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Abstract

This work investigates the hallucination problem in object001
navigation, which leads agents to make incorrect navigation002
decisions. We identify two kinds of hallucinations: visual003
grounding and navigation policy. Visual grounding halluci-004
nations are grounding errors from a grounding model that005
can mislead the agent policy. Policy hallucinations cause the006
agent to make mistakes even with accurate visual grounding.007
We analyze how these hallucinations contribute to navigation008
errors and affect navigation performance, and find that hallu-009
cinations about goal objects are the main bottleneck. Finally,010
we explore the usage of factors like grounding confidence011
to identify potential directions to mitigate hallucinations in012
object navigation.013

1. Introduction014

An embodied agent that is able to navigate to a target object015
in novel environments has been a long-term goal of embod-016
ied AI research [1]. To achieve this, a lot of work has been017
done to build a better navigation policy [4, 10, 13, 15] and018
improve the agent’s visual grounding [9, 11, 13]. However,019
the performance of the state-of-the-art navigation agent is020
still far from perfect [4]. In the navigation process, the agent021
could make incorrect navigation decisions that lead to fail-022
ures. For example, stopping at an incorrect object or not023
navigating to a goal object. While these wrong decisions024
affect navigation performance significantly, no study has025
been conducted to deeply analyze why these decisions were026
made and how we can mitigate them.027

Incorrect navigation decision-making could be interpreted028
as the model having an incorrect belief in the existence of the029
target object. In this work, we analyze the source of incorrect030
decisions from the object hallucination perspective and031
diagnose the hallucination problems in object navigation.032
We first define two main hallucination sources as in Fig. 1.033
The first one is the visual grounding. In navigation, the034
agent first needs to perform visual grounding and have an035
understanding of the environment. The hallucination in036
the grounding input may cause the agent to make incorrect037

Grounding 
Model 

Navigation 
Policy

Turn left

Is it really a plant? 
Maybe not.

Goal: Find Plant Plant detected by 
grounding model.

Figure 1. Two main sources of hallucination in object navigation.
In the example, although the grounding model predicts correctly,
the navigation policy hallucinates and leads to an navigation error.

decisions. The second source is the navigation policy, which 038
processes the grounding input and takes sequential actions. 039
The hallucination of navigation policy appears when the 040
agent makes incorrect decisions when the visual grounding 041
is correct, i.e., the policy does not trust the correct object 042
grounding. 043

First, for the grounding input, we show the influence of 044
grounding hallucination by comparing the performance be- 045
tween evaluating with ground truth grounding and predicted 046
grounding. Then, we further investigate the degree of in- 047
fluence from different kinds of objects and how navigation 048
policies leverage the grounding results by providing ground 049
truth for goal or non-goal objects. We then define two major 050
navigation errors and two navigation policy hallucinations 051
and show the correlation between them, from which we con- 052
clude that the navigation policy learns to ignore the positive 053
grounding input during imitation learning. Finally, we ana- 054
lyze what grounding factors may help the grounding policies 055
distinguish grounding input hallucinations, such as the area 056
and the confidence of the grounding results, to provide po- 057
tential directions to mitigate the hallucination problems in 058
object navigation. 059

In summary, our findings include: (1) The hallucination 060
about goal objects significantly influences navigation perfor- 061
mance. (2) The navigation policies can leverage the imper- 062
fect grounding of non-goal objects to explore the environ- 063
ment. Only seriously incorrect non-goal object grounding 064
will affect the navigation performance. (3) The navigation 065
policy learns to ignore the positive grounding input during 066
training. (4) In terms of hallucinations on goal objects, we 067
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could potentially leverage more detection information, such068
as grounding confidence, to mitigate them.069

2. Related Work070

2.1. Object Navigation071

There are two main lines of work in object navigation re-072
search. The first one is to build a better navigation policy073
to explore the environment and get closer to the goal ob-074
ject [10, 13, 15]. Among these methods, the learning-based075
methods train an end-to-end navigation policy with imita-076
tion learning or reinforcement learning [4, 10, 13] achieves077
state-of-the-art results. The other line of research aims to im-078
prove the visual perception of the navigation agent to better079
understand the environment [9–13]. EmbCLIP [9] leverages080
frozen clip embedding as a more robust visual representa-081
tion. [11, 12] tried to improve the visual representation of082
the environment using self-supervised pre-training. Beyond083
RGB image visual embedding, [10, 13, 15] also leverages084
more high-level visual information – object detection and se-085
mantic segmentation in navigation. For different navigation086
policies, previous work has shown that imperfect grounding087
is a major bottleneck for navigation agent [6, 13, 15]. In this088
work, we try to understand how exactly imperfect grounding089
affects navigation and how to mitigate this problem.090

2.2. Visual Navigation Model Analysis091

Prior works in object navigation have used some evaluation092
methods to understand the navigation models. First, various093
metrics are proposed to evaluate a navigation episode, such094
as success rate, distance to goal, SPL, SoftSPL, etc. Then,095
[3, 13] tried to ablate the semantic segmentation input during096
evaluation to see how much imperfect segmentation affects097
the navigation performance. Further, modular navigation098
methods [5, 6, 15] define different navigation errors to un-099
derstand where the bottleneck is. However, these evaluations100
are still relatively superficial, which mainly shows the mod-101
els’ performance but lacks analysis on where and why the102
performance gap exists. In the vision-and-language navi-103
gation (VLN) task, some works performed in-depth model104
behavior analysis. Zhang et al. [14] tried to diagnose the105
reason why it is hard for VLN agents to generalize to novel106
environments. Zhu et al. [16] tried to understand the be-107
havior of VLN agents by designing ablation experiments108
on the input during evaluation time. We perform detailed109
analysis for the influence of imperfect grounding in object110
navigation tasks, including both training and evaluation time,111
and provide solutions to mitigate the grounding problems.112

3. Object Navigation and Hallucination Prob- 113

lems 114

3.1. Object Navigation 115

In a typical object navigation task, an agent starts in an 116
unknown environment E with the goal of finding an object 117
from a specific category G, like a chair or cabinet. The agent 118
doesn’t know the exact location beforehand. At each step 119
t, the agent receives sensory data Ot. This data typically 120
includes an egocentric RGB-D image, and might also include 121
its position and orientation Pt in some environments. Based 122
on this information, the agent chooses an action a from a 123
set of available actions A, which includes a special ”stop” 124
action to indicate it has found the object. The navigation 125
is successful if the agent stops within a certain distance (1 126
meter) of the target object and can see it without moving. 127

3.2. Object Navigation Models 128

In our study, we consider end-to-end object navigation mod- 129
els. A typical end-to-end object navigation model first takes 130
the inputs and encodes them into embeddings. For the visual 131
input RGB-D images, there are two kinds of encoders. The 132
first one is a visual encoder like CNN [9], which encodes the 133
RGB-D image into an image feature. The second one is a 134
semantic encoder, which first performs semantic segmenta- 135
tion and then encodes the segmentation results into a visual 136
embedding [10]. Then, the input embeddings are fed into 137
a decision network based on a recurrent neural network or 138
a transformer. In this work, we select a transformer-based 139
architecture [4] that archives state-of-the-art results and fol- 140
lows their training and evaluation setting in experiments. 141
The pipeline of a navigation model is shown in Fig. 1 142

To better analyze and quantify the influence of grounding, 143
we use semantic-level visual encoders for object naviga- 144
tion models since their embedding is more explainable. For 145
instance, we could acquire the ground truth semantic embed- 146
ding from the simulator. Specifically, we experiment with 147
two kinds of semantic-level encoders. First, following Ram- 148
rakhya et al. [10], we use a Rednet [8] semantic segmentation 149
model trained on in-domain data to predict a semantic seg- 150
mentation map Msem from the RGB-D image. Then, we use 151
a ResNet [7] to encode the semantic segmentation map into 152
a d dimension embedding. Secondly, following Zhang et al. 153
[14], we calculate the area of each object class from Msem 154
and form a semantic embedding with a dimension of 21 – 155
the number of goal object classes in the MP3D dataset. The 156
value in each dimension is the proportion of pixels that an 157
object occupies in the image. We note these two embedding 158
methods as Rednetsemseg and Rednetsememb respectively 159
in Table 1. 160
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Grounding Pred GT All GT Goal GT Non-Goal Shuf Non-Goal
SR SPL SR SPL SR SPL SR SPL SR SPL

Rednetsemseg 45.3 15.2 58.0 18.8 57.6 19.1 43.0 14.7 38.0 12.4
Rednetsememb 43.1 13.7 54.9 17.5 56.5 17.6 41.2 13.6 36.6 10.5

Table 1. Comparison of object navigation performance with different ground truth and predicted grounding information provided on different
semantic embeddings.

Grounding PoHall 1 Error 1 PoHall 2 Error 2

Rednetsemseg 14.8 38.4 0.03 0.36
Rednetsememb 15.0 36.2 0.03 0.33

Table 2. Quantitative evaluation of two kinds of navigation errors
and policy hallucinations in object navigation. The number indi-
cates the average number of hallucinations or errors per episode.

3.3. Hallucinations in Object Navigation161

We define two sources of navigation hallucinations to better162
diagnose the hallucination errors in navigation. The first163
one is the grounding input hallucinations. In the context of164
semantic segmentation or object detection, this hallucination165
can be reflected by grounding metrics like Intersection over166
Union (IoU). The second one is the hallucinations from the167
navigation policy. It happens when the grounding input168
is correct while the navigation policy still makes incorrect169
decisions. For example, even when the visual grounding170
part successfully captures the goal object, the agent could171
still make the wrong decision not to navigate to the detected172
object.173

4. Diagnose Hallucinations in Navigation174

4.1. Dataset and Metrics175

We use MP3D [2] object navigation dataset for training and176
evaluation in our experiments. We use imitation learning for177
model training with the imitation learning dataset collected178
by Ramrakhya et al. [10], which contains 60k 1 trajectories in179
56 training environments with 21 goal object categories. We180
report the evaluation results on the validation split, contain-181
ing 2195 episodes in 11 unseen validation environments. For182
evaluation metrics, we use Success Rate (SR) and Success183
rate weighted by Path Length (SPL) [1].184

4.2. Grounding Hallucination in Object Navigation185

How is navigation success affected by grounding halluci-186
nation? First, to show the influence of grounding halluci-187
nation, in Table. 1, we compare the models trained with Red-188

1We exclude the training episodes where the goal object does not belong
to the 21 goal objects.

net predicted semantic segmentation and test with predicted 189
(Pred) or ground truth (GT All) semantic segmentation. We 190
find that, for both semantic encoding methods, testing with 191
ground truth semantic segmentation improves the naviga- 192
tion performance significantly. This shows that grounding 193
hallucination strongly affects navigation performance. 194

Is the goal object grounding the only grounding feature 195
that matters? To better understand how grounding hal- 196
lucinations from Rednet affect navigation performance, we 197
break down the influence of grounding hallucinations in dif- 198
ferent object categories. During the evaluation time, we 199
provide ground truth segmentation of goal objects (GT Goal) 200
and non-goal objects (GT Non-Goal) to the navigation pol- 201
icy. Surprisingly, we find that providing the ground truth 202
grounding of the goal object achieves a similar performance 203
to providing all the ground truth grounding. This shows that 204
better utilizing the grounding information of goal object is 205
the main bottleneck for the navigation agent. 206

We can also observe that providing ground truth non-goal 207
objects does not improve the navigation performance. This 208
raises the question of whether the grounding information of 209
non-goal objects is not essential for navigation. To answer 210
this, we randomly shuffle the 20 non-goal object categories in 211
the semantic embedding during evaluation time. In this case, 212
the grounding information of other objects will be totally 213
incorrect, e.g. a table will become a sofa. For consistency, 214
we keep the shuffle order the same for each step within one 215
episode. From Table. 1, we observe that shuffling non-goal 216
objects (Shuf Non-Goal) decreases navigation performance 217
by a large margin – 6.9% in success rate. This shows that 218
the navigation policy suffers from serious hallucinations of 219
non-goal object grounding. However, imperfect grounding 220
information for non-goal objects from Rednet can already 221
benefit navigation decision-making as well as ground truth 222
information. Therefore, it is not a significant grounding 223
bottleneck for navigation. 224

4.3. Policy Hallucination in Object Navigation 225

In the last section, we showed that the grounding halluci- 226
nation of goal objects is the main bottleneck of navigation 227
performance. In this section, we will further investigate the 228
policy hallucination in terms of goal objects. 229
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Grounding Area Conf

Rednetsemseg 0.62 0.67
Rednetsememb 0.61 0.67

Table 3. Results of using the grounding area or confidence to
judge the navigation success using a naive Bayesian classifier. The
number reported is classification accuracy.

We first define two major navigation errors in object nav-230
igation: ignoring the goal object (Error 1), which means231
the goal object appears, but the agent did not navigate to it,232
and stopping incorrectly (Error 2), which means that the233
agent decides to stop in a place not within 1 meter of a goal234
object. To remove the influence of grounding hallucination,235
we then define two kinds of policy hallucinations about the236
goal object. The first one is that when the goal object is237
correctly detected by the grounding model, the policy does238
not choose to navigate to it and stop (PoHall 1). The second239
one is that the policy decides to stop when the goal object is240
not detected by the grounding model (PoHall 2). We quan-241
titatively calculate these two policy hallucinations in the242
following ways. For the first one, we calculate the frequency243
when the goal object appears and is correctly detected by244
the grounding model (IoU is larger than 0.1), and the agent245
didn’t successfully stop within 40 steps. For the second one,246
we calculate the frequency when the agent decides to stop in247
an incorrect location when no goal object is detected within248
the last 5 steps of navigation. To compare, we also count the249
number of two navigation errors during navigation.250

The results are shown in Table. 2, we find that PoHall 1251
happens frequently and contributes more to navigation Error252
1. This means that the policy will usually ignore the correct253
grounding input and not navigate to it. Meanwhile, since254
PoHall 2 appears only less than 10% of times when Error255
2 occurs, when the policy decides to stop, typically, a goal256
object is detected, whether correct or not, within the last257
5 steps. This could be because, during imitation learning,258
the human labeler sometimes did not see the goal objects,259
or the Rednet model made hallucinations of false positive260
predictions, resulting in the demonstration not navigating261
to a detected goal object. Therefore, the navigation policy262
learns to ignore some positive grounding results. When the263
human demonstration stops at the goal object, the grounding264
model can usually make correct predictions. Therefore, the265
policy is less likely to stop when there is no goal detected.266
On the other hand, Error 2 is mainly due to grounding input267
hallucinations. Since most of the time, when the agent stops268
incorrectly, a goal object is detected, leading to the wrong269
decision.270

4.4. Mitigating Hallucinations in Object Navigation 271

After learning more about hallucinations in navigation, we 272
now investigate how we can potentially mitigate them. We 273
look at the second kind of navigation error (Error 2), which 274
is the most serious error since it directly causes navigation 275
failure. We already know that Error 2 is mainly caused by 276
grounding input hallucinations. Although grounding hal- 277
lucinations are inevitable, enabling navigation policies to 278
distinguish these grounding hallucinations and make correct 279
navigation decisions can reduce these navigation errors. To 280
investigate how we can improve the policy network on this, 281
we calculate two key grounding features, grounding confi- 282
dence and grounding areas, when Error 2 occurs, and the 283
opposite of it occurs – the agent stops successfully. To show 284
whether these features are helpful, we use a naive Bayesian 285
classifier to take their values as input and predict whether 286
the episode is successful or not: 287

P (Sk|f) =
P (f |Sk)P (Sk)

P (f)
(1) 288

Where Sk indicates episode success or not, and the prior 289
P (Sk) is set to a uniform distribution. f is the average 290
grounding confidence or area in the last 5 steps. We collect 291
the data from all the validation trajectories and randomly 292
split them into training and evaluation sets for the naive 293
Bayesian classifier. 294

The results are shown in Table. 3, we find that the classifi- 295
cation accuracy using grounding confidences is significantly 296
higher than using grounding areas as features. This could be 297
because the navigation area is known by the agent and is one 298
of the reasons for the decision to stop by the agent policy. 299
We also noticed that the classification accuracy using either 300
feature is significantly higher than that of a random guess 301
– 50%. Therefore, grounding features like confidence that 302
are not currently utilized by the navigation agent could be 303
helpful in mitigating grounding hallucinations. 304

5. Conclusion and Discussion 305

In this work, we study the hallucination problem in object 306
navigation, where the agent has incorrect beliefs about ob- 307
jects. We define the two sources of navigation hallucination 308
and quantitatively analyze their contributions to navigation 309
errors and their influence on navigation performance. For the 310
most critical navigation error, we analyzed the main cause 311
and proposed potential solutions. We hope this work can 312
help the research community understand the hallucination 313
problems in object navigation and provide insights on miti- 314
gating them. The limitation is that our analysis focuses on 315
the hallucination problem for end-to-end object navigation 316
models. Therefore, the conclusions may not be general- 317
ized to those modular-based navigation models that leverage 318
explicit semantic mapping. 319
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