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Abstract

In many applications, especially due to lack of su-
pervision or privacy concerns, the training data is
grouped into bags of instances (feature-vectors)
and for each bag we have only an aggregate la-
bel derived from the instance-labels in the bag. In
learning from label proportions (LLP) the aggre-
gate label is the average of the instance-labels in
a bag, and a significant body of work has focused
on training models in the LLP setting to predict
instance-labels. In practice however, the training
data may have fully supervised albeit covariate-
shifted source data, along with the usual target
data with bag-labels, and we wish to train a good
instance-level predictor on the target domain. We
call this the covariate-shifted hybrid LLP prob-
lem. Fully supervised covariate shifted data often
has useful training signals and the goal is to lever-
age them for better predictive performance in the
hybrid LLP setting. To achieve this, we develop
methods for hybrid LLP which naturally incorpo-
rate the target bag-labels along with the source
instance-labels, in the domain adaptation frame-
work. Apart from proving theoretical guarantees
bounding the target generalization error, we also
conduct experiments on several publicly available
datasets showing that our methods outperform LLP
and domain adaptation baselines as well techniques
from previous related work.

1 INTRODUCTION

Learning from label proportions (LLP) is a direct general-
ization of supervised learning where the training instances
(i.e., feature-vectors) are partitioned into bags and for each

*Work done while at Google DeepMind.
†Equal contribution.

bag only the average label of its instances is available as
the bag-label. Full supervision is equivalent to the special
case of unit-sized bags. In LLP, using bags of instances and
their bag-labels, the goal is to train a good predictor of the
instance-labels. Over the last two decades, LLP has been
used in scenarios with lack of fully supervised data due to le-
gal requirements [Rueping, 2010], privacy constraints [Woj-
tusiak et al., 2011] or coarse supervision [Chen et al., 2004].
Applications of LLP include image classification [Bortsova
et al., 2018, Ørting et al., 2016], spam detection [Quadrianto
et al., 2009a], IVF prediction [Hernández-González et al.,
2018], and high energy physics [Dery et al., 2017]. More
recently, restrictions on cross-site tracking of users has led
to coarsening of previously available fine-grained signals
which have been used to train large-scale models predicting
user behavior for e.g. clicks or product preferences. Popular
mechanisms (see Apple SKAN [ska] and Chrome Privacy
sandbox [san]) aggregate relevant labels for bags of users
resulting in LLP training data. Due to revenue criticality of
user modeling in advertising, the study of LLP specifically
for such applications has gained importance. A popular base-
line method to train models using training bags and their
bag-labels is to minimize a bag-level loss which for any bag
is some suitable loss function between the the average pre-
diction and the bag-label (see Ardehaly and Culotta [2017]).
Other methods using different bag-level losses have also
been proposed (e.g. Liu et al. [2021], Baručić and Kybic
[2022]) for training models in the LLP setting.

One aspect of data in real-world applications is its hetero-
geneity, which introduces new aspects to the vanilla LLP
modeling formulation. In particular, apart from bag-level
data from the target distribution, the learner may have access
to instance labels from a covariate-shifted source distribu-
tion. For example, in user behavior modeling for online
advertising, while bag-level aggregate labels could be avail-
able for a target set of (privacy sensitive) users as mentioned
above, other users may choose to share browsing and pur-
chase history, which would yield covariate-shifted source
data with instance-level labels. This is also mentioned in
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Section 2.1 of O’Brien et al. [2022] which states: “.. some
platforms may continue to allow conversion tracking, and
some users may also choose to allow conversion tracking ,
the training set is likely to contain some examples with indi-
vidual labels and some examples with only group labels”.
This can also occur when the source originates from geogra-
phies which impose less stringent privacy constraints on data
corresponding to online activity, medical records or finan-
cial transactions, thereby not requiring the aggregation of
labels. Recent work has also studied age-dependent privacy,
in which releasing outdated data may lead to less privacy
leakage if a user only focuses on protecting its real-time
status (from Section 1 of Zhang et al. [2022b], see also Lin
et al. [2024]). Such outdated data could correspond to the
source distribution for which instance-labels are available.

Here, we think of covariate-shift as a difference in p(X)
i.e. the distribution of feature-vectors, between the source
DS and target DT distributions, with the conditional label
distribution p(Y | X) being the same on DS and DT . We
call this covariate-shifted hybrid LLP in which the goal is to
leverage the full supervision on the source as well as the bag-
level supervision on the target to train better instance-label
predictors on the target distribution.

Previous works [Ardehaly and Culotta, 2016, Li and Culotta,
2023a] studied the case where the source training data was
aggregated into bags whose bag-labels are available, while
the training data from the target distribution is completely
unsupervised. The work of Ardehaly and Culotta [2016]
gave a self-training based approach where the model trained
on the source data is used to predict bag-labels on the un-
supervised target train-set from which a subset of the most
confidently labeled bags are used (along with the source
data) to retrain the predictor. The more recent work of Li
and Culotta [2023a] proposed solutions directly applying do-
main adversarial neural-network (DANN) methods in which
apart from minimizing the bag-level loss on the source data,
an unsupervised domain prediction loss is maximized to
ensure that the predictor is domain-independent.

The works of Ardehaly and Culotta [2016], and Li and Cu-
lotta [2023a] as well as standard domain adaptation methods
(e.g. Long et al. [2015]) can be applied to our setting by
simply ignoring the bag-labels of the target train-set, and
treating the labeled instances in the source data as bags of
size 1. Note however that these approaches discard the infor-
mative signal from the target bag-labels and are thus likely
to degrade the predictive performance.

The main contributions of this paper are a suite of techniques
which use the bag-labels from the target training set, not only
to minimize the bag-loss i.e., the predictive loss on bags, but
also to do better domain adaptation. We focus on regression
as the underlying task and propose loss functions which,
at a high level, have three components: (i) the instance-
level loss on the source data, (ii) a bag-level loss on the

target training bags, and (iii) a domain adaptation loss which
leverages the instance-labels from source and bag-labels
from target. Our main methodological novelty is the third
term which leverages bag-labels (unlike previous works)
from the target domain for domain adaptation, along with
instance-labels from the source domain. Specifically, our
BL-WFA method using the BagCSI loss (eqn. (3)) is the
first to incorporate the instance-labels from the source along
with the target bag-labels into the domain adaptation loss.
The design of our BagCSI loss is theoretically justified: we
prove generalization error bounds (Section 3.1), and we
also generalize this to PL-WFA which can use target-level
pseudo-labels instead (see Section 6 for details of BL-WFA
and PL-WFA). Complementing these analytical insights, we
provide in Section 7 extensive experimental evaluations of
our methods showing performance gains, on real as well as
synthetic datasets.

2 PREVIOUS RELATED WORK

Learning from Label Proportions (LLP). Early work on LLP
by de Freitas and Kück [2005], Hernández-González et al.
[2013] applied trained probabilistic models using Monte-
Carlo methods, while Musicant et al. [2007], Rueping
[2010] provided adaptations of standard supervised learning
approaches such as SVM, k-NN and neural nets, and Chen
et al. [2009], Stolpe and Morik [2011] developed clustering
based methods for LLP. More specialized techniques were
proposed by Quadrianto et al. [2009b] and later extended
by Patrini et al. [2014] to estimate parameters from label
proportions for the exponential generative model assuming
well-behaved label distributions of bags. An optimization
based approach of Yu et al. [2013] provided a novel ∝-
SVM method for LLP. Newer methods involve deep learn-
ing [Kotzias et al., 2015, Dulac-Arnold et al., 2019, Liu
et al., 2019, Nandy et al., 2022] and others leverage charac-
teristics of the distribution of bags [Saket et al., 2022, Zhang
et al., 2022a, Chen et al., 2023] while Busa-Fekete et al.
[2023] developed model training techniques on derived sur-
rogate labels for instances for random bags. Defining the
LLP label proportion regression task in the PAC framework,
Yu et al. [2014], established bounds on the generalization
error bounds for bag-distributions. For the classification set-
ting and specific types of loss functions, bag-to-instance
generalization error bounds were shown by Busa-Fekete
et al. [2023], Chen et al. [2023].

Domain Adaptation. Many of the domain adaptation tech-
niques try to align the source and target distributions by
minimizing a distance-measure between domains. The work
of Long et al. [2015] generalized deep convolutional neural
networks to the domain adaptation scenario, by matching
the task-specific hidden representations for the source and
target domains in a reproducing kernel Hilbert space. An ex-
tension of this work by Long et al. [2017] proposed a Joint



Adaptation Network which aligns the joint distributions of
multiple domain-specific hidden layers using a joint maxi-
mum mean discrepancy measure. The technique proposed
by Ganin et al. [2016] focuses on learning from features
which are indiscriminate with respect to the shift between
domains. Recently, Li and Culotta [2023b] applied domain
adaptation to the LLP and proposed a model combining
domain-adversarial neural network (DANN) and label regu-
larization, to learn from source-domain bags and predict on
instances from a target domain.

3 PRELIMINARIES

For a given d ∈ Z+, feature-vectors (instances) are d-
dimensional reals and labels are real-valued scalars. Let
DS and DT denote respectively the source and target distri-
butions over Rd × [0, 1].

We denote by S(n) a source training set of n examples
{(xi, yi) | i = 1, . . . , n} drawn iid from DS , and analo-
gously define T (n) as n iid examples from DT . However,
while the source training set is available at the instance-level,
the target train-set is aggregated randomly into bags. We
specify the bag-creation as follows.
Target Training Bags. A bag B ⊆ Rd is a finite set
of instances x with labels yx and its bag-label yB :=
(1/|B|)

∑
x∈B yx is the average of the instance-labels in the

bag. The sample target training bags denoted by B(m, k) is
a random set of m k-sized bags (B1, yB1), . . . , (Bm, yBm)
created as follows:

1. Let T (mk) := {(xi, yi) | i = 1, . . . ,mk} be mk iid
examples from DT .

2. Let Ij = {k(j − 1) + 1, . . . , kj}, j = 1, . . . ,m be a
partition of [mk].

3. For each j = 1, . . . ,m, let Bj = {xi | i ∈ Ij} with
bag-labels yBj

= (1/k)
∑
i∈Ij yi.

Instance and Bag-level losses. Since we focus on regression
as the underlying task for an instance-level predictor we
shall define our losses using mean squared-error (mse). For
any function h : Rd → R, the loss w.r.t. to a distribution D
over Rd × R is

ε(D, h) := E(x,y)←D

[
(h(x)− y)

2
]
,

where we shall let D be DS or DT for our purpose. The loss
over a finite sample U of labeled points is:

ε̂(U , h) :=
1

|U|
∑

(x,y)∈U

[
(h(x)− y)

2
]

where we shall take U as the source training-set S or tar-
get training-set T (we omit the sizes of the train-set for

convenience). Finally, we have the loss on sampled bags:

ε̄(B, h)

:=
1

|B|
∑

(B,yB)∈B

(( 1

|B|
∑
x∈B

h(x)

)
− yB

)2


Function Classes and pseudo-dimension. We will consider
a class F of real-valued functions (regressors) mapping Rd
to [0, 1]. For any X ⊆ Rd s.t. |X | = N , let Cp(ξ,F ,X )
denote a minimum cardinality `p-metric ξ-cover of F over
X , for some ξ > 0. Specifically, Cp(ξ,F ,X ) is a minimum
sized subset of F such that for each f∗ ∈ F , there exists
f ∈ Cp(ξ,F ,X ) s.t. (Ex∈X [|f∗(x)− f(x)|p])1/p ≤ ξ for
p ∈ [1,∞), and maxx∈X |f∗(x)− f(x)| ≤ ξ for p =∞.

As detailed in Sections 10.2-10.4 of Anthony and Bartlett
[2009], the largest size of such a cover over all choices of
X ⊆ Rd s.t. |X | = N is defined to be Np(ξ,F , N).

The pseudo-dimension of F , Pdim(F) (see Section 10.4
and 12.3 of Anthony and Bartlett [2009], Appendix B.2)
can be used to bound the size of covers for F as follows:

N1(ξ,F , N) ≤ N∞(ξ,F , N) ≤ (eN/ξp)p (1)

where p = Pdim(F) and N ≥ d.

Since the task of our interest is regression, we shall assume
that for any f ∈ F , f(x) = rTfφ(x) where φ is a map-
ping to a real-vector in an embedding space and rf is the
representation of f in that space (see Appendix A for an
explanation).

3.1 OUR CONTRIBUTIONS

For S = S(mk) = {(zi, `i)}mki=1, and B = B(m, k) =
{(Bj , yBj

)}mj=1 be the bags constructed from T = T (mk),
we define the following covariate-shift loss.

ξ(S,B) := 2

∥∥∥∥∥∥ 1

m

m∑
j=1

yBj

1

k

∑
x∈Bj

φ(x)


− 1

mk

mk∑
i=1

liφ(zi)

∥∥∥∥∥
2

(2)

Note that the above domain adaptation loss depends on
the labels from the source train-set labels as well as the
bag-labels of the target training bags. In other words, it
leverages the supervision provided on the training data S
and B. We bound the difference of the sample bag-loss on
target training bags B and the sample instance-level loss on
the source as follows.

Lemma 3.1. For any h ∈ F ,

ε̄(B, h)−ε̂(S, h) ≤ ξ(S,B) ‖rh‖2+λ′(S, T )+R(h,S, T )



where λ′(S, T ) is independent of h and R(h,S, T ) is a
label-independent regularization on S and T .

The above lemma whose proof along with the expressions
for λ′(S, T ) and R(h,S, T ), is provided in Section 4,
shows that minimizing the instance-level loss on the source
train-set S along with the covariate-shift loss training data
can upper bound the bag-level loss on the target training
bags B. Since our goal is to upper bound the instance-level
loss on the target distribution, we bound the latter using
the bag-loss on the training bags in the following novel
generalization error bound.

Theorem 3.2. For m, k ∈ Z+, ν, δ > 0, w.p. 1 − δ over
choice of B = B(m, k), ε(DT , h) ≤ 16kε̄(B, h) for all
h ∈ F s.t. ε(DT , h) ≥ ν and p = Pdim(F), when m ≥
O
((
p
(
log
(
k
ν

)
+ log log

(
1
δ

))
+ log 1

δ

)
max

{
1
kν2 ,

k2

ν

})
.

The above is, to the best of our knowledge, the first bag-
to-instance generalization error bound for regression tasks
in LLP using the pseudo-dimension of the regressor class.
Note however that there is a blowup in the error proportional
to the bag-size k, which is understandable since, due to
convexity, the mse loss between the average prediction in
a bag and its bag-label is less than the average loss of the
instance-wise predictions and labels. In other words, the
error bound from Theorem 3.2 is weaker with increasing
bag size, and in Appendix C we demonstrate through an
example that this degradation with bag-size is unavoidable.

Lemma 3.1 can, however, be used to mitigate
the weakening of the bound in Theorem 3.2. In
particular, combining Lemma 3.1 with the im-
plication of Theorem 3.2 we obtain ε(DT , h) ≤
w1ε̄(B, h) + w2ε̂(S, h) + w2 (ε̄(B, h)− ε̂(S, h)) where
w1 + w2 ≥ 16k. This can be bounded by w1ε̄(B, h) +
w2ε̂(S, h) + w2 (ξ(S,B) ‖rh‖2 + λ′ +R(h,S, T )).
Therefore, it makes sense to directly optimize ε̄(B, h)
along with ξ(S,B) and ε̂(S, h). In this, we can assume a
bound on ‖rh‖2 since the range of all h ∈ F is bounded in
[0, 1]. Further, the term R(h,S, T ) is a difference of two
unsupervised regularization terms on S and T , which is
expected to be small for reasonable covariate-shift in the
datasets, and hence can omitted from the optimization (see
Appendix A.2).

With this we formalize the above intuition to propose our
loss on bags and covariate-shifted instances.
Bags and covariate-shifted instances loss. For parameters
λ1, λ2, λ3 ≥ 0, the BagCSI loss is defined as:

BagCSI
(
S,B, h, {λi}3i=1

)
:= λ1ε̄(B, h) + λ2ε̂(S, h) + λ3ξ

2(S,B) (3)

For practical considerations we use ξ2 instead of ξ because ξ
cannot be summed over mini-batches of the training dataset.

We use BagCSI loss to propose model training method in
Section 6. We also perform extensive experiments to evalu-
ate our methods and share the outcomes in Section 7.

4 PROOF OF LEMMA 3.1

Using the definitions in Section 3 define uj :=
(1/k)

∑
i∈Ij φ(xi) so that 1

k

∑
i∈Ij h(xi) = rThuj .

ε̄(B, h) =
1

m

m∑
j=1


1

k

∑
i∈Ij

h(xi)

− yBj

2


=
1

m

m∑
j=1


1

k

∑
i∈Ij

h(xi)

2

+ y2
Bj
− 2yBj

rThuj


≤ 1

m

m∑
j=1

1

k

∑
i∈Ij

(h(xi)
2 + y2

i )− 2yBj
rThuj

 (4)

where the last upper bound uses Cauchy-Schwarz inequality.
On the other hand,

ε̂(S, h) =
1

mk

mk∑
i=1

[
(h(zi)− `i)2

]
=

1

mk

mk∑
i=1

[
h(zi)

2 + `2i − 2`ir
T
hφ(zi)

]
(5)

Using the above along with (4) we obtain,

ε̄(B, h)− ε̂(S, h)

≤ 1

mk

mk∑
i=1

(
h(xi)

2 − h(zi)
2
)

+ 2rTh

 1

m

m∑
j=1

yBj
uj −

1

mk

mk∑
i=1

`iφ(zi)


+

1

mk

mk∑
i=1

(
y2
i − `2i

)
Notice that the second term on the RHS of the
above is ≤ ξ(S,B) ‖rh‖2. Taking λ′(S, T ) =∣∣∣1/(mk)

∑mk
i=1

(
y2
i − `2i

)∣∣∣ and R(h,S, T ) =∣∣∣1/(mk)
∑mk
i=1

(
h(xi)

2 − h(zi)
2
)∣∣∣ completes the proof of

Lemma 3.1.

5 PROOF OF THEOREM 3.2

The proof proceeds by first reformulating the process of
sampling the m training bags as: (i) sample 2mk examples
from DT , (ii) partition them into m disjoint (2k)-sized sub-
sets, and (iii) from each subset randomly choose k points to



include in a bag, to obtain m k-sized bags. First, for a fixed
sample of 2mk examples and regressor h ∈ F , we use the
randomness in step (iii) along with concentration bounds
to show that with high probability the bag-level mse loss
of h on the bags is at least an O(k)-fraction of its loss on
the sampled instances. A union bound over a fine-grained
`∞ cover of F essentially allows us to restrict ourselves to
regressors in the cover. The randomness in step (i) is used
along with standard generalization error bounds to show that
instance-level sample loss of every h ∈ F can be replaced
with the distributional loss. The parameter m is chosen to
make the error probability arbitrarily small. The rest of this
section contains the formal proof.

We first describe the following equivalent way of sampling
the target training bags B = B(m, k) = {(Bj , yBj ) | j =
1, . . . ,m}.

1. Let Z := {(xi, yi) | i = 1, . . . , 2mk} be 2mk iid
examples from DT .

2. Define Ij = {2k(j − 1) + 1, . . . , 2kj}, j = 1, . . . ,m
be a partition of [2mk] into m disjoint subsets.

3. Independently for each j = 1, . . . ,m, let Ij be a ran-
dom subset of Ij of exactly k indices.

4. For each j = 1, . . . ,m, let Bj = {xi | i ∈ Ij} with
bag-labels yBj

= (1/k)
∑
i∈Ij yi.

Let us first fix h ∈ F and Z and prove a lower bound on
the bag-level loss.

Analysis for fixed h and Z . Let us assume that ε̂(Z, h) =
ζ, for some ζ ≥ 0. For convenience let zi = h(xi) − yi,
i = 1, . . . , 2mk. Note that since yi, h(xi) ∈ [0, 1], |zi| ≤ 1.

Let Z(j)
= {(xi, yi) | i ∈ Ij} be the restriction of Z to

the indices in Ij , so that
∑m
j=1 ε̂(Z(j), h) = ε̂(Z, h). Over

the choice of {Ij}mj=1 define the random variable Lj :=[(
1
k

∑
i∈Ij h(xi)

)
− yBj

]2
. Since yBj

= (1/k)
∑
i∈Ij yi,

Lj =
(

1
k

∑
i∈Ij zi

)2

≤
(

1
k

∑
i∈Ij |zi|

)2

. Since Ij ⊆ Ij

and |zi| ≤ 1 for all i, this implies

Lj ≤ min

1,

1

k

∑
i∈Ij

|zi|

2


≤ min

1,
2

k

∑
i∈Ij

|zi|2
 =: γj (6)

since
∑
i∈Ij |zi| ≤

√
2k
√∑

i∈Ij |zi| by Cauchy-Schwarz

inequality. Note that after fixing Z , the choices of
I1, . . . , Im are independent of each other, and each Lj only

depends of the choice of Ij .

E [Lj ] = E


1

k

∑
i∈Ij

zi

2


=
1

k2

∑
r∈Ij

z2
r Pr[r ∈ Ij ] +

∑
r,s∈Ij
r 6=s

zrzs Pr[r, s ∈ Ij ]


Since Ij is a random subset of Ij of k out of 2k indices,
Pr[r ∈ Ij | r ∈ Ij ] = 1/2 and Pr[r, s ∈ Ij | r, s ∈
Ij , r 6= s] = (k−1)/(2(2k−1)) which simplifies the RHS
of the above to:

1

2k2

(1− k − 1

2k − 1

)∑
r∈Ij

z2
r +

k − 1

2k − 1

∑
r,s∈Ij

zrzs


≥ 1

2k2

1

2

∑
r∈Ij

z2
r +

k − 1

2k − 1

∑
r∈Ij

zr

2


≥ 1

4k2

∑
r∈Ij

z2
r (7)

Using (6) one can apply Hoeffding’s inequality to obtain for
any t ≥ 0 (see Appendix B.1),

Pr

 m∑
j=1

Lj ≤ E

 m∑
j=1

Lj

− t


≤ 2exp

(
−2t2∑m
j=1 γ

2
j

)

≤ 2exp

(
−2t2(

max{γj}mj=1

)∑m
j=1 γj

)

≤ 2exp

(
−t2k∑m

j=1

∑
i∈Ij z

2
i

)

By definition we have
∑
j∈Ij z

2
i =

∑2mk
i=1 z

2
i =

2ζmk. Thus, the above along with (7) yields
Pr
[∑m

j=1 Lj ≤ ζm/(2k)− t
]
≤ 2exp

(
−t2
2ζm

)
. Recalling

that ζ = ε̂(Z, h), and noting that
∑m
j=1 Lj = mε(B, h)

while taking t = ζm/(4k) we obtain

Pr

[
ε(B, h) ≤ ε̂(Z, h)

4k

]
≤ 2exp

(
−ε̂(Z, h)m

32k2

)
(8)

High probability bound for F and Z . Let us fix the
parameter ε in the statement of Theorem 3.2. We fix Z
for now and consider the cover C∞(ξ,F ,Z) for some ξ
which we will choose later, and q∞ = N∞(ξ,F , 2mk)
be the upper bound on its size. Let Cerr ⊆ Cp(ξ,F ,Z) s.t.



Table 1: MSE scores for different methods and bag sizes on the
IPUMS dataset (averaged over 10 runs). The source instance loss
is 1.8714± 0.08 and target instance loss is 1.1237± 0.00. Lower
is better.

Method
Bag Size 8 32 128 256

Bagged-Target 1.14± 0.00 1.16± 0.00 1.22± 0.0046 1.31± 0.01
AF 1.23± 0.01 1.31± 0.01 1.41± 0.02 1.43± 0.02
LR 1.15± 0.00 1.18± 0.00 1.24± 0.01 1.29± 0.01

AF-DANN 1.25± 0.02 1.33± 0.07 1.39± 0.07 1.39± 0.02
LR-DANN 1.16± 0.00 1.23± 0.02 1.51± 0.07 1.61± 0.13

DMFA 1.15± 0.00 1.18± 0.00 1.26± 0.01 1.30± 0.01
PL-WFA (our) 1.15± 0.00 1.18± 0.00 1.25± 0.01 1.29± 0.01
BL-WFA (our) 1.14± 0.00 1.16± 0.00 1.22± 0.00 1.25± 0.01

Table 2: MSE scores for different methods and bag sizes on the
Wine dataset (averaged over 20 runs). The source instance loss
is 195.5 ± 1.2 and target instance loss is 170.5 ± 0.1. Lower is
better.

Method
Bag Size 8 32 128 256

Bagged-Target 173.5± 0.4 177.7± 1.2 191.0± 2.5 206.9± 3.5
AF 186.8± 2.1 190.3± 2.8 191.0± 2.4 192.4± 1.8
LR 185.9± 2.0 191.6± 1.6 193.8± 0.8 194.5± 1.0

AF-DANN 187.6± 1.7 190.5± 1.7 191.2± 2.5 191.9± 2.1
LR-DANN 186.2± 1.5 192.1± 2.0 193.7± 2.4 193.8± 2.5

DMFA 186.1± 1.7 191.8± 2.1 193.5± 2.4 194.5± 0.9
PL-WFA (our) 183.0± 0.6 186.6± 1.0 189.0± 0.8 188.9± 1.2
BL-WFA (our) 180.9± 0.5 184.6± 0.7 186.0± 0.8 186.4± 0.5

∀ĥ ∈ Cerr, ε̂(Z, ĥ) ≥ ν/2. Taking a union bound of the
error in (8) over F̂err we obtain that:

Pr

[
∀ĥ ∈ Cerr : ε(B, ĥ) ≥ ε̂(Z, ĥ)

4k

]

≤ 1− 2q∞exp
(
−νm
64k2

)
(9)

Define F̂err := {h ∈ F | ε̂(Z, h) ≥ 3ν/4}.
For any h ∈ F̂err there is ĥ ∈ C∞(ξ,F ,Z) s.t.
|ĥ(x) − h(x)| ≤ ξ for all (x, y) ∈ Z . Now,
(ĥ(x) − y)2 = (h(x) − y + ĥ(x) − h(x))2 ≥
(h(x)−y)2−2|ĥ(x)−h(x)||h(x)−y|+(ĥ(x)−h(x))2 ≥
(h(x)− y)2 − 2ξ since h(x), y ∈ [0, 1]. Similarly, consider
any bag B ∈ B. Using arguments analogous to above

we obtain (E [h(x)]− yB)
2 ≥

(
E
[
ĥ(x)

]
− yB

)2

−

2
∣∣∣E[ĥ(x)− h(x)]

∣∣∣ (E [h(x)]− yB) ≥(
E
[
ĥ(x)

]
− yB

)2

− 2ξ, implying

ε̂(Z, ĥ) ≥ ε̂(Z, h)− 2ξ, ε(B, h) ≥ ε(B, ĥ)− 2ξ. (10)

Therefore, taking ξ = ν/(32k) we obtain from the first
bound above that ĥ ∈ Cerr and further that ε̂(Z, ĥ) ≥
2ε̂(Z, h)/3 ≥ ν/2 = 16kξ. Observe that ε(B, ĥ) ≥
ε̂(Z, ĥ)/(4k) implies ε(B, ĥ) ≥ 4ξ, which in turn implies
ε(B, h) ≥ ε(B, ĥ)− 2ξ ≥ ε(B, ĥ)/2. Combining this with
(9) and (10) we obtain,

Pr

[
∀h ∈ F̂err : ε(B, h) ≥ ε̂(Z, h)

12k

]
≤ 1− 2q∞exp

(
−νm
64k2

)
(11)

We now unfix Z , and define Ferr = {h ∈ F | ε(DT , ĥ) ≥
ν}. By Theorem 17.1 of Anthony and Bartlett [2009], we
obtain with probability at least 1− 4q1exp

(
−2ν2mk/512

)
over the choice of Z , h ∈ Ferr ⇒ h ∈ F̂err
where q1 = N1(ν/64,F , 4mk). Using this along
with (11), we obtain that with probability at least
1 − 2q∞exp

(
−νm/(64k2)

)
− 4q1exp

(
−2ν2mk/512

)
,

∀h ∈ Ferr, ε(B, h) ≥ ε̂(Z,h)
12k ≥ 3ν

48k = ν
16k .

Using the upper bounds in (1) we see that
the probability is 1 − δ if we choose m ≥
O
((
p
(
log
(
k
ν

)
+ log log

(
1
δ

))
+ log 1

δ

)
max

{
1
kν2 ,

k2

ν

})
.

See Appendix A.3 for more details. This completes the
proof of Theorem 3.2.

6 PROPOSED METHODS

We propose two novel methods. The first method uses
BagCSI loss as the objective. We have shown above that
BagCSI loss is an upper bound over ε(DT , h) loss w.r.t tar-
get distribution. We now provide intuitive explanation for
why BagCSI loss should work.

Let us assume that the goal is to predict label for an unseen
instance x, given feature representations φ(xi) in the em-
bedding space and corresponding labels yi from training
data. A natural prediction would be Ei [ρ(φ(x), φ(xi))yi],
where ρ is some similarity metric. If we choose the simi-
larity metric to be the inner product, the prediction can be
written as φ(x)TEi [φ(xi)yi]. The given feature represen-
tations and corresponding labels can come either from the
source domain or from the target domain. For learning do-
main invariant feature representation, the prediction should
be similar irrespective of the domain considered. This can be
achieved by enforcing the term,

∑
i

yiφ(xi) to be equal for

source and target domain. However, this approach requires
knowledge of instance-level labels yx from target domain,
which are not available. We can however replace yx with
pseudo-labels ŷx, using which we introduce a new domain
adaptation loss term in the objective, ψ2(S,B) where:

ψ(S,B) :=
1

mk

∥∥∥∥∥∥
m∑
j=1

∑
x∈Bj

ŷxφ(x)−
mk∑
i=1

yiφ(zi)

∥∥∥∥∥∥
2

(12)

One way is to assign the bag-label as the pseudo-label for all
instances withing the bag, in which case ψ(S,B) essentially
reduces to ξ(S,B). We call this method Bag Label Weighted
Feature Alignment (BL-WFA) which involves training us-
ing the BagCSI loss.



Another approach is to use the following process for pseudo-
labeling instances in a bag B using hypothesis model h:

1. Compute the predictions {h(x)}x∈B .
2. The pseudo-labels are given by adding to each prediction

the same b ∈ R such that average pseudo-label in the bag
equals the bag-label. Note that this is equivalent to the
nearest vector of pseudo-labels (in Euclidean distance)
to the vector predictions, that satisfies the bag-label con-
straint.

We call this method Pseudo-label Weighted Feature Align-
ment (PL-WFA) in which ψ(S,B) is used to train the model
using the above computed pseudo-labels.

7 EXPERIMENTAL EVALUATIONS

We evaluate our approaches via experiments on both syn-
thetic as well as real-world datasets and compare against the
baselines for different bag sizes.

Baseline Methodologies. In Li and Culotta [2023a], au-
thors propose methods for domain adaptation in LLP setting
for classification tasks. We adapt these methods for regres-
sion tasks and consider those as baselines. In this paper,
these baselines are referred to as Average Feature (AF),
Label Regularization (LR), Average Feature DANN (AF-
DANN) and Label Regularization DANN (LR-DANN). See
Sections 3.1.2, 3.1.3, 3.2.1, 3.2.2 in Li and Culotta [2023a]
for respective methods. In literature on domain adaptation
(for non-LLP settings) [Long et al., 2015, 2017], it has been
shown that approaches using MMD (maximum mean dis-
crepancy) based objectives work well. Hence, we also define
a baseline that uses similar objective adapted for our setting,
called Domain Mean Feature Alignment (DMFA). We also
consider bag level target loss (Bagged-Target) as a base-
line. Appendix D contains additional details about baseline
methods. We evaluate and compare our methods against
these baselines.

Our model training uses the above losses in a mini-batch
loop. For DMFA and PL-WFA we select equal number of in-
stances from both source and target domain in a mini-batch.
For BL-WFA, we select as many instances from source do-
main as the number of bags selected from target domain
in a mini-batch. Such a choice avoids explicit normaliza-
tion in the objective function and incorporates them into
the hyper-parameters. We evaluate all the baselines and
proposed methods for different bag sizes and datasets.

Synthetic Dataset. The synthetic dataset has 64 dimen-
sional continuous feature vectors and scalar-valued con-
tinuous label. For covariate shifted source and target do-
main data, the feature vectors are sampled from a multi-
dimensional Gaussian distribution with different means and
covariance matrices. The labels for both source and target

data are computed using the same randomly initialized neu-
ral network. We also perform ablation studies to observe
the impact of magnitude of covariance shift. The train set
comprises 0.2 million instances from both source and target
domain. The test set comprises 65 thousand instances from
target domain.

Real-world Datasets. We also evaluate methods on three
real world datasets: Wine Ratings [Dara, 2018, Zackthoutt,
2017], IPUMS USA [Ruggles et al., 2024] Census data, and
Criteo Sponsored Search Conversion Logs (SSCL) [Tallis
and Yadav, 2018].

Wine: We use Price column as the label. The source domain
comprises of wines from France and the target domain com-
prises of wines from all countries but France. The train set
comprises 0.5 million instances from both source and target
domain. The test set comprises 0.2 million instances from
target domain.
IPUMS USA: We use INCWAGE column as the label. We
consider the data from 1970 as the source domain and data
from 2022 as the target domain. The train set comprises 1.3
million instances from source and 9.4 million instances from
target domain. The test set comprises 0.3 million instances
from target domain.
Criteo SSCL: We use SalesAmountInEuro column as the
label. We create a domain split on the basis of the country
field (the most frequently occurring country in the dataset
as source and rest as the target). The train set comprises 0.5
million instances from source and 0.9 million instances from
target domain. The test set comprises 0.2 million instances
from target domain.

Appendix E contains details about size and pre-processing
for all the datasets.

All datasets are split into two components, source and tar-
get domain. For our study, it is important that there is a
reasonable covariate shift between these two components.
The target domain dataset is split into train (80%) and test
(20%) sets. The target domain component of train set is par-
titioned randomly into bags of equal size. We also perform
experiments with correlated bags. To partition the dataset
into correlated bags, we select a feature and create bags
such that all the samples in that bag have the same value
of that feature if the feature is categorical. If the feature is
numerical, we sort the dataset on the basis of that feature
and use consecutive samples for creating the bags. Further
details about creation of correlated bags are provided in
Appendix G.2. Additionally, we also perform experiments
by partitioning the dataset into bags of mixed (non-uniform)
sizes. We do so in two different ways; SBB (Sample Bal-
anced Bagging - equal number of instances for each bag
size) and BBB (Bag Balanced Bagging - equal number of
bags of each size). Each bag in the resultant dataset is of the
size 8, 32, 128 or 256. Further details about partitioning the
dataset into mixed bag sizes are provided in Appendix G.1.



Table 3: MSE scores for different methods and bag sizes on the
Synthetic dataset (averaged over 20 runs). The source instance
loss is 2718.13± 2062.32 and target instance loss is 0.19± 0.02.
Lower is better.

Method
Bag Size 8 32 128 256

Bagged-Target 0.71± 0.05 5.49± 0.93 17.87± 0.49 19.95± 0.34
AF 0.96± 0.07 6.22± 0.81 18.16± 0.50 20.00± 0.86
LR 0.71± 0.04 5.15± 1.06 18.10± 0.40 19.92± 1.55

AF-DANN 1.23± 0.06 8.16± 0.54 18.04± 0.95 20.15± 0.49
LR-DANN 1.02± 0.04 7.84± 0.87 17.76± 0.24 19.72± 0.29

DMFA 0.69± 0.05 4.39± 0.84 16.50± 1.47 19.07± 1.16
PL-WFA (our) 0.75± 0.06 4.43± 0.81 15.60± 0.94 18.40± 0.74
BL-WFA (our) 0.75± 0.05 2.22± 0.22 10.36± 3.15 13.76± 0.60

Table 4: MSE scores for different methods and bag sizes on the
Criteo SSCL dataset (averaged over 10 runs). The source instance
loss is 293.74±5.1 and target instance loss is 147.79±0.3. Lower
is better.

Method
Bag Size 64 128 256 512

Bagged-Target 208.78 ± 2.7 234.32 ± 3.3 254.78 ± 5.3 264.74 ± 5.3
AF 297.95 ± 6.5 296.51 ± 6.1 294.86 ± 5.3 299.93 ± 6.5
LR 207.78 ± 2.7 232.72 ± 10. 256.68 ± 13. 264.46 ± 5.4

AF-DANN 296.95 ± 6.3 296.35 ± 6.4 295.49 ± 5.2 297.91 ± 7.3
LR-DANN 206.39 ± 2.3 230.84 ± 3.1 243.62 ± 4.5 265.33 ± 4.6

DMFA 207.60 ± 2.7 232.40 ± 9.9 247.66 ± 3.4 264.51 ± 5.5
PL-WFA (our) 204.71 ± 2.6 226.39 ± 2.9 240.55 ± 3.3 254.46 ± 5.5
BL-WFA (our) 204.62 ± 2.4 226.33 ± 2.9 240.39 ± 3.2 254.36 ± 5.5

Table 5: MSE scores on IPUMS dataset with correlated bags.
Lower is better.

Method
Bag Size 8 32 128 256

Bagged Target 1.09 ± 0.00 1.12 ± 0.00 1.17 ± 0.00 1.24 ± 0.00
AF 1.31 ± 0.00 1.35 ± 0.01 1.38 ± 0.01 1.41 ± 0.01
LR 1.10 ± 0.00 1.12 ± 0.00 1.18 ± 0.00 1.25 ± 0.00
AFDANN 1.31 ± 0.01 1.35 ± 0.01 1.37 ± 0.01 1.38 ± 0.01
LRDANN 1.09 ± 0.00 1.11 ± 0.00 1.17 ± 0.00 1.21 ± 0.00
DMFA 1.10 ± 0.00 1.12 ± 0.00 1.18 ± 0.00 1.22 ± 0.00
PLWFA 1.08 ± 0.00 1.10 ± 0.00 1.16 ± 0.00 1.21 ± 0.00
BLWFA 1.08 ± 0.00 1.10 ± 0.00 1.16 ± 0.00 1.21 ± 0.00

Table 6: MSE scores on Synthetic dataset with correlated bags.
Lower is better.

Method
Bag Size 8 32 128 256

Bagged-Target 0.65 ± 0.07 2.13 ± 0.35 7.01 ± 0.61 10.35 ± 1.33
AF 1.02 ± 0.17 4.20 ± 0.52 9.65 ± 0.54 12.35 ± 0.89
LR 0.60 ± 0.05 2.01 ± 0.33 6.72 ± 0.78 9.18 ± 0.74
AF-DANN 1.30 ± 0.16 5.14 ± 0.46 10.67 ± 0.43 13.42 ± 0.88
LR-DANN 0.81 ± 0.08 3.26 ± 0.38 8.31 ± 0.63 10.37 ± 0.78
DMFA 0.57 ± 0.05 2.17 ± 0.28 6.35 ± 0.56 8.86 ± 0.69
PL-WFA (our) 0.56 ± 0.04 1.90 ± 0.30 6.09 ± 0.69 8.50 ± 0.60
BL-WFA (our) 0.60 ± 0.05 1.90 ± 0.31 6.11 ± 0.74 8.48 ± 0.81

Table 7: MSE scores on Criteo dataset with correlated bags. Lower
is better.

Method
Bag Size 64 128 256 512

Bagged-Target 204.78 ± 2.7 211.12 ± 3.1 226.78 ± 3.8 254.74 ± 5.3
AF 257.92 ± 2.0 266.94 ± 3.4 276.82 ± 3.1 294.13 ± 4.4
LR 179.88 ± 0.6 183.77 ± 1.1 191.25 ± 1.1 207.24 ± 1.2
AF-DANN 257.48 ± 2.1 263.87 ± 0.6 275.14 ± 3.5 292.43 ± 5.0
LR-DANN 179.37 ± 0.5 183.73 ± 1.0 191.17 ± 1.1 207.98 ± 1.6
DMFA 180.89 ± 0.6 183.47 ± 1.2 191.27 ± 1.2 207.18 ± 1.2
PL-WFA (our) 177.76 ± 0.7 181.70 ± 1.2 188.29 ± 1.2 197.23 ± 1.2
BL-WFA (our) 177.74 ± 0.7 181.66 ± 1.1 188.19 ± 1.2 197.07 ± 1.3

Training & Evaluation. We use a simple neural network
comprising of an input layer followed by two sequential
ReLU activated layers (128 nodes) and a final linear layer (1
node). For IPUMS and Criteo SSCL datasets, we addition-
ally include embedding layers after the input layer for all
the cardinal and categorical features that were not converted
to one-hot representations. For AF-DANN and LR-DANN,
we also have a sigmoid activated domain prediction layer in
parallel to the final dense layer.

During training, we perform a grid search to find the most
optimal set of hyperparameters for each configuration (spe-
cific dataset, methodology and bag size). We try out two
different optimizers for all experiments mentioned in the
main paper - Adam and SGD and report scores correspond-
ing to the best performer. We observed that Adam works
better for most of the cases, so we perform experiments
described in Appendix with Adam optimizer only. See Ap-
pendix F for more details.

For each configuration, we run the same experiment mul-

tiple times and report the MSE scores on target domain’s
test data as the evaluation metric. Note that the instances
in target domain are randomly bagged for each run. The
final evaluation metric is reported by the mean and standard
deviation over these runs. We run 20 trials for each config-
uration with Wine and Synthetic datasets and 10 trials for
each configuration with IPUMS and Criteo SSCL datasets.

Experimental Code and Resources.1 Our experiments
were run on a system with standard 8-core CPU, 256GB of
memory with one P100 GPU.

MSE scores on IPUMS, Wine, Synthetic and Criteo SSCL
datasets with random bagging for different bag sizes are re-
ported in Tables 1, 2, 3 and 4. MSE scores on Wine, Criteo
SSCL and IPUMS datasets with random bagging for BBB-
mixed and SBB-mixed bag sizes are reported in Tables 8
and 9. MSE scores with correlated bags for IPUMS, Syn-
thetic and Criteo datasets are reported in Tables 5, 6 and 7
respectively.

Results for more experiments are reported in Appendix G.
This includes experiments on Wine dataset with a different
domain split (see Table 16), experiments on synthetic dataset
with a non-diagonal covariance matrix (see Table 17), and
experiments on synthetic dataset by varying the magnitude
of covariate shift (see Table 18).

Results & Inferences. For largest bag size, BL-WFA
achieves 2.5%, 2.9%, 27.9% and 3.8% improvement over
the best baseline method for IPUMS (see Table 1), Wine

1The code for our experiments can be found at www.github.
com/google-deepmind/covariate_shifted_llp.

www.github.com/google-deepmind/covariate_shifted_llp
www.github.com/google-deepmind/covariate_shifted_llp


Table 8: MSE scores for data with BBB mixed bag sizes. BBB is
bag balanced bagging i.e. there are equal number of bags of each
size. Lower is better.

Method
Dataset Wine Criteo IPUMS

Bagged Target 219.51 ± 7.96 209.37 ± 1.98 1.26 ± 0.01
AF 210.45 ± 6.58 210.24 ± 2.54 1.27 ± 0.01
LR 211.58 ± 7.67 213.01 ± 3.01 1.25 ± 0.01
AFDANN 289.16 ± 2.69 205.36 ± 2.65 1.26 ± 0.01
LRDANN 190.88 ± 1.34 208.03 ± 2.79 1.28 ± 0.01
DMFA 193.29 ± 3.90 207.80 ± 3.14 1.26 ± 0.01
PLWFA 183.42 ± 3.76 202.94 ± 2.96 1.25 ± 0.01
BLWFA 183.00 ± 3.13 202.75 ± 2.86 1.24 ± 0.01

Table 9: MSE scores for data with SBB mixed bag sizes. SBB is
sample balanced bagging i.e. for a particular bag size, there are
equal number of samples. Lower is better.

Method
Dataset Wine Criteo IPUMS

Bagged Target 183.94 ± 2.00 177.69 ± 0.85 1.16 ± 0.01
AF 186.04 ± 1.43 176.99 ± 0.82 1.15 ± 0.01
LR 186.07 ± 1.46 181.89 ± 1.33 1.15 ± 0.01
AFDANN 163.51 ± 0.36 177.13 ± 0.45 1.17 ± 0.01
LRDANN 163.52 ± 0.37 181.22 ± 0.99 1.18 ± 0.01
DMFA 163.29 ± 1.08 181.62 ± 1.25 1.16 ± 0.01
PLWFA 161.31 ± 1.03 171.84 ± 1.34 1.16 ± 0.01
BLWFA 161.59 ± 1.11 171.71 ± 1.31 1.14 ± 0.01

(see Table 2), Synthetic (see Table 3) and Criteo SSCL (see
Table 4) respectively. We observe similar improvements
with correlated bags (see Tables 5, 6 and 7) and bags of
mixed sizes (see Tables 8 and 9). MSE is used as evaluation
metric, hence scores cannot be compared across datasets
due to different scales. We make the following inferences
from the results:

1. PL-WFA and BL-WFA consistently outperform all other
baselines for large enough bag sizes. This is expected be-
cause with increase in bag size, the information from just
the bagged target domain is not rich enough and benefits
greatly from inclusion of covariate shifted source domain
data. By leveraging not just the features from target do-
main but also the bagged-labels, PL-WFA and BL-WFA
outperform other baseline methods which rely only on
features from target domain for domain adaptation.

2. With increase in bag size, the performance drops. This is
expected as information is lost with increase in bag size.

3. On synthetic dataset (where we definitely have a reason-
able amount of covariate shift), even with bag size as
large as 256, we see that the performance of our pro-
posed methods - PL-WFA and BL-WFA is better than
the case where we use instance level labeled target data
for training ( target instance loss). This improvement
is achieved despite the fact that performance when just
using the source data for training (source instance loss)
is poor.

4. On smaller bag sizes, other methods (for example, LR
and DMFA on synthetic dataset and Bagged-Target on
Wine dataset) seem to outperform our proposed methods.
Such behavior is expected when the information from
target data is itself sufficient to learn a good enough func-
tion approximator. It is worth noting that the objective
function in our proposed method reduces to that of LR
for λ = 0. So, in theory PL-WFA and BL-WFA are
always better than LR. By decreasing the λ value, our
methods can do at least as good as LR.

5. Although the best baseline method is different for differ-
ent datasets under consideration (AF-DANN on Wine,
LR on IPUMS, LR-DANN on Criteo and DMFA on syn-
thetic), BL-WFA consistently beats the best baseline for

a large enough bag size.

6. Our methods perform well with bags of mixed sizes
and correlated bags. This demonstrates the robustness of
proposed methods to different bagging techniques.

8 CONCLUSION

We formally define the problem of learning from label aggre-
gates where source data has instance wise labels while target
data has aggregate labels of instances grouped into bags. We
also give bag-to-instance generalization error bound for re-
gression tasks in LLP and use it to arrive at BagCSI loss.
We propose two new methods, BL-WFA (based on BagCSI)
and PL-WFA (based on a variant of BagCSI) that natu-
rally incorporate the knowledge of aggregate labels from
target domain in the domain adaptation framework lead-
ing to improvement over baseline methods. We also adapt
several methods from literature in domain adaptation and
LLP to this setting. Through experiments on synthetic and
real-world datasets we show that our methods consistently
outperform baseline techniques.
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A USEFUL CONCEPTS

A.1 EMBEDDING SPACE REPRESENTATION

For a Hilbert space H of real-valued functions defined over X , for every x ∈ X s.t. the mapping Lx : H → R given by
Lx(f) = f(x) is bounded i.e., |Lx(f)| ≤ Cx‖f‖H, the Riesz Representation Theorem guarantees the existence of gx ∈ H
s.t. Lx(f) = 〈f, gx〉H. As we study regression tasks (typically neural regression) in this work, we can assume boundedness
and define f(x) = rTfφ(x) where φ is a mapping to a real-vector in an embedding space, and rf the representation of f in
that space.

The function class under consideration in our experiments is a neural network with the final layer being a single node
(without any activation) as we are studying the scalar regression use-case. In this case, the embedding space is learnt during
training. Here, φ(x) is the output of penultimate layer of neural network and rf are the parameters of the final layer (a single
node).

A.2 EXCLUDING REGULARIZATION TERM IN LOSS FUNCTION

The regularization term R(h,S, T ) =
∣∣∣1/(mk)

∑mk
i=1

(
h(xi)

2 − h(zi)
2
)∣∣∣ enforces that the average squared-predictions of

h i.e. the squared `2-norm of h, on the source and the target domains should be similar. However, covariate-shifts often
approximately preserve the `2-norm of predictors for e.g. if they are rotational in the embedding space {φ(x)}. Therefore,
for practical settings the contribution of R(h,S, T ) (for example, to gradient updates in neural networks) can be ignored
and the term is omitted from the BagCSI loss.

This claim is empirically validated in Tables 10, 11 and 12 which establish that the magnitude of R(h,S, T ) term is very
small compared to BagCSI. We report the average loss values over 5 random partitionings of the training data into bags.

It is also established empirically that adding the regularization term R(h,S, T ) in the loss does not result in significant
improvement. This can be observed in the experimental results presented in the Tables 14, 15 and 13 which are obtained by
doing a hyperparameter search within a range W = {10−5, 5× 10−5, 10−4, 5× 10−4, 10−3, 5× 10−3, 10×−2} of the
weight for the regularization term in the overall loss.

A.3 SAMPLE COMPLEXITY ANALYSIS

Given that with probability at least 1− 2q∞exp
(
−νm/(64k2)

)
− 4q1exp

(
−2ν2mk/512

)
, ∀h ∈ Ferr, ε(B, h) ≥ ν

16k , we

show that if we chose m ≥ O
((
p
(
log
(
k
ν

)
+ log log

(
1
δ

))
+ log 1

δ

)
max

{
1
kν2 ,

k2

ν

})
, then with probability at least 1− δ,

∀h ∈ Ferr, ε(B, h) ≥ ν
16k .

Note that, q1 = N1(ν/64,F , 4mk) and q∞ = N∞(ν/32k,F , 2mk).

From (1), N1(ξ,F , N) ≤ N∞(ξ,F , N) ≤ (eN/ξp)p. Hence, q1 ≤
(

256emk
νp

)p
and q∞ ≤

(
64emk2

νp

)p
.

Let R∞ = q∞exp
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−νm/(64k2)

)
and R1 = q1exp
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−2ν2mk/512

)
.

Substituting m = c
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, where c is some large constant,
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for a large enough constant c and for small enough δ. Hence, R∞ ≤ δ/4. Using a similar analysis, we also obtain that,
R1 ≤ δ/8. Thus, 1− 2R∞ − 4R1 ≥ 1− δ follows for a large enough constant c and small enough δ, completing the proof.

B USEFUL ANALYTICAL TOOLS

B.1 HOEFFDING’S INEQUALITY

We use the Hoeffding’s inequality which is stated below.

Theorem B.1 (Hoeffding). Let X1, . . . , Xn be independent random variables, s.t. ai ≤ Xi ≤ bi, ∆i = bi − ai for
i = 1, . . . , n. Then, for any t > 0,

Pr

[∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

E[Xi]

∣∣∣∣∣ > t

]
≤ 2 · exp

(
− 2t2∑n

i=1 ∆2
i

)
.

B.2 PSEUDO-DIMENSION

As defined in Section 3, F is a class of real-values functions (regressors) mapping Rd to [0, 1].

A finite subset X = {x1, x2, . . . , xN} ⊂ Rd is pseudo-shattered by F if there exist r1, r2, . . . , rN such that for each
b ∈ {0, 1}m, there is a function fb in F with sgn(fb(xi)− ri) = bi for 1 ≤ i ≤ N .

F has pseudo-dimension p if p is the cardinality of the largest finite subset of Rd that is pseudo-shattered by F . If no such
largest finite subset exists, F is said to have infinite pseudo dimension.

C ERROR BOUND DEGRADATION WITH BAG SIZE

The bag-to-instance generalization error bound established in Theorem 3.2 degrades linearly with bag-size. This section
provides a justification of why this degradation with bag-size is unavoidable through the example below:

Consider DT where each instance-label in is drawn iid from [0, 1]. Let y1, . . . , yk be the instance-labels within a random
bag B, and by construction each yi is iid and drawn u.a.r. from [0, 1]. Using simple integration we obtain E[yi − 1/2] = 0
and E[(yi − 1/2)2] = 1/12. Consider a regressor h with a constant prediction of 1/2. The expected loss on a random bag is
E[((

∑k
i=1 yi)/k − 1/2)2] = E[(

∑k
i=1 yi − k/2)2]/k2 = 1/(12k). Using Chernoff bounds we obtain with high probability,

that the average loss on m iid sampled bags B satisfies ε(B, h) ≈ 1/(12k). On the other hand, the expected distributional
instance-level loss is simply E[(y − 1/2)2] = 1/12 where y is chosen u.a.r. from [0, 1], and thus ε(DT , h) = 1/12 and
therefore one needs to incur a blowup of a factor linear in bag-size k.

D BASELINE TECHNIQUES

In Li and Culotta [2023a], authors define several baselines and propose new methods for domain adaptation in LLP setting
for classification tasks. We adapt these methods for regression tasks and consider those as baselines. These baselines are
defined in Sections D.1, D.2, D.3 and D.4. In literature on domain adaptation (for non-LLP settings) [Long et al., 2015,
2017], it has been shown that approaches using MMD (maximum mean discrepancy) based objectives work well. Hence, we
also define a baseline that uses similar objective adapted for our setting in Section D.5.



D.1 AVERAGE FEATURE METHOD (AF)

The feature vectors in a bag are averaged and then predictions are made for the bag-averaged feature vectors via a neural
network. The L2 loss function is used to compute difference between the predictions and bag level labels for both the source
and target domain, the sum of which is used as the objective for optimization.

Let us define average bag feature by x̄B such that,

x̄B =

∑
x∈B

x

|B|

Then, the objective is defined as follows.

J(h,S,B) =
∑

B,yB∈T
(yB − h (x̄B))

2
+ ε̂(S, h)

D.2 LABEL REGULARIZATION METHOD (LR)

This method is similar to Average Input Method with the only difference that predictions are made via neural network for
each of the feature vectors in a bag first and then the predictions are averaged.

J(h,S,B) = ε̂(S, h) + ε̄(B, h)

D.3 AVERAGE FEATURE DANN METHOD (AF-DANN)

In Sections D.1 and D.2, the objective function just aimed to fit the model onto the the data from source and domain
data without considering any shift in the distribution of the source and domain datasets. Average Input DANN (Domain
Adversarial Neural Network) Method incorporates additional term in the Average Feature Method’s objective to learn
features invariant to domain and then use those features for making predictions. This is achieved by introducing an adversarial
loss in form of domain prediction. The features from penultimate layer of the neural network are used to classify the input
feature vector as belonging to the source/target domain. We denote this domain classifier by hd : x → [0, 1] such that
hd(x) = σ(WT

hd
(φh(x)) + bhd

) where σ denotes the sigmoid function and h is the actual function approximator. If the
classifier is not able to correctly classify labels, it means that the feature representations learnt by the network are invariant
to the domain shift. The overall objective is given by J as follows.

J(h,S,B) =

∑
B,yB∈T

(yB − h (x̄B))
2

+ ε̂(S, h)− λ(LD)

LD =
∑

x,y∈S
L(1, hd(x)) +

∑
B,yB∈T

∑
x∈B
L(0, hd(x))

L(y, ŷ) = −ylog(ŷ)− (1− y)log(1− ŷ)

We call LD the domain loss. This objective is optimized in two steps. In the first step, J is minimized while keeping (Whd

and bhd
fixed. In the second step, J is maximized while keeping everything but (Whd

and bhd
fixed. Essentially, in the first

step encourage domain misclassifications so that the model learns feature representation that is invariant to domain shift
present in the dataset. In the second step, the domain classifier is learnt for the updated feature representations. It is worth
noting that the domain loss neither depends on the instance level labels from source domain nor does it depend on the bag
level labels from target domain.

D.4 LABEL REGULARIZATION DANN METHOD (LR-DANN)

This method is similar to AF-DANN method (defined in Section D.3). The only difference comes from using label
regularization loss instead of average feature loss in the objective function. The overall objective hence becomes as follows.

J(h,S, T ) = ε̄(B, h) + ε̂(S, h)− λ(LD)

where LD is the same as defined in Section D.3.



D.5 DOMAIN MEAN FEATURE ALIGNMENT METHOD (DMFA)

The idea is to make the feature representations domain-invariant by reducing the distance between the mean of feature
representations from the source and the target domain. The overall objective is given by J as follows.

J(h,S, T ) = ε̄(h, T ) + ε̂(h,S) + λ(LDMFA)

LDMFA =

∥∥∥∥∥∥
∑

B,yB∈T

∑
x∈B

φ(x)

|B||T |
−

∑
x,y∈DS

φ(x)

|DS |

∥∥∥∥∥∥
2

2

Note that just like AF-DANN method (defined in Section D.3) and LR-DANN (defined in Section D.4), this method also
doesn’t leverage instance level source labels and bag level target labels in the objective function.

E DATASET PREPARATION DETAILS

E.1 SYNTHETIC DATASET

The feature vector comprises of 64 numerical features. The label is a scalar-valued continuous variable. The feature vectors
are sampled from a multi-dimensional Gaussian distribution. For the Gaussian distribution, the mean vector is itself sampled
from N (0, 16) for source domain and N (50, 16) for target domain. For the experiment results presented in main paper, the
co-variance matrix is a diagonal matrix where the diagonal elements are sampled from N (10, 16) for both the source and
target domain. However, we also experiment using synthetic dataset generated with non-diagonal covariance matrix, the
results for which are reported in appendix. Although the process of generating co-variance matrices is same for source and
target domain, the actual covariance matrices are not the same.

As we assume co-variate shift in the source and target distribution, p(y|x) is same for both distributions, hence we initialize
a neural network with random weights and use that for obtaining the labels corresponding to feature vectors for both the
source and target data.

The train set comprises 0.2 million instances from both source and target domain. The test set comprises 65 thousand
instances from target domain.

E.2 WINE DATASET

Wine dataset [Dara, 2018, Zackthoutt, 2017] is a tabular dataset with 39 boolean features indicating whether a particular
word was present in the review for that wine. It also has a cardinal feature named points, which ranges between 80 (inclusive)
and 100 (exclusive). The label is the price of the wine. We process feature vectors to convert all features to one hot and thus
obtain a 39× 2 + (100− 80) = 98 dimensional boolean-valued multi-hot vector as input feature vector.

The labels in the dataset are skewed. To prevent the outliers from hindering the learning process, we remove the outliers by
discarding features with labels in the top 5 percentile.

We split the dataset into two different domains. The source domain comprises of wines from France and the target domain
comprises of wines from all countries but France. We select France as the source domain because it has enough number
of instances to qualify as a separate domain and not so many that the target domain becomes small. We run another set
of experiments where Italy is chosen as the source domain and the target domain comprises of wines from all countries
but Italy. The results for the former are presented in the main paper (see Table 2), and those for the later configuration are
presented in the appendix (see Table 16).

The train set comprises 0.5 million instances from both source and target domain. The test set comprises 0.2 million instances
from target domain.

E.3 IPUMS DATASET

IPUMS [Ruggles et al., 2024] is a large tabular US Census dataset with a huge number of features. For our experiments,
we select income (INCWAGE) as the label. We select a subset of feature columns comprising of the following features:



REGION, STATEICP, AGE, IND, GQ, SEX and WKSWORK2. All of these features are categorical except AGE which is
cardinal. We convert GQ (5 categories), SEX (2 categories), WKSWORK2 (7 categories) to one-hot representations while
keeping others intact as they have large number of categories which makes one-hot representations impractical.

We consider the data from 1970 as the source domain and data from 2022 as the target domain. Since, the labels (INCWAGE)
were large in magnitude, we standardized the labels using y → (y − µY )/σY by estimating the mean and variance using
source domain labels and target domain train labels only.

The train set comprises 1.3 million instances from source and 9.4 million instances from target domain. The test set comprises
0.3 million instances from target domain.

E.4 CRITEO SSCL DATASET

Criteo Sponsored Search Conversion Log Dataset [Tallis and Yadav, 2018] comprises of 90 days of Criteo live traffic
data. Every row in the dataset corresponds to a click (product related advertisement) that was displayed to a user. The
preprocessing of the dataset is the same as done by Brahmbhatt et al. [2024].

We remove all the rows where the label is -1 because these instances indicate no conversion. Further, we re-
move all the rows where NaN or -1 is present. For our experiments, we select sales_amount_in_euro as the la-
bel. The feature representation comprises of 15 categorical (product_age_group, device_type, audience_id, prod-
uct_gender, product_brand, product_category_1, product_category_2, product_category_3, product_category_4, prod-
uct_category_5, product_category_6, product_category_7, product_title, partner_id, user_id) and 3 numerical features
(time_delay_for_conversion, nb_clicks_1week, product_price). An embedding of dimension 8 is learnt for all the categorical
features in the neural network.

The train set comprises 0.5 million instances from source and 0.9 million instances from target domain. The test set comprises
0.2 million instances from target domain.

F HYPERPARAMETER SEARCH

We use grid search for finding optimal values of λ and learning rate. The values used in grid search are on a logarithmic
scale. We try out two different optimizers for all experiments mentioned in the main paper - Adam and SGD and report
scores corresponding to the best performer. We observed that Adam works better for most of the cases, so we perform
experiments described in Appendix with Adam optimizer only.

Note that the magnitude of ξ2(S,B) term in BagCSI loss depends on the embedding and hence the initialization of the
network. Hence, we scale ξ2(S,B) value to match ε̄(B, h). Effectively the BagCSI contains (κ × λ3)ξ2(S,B), where
κ = ε̄(B,h)

ξ2(S,B) . It must be noted that κ is a constant and no gradient flows through it. (κ × λ3) is an adaptive weight for
ξ2(S,B) term. We do this for all methods (including baselines) that use a λ hyperparameter.

G ADDITIONAL EXPERIMENTS

In addition to the experiments for which the results were shared in the main paper, we conduct a few more experiments
and extensive ablation studies. The setup and results for these experiments are shared in the following sub-sections. More
precisely, we perform the following experiments:

1. We create a different source-target domain split in Wine dataset by choosing wines from Italy in the source domain
partition and wines from all other countries in the target domain partition. The results are reported in Table 16.

2. We create another synthetic dataset where we choose a non-diagonal covariance matrix while keeping all other
configurations the same. The results are reported in Table 17.

3. We empirically study the impact of excluding regularization term in the loss function on the performance of proposed
methods. The experimental setup and results are detailed in Appendix A.2.

4. We also perform experiments to study the impact on performance of different algorithms by varying the amount of
covariate shift in the synthetic dataset. The setup and results are detailed in Appendix G.3.



Table 10: Comparison of magnitude of the regularization term
R(h,S, T ) and the magnitude of BagCSI loss on IPUMS dataset.

Dataset PLWFA BLWFA

Bag Size
Method R(h,S, T ) BagCSI R(h,S, T ) BagCSI

8 0.01 1.59 0.02 1.59
32 0.03 1.62 0.03 1.62
128 0.04 1.62 0.05 1.62
256 0.06 1.62 0.06 1.63

Table 11: Comparison of magnitude of the regularization term
R(h,S, T ) and the magnitude of BagCSI loss on Criteo dataset.

Dataset PLWFA BLWFA

Bag Size
Method R(h,S, T ) BagCSI R(h,S, T ) BagCSI

64 17.52 577.50 17.44 569.73
128 17.46 611.63 17.40 602.30
256 17.97 654.50 17.85 644.50
512 18.19 673.34 18.22 662.61

Table 12: Comparison of magnitude of the regularization term
R(h,S, T ) and the magnitude of BagCSI loss on performance
for Wine dataset.

Dataset PLWFA BLWFA

Bag Size
Method R(h,S, T ) BagCSI R(h,S, T ) BagCSI

8 0.66 704.05 0.62 698.44
32 1.04 707.39 1.14 700.56
128 1.32 708.33 1.33 701.18
256 1.73 713.34 1.75 706.06

Table 13: Effect of adding the regularization termR(h,S, T ) to
loss on performance for Wine dataset. For significant impact of
the extra regularization term, the hyperparameter search is done
within range W = {10−5, 5× 10−5, 10−4, 5× 10−4, 10−3, 5×
10−3, 10−2}.

Dataset PLWFA BLWFA

Bag Size
Method

wR = 0 best wR ∈ W wR = 0 best wR ∈ W

8 183.0 ± 0.6 255.57 ± 3.81 180.9 ± 0.5 255.47 ± 3.91
32 186.6 ± 1.0 260.85 ± 3.76 184.6 ± 0.7 259.80 ± 3.71
128 189.0 ± 0.8 270.23 ± 3.69 186.0 ± 0.8 270.23 ± 3.66
256 188.9 ± 1.2 276.27 ± 3.72 188.9 ± 1.2 276.25 ± 3.73

G.1 EXPERIMENTS WITH MIXED BAG SIZES

We test the performance of all the baselines and proposed methods when using a non-uniform bag size. The dataset is
partitioned into bags of different sizes. More specifically, we use 2 different techniques to have mixed size bags:

• SBB is sample balanced bagging. For a particular bag size, there are an equal number of samples that belong to a bag of
that size. Hence, if there are n1 bags of size k1, and n2 bags of size k2, then n1k1 = n2k2.

• BBB is bag balanced bagging. There are equal number of bags of each size. Hence, if there are n1 bags of size k1, and
n2 bags of size k2, then n1 = n2.

Clearly, SBB will have more bags of smaller sizes compared to BBB. Every bag is of the size 8, 32, 128 or 256. Tables 8
and 9 contain the results for experiments with mixed bag sizes. It can be inferred from the results that the scores with mixed
bag sizes are mostly an interpolation (not necessarily linear) of the results with uniform bag sizes. Scores with BBB strategy
for mixing bags are worse compared to SBB since SBB has a higher proportion of small sized bags compared to BBB.

G.2 EXPERIMENTS WITH CORRELATED BAGS

We test the performance of all the baselines and proposed methods with correlated bags as opposed to random bags used for
all other experiments in this paper. To partition the dataset into correlated bags, we select a feature and create bags such
that all the samples in that bag have the same value of that feature if the feature is categorical. If the feature is numerical,
we sort the dataset on the basis of that feature and use consecutive samples for creating the bags. Since all the features
in Wine dataset are binary, we did not perform experiments for it. We used REGION for IPUMS and product_brand for
Criteo SSCL as the correlated feature. Tables 5, 6 and 7 contain results for experiments with correlated bags on IPUMS,
Synthetic datasets and Criteo SSCL respectively. It can be inferred that the standard deviation values are very low. This is
expected because across different runs, similar bags would be created unlike experiments for un-correlated bags where the
bags created for each run would comprise of a different set of instances.

G.3 SYNTHETIC DATASET WITH VARYING PERTURBATIONS

We also conduct experiments to analyze the impact on performance of different methods by varying the amount of covariate
shift in the source and target domains of the synthetic datasets. The covariate shift can be controlled using the mean and
standard deviation of the source and target distributions.



Table 14: Effect of adding the regularization termR(h,S, T ) to
loss on performance for IPUMS dataset. For significant impact of
the extra regularization term, the hyperparameter search is done
within range W = {10−5, 5× 10−5, 10−4, 5× 10−4, 10−3, 5×
10−3, 10−2}.

Dataset PLWFA BLWFA

Bag Size
Method

wR = 0 best wR ∈ W wR = 0 best wR ∈ W

8 1.15 ± 0.00 1.23 ± 0.01 1.14 ± 0.00 1.23 ± 0.01
32 1.18 ± 0.00 1.32 ± 0.02 1.16 ± 0.00 1.32 ± 0.02
128 1.25 ± 0.01 1.38 ± 0.03 1.22 ± 0.00 1.38 ± 0.03
256 1.29 ± 0.01 1.42 ± 0.02 1.25 ± 0.01 1.42 ± 0.02

Table 15: Effect of adding the regularization termR(h,S, T ) to
loss on performance for Criteo dataset. For significant impact of
the extra regularization term, the hyperparameter search is done
within range W = {10−5, 5× 10−5, 10−4, 5× 10−4, 10−3, 5×
10−3, 10−2}.

Dataset PLWFA BLWFA

Bag Size
Method

wR = 0 best wR ∈ W wR = 0 best wR ∈ W

64 204.71 ± 2.6 256.11 ± 4.45 204.62 ± 2.4 255.23 ± 4.57
128 226.39 ± 2.9 264.97 ± 3.61 226.33 ± 2.9 264.45 ± 3.50
256 240.55 ± 3.3 279.45 ± 2.06 240.39 ± 3.2 279.48 ± 2.06
512 254.46 ± 5.5 291.38 ± 2.44 254.36 ± 5.5 290.96 ± 2.46

Table 16: MSE scores for different methods and bag sizes on the
wine dataset (averaged over 20 runs) using wines from Italy as
the source domain. The source instance loss is 204.73± 2.7 and
target instance loss is 173.91± 0.2. Lower is better.

Method
Bag Size 8 32 128 256

Bagged Target 176.2± 0.4 180.1± 0.9 193.8± 4.2 208.0± 4.5
AF 199.3± 2.3 203.2± 2.7 203.1± 2.5 203.7± 2.1
LR 196.0± 1.1 201.0± 1.0 203.0± 1.1 203.2± 0.8

AF-DANN 193.5± 3.5 195.6± 3.3 196.2± 3.1 194.7± 3.0
LR-DANN 195.4± 2.5 198.6± 3.4 199.7± 3.4 199.0± 4.1

DMFA 195.5± 2.2 201.0± 1.2 202.5± 1.3 203.2± 1.1
PL-WFA (our) 186.2± 1.0 188.8± 0.7 190.0± 0.7 190.3± 0.8
BL-WFA (our) 184.5± 0.6 187.2± 1.8 188.4± 1.2 188.0± 0.8

Table 17: MSE scores for different methods and bag sizes on the syn-
thetic dataset (averaged over 20 runs). The source instance loss is
558.3179± 65.77 and target instance loss is 9.7217± 0.40. Lower is
better.

Method
Bag Size 8 32 128 256

Bagged Target 29.53± 0.94 58.06± 1.93 128.45± 7.02 195.41± 9.34
AF 75.19± 3.30 104.36± 4.7 146.00± 11.7 207.08± 15.78
LR 28.36± 0.54 54.99± 1.74 120.08± 5.78 194.86± 11.18

AF-DANN 74.09± 4.13 107.31± 5.7 152.74± 24.0 203.54± 16.14
LR-DANN 30.40± 0.69 60.58± 2.42 130.30± 7.87 185.38± 25.97

DMFA 28.07± 0.63 54.65± 2.00 118.71± 7.15 175.68± 15.55
PL-WFA (our) 33.75± 0.67 63.86± 2.43 119.87± 5.51 174.12± 7.47
BL-WFA (our) 39.03± 3.73 65.45± 3.86 116.92± 17.7 159.08± 19.62

The ε parameter is a measure of the the perturbation between the mean vectors of the source and target distributions, and δ is
that for the perturbation between the covariance matrices. Specifically, a target distribution is given by a 64-dimensional
Gaussian where each entry is iid, sampled from N(50, 8) while Σ is a diagonal matrix where each diagonal element is the
magnitude of an iid value sampled from N(10, 8). For each (ε, δ), the source distribution is N(µ′, σ′) where µ′ = µ− ε∆
and ∆ is a vector with iid values samples from N(50, 8). The diagonal matrix Σ′ is obtained by adding the magnitude of
value sampled from iid N(0, 8δ2) to each diagonal entry of Σ.

We perform experiments for different perturbations in the mean vector (using ε) and covariance matrix (using δ) of source
and target distributions. As expected, with increasing perturbations, the scores become higher. Since MSE scores worsen
more consistently with increase in mean perturbation as compared to perturbation in covariance matrix, we infer that the
impact of increasing mean perturbation is more prominent compared to the perturbation in covariance matrix. Table 18
contains scores for different combinations of perturbation values.



Table 18: Effect of covariate shift in synthetic data on the performance (MSE scores) of different algorithms for different bag sizes. Lower
is better.

ε δ AF LR AFDANN LRDANN DMFA PLWFA BLWFA

For bag size 8, Bagged Target scores 0.67 ± 0.06

0 0.5 4.56 ± 0.83 3.93 ± 0.25 4.85 ± 0.32 4.58 ± 0.32 3.49 ± 0.45 3.78 ± 0.24 3.73 ± 0.39
1 3.85 ± 0.95 4.06 ± 1.55 4.40 ± 0.60 4.25 ± 0.52 3.36 ± 0.34 4.14 ± 1.50 4.06 ± 1.52

0.5
0 3.16 ± 0.27 2.95 ± 0.42 3.67 ± 0.21 3.58 ± 0.21 2.85 ± 0.49 2.84 ± 0.45 2.81 ± 0.48

0.5 2.90 ± 0.27 2.60 ± 0.14 3.18 ± 0.15 3.15 ± 0.09 2.58 ± 0.18 2.57 ± 0.14 2.57 ± 0.22
1 2.81 ± 0.43 2.43 ± 0.20 3.32 ± 0.57 2.89 ± 0.21 2.43 ± 0.18 2.44 ± 0.23 2.36 ± 0.16

1
0 5.56 ± 0.74 4.56 ± 0.24 7.65 ± 0.63 6.35 ± 0.75 4.55 ± 0.26 4.50 ± 0.30 4.44 ± 0.23

0.5 5.58 ± 0.67 4.61 ± 0.36 7.76 ± 0.80 6.43 ± 0.36 4.63 ± 0.25 4.55 ± 0.32 4.58 ± 0.38
1 5.47 ± 0.79 4.71 ± 0.31 7.90 ± 0.79 6.46 ± 0.57 4.70 ± 0.35 4.70 ± 0.35 4.59 ± 0.37

For bag size 32, Bagged Target scores 16.51 ± 2.17

0 0.5 10.07 ± 1.51 10.07 ± 1.70 10.18 ± 1.07 9.69 ± 0.94 9.57 ± 1.93 9.22 ± 1.83 8.21 ± 1.04
1 10.47 ± 2.21 10.23 ± 2.09 9.91 ± 1.21 9.65 ± 1.22 9.85 ± 1.82 9.29 ± 2.02 9.19 ± 2.09

0.5
0 8.31 ± 2.03 7.58 ± 0.95 8.53 ± 1.63 7.28 ± 0.79 7.49 ± 1.01 6.61 ± 0.96 6.54 ± 0.98

0.5 7.60 ± 1.66 7.12 ± 0.63 7.74 ± 2.06 6.88 ± 0.78 7.07 ± 0.52 6.05 ± 0.55 6.07 ± 0.47
1 8.27 ± 1.82 6.62 ± 0.60 7.87 ± 1.75 6.81 ± 0.78 6.68 ± 0.58 5.63 ± 0.60 5.71 ± 0.73

1
0 12.43 ± 1.03 10.18 ± 0.70 14.06 ± 0.80 11.11 ± 0.74 10.04 ± 0.55 8.97 ± 0.52 9.16 ± 0.76

0.5 12.96 ± 1.18 10.50 ± 0.80 14.46 ± 0.56 11.59 ± 0.70 10.33 ± 0.89 9.22 ± 0.92 9.33 ± 0.95
1 12.85 ± 1.52 10.49 ± 1.30 14.45 ± 1.16 12.15 ± 1.00 10.23 ± 1.23 9.27 ± 1.10 9.15 ± 0.98

For bag size 128, Bagged Target scores 18.52 ± 2.01

0 0.5 15.86 ± 1.35 16.21 ± 2.08 15.54 ± 1.42 14.74 ± 1.45 15.11 ± 1.17 15.03 ± 1.91 15.11 ± 1.96
1 16.28 ± 1.45 15.85 ± 2.16 15.43 ± 1.22 15.13 ± 1.76 15.34 ± 1.43 14.92 ± 2.19 14.62 ± 1.95

0.5
0 13.82 ± 1.71 12.39 ± 0.93 11.91 ± 2.78 12.60 ± 0.57 12.34 ± 0.90 11.32 ± 0.96 11.41 ± 0.89

0.5 13.43 ± 3.21 12.08 ± 0.83 12.74 ± 1.42 12.01 ± 0.86 12.06 ± 0.82 11.08 ± 0.83 10.99 ± 0.84
1 14.54 ± 1.87 11.64 ± 0.96 12.39 ± 1.69 11.65 ± 0.84 11.65 ± 0.98 10.56 ± 0.95 10.60 ± 0.97

1
0 17.98 ± 1.90 15.15 ± 1.84 17.09 ± 1.27 15.27 ± 0.43 14.76 ± 1.43 13.74 ± 1.50 13.86 ± 1.42

0.5 17.57 ± 2.34 15.33 ± 1.30 17.45 ± 1.15 15.85 ± 1.59 15.38 ± 1.78 13.91 ± 1.12 14.45 ± 2.08
1 17.64 ± 2.21 16.30 ± 2.73 17.23 ± 1.05 15.75 ± 1.17 15.26 ± 1.74 14.42 ± 1.63 14.38 ± 1.66

For bag size 256, Bagged Target scores 19.28 ± 1.91

0 0.5 17.84 ± 1.72 17.89 ± 1.82 16.97 ± 0.95 16.97 ± 1.25 17.41 ± 1.20 16.78 ± 1.71 16.86 ± 1.71
1 17.95 ± 1.59 17.99 ± 2.18 17.09 ± 1.16 16.44 ± 1.40 18.09 ± 1.83 16.99 ± 2.16 16.98 ± 2.17

0.5
0 16.43 ± 1.71 15.06 ± 0.91 14.97 ± 1.14 14.76 ± 0.79 15.08 ± 0.83 14.04 ± 0.86 13.99 ± 0.96

0.5 15.93 ± 2.33 15.02 ± 0.52 15.18 ± 0.88 14.47 ± 1.24 14.97 ± 0.57 14.03 ± 0.56 13.96 ± 0.51
1 16.44 ± 1.87 14.27 ± 0.94 14.58 ± 1.47 14.03 ± 0.79 14.23 ± 0.93 13.29 ± 0.91 13.18 ± 0.94

1
0 18.46 ± 2.10 16.58 ± 1.99 17.47 ± 1.43 17.22 ± 1.37 16.83 ± 1.99 15.68 ± 1.90 15.32 ± 1.48

0.5 18.24 ± 2.15 17.57 ± 2.34 17.58 ± 1.13 17.62 ± 1.31 16.86 ± 1.40 16.02 ± 1.47 16.06 ± 1.65
1 18.53 ± 2.16 17.31 ± 2.50 17.95 ± 1.21 17.31 ± 1.20 17.18 ± 2.31 15.91 ± 1.90 16.20 ± 2.35
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