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ABSTRACT

Preference-based reinforcement learning has shown great promise in various ap-
plications to avoid reward annotations and align better with human intentions.
However, obtaining preference feedback can still be expensive or time-consuming,
which forms a strong barrier for preference-based RL. In this paper, we propose
a novel approach to improve the query efficiency of offline preference-based RL
by introducing the concept of in-dataset exploration. In-dataset exploration con-
sists of two key features: weighted trajectory queries and a principled pairwise
exploration strategy that balances between pessimism over transitions and opti-
mism over reward functions. We show that such a strategy leads to a provably
efficient algorithm that judiciously selects queries to minimize the overall number
of queries while ensuring a robust performance. We further design an empirical
version of our algorithm that tailors the theoretical insights to practical settings.
Experiments on various tasks demonstrate that our approach achieves strong per-
formance with significantly fewer queries than state-of-the-art methods.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a powerful approach for solving a wide variety of se-
quential decision-making problems, including classic games (Silver et al., 2016), video games (Mnih
et al., 2015; Vinyals et al., 2019), robotics (Ahn et al., 2022), and plasma control (Degrave et al.,
2022) with supervision from just reward signals. Nevertheless, in many real-world applications,
specifying an accurate reward function can be incredibly challenging due to the requirements of ex-
tensive instrumentation and a balance between multiple objectives. Therefore, preference-based RL
(PbRL; Akrour et al., 2012; Christiano et al., 2017) has shown great promise since making relative
judgments comparison is easy to provide yet information-rich. By learning preferences from human
feedback, recent work has demonstrated that the agent can learn novel behaviors (Christiano et al.,
2017; Kim et al., 2023) and achieve better alignment (Ouyang et al., 2022).

Despite its promise, an online PbRL approach requires a coupling of human evaluation and inter-
action with environments, rendering the process tedious and time-consuming. On the other hand,
Offline PbRL (Shin et al., 2023; Kim et al., 2023) aims to utilize a pre-collected dataset to reduce the
exploration cost. While offline PbRL disentangles online interaction and human evaluation, it limits
possible queries within a predetermined dataset. This highlights the imperative to design a princi-
pled way to extract as much information as possible by actively making queries with the existing
reward-free dataset while minimizing the number of queries made for preference feedback.

Designing query-efficient offline PbRL algorithms faces two main challenges: balancing explo-
ration with preference queries and exploitation with a given dataset and learning temporal credit
assignments with trajectory-wise comparison. To cope with these two challenges, we propose a
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Figure 1: Illustration of principled pairwise exploration. The solid lines and dotted lines represent
the estimation of two value function models V1 and V2, respectively. For efficient exploration, we
first remove actions that are not optimal with high probability (i.e., τ3), then select two trajectory
pairs such that the uncertainty of the preference between them is maximized (i.e., there is serious
preference divergence between τ1 and τK since V2 strongly prefer τ1 while V1 strongly prefer τK).

novel approach leveraging the concept of in-dataset exploration. For the first challenge, our method
adopts a principled way of pairwise exploration, as depicted in Figure 1. For the second challenge,
our method add temporal weights to the in-dataset trajectories to allow for fine-grained comparison,
as depicted in Figure 2. We show that such a strategy is provably efficient for solving the problem,
minimizing the overall number of queries while ensuring robust performance.

Building on the theoretical insight, we design an empirical version of our algorithm that extends
the theoretical principles to practical settings. Experiments on navigation and manipulation tasks,
including AntMaze (Fu et al., 2020) and Meta-World (Yu et al., 2019), show that our approach
achieves strong performance with significantly fewer queries than state-of-the-art baselines.

In summary, our contributions are threefold: (1) we propose the concept of in-dataset exploration
for offline PbRL; (2) we develop a provably efficient algorithm that uses a principled pairwise ex-
ploration strategy and achieves a balance between pessimism over transitions and optimism over
rewards for in-dataset exploration; and (3) we design an empirical version of our algorithm and
demonstrate its strong performance across various benchmarks and tasks.

1.1 RELATED WORK

Preference-based RL. Various methods have been proposed to utilize human preferences (Akrour
et al., 2012; Christiano et al., 2017; Ibarz et al., 2018) and have been successful in complex control
tasks (Christiano et al., 2017) and large language model alignment (Ouyang et al., 2022). For of-
fline PbRL, OPRL (Shin et al., 2023) proposes a benchmark with several baseline methods. Kim
et al. (2023) uses Transformer to model preference for better credit assignment. Kang et al. (2023)
propose a direct method for preference-based policy learning. Theoretically, Pacchiano et al. (2021)
proposes a provable PbRL algorithm in linear MDPs. Chen et al. (2022) generalizes it to cases
where the Eluder dimension is finite. Zhan et al. (2023) studies offline PbRL with a given prefer-
ence dataset.
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Reward-free Offline RL. Yu et al. (2022) and Hu et al. (2023) utilize reward-free data to aid offline
learning but assume a labeled offline dataset is available for learning the reward function. Ajay
et al. (2020) utilizes reward-free datasets by extracting valuable behaviors. Ye et al.; Ghosh et al.
(2023) consider the setting where both reward and action are absent in the dataset. We utilize offline
reward-free data by allowing preference queries within the dataset.

2 PRELIMINARIES

2.1 LINEAR MDPS AND PERFORMANCE METRIC

We consider finite-horizon episodic Markov Decision Processes (MDPs), defined by the tu-
ple (S,A, H,P, r), with state space S, action space A, horizon H , transition function P =
{Ph}Hh=1,Ph : S × A → ∆(S), and reward function r = {rh}Hh=1, rh : S × A → [0, rmax].
For theoretical analysis, we consider the linear MDP (Yang & Wang, 2019; Jin et al., 2020) as fol-
lows, where the transition kernel and expected reward function are linear with respect to a known
feature map.
Definition 1 (Linear MDP). An episodic MDP is a linear MDP with known feature map ϕ : S×A →
Rd if there exist unknown measures µh = (µ1

h, . . . , µ
d
h) and an unknown vector θh ∈ Rd such that

Ph(s′ | s, a) = ⟨ϕ(s, a), µh(s′)⟩, rh(s, a) = ⟨ϕ(s, a), θh⟩ (1)
for all (s, a, s′) ∈ S × A × S. And we assume ∥ϕ(s, a)∥2 ≤ 1 for all (s, a, s′) ∈ S × A × S and
max{∥µh(S)∥2, ∥θh∥2} ≤

√
d, where ∥µh(S)∥ :=

∫
S ∥µh(s)∥ds.

A policy π = {πh}Hh=1, πh : S → ∆(A) specifies a decision-making strategy in which the agent
chooses actions adaptively based on the current state, i.e., ah ∼ πh(· | sh). The value function
V πh : S → R and the action-value function (Q-function) Qπh : S ×A → R are defined as

V πh (s) = Eπ
[ H∑
t=h

r(st, at)
∣∣∣ sh = s

]
, Qπh(s, a) = Eπ

[ H∑
t=h

r(st, at)
∣∣∣ sh = s, ah = a

]
, (2)

where the expectation is w.r.t. the trajectory τ induced by π. We define the Bellman operator as
(Bhf)(s, a) = Es′∼Ph(·|s,a)

[
r(s, a) + γf(s′)

]
. (3)

We use π⋆,Q⋆h, and V ⋆h to denote the optimal policy, optimal Q-function, and optimal value function,
respectively. We have the Bellman optimality equation

V ⋆(s)h = max
a∈A

Q⋆h(s, a), Q⋆h(s, a) = (BhV ⋆h+1)(s, a). (4)

Meanwhile, the optimal policy π⋆ satisfies π⋆h(· | s) = argmaxπ⟨Q⋆h(s, ·), π(· | s)⟩A.

We aim to learn a policy that maximizes the expected cumulative reward. Correspondingly, we
define the performance metric as the sub-optimality compared with the optimal policy, i.e.,

SubOpt(π, s) = V π
⋆

1 (s)− V π1 (s). (5)

2.2 PREFERENCE-BASED REINFORCEMENT LEARNING

To learn reward functions from preference labels, we consider the Bradley-Terry pairwise preference
model (Bradley & Terry, 1952) as used by most prior work(Christiano et al., 2017; Ibarz et al., 2018;
Palan et al., 2019). Specifically, the probability of the preference label over two given trajectories
τi ≺ τj is defined as

P
(
τi ≺ τj

∣∣∣ θ) =
exp

∑
(s,a)∈τj rθ(s, a)

exp
∑

(s,a)∈τi rθ(s, a) + exp
∑

(s,a)∈τj rθ(s, a)
.
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The reward parameter can be learned with a given preference dataset Dpref with the following cross-
entropy loss:

LCE(θ) = − E
(τ1,τ2,o)∼Dpref

[
(1− o) logPθ(τ1 ≻ τ2) + o logPθ(τ

2 ≻ τ1)
]
, (6)

where o is the ground truth label given by human labelers. In linear settings, the Bradley-Terry
model is a special case of generalized linear preference models, defined as follows.
Definition 2 (Generalized Linear Preference Models). For the case of d-dimensional generalized
linear models P (τ1 ≺ τ2) = σ(⟨ϕ(τ1, τ2), θ⟩) where τi = (sih, a

i
h)
H
i=1 and σ is an increas-

ing Lipschitz continuous function, ϕ : Traj×Traj → Rd is a known feature map satisfying
∥ϕ(τ1, τ2)∥2 ≤ H and θ ∈ Rd is an unknown parameter with ∥θ∥2 ≤ S.

Throughout the paper, we consider the generalized linear preference model so that the Bradley-Terry
preference model with linear MDP is a special case with σ(x) = 1/(1 + e−x) and ϕ(τ1, τ2) =∑H
h=1(ϕ(s

1
h, a

1
h) − ϕ(s2h, a

2
h)). Note that we overload the notation ϕ here for convenience. Our

analysis can be readily generalized to general function approximation with finite Eluder dimensions
(Russo & Van Roy, 2013; Chen et al., 2022).

3 IN-DATASET EXPLORATION

As mentioned in Section 1, there are two main challenges to making offline PbRL with in-dataset
queries provably efficient: conducting proper exploration with a given dataset and learning proper
temporal credit assignment with trajectory-based queries. The first challenge is due to the dilemma
that we need to explore for preference learning while we also need to exploit for leveraging the
offline dataset. The second challenge is due to the difficulty in learning temporal credit assignment
with only trajectory-wise information. It is known to require an exponentially large amount of
trajectories to learn a proper temporal credit assignment in the offline setting (Zhan et al., 2023).

For the first challenge, we propose a principled way for exploration that (1) makes a balance be-
tween pessimism over transitions and optimism for preference learning and (2) conducts pairwise
exploration by first removing non-optimal trajectories and then selecting the most informative pair
by maximizing value differences, as depicted in Figure 1. For the second challenge, we propose
to add temporal weights on the fixed trajectories for fine-grained comparison. This helps us infer
the preference on out-of-dataset trajectories, and an illustrative example is shown in Figure 2 (a) (b)
(c). Performance comparison on the didactic chain MDP in Figure 2 (d) depicts the advantage of
weighted queries on statistical efficiency. Please refer to Appendix E for more details on the chain
MDP experiment.

Based on the above insights, we design an empirical algorithm, Offline Preference-based
Reinforcement learning with In-Dataset Exploration (OPRIDE) that augments trajectories in the
dataset with random temporal weights and incorporates principled exploration strategies. OPRIDE
solves the two main challenges above and achieves high query efficiency. A formal description of
our proposed algorithm is provided in Algorithm 1.

3.1 THEORETICAL ANALYSIS FOR PRINCIPLED EXPLORATION

We first consider the setting where we are allowed to make online queries with a reward-free offline
dataset. For a principled exploration strategy under such a setting, we can combine the wisdom from
online PbRL and pessimistic value estimation for offline value estimation. Specifically, the strategy
consists of two parts: (1) pessimistic value iteration (PEVI; Jin et al., 2021) as the backbone algo-
rithm to account for the finite sample bias over dynamics due to a fixed offline dataset; (2) optimistic
over preference functions for efficient exploration. To achieve such optimism, we first compute the
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near-optimal policy for each query with the help of a confidence set over reward functions. Then,
we select explorative policies that maximize the value difference within the policy set. Finally, we
query the preference between the trajectories generated by the explorative policies and add it to the
preference dataset. A detailed description is available in Algorithm 2.

Pessimistic Value Estimation. We use a pessimistic value function to account for offline error over
dynamics due to finite data. Specifically, we consider pessimistic value iteration (PEVI; Jin et al.,
2021), which adds a negative bonus over the standard Q-value estimation to account for uncertainty
due to finite data. The negative bonus is propagated via the Bellman equation so that the output
value function considers the uncertainty of the current step and that of future steps. Please refer to
Algorithm 3 and Appendix B for more details.

Construct Reward Confidence Set. To estimate the reward parameter, we can use the cross entropy
loss as in Equation 6 to get the MLE estimator θ̂MLE. However, the standard MLE estimator can have
an unbounded norm, which motivates us to use a projected MLE estimator Instead, we consider the
projected MLE estimator θ̂k (Faury et al., 2020). Please refer to Appendix A.1 for more details on
the projected MLE estimator. Then, the confidence set is given by

Ck(δ) =
{
θ
∣∣∣ s.t. ∥θ − θ̂k∥Σk

≤ βk(δ)
}

(7)

where Σk = λI +
∑k−1
i=1

(
ϕ(τ1i )− ϕ(τ2i )

) (
ϕ(τ1i )− ϕ(τ2i )

)⊤
with ϕ(τ) =

∑H
h=1 ϕ(s

τ
h, a

τ
h) and

βk(δ) is the confidence parameter.

It can be shown that with probability 1−δ, the true reward function θ⋆ is contained in the confidence
set Ck(δ) for all k ≥ 1. Please refer to Appendix B for more details.

Near-optimal Policy Set. With the estimated reward model its confidence, we can define near-
optimal policy set Πk as follows:

Πk =
{
π̂ |∃ θ ∈ Ck(δ), π̂ = greedy

(
V̂θ

)}
, (8)

where V̂θ is the output of Algorithm 3 with reward function rθ. Intuitively speaking, Πk consists
of policies that are possibly optimal within the current level of uncertainty over reward and dy-
namics. By constraining policies in Πk, We achieve proper exploitation by avoiding unnecessary
explorations.

Exploratory Policies. For online exploration, we can choose two policies in Πk that maximize the
uncertainty, and thus encourage exploration:

(πk,1h , πk,2h ) = argmax
π1,π2∈Πk

argmax
θ1,θ2∈Ck(δ)

((
V̂ π1

θ1
− V̂ π1

θ2

)
−
(
V̂ π2

θ1
− V̂ π2

θ2

))
(9)

Intuitively, we choose two policies π1, π2 to maximize the value difference, such that there is a
θ1 ∈ Ck(δ) that strongly prefers π1 over π2, and there is a θ2 ∈ Ck(δ) that strongly prefer π2 over
π1. Then we sample two trajectories τk,1 ∼ πk,1, τk,2 ∼ πk,2, query the preference between them,
and add it to the preference dataset.

Theoretical Guarantees. We have the following theorem for our proposed Algorithm 2.
Theorem 3. Suppose the underlying MDP is a linear MDP with dimension d and horizon H . Then,
with high probability, the suboptimality of Algorithm 2 is upper bounded by

SubOpt(K) ≤ Õ

(√
C†d2H5

N
+

√
d2H4

K

)
, (10)
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Figure 2: Illustration for the benefit of weighted trajectory queries. Suppose rewards are defined on
states. Colored trajectories in (a) are contained in the offline dataset. Solely based on unweighted
queries, we can not infer whether s2 is better than s3 and whether s4 is better than s5. Using
additional weighted queries in (b) help us learn better credit assignment. In particular, weighted
queries make the colored out-of-dataset trajectories in (c) distinguishable. In (d), the empirical result
in the didactic chain MDP shows that the sample efficiency of random weighted queries outperforms
random unweighted queries by a large margin.

where C† is the coverage coefficient in Definition 5, N is the size of the offline dataset and K is the
number of queries.

Proof. See Appendix C for a detailed proof.

Equation 10 decomposes the suboptimality of Algorithm 2 into two terms nicely: the dynamics
error term and the reward error term. The dynamics error is due to the finite sample bias of the
dataset, and the reward error is due to the limited amount of preference queries. Compared to the
dynamic error, the reward error is reduced by a factor of

√
H . Therefore, querying with an offline

dataset can be much more sample efficient when N ≫ K. This is due to the fact that the offline
dataset contains rich information about dynamics and reduces the problem to horizonless bandits
given infinite offline data (Hu et al., 2023). This also aligns with our empirical findings that ∼ 10
queries are usually sufficient for reasonable performance in offline settings.

3.2 EMPIRICAL IMPLEMENTATION WITH WEIGHTED QUERIES

While Algorithm 2 has nice theoretical guarantees, it can be computationally inefficient to imple-
ment. Also, it assumes that we can make online queries while we only have a fixed dataset. In
this section, we propose an empirical version of Algorithm 2. Especially, we use (1) randomized
weighted trajectories to enlarge the query space, (2) an optimistic bonus to account for the uncer-
tainty over reward functions, and (3) ensembles of Q-functions to select most explorative trajecto-
ries. The detailed algorithm is shown in Algorithm 1.

Randomized Weighted Trajectories. In offline PbRL, we can’t query for new trajectories as
in online RL. Limited query space can make the problem exponentially hard Zhan et al. (2023).
As shown in Figure 2, A rescue is to add temporal weights to existing trajectories for fine-grained
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comparison for better query efficiency. Since we don’t know the critical part of the trajectory, em-
pirically, we augment each trajectory with L set of random Gaussian weights clipped to [−1, 1] to
control the variance. Then, the augmented dataset becomes

Daug
off = {(w(ℓ)

i , τi)
L
ℓ=1}Ni=1, w

(ℓ)
h ∼ clip(N (0, 1),−1, 1) (11)

Optimistic Bonus. Since it is computationally challenging to compute the reward confidence set
and the near-optimal confidence set, we instead add an optimistic bonus to account for the uncer-
tainty over reward functions. First, we train an ensemble of M reward functions parameterized by
θi via preference transformer (Kim et al., 2023) and cross-entropy loss as in Equation 6. Then we
calculate its optimistic variant r̃i as

r̃i(s, a) = rθi(s, a) + kσ(s, a), (12)

where σ(s, a) =
√

1
M

∑M
i=1(rθi(s, a)− µ(s, a))2 and µ(s, a) = 1

M

∑M
i=1 rθi(s, a).

Maximizing Value Difference. To encourage exploration, we choose augmented trajectories
(τk,1, τk,2) at each round via the following criteria, as indicated by Equation 9

argmax
(w1,τ1),(w2,τ2)∈Daug

off

argmax
i,j∈[N ]

∣∣∣(Ṽi(w1, τ1)− Ṽj(w2, τ2)
)
−
(
Ṽi(w2, τ2)− Ṽj(w1, τ1)

)∣∣∣ , (13)

where Ṽi(w1, τ1) =
∑H
h=1 w1,h · r̃i(sh,1, ah,1).

Policy Extraction. After querying all the preferences, we train an optimistic value function Qψ
and Vψ with IQL (Kostrikov et al., 2021) by minimizing the following loss:

LQ(ψ) = E(s,a,s′)∼Doff [L
τ
2(µ(s, a) + kσ(s, a) + γVϕ(s

′)−Qϕ(s, a)] ,

LV (ψ) = E(s,a,s′,a′)∼Doff

[
Lτ2(Qϕ̂(s

′, a′)− Vϕ(s, a)
]
, (14)

where Lτ2(·) is the τ -expectile loss. Using an expectile loss gives a conservative estimation for the
value function, which aligns with using PEVI in Algorithm 1. Finally, we extract the policy πξ via
minimizing the following objective

Lπ(ξ) = E(s,a)∼D[exp (α(Qϕ(s, a)− Vϕ(s))) log(πξ(a|s))]. (15)

Algorithm 1 OPRIDE: Offline Preference-Based Reinforcement Learning with In-Dataset Explo-
ration, General MDP

1: Input: Unlabeled offline dataset Doff = {τn = {(snh, anh)}Hh=1}Nn=1, query budget K, ensemble
number N

2: Initialized preference dataset Dpref ← ∅.
3: Initialize augmented offline dataset Daug

off with random weights in Equation 11.
4: for episode k = 1, · · · ,K do
5: TrainN ensembles of preference network rθi withDpref using cross entropy loss in Equation 6

and calculate its optimistic variant as in Equation 12.
6: Select augmented trajectories (wk,1, τk,1), (wk,2, τk,2) that maximize the value difference

according to Equation 13.
7: Receive the preference ok between (wk,1, τk,1) and (wk,2, τk,2) and add it to the preference

dataset, i.e.,
Dpref ← Dpref ∪ {((wk,1, τk,1), (wk,2, τk,2), ok)}.

8: end for
9: Train optimistic Q-function Qψ with bonus as in Equation 14.

10: Extract policy πξ via Equation 15.
11: Output: The learned policy πξ

7
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Task OPRL PT PT+PDS OPRIDE True Reward

assembly-v2 10.1±0.5 10.2±0.7 12.8±0.6 23.7±7.7 18.3±6.9
basketball-v2 11.7±10.2 80.7±0.1 78.7±2.0 84.2±0.2 87.3±0.5

button-press-wall-v2 51.7±1.6 58.8±0.9 59.4±0.9 76.4±0.3 63.0±2.1
box-close-v2 15.0±0.7 17.7±0.1 17.2±0.3 59.1±4.1 99.2±1.0

coffee-push-v2 1.7±1.7 1.3±0.5 1.3±0.5 59.8±0.6 20.4±2.7
disassemble-v2 8.4±0.8 6.0±0.4 7.6±0.2 31.7±2.8 44.7±9.0
door-close-v2 61.2±1.3 65.1±10.1 62.4±8.7 60.8±5.1 79.1±2.3

handle-pull-side-v2 11.8±5.3 0.1±0.0 0.1±0.1 40.1±0.2 29.5±6.5
peg-insert-side-v2 3.5±1.8 16.8±0.1 12.4±1.4 61.9±0.6 73.5±1.1

push-v2 10.6±1.5 16.7±5.0 1.8±0.4 76.0±0.2 1.8±0.4

Table 1: Performance of offline RL algorithm on the reward-labeled dataset with different preference
reward learning methods on the Meta-World tasks with 10 queries. ”True Reward” denotes the
performance of offline RL algorithms under the original reward function of the dataset. Complete
experimental results are shown in Appendix F.

0.00 0.25 0.50 0.75 1.00
Million Steps

0

20

40

60

N
or

m
al

iz
ed

R
et

ur
n

OPRIDE (ours)

PT (Optimistic Bonus)

PT

0.00 0.25 0.50 0.75 1.00
Million Steps

10

20

30

N
or

m
al

iz
ed

R
et

ur
n

OPRIDE (ours)

PT (Optimistic Bonus)

PT

0.00 0.25 0.50 0.75 1.00
Million Steps

20

40

60

80
N

or
m

al
iz

ed
R

et
ur

n
OPRIDE (ours)

PT (Optimistic Bonus)

PT

0.00 0.25 0.50 0.75 1.00
Million Steps

0

20

40

60

80

N
or

m
al

iz
ed

R
et

ur
n

OPRIDE (ours)

PT (Optimistic Bonus)

PT

Figure 3: Modular ablation study on the Meta-World tasks. Tasks from left to right are
coffee-push-v2,disassemble-v2,hammer-v2, and push-v2. x-axis denotes the offline
training step and y-axis denotes the normalized offline performance.

4 EXPERIMENTS

In this section, we aim to answer the following questions: (1) How does our method perform on
navigation and manipulation tasks? (2) Can our method improve query efficiency compared to other
offline preference-based RL methods? (3) How effective is each part of the proposed method?

Domain Task OPRL PT PT+PDS OPRIDE True Reward

Antmaze

umaze 76.3±3.7 77.5±4.5 84.5±8.5 87.5±5.6 87.5±4.3
umaze-diverse 72.5±3.4 68.0±3.0 78.0±6.0 73.1±2.4 62.2±4.1
medium-play 0.0±0.0 63.5±0.5 72.5±6.5 62.2±2.0 73.8±4.4

medium-diverse 0.0±0.0 63.5±4.5 58.0±4.0 69.4±5.2 68.1±10.1
large-play 7.3±0.9 6.5±2.5 9.0±8.0 27.5±12.5 48.7±4.3

large-diverse 6.9±2.4 23.5±0.5 8.5±2.5 21.5±1.5 44.3±4.4

Average 27.1±1.7 50.4±2.5 51.7±5.9 56.8±4.8 64.1±5.2

Table 2: Experiments between several baselines and OPRIDE on the Antmaze tasks with 10 queries.

4.1 SETTING

To answer the above questions, we perform empirical evaluations on the Meta-World (Yu et al.,
2019) and Antmaze on the D4RL benchmark (Fu et al., 2020). For the meta-world tasks, we create
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Figure 4: Performance of offline preference-based RL algorithms with different queries. Tasks from
left to right are coffee-push-v2,disassemble-v2,hammer-v2, and push-v2.

a challenging benchmark, which is created by adding random action noises and ϵ-greedy random
actions to the scripted policies.

Baselines: We adopt Offline Preference-based Reward Learning (OPRL; Shin et al., 2023), Pref-
erence Transformer (PT; Kim et al., 2023) and Provable Data Sharing (PT+PDS; Hu et al., 2023)
as the baselines algorithms. Specifically, OPRL and PT, respectively, use disagreement mechanisms
and transformer architecture to learn the reward model. As for PT+PDS, we use multiple seeds to
train PT, and then use PDS technology to generate the final reward value. Please refer to Appendix H
for the experimental details.

4.2 EXPERIMENTAL RESULTS

Answer to Question 1: We conducted a comprehensive comparative analysis of OPRIDE against
several baseline methods, utilizing both Meta-World and Antmaze tasks as our testing grounds.
Specifically, all offline preference-based reinforcement learning (RL) methods were trained with 10
queries to establish the reward model. Subsequently, all algorithms employed the IQL algorithm
for subsequent offline training. It’s worth noting that our method also adopts the same transformer
architecture as PT. The experimental results, presented in Table 1 and Table 2, clearly demonstrate
the superior performance of our approach.

Answer to Question 2: We performed ablation studies to assess the quality of the reward model.
In particular, we varied the number of queries used to train the reward model. The results presented
in Figure 4 demonstrate that OPRIDE significantly outperforms the baselines across various query
quantities. It’s worth noting that the baselines require multiple times the number of queries to
achieve performance on par with OPRIDE.

Answer to Question 3: We conducted module ablation studies using Meta-World tasks. Given
that our method is based on PT (Preference-based Training), we introduced an optimistic bonus to
PT in order to assess the efficacy of our query selection and dual policy. The results depicted in
Figure 3 demonstrate the value of the dual mechanism in specific tasks.

5 CONCLUSION

This paper proposes a new methodology, i.e., in-dataset exploration, to allow query-efficient offline
preference-based RL. Our proposed algorithm, OPRIDE, conducts principled in-dataset exploration
by weighted trajectory queries, and a principled exploration strategy deals with pairwise queries and
a balance between optimism and pessimism. Our method has provable guarantees, while our prac-
tical variant achieves strong empirical performance on various tasks. Compared to prior methods,
our method significantly reduces the amount of queries required. Overall, our method provides a
promising and principled way to reduce queries required from human labelers.

9
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6 REPRODUCIBILITY

A comprehensive description of our algorithm implementation is provided in Section 3.2. The hyper-
parameter configurations are detailed in Appendix H. The code necessary to reproduce OPRIDE are
provided in our supplementary materials. Our theoretical findings are expounded upon in Sec-
tion 3.1, with a detailed proof presented in Appendix C.
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A DETAILS OF OPRIDE IN LINEAR MDPS

Here we provide an detailed description of our OPRIDE algorithm in linear MDPs with online
queries in Algorithm 2.

Algorithm 2 OPRIDE : Offline PbRL with In-Dataset Exploration, Linear MDP

1: Input: Unlabeled offline dataset Doff = {τn = {(snh, anh)}Hh=1}Nn=1, query budget K
2: Initialized preference dataset Dpref ← ∅.
3: for k = 1, · · · ,K do
4: Calculate confidence set Ck(δ) for reward function based on Dpref with Equation 7.
5: Calculate pessimistic value function V̂θ(·) using Algorithm 3 for each θ ∈ Ck(δ).
6: Construct the near-optimal policy set Πk using Equation 8.
7: Select explorative policies πk,1, πk,2 within Πk based on Equation 9.
8: Sample trajectories τk,1, τk,2 with selected policy πk,1, πk,2.
9: Receive the preference ok between τk,1 and τk,2 and add it to the preference dataset

Dpref ← Dpref ∪ {(τk,1, τk,2, ok)}.

10: end for
11: Output: The average policy π̄ = 1/(2K) ·

∑K
k=1(π

k,1 + πk,2).

A.1 PROJECTED MLE ESTIMATOR

In the construction of the confidence set, we use the projected MLE estimator θ̂k as the center
of the confidence set. To obtain the projected MLE estimator, we first construct the standard MLE
estimator by minimizing the following negative log-liklihood or cross entropy

Lλ(θ) = −
N∑
n=1

(
on log(σ(⟨ϕ(τ1n, τ2n), θ⟩)) + (1− on) log(1− σ(⟨ϕ(τ1n, τ2n), θ⟩)

)
− λ

2
∥θ∥22, (16)

where λ is the coefficient for the regularization. Then we calculate the projected MLE estimator by
optimizing the following objective

θ̂k = argmin
∥θ∥≤W

∥gk(θ)− gk(θ̂MLE
k )∥Σ−1

k
(17)

(18)

where

Σk = λI +

k−1∑
i=1

(
ϕ(τ1i )− ϕ(τ2i )

) (
ϕ(τ1i )− ϕ(τ2i )

)⊤
,

gk(θ) =

k−1∑
i=1

σ(⟨ϕ(w1
i , τ

1
i )− ϕ(w2

i , τ
2
i ), θ⟩)

(
ϕ(w1

i , τ
1
i )− ϕ(w2

i , τ
2
i )
)
+ λθ,

and ϕ(τ) =
∑H
h=1 ϕ(s

τ
h, a

τ
h).
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B DETAILS OF PESSIMISTIC VALUE ITERATION (PEVI; JIN ET AL., 2021)

In this section, we consider pessimistic value iteration (PEVI; Jin et al., 2021) as the backbone algo-
rithm, described in Algorithm 3. It is a representative model-free offline algorithm with theoretical
guarantees. PEVI uses negative bonus Γ(·, ·) over standard Q-value estimation Q̂(·, ·) = (B̂V̂ )(·)
to reduce potential bias due to finite data, where B̂ is some empirical estimation of B from dataset
D. We use the following notion of ξ-uncertainty quantifier as follows to formalize the idea of pes-
simism.
Definition 4 (ξ-Uncertainty Quantifier). We say Γ : S × A → R is a ξ-uncertainty quantifier for B̂
and V̂ if with probability 1− ξ, for all (s, a) ∈ S ×A,∣∣(B̂V̂ )(s, a)− (BV̂ )(s, a)

∣∣ ≤ Γ(s, a). (19)

In linear MDPs, we can construct B̂V̂ and Γ based on D as follows, where B̂V̂ is the empirical
estimation for BV̂ . For a given dataset D = {(sτ , aτ , rτ )}Nτ=1, we define the empirical mean
squared Bellman error (MSBE) as

M(w) =

N∑
τ=1

(
rτ + γV̂ (sτ+1)− ϕ(sτ , aτ )⊤w

)2
+ λ||w||22

Here λ > 0 is the regularization parameter. Note that ŵ has the closed form

ŵ = Λ−1
( N∑
τ=1

ϕ(sτ , aτ ) ·
(
rτ + γV̂ (sτ+1)

))
,

where Λ = λI +

N∑
τ=1

ϕ(sτ , aτ )ϕ(sτ , aτ )
⊤. (20)

Then we simply let

B̂V̂ = ⟨ϕ, ŵ⟩. (21)

Meanwhile, we construct Γ based on D as

Γ(s, a) = β ·
(
ϕ(s, a)⊤Λ−1ϕ(s, a)

)1/2
. (22)

Here β > 0 is the scaling parameter. The overall PEVI algorithm is summarized in Algorithm 3.
Also, we provide a variant of PEVI algorithm that evaluates a given policy, as shown in Algorithm 4.

We first characterize the quality of the dataset with the notion of coverage coefficient (Uehara &
Sun, 2021), defined as below.
Definition 5. The coverage coefficient C† of a dataset D = {(sτ , aτ , rτ )}Nτ=1 is defined as

C† = sup
C

{
1

N
·
N∑
τ=1

ϕ(sτ , aτ )ϕ(sτ , aτ )
⊤ ⪰ C · Eπ∗

[
ϕ(st, at)ϕ(st, at)

⊤ ∣∣ s0 = s
]
,∀s ∈ S

}
,

(23)

The coverage coefficientC† is common in offline RL literature (Uehara & Sun, 2021; Jin et al., 2021;
Rashidinejad et al., 2021), which represents the maximum ratio between the density of empirical
state-action distribution and the density induced from the optimal policy. Intuitively, it represents
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the quality of the dataset. For example, the expert dataset has a high coverage ratio while the
random dataset may have a low ratio.

Algorithm 3 Pessmistic Value Iteration Jin et al. (2021)

1: Input: Offline Dataset Doff = {τk = {(skh, akh)}Hh=1}Kk=1, reward function rθ.
2: Set V̂H+1(·) = 0
3: for episode h = H, · · · , 1 do
4: Set Λh ←

∑K
τ=1 ϕ(s

τ
h, a

τ
h)ϕ

⊤(sτh, a
τ
h) + λ · I .

5: Set ŵh ← Λ−1
h (
∑K
τ=1 ϕ(s

τ
h, a

τ
h) · (rθ(sτh, aτh) + V̂h+1(s

τ
h+1))).

6: Set Γh(·, ·)← β · (ϕ(·, ·)⊤Λ−1
h ϕ(·, ·))1/2.

7: Set Q̂h(·, ·)← min{ϕ⊤(·, ·)ŵh − Γ(·, ·), H − h+ 1}+.
8: Set π̂(·|·)← argmaxπh

⟨Q̂h(·, ·), πh(·|·)⟩A.
9: Set V̂h ← ⟨Q̂h(·, ·), π̂h(·|·)⟩A.

10: end for
11: Output: {π̂h}Hh=1.

Algorithm 4 Pessmistic Policy Evaluation

1: Input: Offline Dataset Doff = {τk = {(skh, akh)}Hh=1}Kk=1, reward function rθ, policy π(·|·).
2: Set V̂H+1(·) = 0
3: for episode h = H, · · · , 1 do
4: Set Λh ←

∑K
τ=1 ϕ(s

τ
h, a

τ
h)ϕ

⊤(sτh, a
τ
h) + λ · I .

5: Set ŵh ← Λ−1
h (
∑K
τ=1 ϕ(s

τ
h, a

τ
h) · (rθ(sτh, aτh) + V̂h+1(s

τ
h+1))).

6: Set Γh(·, ·)← β · (ϕ(·, ·)⊤Λ−1
h ϕ(·, ·))1/2.

7: Set Q̂h(·, ·)← min{ϕ⊤(·, ·)ŵh − Γ(·, ·), H − h+ 1}+.
8: Set V̂h ← ⟨Q̂h(·, ·), πh(·|·)⟩A.
9: end for

10: Output: {V̂h}Hh=1.

C PROOF OF THEOREM 3

Proof. For any policy π̃ = greedy
(
V̂θ̃

)
, θ̃ ∈ Ck(δ), we have

V π
⋆

θ⋆ − V π̃θ⋆ = V π
⋆

θ⋆ − V̂ π
⋆

θ⋆ + V̂ π
⋆

θ⋆ − V̂ π
⋆

θ̃
+ V̂ π

⋆

θ̃
− V̂ π̃

θ̃
+ V̂ π̃

θ̃
− V̂ π̃θ⋆ + V̂ π̃θ⋆ − V π̃θ⋆

≤ V π
⋆

θ⋆ − V̂ π
⋆

θ⋆ + V̂ π
⋆

θ⋆ − V̂ π
⋆

θ̃
+ V̂ π

⋆

θ̃
− V̂ π̃

θ̃
+ V̂ π̃

θ̃
− V̂ π̃θ⋆ + 0

≤ V π
⋆

θ⋆ − V̂ π
⋆

θ⋆ + V̂ π
⋆

θ⋆ − V̂ π
⋆

θ̃
+ 0 + V̂ π̃

θ̃
− V̂ π̃θ⋆

≤ V π
⋆

θ⋆ − V̂ π
⋆

θ⋆ + argmax
θ1,θ2∈Ck(δ)

(
V̂ π

⋆

θ1 − V̂
π⋆

θ2 + V̂ π̃θ2 − V̂
π̃
θ1

)
≤ V π

⋆

θ⋆ − V̂ π
⋆

θ⋆ + argmax
θ1,θ2∈Ck(δ)

(
V̂ π̃

k,1

θ1 − V̂ π̃
k,1

θ2 + V̂ π̃
k,2

θ2 − V̂ π̃
k,2

θ1

)
, (24)

which hold with probability 1 − δ. The first inequality follows from the pessimistic property of V̂ ,
the second inequality follows from the fact that π̃ = greedy(V̂θ̃). The third inequality holds since
θ̃, θ⋆ ∈ Ck(δ) and the last inequality follows from the definition of π̃k,1, π̃k,2.
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Following Lemma 6, we have for all policy π and reward function θ,

|V πθ − V̂ πθ | ≤ c ·
√
C†d3H5ζ1

N
:= ϵ.

Then we have

V π
⋆

θ⋆ − V π̃θ⋆ ≤V π
⋆

θ⋆ − V̂ π
⋆

θ⋆ + argmax
θ1,θ2∈Ck(δ)

(
V̂ π̃

k,1

θ1 − V̂ π̃
k,1

θ2 + V̂ π̃
k,2

θ2 − V̂ π̃
k,2

θ1

)
(25)

≤ϵ+ argmax
θ1,θ2∈Ck(δ)

((
V π̃

k,1

θ1 − V π̃
k,1

θ2 + V π̃
k,2

θ2 − V π̃
k,2

θ1

)
+
(
V̂ π̃

k,1

θ1 − V π̃
k,1

θ1

)
(26)

+
(
V̂ π̃

k,1

θ2 − V π̃
k,1

θ2

)
+
(
V̂ π̃

k,2

θ2 − V π̃
k,2

θ2

)
+
(
V̂ π̃

k,2

θ1 − V π̃
k,2

θ1

))
(27)

≤ϵ+ argmax
θ1,θ2∈Ck(δ)

((
V π̃

k,1

θ1 − V π̃
k,1

θ2 + V π̃
k,2

θ2 − V π̃
k,2

θ1

)
+ 4ϵ

)
(28)

=5ϵ+ argmax
θ1,θ2∈Ck(δ)

(
V π̃

k,1

θ1 − V π̃
k,1

θ2 + V π̃
k,2

θ2 − V π̃
k,2

θ1

)
. (29)

Consider the online preference-based regret as

Reg(T ) =
1

2

K∑
k=1

(
V π

⋆

− V π̃
k,1

+ V π
⋆

− V π̃
k,2
)
, (30)
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we have
Reg(T )

≤
K∑
k=1

argmax
θ1,θ2∈Ck(δ)

(
V π̃

k,1

θ1 − V π̃
k,1

θ2 + V π̃
k,2

θ2 − V π̃
k,2

θ1

)
+ 5Kϵ

=

K∑
k=1

argmax
θ1,θ2∈Ck(δ)

{(
Vθ1(τ

k,1)− Vθ2(τk,1) + Vθ2(τ
k,2)− Vθ1(τk,2)

)
+

+ (V π̃
k,1

θ1 − Vθ1(τk,1))− (V π̃
k,1

θ2 − Vθ2(τk,1))

+(V π̃
k,2

θ1 − Vθ1(τk,2))− (V π̃
k,2

θ2 − Vθ2(τk,2))
}
+ 5Kϵ

≤
K∑
k=1

argmax
θ1,θ2∈Ck(δ)

(
Vθ1(τ

k,1)− Vθ2(τk,1) + Vθ2(τ
k,2)− Vθ1(τk,2)

)
+ 5Kϵ+ 16

√
H2K log (

4

δ
)

=

K∑
k=1

argmax
θ1,θ2∈Ck(δ)

(ϕ(τk,1)− ϕ(τk,2))⊤(θ1 − θ2) + 5Kϵ+ 16

√
H2K log (

4

δ
)

≤
K∑
k=1

argmax
θ1,θ2∈Ck(δ)

∥ϕ(τk,1)− ϕ(τk,2)∥Σ−1
k
∥θ1 − θ2∥Σk

+ 5Kϵ+ 16

√
H2K log (

4

δ
)

≤B(δ)

K∑
k=1

∥ϕ(τk,1)− ϕ(τk,2)∥Σ−1
k

+ 5Kϵ+ 16

√
H2K log (

4

δ
)

≤B(δ)

√√√√K

K∑
k=1

∥ϕ(τk,1)− ϕ(τk,2)∥2
Σ−1

k

+ 5Kϵ+ 16

√
H2K log (

4

δ
)

≤B(δ)

√
2Kd log(1 +

KH

d
) + 5Kϵ+ 16

√
H2K log (

4

δ
)

≤c ·
√
d2H2Kζ ′2 + 5Kϵ+ 16

√
H2K log (

4

δ
)

≤c′ ·
√
d2H2Kζ2 + 5Kϵ,

where ζ ′2 = log (T (1 + 2T )/δ) log(1 + KH
d ) and ζ2 = ζ ′2 + log (4/δ). The first inequality follows

from Equation 29. The second inequality follows from Azuma-Hoeffding’s inequality and the fact
that Vθ(τ) − V πθ is a martingale when τ ∼ π. Please refer to Cai et al. (2020) for a detailed
derivation. The third inequality follows from Cauchy-Schwarz inequality and the fourth and fifth
inequalties follows from Lemma 8 and Lemma 9. The last inequality combines the first term and
the third term together.

Finally, follows a standard argument for regret to PAC conversion (Jin et al., 2018), we can show
that with a high probability, the suboptimality of average policy π̄ generated by Algorithm 2 is upper
bounded by

SubOpt(π̄) ≤ c′ ·

(
ϵ+H ·

√
d2H2ζ2
K

)
= c0 ·

√
d3H5C†ζ1

N
+ c1 ·

√
d2H4ζ2
K

.
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D AUXILIARY LEMMAS

Lemma 6 (Suboptimality of PEVI and PPE). For the output π̂ of Algorithm 3, the following in-
equality

SubOpt
(
π̂; s
)
≤ c ·

√
C†d3H5ζ1

N
, (31)

holds for all s ∈ S with probability 1 − δ, where c is an absolute constant and ζ1 = log(4dN/δ).
Similarly, for any policy π, the output V̂ (π) of Algorithm 4 satifies

0 ≤ V1(π)− V̂1(π) ≤ c ·
√
C†d3H5ζ1

N
, (32)

for all s ∈ S with probability 1− δ,

Proof. Following Corollary 4.5 in Jin et al. (2021), we have Equation 31 immediately. Equation 32
is a simple extension of Corollary 4.5 in Jin et al. (2021) and we omit the proof for simplicity.

Lemma 7. [Lemma 1 from Faury et al. (2020)] Let δ ∈ (0, 1] and define the event that θ⋆ is in the

confidence interval Ck(δ) with βk(δ) =
√
λ+

√
log(1/δ) + 2d log (1 + k

λd ) for all k ∈ N:

Eδ = {∀k ≥ 1, θ⋆ ∈ Ck(δ)}.

Then P(Eδ) ≥ 1− δ.

Proof. Please refer to Faury et al. (2020) for a detailed proof.

Lemma 8. With probability 1− δ log(T ), the following inequality holds for all δ ≤ 1/e.

∥θ1 − θ2∥Σk
≤ B(δ), (33)

where B(δ) = (8 + 40H)
√
d log (T (1 + 2T )/δ) +

√
H ≤ c ·

√
dH2 log (T (1 + 2T )/δ).

Proof. Please refer to Corollary 1 in Pacchiano et al. (2021) for a detailed proof.

Lemma 9 (Lemma 19.4 of Lattimore & Szepesvári (2020)). Let λ = 1. Consider the sequence
v1, v2, . . . , vT ∈ Rd such that ∥vt∥ ≤ 1 for all t ∈ [T ]. Define Vt = λI+

∑t−1
s=1 vsv

⊤
s , then we have

∑
t∈[T ]

∥vt∥2V −1
t
≤ 2d log

(
1 +

T

d

)
. (34)
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Proof. Since λ = 1, we have ∥vt∥2V −1
t

≤ 1, therefore∑
t∈[T ]

∥vt∥2V −1
t
≤ 2

∑
t∈[T ]

log
(
1 + ∥vt∥2V −1

t

)
= 2

∑
t∈[T ]

log

(
det Vt

det Vt−1

)

= 2 log

(
det VT
det V0

)
≤ 2 log

(
dλ+ T

dλ

)
= 2 log

(
1 +

T

dλ

)
.
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E DETAILS OF WEIGHTED QUERIES EXPERIMENT ON DIDACTIC MDPS

s11 s12 s13 · · · s1H

s21 s22 s23 · · · s2H

· · ·

sN1 sN2 sN3 · · · sNH

a1

a2

aN

a1

a2

aN

a1

a2

aN

a1

a2

aN

Figure 5: The didactic chain MDP. The reward is defined on the states and different colors denotes
different actions. The transition is deterministic, where action aj leads to sjh+1 regardless of sih for
all i, j ∈ [N ], h ∈ [H]. The features for each state ϕ(s) are randomly generated from a Gaussian
distribution.

τ1 s11 s12 s13 · · · s1H
a1 a1 a1 a1

τ2 s21 s22 s23 · · · s2H
a2 a2 a2 a2

... · · ·

τN sN1 sN2 sN3 · · · sNH
aN aN aN aN

Figure 6: The didactic chain MDP with given dataset {τi}Ni=1. Each trajectory consist one and only
one action. The trajectories covers the whole state space and do not intersect with each other.

To illustrate the importance of weighted queries, we consider the chain MDP as depicted in Figure 5
and Figure 6.
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(a) The performance of weighted and unweighted
random queries with various feature dimension.
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(b) The performance of weighted and unweighted
random queries with various numbers of trajectories
in the dataset.

Figure 7: Results on the didactic chain MDP. Weighted queries has significant advantage when
feature dimension is high or the amount of trajectories in the dataset is limited. The results are
averaged over 100 runs.

The MDP. As shown in Figure 5, the MDP consist of NH states and N actions. The transition
is deterministic, where aj leads to sjh+1 for any sih regardless of i and h. The reward is defined on
states only and r(s) = ϕ(s)⊤θ for some feature map ϕ(s) ∈ Rd and parameter θ ∈ Rd.

Dataset. As shown in Figure 6, the dataset consists of N non-intersect trajectories {τi}Ni=1 where
τi = {(sih, aih)}Hh=1. Each trajectory consist one and only one action. The trajectories covers the
whole state space and do not intersect with each other.

Feature Map. The features ϕ(s) ∈ Rd for each state are randomly generated from the standard
Gaussian distribution, i.e., N (0, 1).

Methods and baselines. We assume that the exact dynamics of the MDP is known. For stan-
dard queries, we uniformly sample pairs of trajectories from the dataset. For weighted queries, we
add random weights wih ∼ clip(N (0, 1),−1, 1) to each state sih in the sampled trajectory τi. Af-
ter querying the preference, we use standard logistic regression to learn the reward function, and
estimate the optimal policy.

Results. We set d = 16, N = 16, H = 32 for the experiment. The performance of random stan-
dard queries and random weighted queries are shown in Figure 2 (d). We can see that weighted
queries significantly outperforms unweighted counterpart in terms of efficiency. To investigate how
parameters like number of trajectories in the datasetN , and feature dimension d influence the perfor-
mance of weighted queries, we also conduct the above experiment with different set of parameters.
The result is shown in Figure 7. It is clear that weighted queries has significant advantage when
feature dimension is high or the amount of trajectories in the dataset is limited.
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F ADDITION EXPERIMENTAL RESULTS

Task OPRL PT PT+PDS OPRIDE True Reward

assembly-v2 10.1±0.5 10.2±0.7 12.8±0.6 23.7±7.7 18.3±6.9
basketball-v2 11.7±10.2 80.7±0.1 78.7±2.0 84.2±0.2 87.3±0.5

bin-picking-v2 82.0±5.6 31.9±16.2 53.4±19.0 75.5±2.9 94.9±2.7
button-press-wall-v2 51.7±1.6 58.8±0.9 59.4±0.9 76.4±0.3 63.0±2.1

box-close-v2 15.0±0.7 17.7±0.1 17.2±0.3 59.1±4.1 99.2±1.0
coffee-push-v2 1.7±1.7 1.3±0.5 1.3±0.5 59.8±0.6 20.4±2.7

dial-turn-v2 43.0±8.4 67.8±3.7 74.3±1.8 58.6±7.7 72.9±2.6
disassemble-v2 8.4±0.8 6.0±0.4 7.6±0.2 31.7±2.8 44.7±9.0
door-close-v2 61.2±1.3 65.1±10.1 62.4±8.7 60.8±5.1 79.1±2.3

door-unlock-v2 79.2±2.3 73.7±5.4 73.6±4.8 73.8±3.4 72.9±1.9
drawer-open-v2 53.0±3.3 59.7±1.3 58.3±0.1 52.6±4.0 70.2±0.5
faucet-close-v2 60.8±1.0 57.8±0.9 46.2±0.2 52.1±1.2 55.1±3.1

hammer-v2 16.4±1.0 30.2±1.7 32.6±0.8 72.5±14.9 96.3±0.6
hand-insert-v2 5.2±3.2 18.7±0.1 20.3±0.6 16.7±2.3 47.0±19.9

handle-press-v2 28.7±4.0 27.9±0.2 28.2±0.2 26.3±0.1 96.7±0.4
handle-pull-side-v2 11.8±5.3 0.1±0.0 0.1±0.1 40.1±0.2 29.5±6.5

lever-pull-v2 63.2±10.4 49.2±3.7 51.7±0.1 36.3±6.9 39.7±0.1
peg-insert-side-v2 3.5±1.8 16.8±0.1 12.4±1.4 61.9±0.6 73.5±1.1

pick-place-v2 0.6±0.0 0.8±0.3 0.8±0.1 0.6±0.3 15.7±14.5
plate-slide-v2 77.4±1.6 4.9±0.0 37.3±2.3 38.8±3.9 79.3±3.6

push-v2 10.6±1.5 16.7±5.0 1.8±0.4 76.0±0.2 1.8±0.4
push-back-v2 0.8±0.0 1.1±0.4 1.1±0.1 21.0±1.9 55.2±10.1
push-wall-v2 7.4±4.2 74.8±14.4 3.4±0.9 81.8±5.8 90.8±0.1

reach-v2 63.5±2.9 82.0±0.8 84.3±0.9 86.0±0.4 87.3±1.4
shelf-place-v2 12.3±1.6 0.0±0.0 1.6±1.6 13.2±0.1 12.3±1.7

soccer-v2 34.3±4.0 51.3±4.1 41.5±11.9 62.3±0.8 70.5±15.6
stick-pull-v2 28.0±14.3 15.3±0.8 0.3±0.2 24.3±2.0 25.8±8.7

sweep-into-v2 37.1±13.9 9.8±0.2 9.2±0.1 70.5±0.3 77.5±0.1
sweep-v2 6.8±1.8 8.0±0.4 8.0±0.1 32.0±5.7 85.8±0.4

window-close-v2 41.2±3.1 47.5±1.0 39.8±10.0 44.1±3.3 27.1±3.6

Average 32.5±3.98 36.0±2.2 33.6±3.4 46.3±4.5 55.2±5.6

Table 3: Experiments between several baselines and OPRIDE on the Meta-World tasks with 10
queries. We select 30 representative tasks from 50 Meta-World MT1 tasks for evaluating. The
experimental results are averaged with five random seeds.
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G ADDITION ABLATION STUDIES

We conducted additional ablation studies for our algorithm. Specifically, we name PT with opti-
mistic bonus term (Equation (12)) as PT (OB). We name PT with optimistic bonus and value differ-
ence term (Equation (13)) as PT (OB + VD). We name PT with optimistic bonus, value difference
and random weighted term (Equation (11)) trajectories as PT (OB + VD + RW).

Additionally, we evaluate the performance of our algorithm under various length of queried trajec-
tories. The experimental results in the Figure 8 and Figure 9 show that the advantage of the random
weighted trajectories, especially under the longer queried trajectories.
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Figure 8: Modular ablation study on the Meta-World tasks with queried trajectory length 100. Tasks
from left to right are coffee-push-v2,disassemble-v2,hammer-v2, and push-v2.
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Figure 9: Modular ablation study on the Meta-World tasks with queried trajectory length 200. Tasks
from left to right are coffee-push-v2,disassemble-v2,hammer-v2, and push-v2.

(a) Performance comparison in the chain MDP be-
tween radnom weight and clip random weight

(b) Performance comparison in the chain MDP be-
tween various random weight.

Figure 10: Ablation studies on the Chain MDP.
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H EXPERIMENT DETAILS

OPRL: We use the official implementation 1, which uses 7 ensembles. Each ensemble is initially
trained with 1 randomly selected query and then performs 3 rounds of active querying and training,
and in each round, 1 query is acquired, making a total of 10 queries.

PT: We use the official implementation 2. We follow its original hyper-parameter settings, and
change the number of queries to 10.

OPRIDE: Our code is built on PT. We use the same transformer architecture and hyper-parameter
with PT. The ensemble number N is 5. The hyper-parameter k in optimistic bonus is 0.1. The size
of Daug

off is 10000. The offline pre-training step for Ṽi(·, ·) in the Equation 13 is 10000 × c, where c
is the c-th selected query. Please refer to Table 4 for detailed parameters.

Hyperparameter Value

Optimizer Adam
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
IQL parameter τ 0.7
IQL parameter α 3.0
Query Number 10

OPRL Value

Ensemble Number 7

OPRIDE Value

Ensemble Number N 5
Optimistic Bonus k 0.1
Size of Daug

off 10000
Offline Pre-training step 10000× c

Table 4: Hyper-parameters sheet of Algorithms.

1https://github.com/danielshin1/oprl
2https://github.com/csmile-1006/PreferenceTransformer/tree/main
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