±0.0 - -
FWM-AE 2.01±0.46 60.7±15.6 0.67±0.32 65.1±20.2

FWM (our) 1.46±0.23 98.3±0.6 0.82±0.14 78.3±6.3

FWM - 1 GNN Layer 1.78±0.09 83.5±2.1 0.81±0.08 57.4±4.1

FWM - 1 GNN, No Att. 3.60±0.56 43.1±14.3 1.34±0.05 46.2±5.3

FWM - No Attention 1.63±0.11 97.7±0.5 0.89±0.08 76.1±2.4

FWM - No RGB 1.11±0.07 97.3±0.5 0.61±0.06 78.0±4.5

FWM - No Coordinates 11.64±1.08 0±0.0 9.56±0.97 0±0.0

FWM - No Factorization 10.19±1.14 0±0.0 6.19±0.81 0±0.0

Method Cubes–Zero-Shot Shapes–Zero-Shot
RMSE (cm) Hits@1 (%) RMSE (cm) Hits@1 (%)

RPIN (Qi et al. (2021)) 21.7 0 - -
C-SWM (Kipf et al. (2020)) 9.15±0.04 0±0.0 - -
FWM-AE 2.77±1.82 37.9±30.7 0.80±0.33 54.0±26.5

FWM (our) 1.88±0.20 98.4±0.5 1.02±0.16 77.4±6.1

FWM - 1 GNN Layer 2.05±0.17 95.0±0.8 1.02±0.08 56.5±2.9

FWM - 1 GNN, No Att. 5.89±0.71 33.2±18.5 1.60±0.05 51.0±5.2

FWM - No Attention 2.22±0.24 97.7±0.4 1.09±0.08 75.7±3.0

FWM - No RGB 1.39±0.38 98.2±0.4 0.76±0.07 79.8±4.5

FWM - No Coordinates 9.82±4.11 0±0.0 9.81±0.95 0±0.0

FWM - No Factorization 8.39±1.10 0±0.0 6.79±0.82 0±0.0

Table 1: Comparison between Factored World Models, baselines and ablations in Cubes and Shapes
environments. We evaluate the models both on the tasks they were trained on (top section) and on un-
seen tasks without additional fine-tuning (bottom section). While the bottom section reports results
for generalization to unseen tasks, reaching high scores in the top section requires in-distribution
generalization to known structures built in new positions in the workspace. Hence the terms ”Test
Set” and ”Zero-Shot”. We report block position error (RMSE, the lower the better, unbounded) and
action sequence ranking score (Hits@1, the higher the better, bounded 0 - 100) (Section 3.1). Each
model was run with 8 random seeds and we report means and 95% confidence intervals.

Action sequence ranking (Hits@1, MRR): We start with an optimal action sequence that achieves a
goal state of a particular task. Then, we generate ten other action sequences where each action is
perturbed by noise with magnitude ε. The noise is added to each action in the sequence by drawing
ε ∼ Unif[0, ε] and θ ∼ Unif[0, 2π] that are then combined to create a 2D vector in the direction of
θ with a length of ε that is added to the (x,y) coordinate of each action. Each perturbed action
sequence must not achieve the given task; otherwise, we re-sample noise. The model observes the
starting state and predicts the final state of each action sequence. We also encode the final state
of the correct action sequence and compare its distance to the predicted final states of all action
sequences. Hits@1 report the fraction of times the model’s prediction of the final state of the correct
action sequences was closer to the encoded final state than the predictions for all of the incorrect
action sequences. Since the incorrect action sequences are chosen to be a small distance from the
correct one, a model making random predictions is not expected to reach Hits@1 of 1/11. In fact,
the model needs to be fairly competent to get a non-zero score.

Results. We report results for training tasks in Table 1 top section, Figure 5 left and Figure 6 left.
The Factored World Model reaches low block prediction error (1.5 cm for Cubes and 0.8 cm for
Shapes; the size of a cube is 3 cm for comparison) and high action ranking score (98% for Cubes
and 78% for Shapes). We compare to an autoencoder baseline (FWM-AE) and the Region Proposal
Interaction Network (RPIN, Qi et al. (2021)) with minor changes. For FWM-AE, we add a decoder
to our model and train with an autoencoding loss (specifically the Embed to Control loss Watter et al.
(2015)) instead of contrastive learning. To adapt RPIN, a factored video prediction method, we ap-
pend an (x,y,pick/place) action to the input of the Prediction module in their Convolutional
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Interaction Network. We recreate our dataset in the same format as their Shape Stacking experiment
(224×224 images with a bounding box for each object) and we use the same hyper-parameter.

Compared to an autoencoding loss (FWM-AE), contrastive learning (FWM) succeeds both in Cubes
and Shapes, whereas the autoencoding loss fails to fit Cubes. In Shapes, autoencoding outperforms
contrastive loss in terms of block position prediction, but underperforms in action sequence ranking.
We believe the difference can be explained by the focus of the two different losses: autoencoding loss
directly incentivizes the model to reconstruct the state of the environment (which include bounding
box coordinates in the form of a coordinate grid), whereas contrastive loss focuses on learning
compact state representations predictive of the future.

Our adaptation of RPIN to action-conditioned sequence prediction fails to learn a dynamics model.
The encoder of RPIN can capture some position information: it reaches around 6 cm RMSE for the
task of predicting ground-truth object coordinates without forward modeling. However, the forward
model fails, reaching 20 cm RMSE.

We further study the block prediction error in Figure 6. Figure 6 reports block prediction error for
noisy trajectories generated by an expert policy with added randomness, whereas Table 1 reports
errors for optimal trajectories that reach the goal state of each of the training (and generalization)
tasks. In Shapes (Figure 6 right), we see a reversal compared to Table 1, as contrastive loss out-
performs autoencoding by a small margin. This result suggests that the transition model learned by
autoencoding is not as accurate for blocks falling and colliding with each other.

Finally, we plot action ranking Hits@1 as a function of noise level ε for Shapes in Figure 5 left.
Contrastive loss outperforms autoencoding for all noise levels with the area under the curve being
84% for FWM and 64% for FWM-AE.

3.2 ZERO-SHOT GENERALIZING TO NOVEL TASKS

Setup. We further evaluate models trained in Section 3.2 on tasks unseen during training (Figure 3).
We specifically make sure that the training datasets do not contain a single example of a goal state
of the novel tasks. In Cubes, the training task is building a 4-stack and the novel tasks are building a
wall, stairs, a wall on ground and stairs on ground. We found that the training data collection policy
never solves the novel tasks (we use a separate policy to collect evaluation trajectories for testing
tasks). In Shapes, we train on half of the possible structures with a height of three and roof on top,
and test generalization on the other half. In this case, the data collection policy for the eight training
tasks solves one of the testing tasks around once every 50 episodes (due to added randomness) and
we delete these episodes. We report block position error and action ranking Hits@1 described in
Section 3.1. We do not perform any fine-tuning on the novel tasks in this experiment.

Result. In both Cubes and Shapes, FWM transfers to the novel tasks with only a minor decrease
in performance (block position error increases by 0.4 cm in Cubes and 0.2 cm in Shapes and ac-
tion sequence ranking Hits @1 remain almost unchanged). We consider this to be an important
demonstration of the generalization properties of permutation equivariant models. In contrast, only
limited generalization and transfer properties have been shown in prior work (Li et al., 2020; Biza
et al., 2021). FWM-AE suffers a large decrease in action sequence ranking while still outperforming
FWM on block position prediction in Shapes. We plot action ranking error as a function of ε for
Shapes in Figure 5 right; we see a pattern analogous to results for training tasks (Section 3.1). The
areas under curve are 81% for FWM and 48% for FWM-AE.

3.3 FWM ABLATIONS AND ATTENTION VISUALIZATION

We report the results of the following ablations in Table 1: removing action attention (No Attention
and 1 GNN, No Att.), using only one graph neural network layer (1 GNN Layer), only showing
bounding box coordinates as inputs (No RGB), only showing RGB images as inputs (No Coordi-
nates) and using a monolithic latent transition model (No Factorization).

We did not find a significant difference when using FWM with and without action attention. As
shown in Figure 7 first row and third row, FWM learns interpretable attention weights. During a
pick action, the attention weights reflect the object being picked up as well as any object that is
nearby. The attention module has an interesting behavior during place actions: it gives a weight of
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zero to the object being placed, but attends to all objects that are underneath or next to the place
location. For example, in the top-right image in Figure 7, the green blocks is being placed on top
of the red, blue and black blocks. The attention module only attends to these three blocks with the
highest weight assigned to the red blocks, which is directly below the object being placed.

Why is there no quantitative increase in performance even though the attention module functions
properly? We hypothesize that what the attention module does explicitly the four GNN layers in
FWM can learn to do implicitly using the node and edge networks. To test this hypothesis, we
train a model with a single GNN layer (commonly used in prior work) with and without attention.
We assume that the reduced capacity of the model will require it to use the attention module. Here,
action attention leads to large quantitative improvements. E.g. not using attention more than doubles
block prediction error in Cubes. Furthermore, qualitative analysis shows that the attention module
behaves differently with 1 GNN layer compared to 4 GNN layers. With 1 GNN layer, the module
strictly attends to the object being manipulated (Figure 7, second and fourth row), during both pick
and place, while ignoring objects that are nearby.

A second interesting result in our ablation studies is the comparison of FWM with and without
RGB image. The No RGB baseline only has access to the coordinates of the bounding boxes for
each object. We see no statistically significant different between these two settings. Since the
RGB baseline has access to bounding box coordinates from two different cameras, it can use this
information to triangulate where an object is located in the workspace. We believe more complex
object interaction (e.g. packing a bin with household objects, building from LEGO) would put
higher emphasis on images. We leave these experiments for future work.

No Factorization and No Coordinates ablations show that both of these components are vital to the
Factored World Model. Without coordinate grids, the model perceives images of objects without
any information about where they are located in the environment. Without object factorization, the
monolithic latent transition model is unable to generalize beyond the specific arrangements of blocks
seen in the training tasks. Here, we mean in-distribution generalization to building known structures
in novel locations of the workspace. Naturally, the monolithic model also fails in zero-shot transfer.
Finally, we find stacking of four residual GNNs leads to large improvements compared to a single
GNN layer. In Shapes, the action ranking Hits@1 increase by 19% with four GNN layers.

3.4 TRANSFER TO A REAL-WORLD DATASET

Setup. We collect evaluation trajectories on a physical robot (Figure 8) for the five cube stacking
tasks shown in Figure 3, top row. The real-world dataset includes bounding boxes (generated by
segmenting cubes by color) and ground-truth block positions annotated by hand with the help of
a depth camera. We do not train our model on the real-world dataset, since we only collect 20
episodes for each task. Instead, we change the background and object colors in simulation to match
the real-world images. In all cases, we train on the task of stacking four blocks on top of each other
and transfer to other four tasks in the Cubes environment. That is, we test the ability of our model to
transfer from building a tower of four blocks in simulation to building stairs, walls, etc. in the real
world without any additional fine-tuning.

Result. We compare results from simulation and the real-world in Table 2. On average, the block
position prediction error increases by 0.4 cm as we transfer from simulation to the real-world dataset.
Our model appears to struggle with tasks that involve stacking blocks on top of each other in the
real world compared to simulation. Conversely, there no decrease in performance for Wall Ground
(WG) and Stairs Ground (WG), where all blocks are placed on the ground.

4 RELATED WORK

World Models with Object Factorization. Action-conditioned object-factorized world models
have been explored in toy object environments and Atari games (Kipf et al., 2020; Huang et al.,
2020) as well as in robotic manipulation (Veerapaneni et al., 2019) and controlling billiard balls
(Kossen et al., 2020). We build upon C-SWM (Kipf et al., 2020), which has been further extended by
(Huang et al., 2020) to handle identically looking objects (one of the assumptions of C-SWM is that
each object is distinct). Veerapaneni et al. (2019) used a factored transition model to learn and plan
for stacking up to three cubes. Different from these works we consider a simplified setup wherein
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Training Evaluation RMSE (cm)
4-Stack Wall Stairs WG SG Avg

Sim 4-Stack Sim All 1.46±0.23 1.76±0.18 2.14±0.25 2.14±0.25 1.90±0.21 1.88±0.20

Sim2Real 4-Stack Real All 2.33±0.4 2.97±1.6 2.40±1.5 1.72±0.6 1.81±1.5 2.25±0.8

Table 2: Block position predictions results for a real-world evaluation dataset. The first row is a
breakdown of results previously reported in Table 1 (FWM). The second row reports results for a
model trained in simulation and evaluated on trajectories captured on a physical robot. 4-Stack,
Wall, Stairs, Wall Ground (WG) and Stairs Ground (SG) correspond to the tasks shown in Figure 3.

our model does not perform symmetry breaking or object discovery from raw visual features, since
we assume our environment to be already factored.

Object-factored world models are also commonly used in the context of physics prediction in videos.
Janner et al. (2019); Veerapaneni et al. (2019) demonstrated generalization in a Tetris-like environ-
ment, where a world model predicts the outcome of dropping blocks from a height. Ye et al. (2019)
studied learning dynamics of pushing objects with a robotic arm in the real world. RPIN (Qi et al.,
2021) demonstrated state-of-the-art results in the tasks of 2D physics modeling (PHYRE bench-
mark, Bakhtin et al. (2019)), modeling billiard balls and modeling videos of falling stacks of blocks.
As we showed in our comparison, models like RPIN cannot be naively applied to our pick-and-place
tasks, both due to the problem of including action information at the right point in a transition model
and due to the large changes between subsequent states in our environment (object disappearing
from the environment vs. a video of an object being slowly picked up by a robotic hand).

Object factorization is an instance of a general factored Markov Decision Process, which has been
studied in the context of policy search (Guestrin et al., 2003), factor discovery (Jonsson & Barto,
2005) and MDP abstraction (Ravindran, 2004; Wolfe & Barto, 2006). In fact, factored MDP works
often include examples where individual factors are objects (e.g. Tower of Hanoi in Ravindran
(2004)). Early works specifically on object factorization include Wolfe (2006); Diuk et al. (2008).

Model-based Learning for Robotics. One prominent line of work focuses on optimal control
or policy search in low-dimensional state space. If such space is directly available, PILCO fits a
Gaussian Process to real-world robot dynamics and performs policy search through gradient descent
in the model (Deisenroth & Rasmussen, 2011). Successful cart-pole swing and robotic unicycle
balance is achieved within a few seconds of online learning. In the case of image states, a low-
dimensional latent space can be learned by variational autoencoders (see Lesort et al. (2018) for a
survey). Watter et al. (2015) learn a latent state space together with a locally linear transition model,
enabling efficient inference in optimal control methods. Watter et al. (2015) demonstrate successful
control of pendulum, cart-pole and a simplified robotic arm operating in 2D. Follow-up works add
additional constraints to the framework in order to improve dynamics model accuracy and robustness
(Karl et al., 2017; Banijamali et al., 2018; Levine et al., 2020).

Other works have used models of the world to accelerate learning for robotic manipulation tasks. In
Nair et al. (2018), a VAE, trained on image observations, is used for sampling goals during training
and providing a reward signal via distance in the latent space. This method achieved similar sample
complexity to a state-based method on a robotic pick-and-place task. In Nasiriany et al. (2019), a
challenging robotic pushing task was performed by searching for sequences of subgoals in the latent
space of a VAE that could be followed by a learned policy.

5 CONCLUSION

The results in this paper demonstrate that factorized world models can successfully be adapted to
manipulation tasks with continuous state and action spaces by introducing an action-attention model
to isolate the effects of actions on individual objects. The resulting models are able to learn transition
dynamics that generalize to previously unseen sequences of actions and configurations of objects at
test time, and are able to predict outcomes at moderate time horizons of up to 10 actions. This
represents a significant step in applying these models in practical robotics tasks. An immediate
future line of work is to integrate these world models with planning algorithms, and evaluate the
ability of the resulting planner to generalize to tasks that were unseen during training.

9



Under review as a conference paper at ICLR 2022

REPRODUCIBILITY STATEMENT

We will open-source our code with the camera-ready version of our paper. We will include our
simulated PyBullet environments, dataset generation scripts, Pytorch model definitions and training
scripts.
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ternational Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018,
Playa Blanca, Lanzarote, Canary Islands, Spain, volume 84 of Proceedings of Machine Learning
Research, pp. 1751–1759. PMLR, 2018.

Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and Koray
Kavukcuoglu. Interaction networks for learning about objects, relations and physics. In Daniel D.
Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 4502–4510, 2016.

Ondrej Biza, Dian Wang, Robert Platt Jr., Jan-Willem van de Meent, and Lawson L. S. Wong. Action
priors for large action spaces in robotics. In Frank Dignum, Alessio Lomuscio and/ Ulle Endriss,
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Figure 4: Schema of our pipeline for creating cropped object images. We concatenate an RGB image
with horizontal and vertical coordinate grids. Using a bounding box with added padding, we crop
an 18×18 image from both the RGB component and the coordinate grid components. By observing
the coordinate grids, our agent known where in the image the object was cropped. Note that the
coordinate grids are derived from object bounding boxes, not the actual (x,y,z) object positions
in the environment. Hence, we do not need to know the ground-truth object positions in order to
generate our factored states. We add two additional coordinate grids by mirroring the vertical and
horizontal grids (similar to positional encodings in Locatello et al. (2020)).

A EXPERIMENT DETAILS

A.1 ENVIRONMENT DETAILS

Our PyBullet simulation consists of a UR5 robotic arm with a Robotiq gripper operating over a
30×30 cm workspace. In comparison, the size of a cube is 3×3 cm. The environment is captured
from two sides by two cameras. Each camera produces a 90×90 image. PyBullet also provides
a segmentation mask for each object, which we use to create bounding boxes. We first draw the
smallest rectangular box that captures the whole segmentation mask and add 4 px symmetric padding
to it. If the bounding box is smaller than 18×18 px, then they are padded up to the minimum size.
We crop the RGB image and four coordinate grids inside of the bounding box and resize them to an
18×18 image. The aspect ration of the RGB image gets corrupted in this step, but the model can still
capture the size of each object based on the coordinate grids. We have a vertical and a horizontal
coordinate grid that traverses the interval of [-1, 1] either left-to-right or up-to-down. We also create
two additional coordinate grids that traverse the interval right-to-left and down-to-up.

Block colors. We use a single block color (red) for all experiments in simulation. In Figure 7, blocks
are colored only for the purpose of matching blocks to attention weights. All blocks are red in the
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Figure 5: Action sequence ranking Hits@1 conditioned on action noise ε. The noise level controls
the degree to which negative action sequences differ from the position one (Section 3.1). Left:
results for training tasks; right: results for zero-shot generalization. We compare Factored World
Model against baselines from Table 1. Means and 95% confidence intervals over 5 random seeds
are reported.

actual states passed into the model. In the real-world experiments, we assign each block a different
color so that we can get bounding boxes using color segmentation (Table 2). We use different colors
both in the Sim2Real dataset (generated in simulation) and the Real dataset (generated on a physical
robot),

A.2 EXPERT POLICIES

Experts for training datasets. For Cubes, we have the following policy: with 70% probability
either pick a random cube that is not covered by other objects or place a cube on top of any other
cube. Otherwise, execute a pick or place action in a random coordinate. Additionally, 1 cm random
noise is added to the (x,y) position of each action. The agent does not have to decide between
pick and place actions: hand empty→ pick, hand full→ place.

For Shapes, we use trained SDQfD agents provided by Biza et al. (2021). With 80% probability
we execute the actions predicted by the expert. Otherwise, during pick, we pick a random object
with 50% and we execute a pick at a random location otherwise; during place, we place in a random
position.

We collect 200k training transitions for Cubes and Shapes.

Experts for generalization datasets. We simply collect optimal trajectories for evaluation and filter
out any trajectory that does not reach the goal of each task.

A.3 MODEL DETAILS

Per-object Encoder CNN. Conv2D(5×5 kernel size, 32 kernels, stride 2, padding 1)→ BatchNorm
(Ioffe & Szegedy, 2015)→ ReLU→ Conv2D(5×5 kernel size, 64 kernels, stride 2, padding 1)→
BatchNorm→ ReLU→ Conv2D(5×5 kernel size, 64 kernels, stride 2, padding 1).

GNN. Both the node and the edge networks are MLPs with one hidden layer of size 512. Each layer,
except the output layer, is followed by LayerNorm (Ba et al., 2016) and ReLU activation.

Action Attention. The key, value and query MLPs have a single hidden layer of size 512, the output
size is also 512. LayerNorm and ReLU is used in the same way as in the GNN.

Decoder for FWM-AE Baseline. ConvTranspose2D(5×5 kernel size, 64 kernels, stride 2) →
BatchNorm → ReLU → Conv2D(3×3 kernel size, 32 kernels, stride 2) → BatchNorm → ReLU
→ Conv2D(3×3 kernel size, 14 kernels, stride 1).

Training. We use the Adam (Kingma & Ba, 2015) optimizer with default parameters and a learning
rate of 5e− 5. We train for 200 epochs (dataset size is 200k transitions) with a batch size of 256.
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Figure 6: Block position prediction error as a function of the number of predicted time steps (Left:
Cubes, right: Shapes). The validation set used in this figure contains noisy trajectories for training
tasks, whereas the errors reported in Table 1 are for optimal trajectories that reach the goal of each
task. We compare Factored World Model against baselines from Table 1. Means and 95% confidence
intervals over 5 random seeds are reported.

B ADDITIONAL EXPERIMENTS

B.1 C-SWM WITH HEURISTIC ACTION FACTORIZATION

We train the C-SWM model (Kipf et al., 2020) in the Cubes environment. Unlike FWM, C-SWM
does not receive a factored state space; instead, it can choose what information is captured in each
object slot. We make two changes to our environment to help C-SWM factor it: (1) we give each
object a distinct color (Figure 9) so that the model can potentially learn color-specific filters and (2)
we create a heuristically factored action space. The factored action space only provides action ati
to the ith node in the C-SWM graph neural network if the ith object changed between state st and
st+1. Otherwise, the ith node receives a null action.

The model receives four images concatenated channel-wise: two images of the workspace and two
images of the robot hand (which indicate if the robot is holding an object). We use a custom encoder
with the following architecture: Conv2D(5×5 kernel size, 64 kernels, stride 2) → BatchNorm →
LeakyReLU → Conv2D(5×5 kernel size, 64 kernels, stride 2) → BatchNorm → LeakyReLU →
Conv2D(5×5 kernel size, 6 kernels, stride 1)→ BatchNorm→ ReLU. The output of the encoder is
a 16×16 feature map for each object.

Across a range of learning rate, C-SWM does not learn to factor the state space of Cube stacking. By
our metrics, C-SWM is on-par with an unfactored model (Table 1). Figure 9 visualizes the learned
feature maps for each object slot: the maps follow an ABAB pattern, where the model appears
to only distinguish between the robot holding or not holding an object. This pattern holds across
episodes.
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(a) Stacking four blocks. First row: FWM with four GNN layers; second row: FWM with one GNN layer.

(b) Building a wall. First row: FWM with four GNN layers; second row: FWM with one GNN layer.

Figure 7: Visualizing action attention weights for a sequence of building a stack of four blocks and a
wall. Each bar in the histogram is associated with a particular object by color. (a) the agent executes
a pick action at t = 1, t = 3, t = 5 and a place action at t = 2, t = 4, t = 6. (b) pick action at
t = 1, t = 3, t = 5, t = 7, t = 9 and place action at t = 2, t = 4, t = 6, t = 8, t = 10.
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Figure 8: Left: our real-world experimental setup includes a UR5 arm with a Robotiq gripper, two
RGB cameras facing the workspace (Camera 1 and 2) and one RGB camera to take an image of an
object the robot is holding (Camera 3). The gripper moves inside of the box in the bottom-left corner
after every successful pick action. Top-right: an in-hand image taken by Camera 3. Bottom-right:
the four images represent a single factored state of the environment with a tower of four blocks. Each
image is centered on one block starting from the top block going to the bottom. State factorization
is explained in Figure 4.
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Figure 9: Visualization of feature maps learned by C-SWM with heuristic action factorization. The
first two columns show the two views of the environment provided to the model. The next six
columns show the 18×18 feature maps for each object slot given by the C-SWM object extractor.
The colormap is scaled between 0 and 0.4.
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