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ABSTRACT

The weights of neural networks (NNs) have recently gained prominence as a new
data modality in machine learning, with applications ranging from accuracy and
hyperparameter prediction to representation learning or weight generation. One
approach to leverage NN weights involves training autoencoders (AEs) with con-
trastive and reconstruction losses. Indeed, such models can be applied to a wide
variety of downstream tasks, and they demonstrate strong predictive performance
and low reconstruction error. However, despite the low reconstruction error, these
AEs reconconstruct NN models that fail to match the performance of the origi-
nal ones. In this paper, we identify a limitation of weight-space AEs, specifically
highlighting that structural weight reconstruction alone fails to capture some fea-
tures critical for reconstructing high-performing models. To address this issue, we
propose a behavioral loss for training AEs in weight space. This behavioral loss
focuses on the features essential for reconstructing performant models, which are
not adequately captured by structural reconstruction. We evaluate the capabilities
of AE trained using this novel loss on three different model zoos: we demon-
strate that when combining structural and behavioral losses, we can reconstruct
and generate models that match the performance of the original models. With
our exploration of representation learning in deep weight spaces, we show that a
strong synergy exists between structural and behavioral features, and that combin-
ing them results in increased performance across all evaluated downstream tasks.

1 INTRODUCTION

The weights of trained neural network (NN) models have recently become themselves a domain for
research and machine learning, named weight space learning (Kofinas et al., 2023; Lim et al., 2023;
Navon et al., 2023; Schürholt et al., 2024; Zhou et al., 2023a). Since the weights are structured by the
training process, they contain rich information on the data, their generating factors, and also model
performance (Unterthiner et al., 2020; Martin et al., 2021). This opens up the opportunity to analyze
NNs just by investigating their weights. Understanding the inherent structure in trained weights
might further lead to better initializations (Narkhede et al., 2022), model merging (Chou et al.,
2018), or identification of lottery tickets (Frankle & Carbin, 2018). However, weight space learning
presents several challenges: (i) weight spaces grow with model size and become increasingly sparse;
(ii) the weight spaces of different model architectures do not match; (iii) NN architectures contain
mutliple invariances and equivariances which result in weight space symmetries.

Several methods have been proposed to address these challenges, for a variety of downstream tasks.
Weight derived features have been used for discriminative downstream tasks, such as predicting
model performance of training hyperparameters (Unterthiner et al., 2020; Eilertsen et al., 2020;
Martin et al., 2021; Schürholt et al., 2021). In reverse, other works have developed methods for
generative downstream tasks, i.e., the generation of synthetic NN weights. For example, HyperNet-
works are weight generator models, that use the learning signal from the target model to update the
weight-generator (Ha et al., 2017). HyperNetworks have been successfully applied on multiple do-
mains, model sizes, for regular training, architecture search, as well as meta-learning (Zhang et al.,
2019; Knyazev et al., 2021; Deutsch, 2018; Ratzlaff & Fuxin, 2019; Zhmoginov et al., 2022).
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Recently, an approach has been proposed that can be used for both of these downstream tasks
families: extracting information from weights by learning latent representations (dubbed hyper-
representations) with autoencoders (AEs) (Schürholt et al., 2021). Indeed, the encoder outputs
latent representations of NN weights that can be used for discriminative downstream tasks, or fed
to the decoder to reconstruct the model. Alternatively, the decoder can be fed synthetic latent repre-
sentations to generate NN weights (Schürholt et al., 2022a). While these hyper-representation AEs
show high predictive performance and low reconstruction mean-squared-error (MSE), they appear
to lack the fidelity to reconstruct or generate high performance models without further fine-tuning.
This is unsurprising since a large component of the composite loss is a MSE reconstruction. MSE
reconstruction uses the capacity of the model to predict the mean and as much variation as possible,
but may lead to blurry reconstructions and lack of high fidelity (Vincent et al., 2010). Similar obser-
vations in computer vision have been addressed by additional image perception losses which force
the models to focus on high fidelity features, too (Dosovitskiy & Brox, 2016; Esser et al., 2021).

In this work, we propose a analogous approach for weight space learning to improve reconstruc-
tion and generation. We begin by analyzing the error modes of weight-structure reconstruction and
identify that structural reconstruction misses some of the features essential to reconstructing behav-
iorally similar models, thus breaking the reconstructed models. Taking inspiration from the image
perception loss, we introduce a behavioral loss function, and use it for hyper-representation AEs
in conjunction with the existing structural loss: we require models to not only have similar weight-
structure, but also to behave the same way. We systematically evaluate our approach on discrimi-
native, reconstructive and generative downstream tasks. We find that the addition of a behavioral
element to the loss has a minor but positive effect on model analysis tasks. More importantly, we
are able to demonstrate that the combination of the structural and behavioral losses dramatically
improves the fidelity of the reconstructed models: the models and their respective reconstructions
are structurally similar, and they also perform similarly. Finally, we show that this ability to out-
put well-behaved models opens up opportunities to generate synthetic model weights that perform
nearly as well as the original ones. In all experiments, we show that there is strong synergy between
structural and behavioral aspects of the loss, further confirming that combining those guides the AE
to learn representations that are beneficial to model analysis, reconstruction and generation.

2 STRUCTURAL RECONSTRUCTION IS NOT ENOUGH

Reconstruction in Weight Space Learning Prioritizes Coarse Features Previous work on rep-
resentation learning of NN weights with AEs has largely focused on reconstructing weights in the
structural sense, using the mean square error (MSE) (Schürholt et al., 2021). These representations
are effective for discriminative downstream tasks like model performance prediction. However, they
struggle in reconstructing functional models without the need for further fine-tuning, even when
minimizing the structural reconstruction error (Schürholt et al., 2022a; 2024; Soro et al., 2024). This
difficulty may stem from the inductive biases inherent in undercomplete AEs, used in these weight
representation learning approaches. Trained with the MSE loss, these AEs often exhibit a bias
toward learning coarse, smoothed representations, as MSE minimizes reconstruction error by aver-
aging over fine details (Vincent et al., 2010). Tasks that rely on high-resolution features, like texture
recognition, further highlight the limitations of such biases (Zeiler & Fergus, 2014). This smoothing
bias may explain the challenges in reconstructing functional models from weight representations.

Not All Eigenvalues Are Equally Important Recent work by Balestriero & LeCun (2024) inves-
tigates the usefulness of features learned by AE through reconstruction for image perception tasks.
They find that low-eigenvalue features are considerably more useful than high-eigenvalue features.
Inspired by this finding, we explore whether a similar phenomenon exists in weight space that might
explain the challenges in generating functional models from smooth weight representations. To
that end, we train three different model zoos of small convolutional neural networks (CNN) on
the SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky, 2009) and EuroSAT (Helber et al., 2019)
datasets. Following a similar approach to that of Balestriero & LeCun (2024), we represent the
weights as a flattened vector. We then perform a projection akin to PCA by selecting certain eigen-
vectors of the data covariance matrix. We reconstruct the models using the weights after projection
and inverse projection, and test the resulting models on their respective test sets.
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Figure 1: Reconstruction accuracy of convolutional neural networks (CNNs) on SVHN, CIFAR-10,
and EuroSAT datasets after projecting and reconstructing the model weights using different sets of
eigenvectors. The “Top” and “Bottom” cases retain eigenvectors corresponding to the highest and
lowest eigenvalues, respectively. The “Hybrid” case combines the top and bottom eigenvectors, ex-
cluding the middle ones. The “Hybrid” approach shows significantly better reconstruction accuracy,
even with lower explained variance, showing a strong synergy in combining both top and bottom
eigenvectors.

We show the results of our experiment in Figure 1. We consider three different cases: the first two
are similar to Balestriero & LeCun (2024) where we keep either the top or bottom eigenvectors that
explain a certain amount of variance, and are named “Top” and “Bottom” respectively. In addition,
we also include a case where for a target amount of explained variance, we take the top eigenvectors
which explain half of it, and the bottom eigenvectors that explain half of it, therefore leaving out the
eigenvectors in the middle — we name this approach “Hybrid”.

Weight Reconstruction Requires Low and High Eigenvalues On all three datasets, the models
reconstructed from either the “Top” or “Bottom” eigenvalues fail to reconstruct accurate models
when not all eigenvectors are kept. Conversely, it clearly appears that when using the “Hybrid”
eigenvectors, we manage to reconstruct models with a good accuracy, even with relatively low
amounts of explained variance. For example, with the SVHN model zoo, models reconstructed with
“Hybrid” eigenvectors explaining 60% of the variance show an average accuracy of 55%, compared
to 31% with the Top and 22% with the Bottom eigenvectors.

The results show that in order to reconstruct models that performs well, we need the features in the
subspaces spanned by both the top and bottom eigenvectors, but not so much those in the middle.
Schürholt et al. (2022a; 2024); Soro et al. (2024) only use a MSE reconstruction loss in their work,
and we know from Balestriero & LeCun (2024) that because of this, the AE network will mostly
focus on the data subspace spanned by the top eigenvectors, as it is the most useful for reconstruction.
Knowing this, we need further guidance to make the model also focus on the other features essential
to reconstruct high-performing NNs. In the following, we show how we develop a behavioral loss
to achieve this goal.

3 LEARNING FROM STRUCTURE AND BEHAVIOR

Building upon the limitations of autoencoders (AEs) that use a structural loss discussed in Section 2,
where the inherent bias towards coarse features leads to reconstructed neural networks (NNs) with
degraded functional performance, we propose a behavioral loss to enhance the fidelity of the recon-
structed models. Inspired by perceptual losses in computer vision (Esser et al., 2021), our behavioral
loss emphasizes the functional similarity between the original and reconstructed NNs.

Composite Representation Learning Loss We integrate the behavioral loss into the composite
loss originally developed by Schürholt et al. (2021):

L = γLC + (1− γ) (βLS + (1− β)LB) , (1)
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where LC is the contrastive loss, promoting discriminative latent representations; LS is the structural
loss, measuring the parameter-wise difference between the original and reconstructed models; LB is
the behavioral loss, focusing on the functional discrepancy between the models; and γ, β ∈ [0, 1] are
hyperparameters balancing the contributions of each component. Since LC and LS are unchanged
compared to previous work, our primary focus is on the behavioral loss LB .

Behavioral Loss LB Let: θj ∈ Θ ⊂ Rp be the parameters of the j-th NN from the model zoo, for
j = 1, . . . , k; θ̂j = gw(θj) be the reconstructed parameters via the AE with learnable parameters w;
fθ : X → Y denotes an NN that maps on Y ⊂ Rk with weights θ (fθj and fθ̂j are the original and

reconstructed NN with parameters θj and θ̂j respectively), and {xi}ni=1 be a set of queries of input
samples from the sample space X . The empirical behavioral loss is defined as:

L̂b =
1

2kn

k∑
j=1

n∑
i=1

∥∥∥fθ̂j (xi)− fθj (xi)
∥∥∥2 . (2)

This loss measures the discrepancy between the outputs of the original and reconstructed models
over the queries, emphasizing functional equivalence.

Gradient Analysis To understand how the behavioral loss influences the AE training differently
from the structural loss, we analyze their gradients with respect to the AE parameters w. The
structural loss is realized as a mean squared error (MSE) over the parameters θ:

L̂s =
1

2k

k∑
j=1

∥∥∥θ̂j − θj

∥∥∥2 . (3)

Its gradient with respect to the AE’s parameters w is straightforward:

∂L̂s

∂w
=

1

k

k∑
j=1

∆θ⊤j
∂θ̂j
∂w

, (4)

where ∆θj = θ̂j − θj . The gradient of the behavioral loss with respect to the AE parameters w is:

∂L̂b

∂w
=

1

kn

k∑
j=1

n∑
i=1

(
fθ̂j (xi)− fθj (xi)

)⊤ ∂fθ̂j (xi)

∂θ̂j

∂θ̂j
∂w

, (5)

where we abuse the partial derivative notation
∂fθ̂j

(xi)

∂θ̂j
to mean taking the partial derivative with

respect to θ evaluated at θ̂j . Assuming that the reconstructed parameters are close to the original ones
(i.e., ∆θj is small), which is a justified assumption when ||θ̂j − θj ||22 is part of the loss function and
the AE is sufficiently expressive, we can approximate fθ̂j (xi) using a first-order Taylor expansion
around θj :

fθ̂j (xi) ≈ fθj (xi) + Jθj (xi)∆θj , (6)

where Jθj (xi) =
∂fθj (xi)

∂θj
, with Jθj (xi)

⊤ ∈ Rp×k, is the Jacobian of the model output with respect
to its parameters. Substituting into the gradient:

∂L̂b

∂w
≈ 1

kn

k∑
j=1

n∑
i=1

(
Jθj (xi)∆θj

)⊤
Jθ̂j (xi)

∂θ̂j
∂w

=
1

k

k∑
j=1

∆θ⊤j

(
1

n

n∑
i=1

Jθj (xi)
⊤Jθ̂j (xi)

)
∂θ̂j
∂w

. (7)

This allows us to approximate the gradient of the behavioral loss as:

∂L̂b

∂w
≈ 1

k

k∑
j=1

∆θ⊤j Fj
∂θ̂j
∂w

, (8)

where Fj =
1
n

∑n
i=1 Jθj (xi)

⊤Jθ̂j (xi).
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Behavioral Gradients Modulate Structural Gradients with Weight Importance Comparing
the behavioral loss gradient (Eq. 8) to the structural loss gradient (Eq. 4) shows that both depend
on ∆θj , the difference between the original and reconstructed parameters, and ∂θ̂j

∂w . However, while

the structural loss gradient measures the linear alignment between ∆θj and ∂θ̂j
∂w , the behavioral loss

gradient measures the linear alignment between ∆θj and a vector Fj
∂θ̂j
∂w . Fj plays a key role in

the gradient updates because it provides information on the average sensitivity of the original and
reconstructed NNs to changes in the weights, as well as the average linear alignment between their
corresponding gradients w.r.t. the parameters.

The Choice of Queries Impacts the Learned Representations Two NNs trained on the same
dataset with similar performance on the domain of the training data can have different behavior
outside that domain. Similarly, since the behavioral loss depends on the queries used to compute
it, the choice of those will influence which aspects of the behavior of the original models will be
reconstructed. If the queries used for the behavioral loss come from a different domain than the
one of the training data, the AE will attempt to match the behavior of the original and reconstructed
model on parts of the domain where the NN from the zoo did not have training data, and where
its behavior is therefore ill-defined. This implies that the reconstructed and original model will
match performance on parts of the domain that is of no interest, while on the parts of interest the
performance might be arbitrarily different. Hence, the choice of the queries plays an important
role in the performance of the reconstructed models. In Appendix D.3 we explore the hypothesis
that randomly generated queries lead to poor performing reconstructed models, while queries from
the same or similar distribution as the training data lead to good performance of the reconstructed
models.

4 EXPERIMENTS

In the following, we build on the conclusions of Section 3 and experimentally evaluate whether the
inclusion of a behavioral element to the loss function leads to better performance on a selection
of downstream tasks from the literature. We first describe our general experimental setup, and then
compare different variants of our loss functions for each individual downstream task: discriminative,
reconstructive, and generative.

4.1 EXPERIMENTAL SETUP

Model Zoos In this work, we understand a model zoo as a structured population of models using
the same architecture and trained on the same data. We train three different model zoos of convo-
lutional neural networks (CNN), on the SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky, 2009)
and EuroSAT (Helber et al., 2019) datasets. Every model zoo is built with the same grid of hyper-
parameters. In total, every zoo is composed of 1, 200 models, with 10, 853 parameters each, trained
over 50 epochs. We provide additional details about the model zoos generation, their architecture
and their hyperparameters in Appendix A. The model zoos are randomly separated into disjoint
train, validation and test splits with respective proportions {80%, 5%, 15%}.

Loss Functions We use the composite loss function defined in Equation 1. It combines three
elements: a contrastive loss in latent space LC , and two losses in reconstructed space, one structural
LS , one behavioral LB . Their relative weights are controlled by two hyperparameters γ, β ∈ [0, 1].
When γ = 0 the contrastive loss is not used; when β = 0 the structural loss is not used; and when
β = 1 the behavioral loss is not used. When using both the contrastive loss and a reconstructive
loss, we set γ = 0.05, as in the original SANE implementation. When using both the structural
and behavioral loss, we set β = 0.1. This value follows from an exploration of possible values
on our validation set and has shown to perform best, as detailed in Appendix D.6. The case where
γ = 0.05 and β = 1 corresponds to the existing SANE implementation and serves as our baseline.
We implement the contrastive loss LC the same way as in SANE, with NTXent (Sohn, 2016) where
the augmentations used are permutations of weights that do not alter the behavior of the NN. LS and
LB are implemented using the mean-squared-error loss, which is equivalent to the L2 loss up to a
constant factor and a square root.
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Table 1: Discriminative downstream tasks performance. We predict the test accuracy and general-
ization gap of our models based on their latent representation, using a linear probe. We give the R2

score for predictions on the held-out test split. We express the ‘Improvement’ as the R2 score of
LC + LS + LB minus the score of the baseline LC + LS . In all cases, the most performant loss
combination includes both the structural loss LS and the behavioral loss LB .

LOSSES TEST ACCURACY GENERALIZATION GAP
SVHN CIFAR-10 EUROSAT SVHN CIFAR-10 EUROSAT

LC + LS (BASELINE) 0.742 0.890 0.957 0.347 0.700 0.465

LB 0.538 0.771 0.901 0.286 0.576 0.296
LC + LB 0.752 0.893 0.950 0.337 0.710 0.482
LS + LB 0.887 0.939 0.966 0.378 0.785 0.484
LC + LS + LB 0.886 0.947 0.969 0.368 0.785 0.529
IMPROVEMENT 0.144 0.056 0.012 0.021 0.085 0.063

Queries for LB Computing the behavioral loss LB requires us to use some queries to feed to both
the original and reconstructed models, so as to compare their outputs. For every batch, we sample
nqueries = 256 images from the training set used to train the corresponding model zoo.

Hyper-Representation AEs We use SANE, the implementation of hyper-representation AEs by
Schürholt et al. (2024), where the weights of the original model are tokenized, then fed to an encoder
that generates one latent representation per token. A projection head is used for the contrastive loss
LC , whereas all embeddings are fed to the decoder. With an original token length of 289 and an
embedded dimension of 64, our compression ratio is 4.52. While SANE allows the use of windows
of tokens rather than entire models, we systematically feed and reconstruct an entire model at once;
we discuss this limitation in more details in Section 6. We train our hyper-representation models
on the train split of the corresponding model zoo, using the checkpoints corresponding to training
epochs {20, 30, 40, 50}. We provide additional details about hyper-representation AEs training in
Appendix B. Additionally, we extend these results with some ablation experiments in Appendix D.

4.2 COMBINING STRUCTURE AND BEHAVIOR INCREASES PERFORMANCE FOR EVERY TASK

In the following, we evaluate the performance of the hyper-representation AEs trained with different
values of γ and β for three different kinds of downstream tasks: discriminative, reconstructive and
generative. Throughout, to facilitate readability, we refer to the presence or absence of the individual
elements of the composite loss as described in Section 4.1, rather than the specific values of those
hyperparameters. For each downstream task, we first describe the task and how it is evaluated, and
then present the empirical results.

4.2.1 DISCRIMINATIVE DOWNSTREAM TASKS

We consider two different discriminative downstream tasks, where we try to predict either a model’s
test accuracy or its generalization gap (defined as the difference between the train and test accura-
cies). To do so, we compute its hyper-representation using AEs trained with different elements of the
composite loss. Following existing evaluation setups from the literature, we average all embedded
tokens together into a 64 dimensional “center of gravity” of the embeddings, and use a linear probe
on top of it. The probe is trained on the models in the train split, and evaluated on the held-out test
split. We show results in Table 1.

The results show that although we built mostly to improve reconstructive accuracy, our behavioral
loss also improves the performance of our discriminative downstream tasks: in all cases, the most
performant loss combination includes both LS and LB . Since we use linear probes, that means that
the behavioral loss plays a part in better structuring the latent space, and that combining it with the
structural loss synergizes well.
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Figure 2: Evaluation of the reconstructive downstream tasks, pairwise between models from the
model zoo and their reconstructions, depending on the losses used to train the hyper-representation
AE. Each column represents one of our model zoos. On the top row, we show the distribution
of pairwise structural L2 distances. On the bottom row, we show the distribution of the pairwise
behavioral similarities, measured with model agreement. On the structural side, we see that using
the structural loss is sufficient to concentrate most pairwise distances around some low value. On
the behavioral side, we see that using the behavioral loss only yields the worst performance, even
compared to the structural loss. Using both the structural and behavioral losses is necessary to
achieve high levels of agreement. Most models show high levels of agreements, but since a few
show low levels of agreement the standard deviation shown in Table 5 can be high.

4.2.2 RECONSTRUCTIVE DOWNSTREAM TASKS

With the addition of the behavioral loss, we target reconstructed models to be similar to the origi-
nals, both in structure and behavior. Our model zoos are diverse, and contain both high- and low-
performing models: we expect a poorly performing model to be reconstructed as a poorly performing
model, and conversely for well-performing models. We evaluate the fidelity of reconstructed mod-
els first pairwise, then in distribution over the whole test split. All metrics are computed over the
test split of the model zoos, which only includes models not seen by the hyper-representation AE at
training time. We show results for pairwise evaluation in Figure 2, and report more detailed results
in Appendix Table 5.

We first assess the structural reconstruction fidelity by comparing the pairwise L2 distances between
a model weights and its reconstruction. We note that using LS is sufficient and necessary to get low
structural reconstruction errors, with large differences between models that use it and those that do
not. We then measure the behavioral distance between models and their reconstruction using model
agreement. Conversely to the structural distance, we note that using the behavioral loss does not
guarantee high model agreement: models trained with LB but without LS show both the highest
structural error and lowest model agreement. At the same time, models trained with both LS and
LB show much higher agreement than all others. In particular, when comparing those models to our
baseline that uses LC and LS , we see that including LB is essential to achieve a reconstruction that
is behaviorally similar to the original model.

We compare the distributions of model accuracies for models from the zoos and their reconstructions
in Figure 3. We compare the baseline AE that uses LC and LS only to our model that is also trained
with LB . In all cases, the baseline fails to reconstruct models of performance comparable to the
ones in the original zoo. On the other hand, when including LB , reconstructed models are very
performant — at the same time, there seems to be a bias towards reconstructing models with higher
performance than the original when the latter is not among the very best models.

7
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Figure 3: Evaluation of the reconstructive and generative downstream tasks, shown as distributions
of the test accuracy of different models, depending on whether they are part of the original model
zoo, reconstructions of models from that model zoo, or generated models. Each column represents
one of our model zoos, while the row show what loss has been used to train the specific hyper-
representation model. The top row shows results for our baseline, that uses the contrastive LC and
structural LS losses. The bottom row represents our hyper-representation AEs, which in addition are
also trained with a behavioral loss LS . We note that for the baseline, neither the reconstructed nor
the generated models can match the performance of the original models. On the other hand, when
adding a behavioral element to the loss, they match the performance of the most accurate models
from the original zoo.

4.2.3 GENERATIVE DOWNSTREAM TASKS

In addition to reconstructing exisiting models, fixing the hyper-representation AE’s ability to output
performant model weights opens up the way for generating new model weights. In their existing
work, Schürholt et al. (2022a) generate models using their hyper-representations, but their perfor-
mance is limited and they have to be re-trained for a few epochs to achieve performance comparable
to models in the original zoo. In the following, we evaluate whether hyper-representation AEs
trained with a behavioral loss can perform better at model weights generation.

To generate model weights, we first need to generate corresponding synthetic latent representations.
To do so, we select anchor models from the model zoo that are themselves well-performing (more
details in Appendix B) and compute their latent representations. With the goal of mitigating the curse
of dimensionality, we then use PCA to project those in a lower dimensional space of size 32, and use
a kernel density estimate (KDE) to model the distribution of the projected embeddings. For the KDE,
we further assume that the coordinates are orthogonal to each other. We generate new data points
by sampling from that KDE, and inverse project back into the latent representation space. Finally,
we feed these synthetic hyper-representations to the decoder and evaluate the resulting models. We
show results in Figure 3.

We first note that when using the baseline hyper-representation AE, the generated models tend to
be as good as or slightly worse than the reconstructed models. This level of performance is low
compared to the anchors we use for generation, which for all three datasets have more than 60%
test accuracy. On the other hand, when adding our behavioral element to the loss function, we see
that the generated models have a very high test accuracy, very close to the best models in the model
zoo, as reported in Table 2. Their performance seem to match that of the best reconstructed models.
Finally, we show in Appendix Table 6 that generated models are somewhat diverse, although less
than the original anchors. This confirms that we do not generate identical models.
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Table 2: Maximum performance of selected models. ‘Zoo’ describes models from the original
model zoo; ‘Recon.’ includes the reconstructions of the models from the test split of the model
zoo; ‘Gener.’ represents the models synthetically generated as described in Section 4.2. ‘∆Acc

Rec.’ and ‘∆Acc Gen.’ refer to the difference in performance between the best models in re-
spectively the reconstructed and generated models on one side, and the original models on the other
side. For the baseline that only uses the contrastive LC and structural LS losses, reconstruction
and generation do not manage to build models of comparable performance with the original zoo.
Conversely, when adding the behavioral loss LB , we achieve a maximum performance very close to
that of the original zoo.

LOSSES ZOO RECON. ∆Acc REC. GENER. ∆Acc GEN.

SVHN LC + LS (BASELINE) 91.0% 74.5% -16.5% 61.3% -29.7%
LC + LS + LB 91.0% 90.4% -0.6% 90.4% -0.6%

CIFAR-10 LC + LS (BASELINE) 70.1% 51.2% -18.9% 46.0% -24.1%
LC + LS + LB 70.1% 69.5% -0.6% 69.5% -0.6%

EUROSAT LC + LS (BASELINE) 88.5% 68.6% -19.9% 56.5% -32.0%
LC + LS + LB 88.5% 87.7% -0.8% 87.5% -1.0%

5 RELATED WORK

Weight Space Representation Learning Recent work in representation learning on NN weights
has led to various approaches for analyzing and generating models weights. Hyper-Representations
(Schürholt et al., 2021; 2022b;a; Soro et al., 2024) use an encoder-decoder architecture with con-
trastive guidance to learn weight representations for property prediction and model generation. Us-
ing a different learning task for weight generation, other methods employ diffusion on weights (Pee-
bles et al., 2022; Wang et al., 2024; Jin et al., 2024). Our work differs by focusing on understanding
and mitigating the inductive biases in weight space learning, particularly for AE-based approaches.
Similar to our behavioral loss, HyperNetworks use the learning feedback from the target models to
generate their weights (Ha et al., 2017; Knyazev et al., 2021; 2023). Graph representation meth-
ods (Zhang et al., 2019; Kofinas et al., 2023; Lim et al., 2023), Neural Functionals (Zhou et al.,
2023a;b; 2024) and related approaches like Deep Weight Space (DWS)(Navon et al., 2023; Zhang
et al., 2023) learn equivariant or invariant representations of weights. While these methods incor-
porate geometric priors of the weight space in encoder or decoder models, we focus in this work
on AE-based approaches, as they cover the largest breadth of downstream tasks. Augmentations
specific to weight space learning have also been developed (Shamsian et al., 2024). As mentioned
in Section 4.1, our experiments focus on augmentations that do not alter the behavior of the NN, and
therefore do not include such augmentations.

Probing-Based Losses in Weight Space Other works have leveraged losses that are based on
the response of models given a set of queries, first of which are HyperNetworks (Ha et al., 2017).
De Luigi et al. (2023) use weight-space auto-encoders, but they feed the queries directly to the de-
coder which is then trained on the true labels. Navon et al. (2023) propose an architecture that can
be used in many different setups, one of them being domain adaptation, where they use the loss
on the new domain. More closely related to our work, Herrmann et al. (2024) leverage behavioral
losses (which they name functionalist) to analyze recurrent neural networks (RNNs) with high per-
formance. Their work differs from ours as they use the decoder as an emulator of the function
represented by the original model, whereas we directly reconstruct the original model. Navon et al.
(2024) use a composite loss in their deep weight space alignment experiment setup, with elements
closely related to structure and behavior but tailored to their particular use-case. For example, they
use probing-based self-supervised losses as a way to measure linear mode connectivity between two
models, rather than to compare their individual behavior. Our work’s exploration of the synergy
between structure and behavior gives insights in how incorporating both structural and behavioral
loss elements can have contributed to the good performance of their model.
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Generation of Neural Networks for a Fixed Architecture Different attempts at generating NN
weights for a given architecture have been proposed, such as random generation of weights with-
out explicit use of data (Schrauwen et al., 2007; Timotheou, 2010), pruning of overparameterized
randomly generated networks (Malach et al., 2020), learning weights as a function of the data via
imposing a probability measure on the dataset (Bolager et al., 2024), reconstruction of weights by
evaluating the network on a specific dataset (Fornasier et al., 2022), etc. Our approach differs be-
cause it does not use labelled data, nor does it generates the weights in a data-agnostic sense.

Inductive Biases of AEs AEs trained with mean squared error (MSE) loss often exhibit an in-
ductive bias toward learning coarse, smoothed representations, which can result in the loss of fine-
grained details important for certain tasks (Alain & Bengio, 2014; Vincent et al., 2010). However,
tasks that rely on high-resolution features, such as texture recognition and fine-grained classifica-
tion, require the retention of these fine details for optimal performance (Zeiler & Fergus, 2014;
Gatys et al., 2016). To address these limitations, alternative approaches like perceptual losses (John-
son et al., 2016), adversarial training (Makhzani et al., 2016), and variational methods (Kingma &
Welling, 2013) have been proposed to preserve fine details in reconstructions. Similar challenges
arise in NN weight space learning, where coarse weight reconstructions may lead to suboptimal
model performance due to the loss of important structural details in the network’s weights (Li et al.,
2016). We take inspiration from the existing work in the computer vision domain to build a behav-
ioral loss with the goal of mitigating this issue in weight space.

6 DISCUSSION

Limitations This paper highlights the importance of considering both structure and behavior when
training AEs in weight space, as both are essential for reconstructing and generating high-performing
models. However, since scaling tranformer-based architectures to large sequences is challenging,
our exploration is limited to smaller models. Our work focuses on validating our findings and the
concept of a behavioral loss: we defer its implementation for larger NNs to future work. Another
limitation is the computational overhead, as we need to reconstruct and test generated models at each
training step. In Appendix D.4 however, we show that for comparable computing time, using struc-
ture and behavior still outperforms fully-structural approaches. Finally, as shown in Appendix D.3,
using a proper set of queries that is close to that used to train the model zoo is important. This
means that conversely to the fully-structural approach, there is a need for unlabeled data samples
when using the behavioral loss.

Conclusion Our work presents an in-depth exploration of the weight-space modality in the con-
text of representation learning, presenting strong synergies in combining structural and behavioral
signals when learning from populations of trained NNs. We first show that to reconstruct accurate
models, weight-space AEs need to focus on features that are spanned by both the top and bottom
eigenvectors of the data covariance matrix, while those in the middle matter less. Since fully struc-
tural AEs tend to mostly focus on features spanned by the top eigenvectors, we build a behavioral
loss function to guide the learning of weight-space AEs towards the other features that are essen-
tial to reconstruct high-performing models, and theoretically explore how it differs from a purely
structural loss. Finally, we demonstrate experimentally that adding a behavioral element into the
loss function of weight-space AEs synergizes with the structural element, with the resulting models
outperforming the purely structural baseline for discriminative, reconstructive as well as generative
downstream tasks. More generally, our work shows that training self-supervised models in weight
space requires a balance between structural and behavioral features to perform well. Our analysis
uncovers hitherto unknown insights and opens up exciting research opportunities in the domain of
weight-space representation learning.
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A MODEL ZOOS GENERATION

All the models in our zoos have the same architecture, described in Table 3. For the EuroSAT
dataset, we first resize the images to 32 × 32 so that for all three datasets, inputs are of dimension
32×32×3 and outputs of dimension 10. For all datasets, we use standardization with the mean and
standard deviations for ImageNet. We do not use augmentations.

Table 3: CNN architecture used for our experiments.

LAYER HYPERPARAMETER VALUE

Convolutional 1 Channels in 3
Channels out 16
Kernel size 3

MaxPool 1 Kernel size 2
Stride 2

ReLU 1

Convolutional 2 Channels in 16
Channels out 32
Kernel size 3

MaxPool 2 Kernel size 2
Stride 2

ReLU 2

Convolutional 3 Channels in 32
Channels out 15
Kernel size 3

MaxPool 3 Kernel size 2
Stride 2

ReLU 3

Flatten

Linear 1 Dimension in 60
Dimension out 20

ReLU 4

Linear 2 Dimension in 20
Dimension out 10

Models are trained for 50 epochs, with a batch size of 32. We use the Adam optimizer. To generate
diverse models within our zoo, we vary other hyperparameters, as described in Table 4. This results
in a total of 1, 200 models per zoo, with one checkpoint for each training epoch. In Figure 4, we
show the distribution of model test accuracies in all three zoos, throughout the training process.

Table 4: Training hyperparameters for our model zoos. Kaiming initializations refer to work by He
et al. (2015).

HYPERPARAMETER VALUES

Initialization Uniform, Normal, Kaiming Uniform, Kaiming Normal
Learning rate 1e− 4, 1e− 4, 2.5e− 4, 5e− 4, 7.5e− 4, 1e− 3
Weight decay 1e− 4, 5e− 4, 1e− 3
Seed 0, 1, ..., 19
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Figure 4: Distribution of the model test accuracies in our three model zoos, by training epoch.

B HYPER-REPRESENTATION MODEL TRAINING

Pre-processing While the original SANE implementation uses several pre-processing steps such as
weight alignment with Git Re-Basin (Ainsworth et al., 2022) or standardization, we find empirically
that such steps are not necessary anymore when using LB . We therefore only use a single pre-
processing step, which is the pre-computation of behaviorally equivalent weight permutations of
models in our zoo, which are used as augmentations and in the context of the contrastive loss LC .

Hyperparameters We train our hyper-representation transformer encoder and decoder with the
following hyper-parameters: an input dimension of 289, an output dimension of 64, and a model
dimension (d model) of 256. The encoder was configured with 8 attention heads (num heads)
and comprised 8 layers (num encoder layers). We use a batch size of 64, and a weight decay
of 3e − 9. After grid optimization, we select a learning rate of 1e − 4 for our baseline (LC + LS),
and 1e− 5 for all others (i.e., those that use LB). Training is done for 100 epochs.

Anchors for the generative downstream tasks Regarding the selection of anchor models for the
generative downstream task, we select only models with good performance compared to the rest of
the zoo. As shown in Figure 4, the distribution of accuracies varies a lot depending on the zoo we
take into consideration. For this reason, we choose different test accuracy thresholds for each zoo:
80% for SVHN, 60% for CIFAR-10 and 70% for EuroSAT.

Computational load We ran all experiments on NVIDIA Tesla V100 GPU. We train for a total of
100 epochs, and on a training set composed of 4, 080 checkpoints (1, 020 different models, training
epochs {20, 30, 40, 50}). When the behavioral loss is not used, training takes around 4, 400 seconds
or a little less than 1 hour and 15 minutes, while when using the behavioral loss, training takes around
8, 300 seconds or a little more than 2 hours and 15 minutes. There is a notable difference because
instead of only comparing tokens to tokens, the reconstructed tokens have to be converted back into
a usable model, and then a forward pass must be done over the reconstructed model. Fortunately,
computing this for each model in a batch is parallelized, hence why the difference in computation
time is still under a factor of 2. While indeed more expensive than the fully-structural approach, we
deem the trade-off for increased performance acceptable.
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C ADDITIONAL RESULTS

In this Section, we show additional results in Table format that complement those shown in Sec-
tion 4.2. In Table 5, we show structural distance and behavioral similarity between models and their
reconstructions, pairwise. In Table 6, we study the diversity of the generated models, both in terms
of structure and behavior.

Table 5: Reconstructive downstream tasks performance. We evaluate structural reconstruction with
the average L2 distances between the weights of test split models and their reconstructions. We
evaluate behavioral reconstruction with the average classification agreement between test split mod-
els and their reconstructions. Standard deviation is indicated between parentheses. BL indicates the
baseline. While using the structural loss LS is sufficient and necessary to get low strucural recon-
struction distance, the behavioral loss LB alone does not suffice to reconstruct behaviorally close
models. Only the combination of LS and LB allows the reconstruction of models that are close both
in terms of structure and behavior.

LOSSES STRUCTURE (L2 DISTANCE) BEHAVIOR (AGREEMENT)
SVHN CIFAR-10 EUROSAT SVHN CIFAR-10 EUROSAT

LC + LS (BL) 30.7 (±10) 31.3 (±13) 41.4 (±22) 50.0% (±20%) 31.9% (±16%) 35.9% (±24%)

LB 57.8 (±6) 59.5 (±9) 67.5 (±17) 26.6% (±22%) 10.3% (±8%) 19.2% (±25%)
LC + LB 55.7 (±7) 60.7 (±9) 67.4 (±17) 26.6% (±22%) 11.8% (±14%) 18.5% (±25%)
LS + LB 26.9 (±10) 29.6 (±13) 45.5 (±21) 86.1% (±11%) 59.4% (±20%) 66.5% (±25%)
LC + LS + LB 27.1 (±10) 30.0 (±13) 43.6 (±21) 87.0% (±9%) 59.6% (±19%) 65.8% (±25%)

Table 6: Diversity of generated models, expressed as the mean pairwise L2 distance between all
models in the selected set, computed either on weights (structure) or predictions (behavior). Anchors
are the models from the model zoo used as a basis to generate synthetic latent representations. In all
cases, there is some diversity in then generated models, showing that we do not generate identical
models. However, when using the behavioral loss LB , we see that both the structural and behavioral
diversity of generated models is lower.

LOSSES STRUCTURE (L2 DISTANCE) BEHAVIOR (L2 DISTANCE)
SVHN CIFAR-10 EUROSAT SVHN CIFAR-10 EUROSAT

ANCHORS 23.3 (±4) 22.9 (±4) 23.0 (±5) 3.6 (±0) 4.7 (±0) 4.2 (±1)

LC + LS (BASELINE) 13.4 (±3) 14.9 (±4) 16.8 (±5) 4.1 (±2) 4.9 (±2) 8.7 (±2)

LB 1.6 (±0) 3.5 (±1) 6.3 (±1) 0.0 (±0) 0.2 (±0) 0.1 (±0)
LC + LB 1.7 (±0) 1.5 (±0) 3.0 (±1) 0.0 (±0) 0.1 (±0) 0.1 (±0)
LS + LB 1.6 (±0) 1.5 (±0) 2.8 (±1) 0.6 (±0) 0.8 (±0) 1.2 (±1)
LC + LS + LB 1.5 (±0) 1.3 (±0) 2.1 (±1) 0.7 (±0) 0.7 (±0) 1.1 (±1)
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D ABLATION EXPERIMENTS

D.1 CONTRASTIVE LOSS IS STILL USEFUL

In Section 4.2, we show that when combining the structural LS and behavioral LB losses, the
performance of all downstream tasks is improved. This raises an additional question: is using the
contrastive loss LC still relevant? The results shown in Tables 1 and 5 look inconclusive in that
regard. As LC focuses in structuring the latent space and has little influence over the decoder, we
mostly evaluate it with regard to the discriminative downstream tasks that take place in the latent
space, in Figure 5.

Figure 5: Comparison of the performance of the discriminative downstream tasks by training epoch
of SANE. We first note that both models that use LS and LB , show a more stable increase in per-
formance with each epoch, and mostly outperform other models. Then, comparing the model that
uses LS + LB with the one that uses LC + LS + LB , we qualitatively note that in most cases, per-
formance grows faster with the number of epochs.

We compare both models that use LS and LB : the one that uses LC and the one that does not.
Qualitatively, the performance of the model that uses LC grows faster with the number of training
epochs compared to that of the model that does not use LC . Additionally, we note from Table 1 that
when predicting the generalization gap for the EuroSAT zoo, the model that uses LC outperforms
the one that does not by 0.045, whereas the largest difference in performance in the other direction
happens for predicting the generalization gap for the SVHN zoo, and is only of 0.01, or 4.5 times
inferior. Although relatively weak, empirical evidence seems to indicate that using the contrastive
loss LC together with both structure LS and behavior LB remains relevant.

D.2 MSE IS THE MOST STABLE BEHAVIORAL LOSS

In Section 4.1, we use a MSE loss (which is equivalent to the L2 distance up to a constant factor
and a square root) over the predictions of a model and that of its reconstruction. There are, however,
other losses that could be used in that context. We explore those empirically in this Section. In
particular, we tested using either a cross-entropy loss, or a distillation loss (Hinton, 2015) with a
temperature of 2. We explore these on hyper-representations trained with all three elements of the
composite loss: contrastive LC , structural LS and behavioral LB . We show the resulting training
losses in Figure 6.

We observe that despite our best attempts, both the cross-entropy and distillation losses are numer-
ically unstable for at least one model zoo, whereas the MSE loss remains stable and decreasing in
all cases. This could not be resolved by changing the learning rate. For this reason, and because the
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Figure 6: Training loss of hyper-representation models that are trained with all three of contrastive
LC , structural LS and behavioral LB elements, but where we vary how the behavioral loss is com-
puted. We note that only the MSE loss yields stable results across all model zoos.

MSE loss yields already very satisfying results, we decided to focus solely on the MSE loss in this
paper.

D.3 USING THE RIGHT QUERIES IS ESSENTIAL

While computing the structural loss is a straightforward MSE between the weights of the original
model and its reconstruction, comparing their behavior requires using some data, which we have
named the queries X = {xi}ni=1. As discussed in Section 3, this raises the question of what data
points to use as queries. In this context, we name dataset from which we sample the n queries the
query set. In this Appendix, we discuss the choice of the query set.

Let a model fθj be trained over some training dataset (X, y). First, since the behavioral loss only
compares the outputs of fθj and its reconstruction fθ̂j , we do not need y and can discard it. We
therefore focus on X , and its distribution p(X). Indeed, since the input domain X can be very large,
e.g., all pixel values in a 32 × 32 × 3 image, we have guarantees to sample from the subdomain of
interest only if we are restricted to a very small subset, e.g., natural images. Similarly, the behavior
of fθj is well defined only where p(X) has high probability, as it is the domain it has been trained
on. The existence of adversarial examples (Goodfellow et al., 2014) shows that even in the close
vicinity of p(X), the behavior of fθj is ill-defined. It follows that for our behavioral loss to be
effective at reconstructing NNs of similar performance, it needs to be computed as close as possible
to p(X).

We experimentally validate this hypothesis. The setup is the same as the one described in Sec-
tion 4.1. We train hyper-representation AEs on all three of our model zoos, using all three of the
contrastive LC , structural LS and behavioral LB losses. Here, however, we vary the query set used
when computing the behavioral loss during training. The baseline, which we name “Zoo trainset”,
is the same setup as used in Section 4, where the queries are samples from the training set of the
corresponding model zoo. The first variation consists in using natural images, but from a different
dataset. This could correspond to a setup where the hyper-representation model does not have ac-
cess to the zoo’s training set and uses some default dataset instead. To that end, we use the STL-10
dataset (Coates et al., 2011), resized to 32 × 32 × 3, which we name “STL-10 32”. Finally, we
also test using data points sampled uniformly from X , i.e., uniform noise; we name this query set
“Random”.

We show the results for the discriminative downstream tasks in Figure 7. As hypothesized, we see
large gaps in performance depending on the query set used. In all cases, when using the Random
query set the performance is low. For both SVHN and EuroSAT, we also see a large gap in perfor-
mance between Zoo trainset and STL-10 32. For CIFAR-10, however, the performance when using
STL-10 32 is very good, even surpassing Zoo trainset. Indeed, STL-10 is a dataset that also contains
natural images, and uses similar classes as CIFAR-10. The distributions of SVHN and EuroSAT,
respectively house numbers and satellite imaging, are farther in distribution from STL-10.
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Figure 7: Comparison of the performance of the discriminative downstream tasks by training epoch
of SANE, compared for different query sets. Random queries yield low performance, and using the
Zoo trainset yields highest performance for SVHN and EuroSAT. For CIFAR-10, Zoo trainset and
STL-10 32 show a similar level of performance.

Figure 8: Evaluation of the model reconstructions, shown as distributions of the test accuracy of dif-
ferent models, depending on whether they are part of the original model zoo or reconstructions.
We represent variations in the query set in the rows, where STL-10 32 and Random are repre-
sented. Models reconstructed using Random queries all perform close to random guessing, and
so do SVHN models reconstructed with STL-10 32 queries. EuroSAT models reconstructed with
STL-10 32 queries perform a little better than random guessing but a lot worse than original mod-
els. CIFAR-10 models reconstructed with STL-10 32 tend to match the distribution of the original
models, except the most performant ones, where they fail to perform as well.
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We further show the results for the reconstructive downstream tasks in Figure 8. When using the
Random query set, we see a similarly poor performance, with reconstructed models all performing
poorly, very close to random guessing. For the SVHN zoo, using STL-10 32 performs similarly
poorly. It performs slightly better for EuroSAT. When considering CIFAR-10, reconstruction using
the STL-10 32 query set performs relatively well, but reconstructed models still fail to match the
very best models in the zoo in terms of performance.

These results validate our hypothesis that the choice of a right query set is of paramount importance.
That is a limitation for the behavioral loss, as contrary to the structural one, it is not data free, and
even requires data from the zoo’s training set to perform best. Results on CIFAR-10 and STL-10
are, however, encouraging: using a query set that is not the zoo’s training set, but that is close
enough in distribution, can still yield very satisfying levels of performance. This opens the door for
engineering comprehensive query sets for cases where the training set of the models in the zoo is
not available.

D.4 BEHAVIORAL LOSS REMAINS RELEVANT WITH LIMITED COMPUTING RESOURCES

As discussed in Appendix B, training hyper-representation models with a behavioral loss takes
around twice as much computing time as with only a structural loss. There, we concluded that
this was an acceptable trade-off with regard to the increased performance the behavioral loss brings.
This raises, however, the question of the validity of the behavioral loss in a compute-constrained set-
ting. In this Section, we evaluate the performance of hyper-representation AEs trained with either
the structural or both the structural and behavioral loss, but for a similar computing budget.

To that end, we consider the experiment setup as defined in Section 4.1. We compare the hyper-
representation model trained with the contrastive LC and structural LS losses with the one trained
with all three, i.e., the one that also includes the behavioral loss LB . The difference is, we take the
hyper-representation LC + LS after 100 epochs of training, and compare it to the LC + LS + LB

after only 50 epochs; the computing budget allocated to both is therefore comparable.

When comparing the discriminative downstream tasks’ performance in Figure 5, we clearly see
that the performance of the hyper-representation trained with LC + LS + LB at 50 epochs is in all
cases higher than that of the one trained on LC + LS at 100 epochs. While the performance of the
latter seems to increase more rapidly, it reaches a plateau relatively early in the training process; the
former, however, keeps improving steadily.

We further investigate the reconstructive downstream tasks in Figure 9. There, we see that even
with less training epochs, the models reconstructed using the behavioral loss LB reach higher levels
of performance, comparable to that of the models from the zoo. We note, however, that for the
EuroSAT zoo, we fail to reconstruct models as performant as the best models in the zoo: this shows
that the AE could still benefit from further training. In general, however, these results indicate that
for a fixed computing budget, using both the structural LS and behavioral LB losses yields better
performance than using LS only with more training epochs.

D.5 COMBINING STRUCTURE AND BEHAVIOR WORKS ON LARGER ARCHITECTURES

In this Appendix, we explore whether our findings generalize to a larger CNN architecture. To do
so, we build a new model zoo using the same hyperparameters as those described in Appendix A but
based on the LeNet-5 (LeCun et al., 1998) architecture, for the CIFAR-10 dataset. This architecture
has 62, 006 parameters, or roughly 6 times as many parameters compared to our other zoos. We
show results in Figure 10, which validate that using LC + LS + LB outperforms the baseline (LC +
LS) for reconstructive downstream tasks.
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Figure 9: Evaluation reconstructive downstream tasks, for a comparable computing budget where
LC + LS is evaluated after 100 epochs and LC + LS + LB is evaluated after only 50 epochs. Even
with half the number of training epochs, the AE using the behavioral loss outperforms the one that
does not use it. We see, however, that for the EuroSAT zoo, we fail to reconstruct the very best
models as performant as they are: the AE could benefit from further training.

Figure 10: Evaluation of reconstructive downstream tasks, on a larger LeNet-5 architecture, trained
on CIFAR-10. Panels A.1 and A.2 show the distribution of test accuracies of models and their
reconstruction. They show that the distribution of reconstructed models’ performance is much closer
to that of the originals’ when using both LS and LB . Panel B shows the pairwise L2 distances
between the weights of models and their respective reconstruction; we note a similar distribution
with slightly lower distances when using LS only. Panel C shows the pairwise model agreement
between models and their respective reconstruction, demonstrating a higher level of agreement when
using both LS and LB .
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D.6 SELECTING THE WEIGHT OF THE STRUCTURAL LOSS

In this Appendix, we describe how we selected the hyperparameter β, which is used to control the
weight of the structural loss LS and the behavioral loss LB . To do so, we used the validation set
of our model zoo, and evaluated the discriminative and reconstructive downstream tasks on it using
different values of hyperparameter β.

We show the results for the discriminative downstream tasks in Table 7. There, a value of β = 0.1
shows best performance across all datasets, except when predicting the generalization gap on
CIFAR-10. Differences between the performance of the downstream tasks are larger when consid-
ering the SVHN dataset than for the other two. For these reasons, with regard to the discriminative
downstream tasks, we select a value of β = 0.1.

We show the results for the reconstructive downstream tasks in Table 8. As can be expected, a
larger β, which is linked with a larger weight for the structural loss LS , generally leads to lower L2

distance between model weights. When considering model agreement, however, a value of β = 0.1
seems to perform best across all datasets. Since this value performs best for both discriminative and
reconstructive downstream tasks, we select it for the rest of our experiments.

Table 7: Discriminative downstream tasks performance on the validation set, for various values
of hyperparameter β. We predict the test accuracy and generalization gap of our models based
on their latent representation, using a linear probe. We give the R2 score for predictions on the
held-out test split. For the SVHN dataset, using β = 0.1 clearly outperforms all other options.
When predicting model test accuracy, it is also the best option, by a small margin. Results for
predicting the generalization gap are more inconclusive for CIFAR-10 and EuroSAT, but differences
in performance remain relatively small.

TEST ACCURACY GENERALIZATION GAP
β SVHN CIFAR-10 EUROSAT SVHN CIFAR-10 EUROSAT

0.0 0.725 0.932 0.940 0.338 0.799 0.622
0.1 0.890 0.964 0.963 0.429 0.788 0.622
0.2 0.667 0.958 0.957 0.295 0.789 0.576
0.3 0.657 0.959 0.962 0.290 0.776 0.557
0.4 0.668 0.958 0.948 0.324 0.806 0.578
0.5 0.701 0.941 0.943 0.337 0.807 0.536

Table 8: Reconstructive downstream tasks performance on the validation set, for various values of
hyperparameter β. We evaluate structural reconstruction with the average L2 distances between the
weights of test split models and their reconstructions. We evaluate behavioral reconstruction with
the average classification agreement between test split models and their reconstructions. Standard
deviation is indicated between parentheses. When considering structural distance, a larger β seems
linked with a lower distance. When considering model agreement, a value of β = 0.1 performs best
across all three datasets.

STRUCTURE (L2 DISTANCE) BEHAVIOR (AGREEMENT)
β SVHN CIFAR-10 EUROSAT SVHN CIFAR-10 EUROSAT

0.0 56.0 (±6) 61.0 (±9) 64.2 (±16) 19.6% (±1%) 10.5% (±4%) 10.8% (±4%)
0.1 27.1 (±9) 30.0 (±12) 40.6 (±20) 82.1% (±18%) 54.5% (±13%) 66.6% (±23%)
0.2 26.7 (±8) 28.3 (±12) 39.5 (±20) 64.9% (±18%) 53.5% (±16%) 64.9% (±25%)
0.3 26.3 (±8) 27.9 (±11) 37.4 (±18) 65.2% (±18%) 51.4% (±18%) 63.9% (±26%)
0.4 25.5 (±8) 27.5 (±10) 37.0 (±18) 65.0% (±18%) 50.6% (±18%) 62.8% (±26%)
0.5 25.6 (±8) 28.0 (±10) 35.9 (±18) 64.9% (±18%) 47.5% (±16%) 61.4% (±26%)
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