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Abstract

The COVID-19 pandemic continues to bring up various topics discussed or debated
on social media. In order to explore the impact of pandemics on people’s lives,
it is crucial to understand the public’s concerns and attitudes towards pandemic-
related entities (e.g., drugs, vaccines) on social media. However, models trained
on existing named entity recognition (NER) or targeted sentiment analysis (TSA)
datasets have limited ability to understand COVID-19-related social media texts
because these datasets are not designed or annotated from a medical perspective.
This paper releases METS-CoV, a dataset containing medical entities and targeted
sentiments from COVID-19-related tweets. METS-CoV contains 10,000 tweets
with 7 types of entities, including 4 medical entity types (Disease, Drug, Symptom,
and Vaccine) and 3 general entity types (Person, Location, and Organization).
To further investigate tweet users’ attitudes toward specific entities, 4 types of
entities (Person, Organization, Drug, and Vaccine) are selected and annotated
with user sentiments, resulting in a targeted sentiment dataset with 9,101 entities
(in 5,278 tweets). To the best of our knowledge, METS-CoV is the first dataset
to collect medical entities and corresponding sentiments of COVID-19-related
tweets. We benchmark the performance of classical machine learning models
and state-of-the-art deep learning models on NER and TSA tasks with extensive
experiments. Results show that the dataset has vast room for improvement for both
NER and TSA tasks. With rich annotations and comprehensive benchmark results,
we believe METS-CoV is a fundamental resource for building better medical social
media understanding tools and facilitating computational social science research,
especially on epidemiological topics. Our data, annotation guidelines, benchmark
models, and source code are publicly available (https://github.com/YLab-O
pen/METS-CoV) to ensure reproducibility.
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1 Introduction
The outbreak of the COVID-19 pandemic has had severe implications for people’s lives and global
health (Khan et al., 2020). To assess the impact of this pandemic on the public, epidemiologists and
medical researchers conducted research through various methods such as clinical follow-up (Huang
et al., 2021), questionnaires (Kumari et al., 2020), and app tracking (Zens et al., 2020). Social media
is one of the most popular media types in the world. With its large user base, rapid information
dissemination, and active participation, social media has become an important channel for the public
to express their feelings and opinions on COVID-19-related topics, which provides researchers with
large-scale and low-cost materials to track the impact of COVID-19. For example, as shown in Fig.1,
Twitter users express their attitudes toward medical entities (e.g., drugs and vaccines) through their
Twitter posts. Large-scale analyses of such tweets are vital to understanding the public’s opinions
towards medical topics, which can further help medical research or public health management.
Therefore, many studies have been proposed to track and analyze people through social media
platforms such as Twitter, one of the most widely used social media platforms (Banda et al., 2021;
Shahi et al., 2021; Xue et al., 2020; Boon-Itt et al., 2020; Hua et al., 2022).

Is it true that Governor Cuomo

Person

to NYershas banned the promising malaria drug
Drug

with covid 19 and if so why would he do  such a thing ? Can that rule be overridden by 
our president ?

I don’t wanna take Covid-19 Vaccine. High risk for me . I’m immunosuppressed 
person and I don’t wanna let nothing more touch my inmune system . Be on “O “ is 
enough an nightmare with side effects all the Time . And I wanna take Ocrevus just 
every 9 moths to let to rest my body .

Vaccine

Drug

Figure 1: Examples of medical entities and targeted sentiments in tweets.

However, existing natural language processing (NLP) tools (Bird, 2006; Schmitt et al., 2019; Cao
et al., 2022) struggle to fulfill the surging demand for accurate COVID-19 tweet analysis due to
several reasons:

• Most NLP tools are not explicitly designed for social media texts, leading to dramatic
performance degradation when applied to noisy texts such as tweets (Duarte et al., 2018).

• Most current NLP tools are developed for general applications, so domain adaptation can be
poor without adding external knowledge from medical studies.

• Existing NLP tools are not designed from the medical or public health research perspective,
making it challenging to meet the needs of epidemiologists to analyze medical topics.

In short, the very underlying reason for the poor applicability of these tools in COVID-19 social
media studies is the lack of COVID-19-related social media datasets designed and annotated from
a medical perspective. Furthermore, one of the most critical analysis goals for COVID-19-related
studies conducted on tweets is to find the entities (both general and medical entities) discussed by
users and their attitudes or feelings towards them. Such goals correspond to two basic NLP tasks:
named entity recognition (NER) and targeted sentiment analysis (TSA). NER aims at entity extraction
from unstructured texts, and TSA aims at user sentiment prediction towards the targeted entities.
In this work, we release METS-CoV (Medical Entities and Targeted Sentiments on CoVid-19-related
tweets), a dataset that contains 10,000 tweets annotated with 7 types of entities, including 4 medical
entity types (Disease, Drug, Symptom, and Vaccine) and 3 general entity types (Person, Location, and
Organization). In addition, 4 types of entities (Person, Organization, Drug, and Vaccine) are selected
and annotated with user sentiments to explore the attitudes of tweet users toward specific entities.
Unlike other general NER and TSA datasets, METS-CoV is built from a public health research
perspective and contributes to developing tailored natural language processing tools for the medical
domain to mine valuable information from social media rather than only relying on keyword search.
For example, based on the NER and TSA model trained on METS-CoV dataset, researchers can track
public attitudes toward COVID-19 vaccination for more efficient vaccination policies. The models
could also track the public’s mental status in different COVID-phases, providing potential solutions
for addressing the global mental health crisis. In addition, we design detailed annotation guidelines
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for medical entities on tweets. The guidelines have been applied to our annotation process as strict
supervision and control to ensure quality. We benchmark the performance of classical machine
learning models and state-of-the-art deep learning models (including pretraining language models)
on NER and TSA tasks of METS-CoV. According to the benchmark results, the NER and TSA tasks
on the dataset have much space for performance improvement.

2 Related Work

METS-CoV supports two basic NLP tasks from a medical perspective: 1) named entity recognition,
i.e., identifying general and medical entities, and 2) targeted sentiment analysis, i.e., predicting
the attitudes of Twitter users towards specific entities (including Drug and Vaccine). This section
reviews several commonly used open-source datasets for these two tasks and compares them with the
proposed dataset.

2.1 Named Entity Recognition Datasets

CoNLL 2003 (Tjong Kim Sang and De Meulder, 2003) is one of the most widely used NER datasets
with its newswire texts collected from the Reuters Corpus. The dataset consists of 4 general entity
types: PER (Person), LOC (Location), ORG (Organization), and MISC (Miscellaneous), which are
also adopted in the SciTech News dataset (Jia et al., 2019). WNUT NER (Strauss et al., 2016) is
a benchmark NER dataset for the social media domain that consists of manually annotated tweets
with 10 entity types. Nevertheless, none of the entity types is medical-related. Similarly, the recently
release Tweebank-NER dataset is neither medical-related (Jiang et al., 2022). In the medical domain,
NER is often used to extract medical terminologies from clinical case reports (CCRs) or electronic
medical records (EMRs). A representative medical NER dataset is i2b2-2010 dataset (Uzuner et al.,
2011), which includes discharge summaries and progress notes provided by well-known medical
centers with 3 entity types: test, problem, and treatment. Besides, one of the SMM4H shared tasks
(Klein et al., 2020; Weissenbacher et al., 2019) released a dataset for extracting tweet text spans
with adverse drug reactions (ADR). This dataset is not COVID-19-related. On the other hand, the
CORD-NER dataset (Wang et al., 2020b) has 75 fine-grained types of entities from scientific papers
about COVID-19 and historical coronavirus research. But since social media texts have way more
colloquial forms than scientific papers, models trained on WNUT or CORD-NER are unsuitable for
social media analyses.

2.2 Targeted Sentiment Analysis Datasets

Most TSA studies typically experiment on 3 datasets: LAPTOP (Pontiki et al., 2014), TWIT-
TER (Mitchell et al., 2013), and REST (Pontiki et al., 2015, 2016). Specifically, LAPTOP and REST
are user review datasets collected from the laptop and restaurant domains. The TWITTER dataset
has tweets but only with general types of entities (Person and Organization). At the same time,
the data might be outdated for the ever-involving social media languages. There are several recent
open-domain TSA datasets. For example, YASO (Orbach et al., 2021) is an open-domain TSA dataset
containing more than 2,000 English user comments extracted from YELP 2, AMAZON (Keung et al.,
2020), SST (Socher et al., 2013), and OPINOSIS (Ganesan et al., 2010), covering a variety of topics
in multiple domains. COVIDSenti (Naseem et al., 2021) includes 90,000 COVID-19-related tweets
annotated with overall sentiment polarity.

Despite the existing open-domain and in-domain datasets, NER and TSA on clinical social media texts
remain an under-explored area. There is a pressing need for such datasets to facilitate social media-
based public health studies. To fill in this gap, we release METS-CoV, a COVID-19 tweets-based
NER and TSA dataset with 3 general entity labels (Person, Location, Organization,) 4 medical entity
labels (Disease, Drug, Symptom, and Vaccine) as well as sentiment labels for Person, Organization,
Drug, and Vaccine entities.

3 METS-CoV

In this section, we provide a detailed description of the collection methodology, annotation process,
and statistics of the NER and TSA subsets of METS-CoV.

2https://www.yelp.com/dataset
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3.1 Data Collection Methodology
We collect COVID-19 related tweets ranging from February 1, 2020, to September 30, 2021, whose
unique Tweet Identifier (Tweet ID) came from an open-source database (Chen et al., 2020a). All
the tweets are downloaded following Twitter’s automation rules and data security policy. For data
filtering, we first remove non-English tweets and retweets, resulting in 368,816,761 tweets. Then we
filter out the tweets containing URLs because they are often restatements of third-party messages and
do not directly reflect the users’ intentions and attitudes. Finally, we use a list of symptoms (including
symptoms of COVID-19 as well as common diseases) as keywords to match the tweets to extract
medical-related tweets (Wang et al., 2020a; Goss et al., 2018; Sarker et al., 2020; Lopez-Leon et al.,
2021; Mao et al., 2020). 2,208,676 tweets remain after the pre-processing step.

3.2 Data Annotation Process
We define 7 entity types based on public health research needs (Tsao et al., 2021; Xu et al., 2022),
including 3 general entity types and 4 medical entity types for annotation. In particular, we select 4
entity types for additional sentiment annotation with 3 types of sentiment labels: positive, negative,
and neutral. All the annotation work is done using the YEDDA annotation platform by Yang et al.
(2018b). We first randomly sample 6,000 tweets from the pre-processed tweets for NER annotation.
Then we use these 6,000 annotated NER data to train a BERT-based NER tagger and annotate the
rest of the tweets. In order to include more medical entities in the dataset, we select additional 4,000
tweets from the model labeled data (with higher drug and vaccine entity ratios) and manually validate
the entities to extend the dataset to a total number of 10,000 tweets.

Here we describe detailed annotation guidelines and processes for the METS-CoV-NER dataset
and the METS-CoV-TSA dataset in detail. Note that all our annotators are from medical domains,
including medicine, public health and pharmaceutical sciences.

The annotation process of METS-CoV-NER. The annotation includes 3 phases:

1. In the pre-annotation phase, all annotators are requested to conduct 3 rounds of annotation
(with training). F1 value is used as the metric of inter-annotator agreement. All the
annotators are assigned the same corpus and required to annotate following the guidelines.
After annotation, the project leader compares all the labels and determined the final gold
labels, which are used to calculate the inter-annotator agreement. Annotators with F1 greater
than 80% are selected to enter the formal annotation process. The annotation guidelines are
also iteratively updated throughout this process.

2. In the formal annotation phase, annotators label the tweets in pairs (3 pairs in total) to ensure
each tweet is annotated twice. When an inconsistency occurs, another annotator steps in to
determine the final annotation of the tweet.

3. After the formal annotation phase, the project team conducts a quality control check on
the labeled results to ensure that the annotated tweets meet the annotation guidelines’
requirements. The final inter-annotator agreement is 85.0% in the F1 value.

The annotation process of METS-CoV-TSA. Similar to the NER dataset’s annotation process,
METS-CoV-TSA’s annotation has 3 phases.

1. First, we conduct 6 rounds of sentiment pre-labeling and update the labeling guidelines in
each iteration. We use accuracy as the metric of inter-annotator agreement. The procedure
to determine the gold labels is the same as for METS-CoV-NER.The annotators who meet
the consistency criteria are selected to participate in the subsequent annotation process.

2. We randomly pair up the annotators (4 pairs in total) and assign the same tweets to each
group. A third annotator determines the final annotation when inconsistency occurs.

3. The project team conducts a secondary check to ensure that the annotation meets the
guidelines. The final inter-annotator agreement is 78.4% in accuracy.

Our annotation guidelines are customized to understand medical-related entities and sentiments better.
NER guidelines include rules such as "when the manufacturer name refers to a vaccine in the tweet
context, the name should be annotated as a vaccine rather than an organization." Sentiment guidelines
include rules such as "when irony appears in an annotation entity, its sentiment should be annotated
from the standpoint of the person who posted the tweet." More details can be found in our guidelines
(see supplementary data).
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3.3 Dataset Statistics
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Figure 2: The distribution of tweets length of
METS-CoV.

Fig.2 shows the distribution of tweet lengths in
METS-CoV. Most tweets have lengths shorter
than 80 (split with white spaces). Among them,
The largest proportion of tweets have a length
of around 50. Table 1 shows the statistics of
the METS-CoV-NER dataset. 10,000 tweets
contain 19,057 entities in total, resulting in 1.91
entities per tweet in this dataset. We observe
that Symptom entities have the highest frequency.
This is an expected result of pre-filtering tweets
using symptom-related keywords3. Other than
symptoms, all other 6 entity types have rela-
tively balanced proportions. Table 2 presents the
statistical information of the METS-CoV-TSA
dataset, where we observe that neutral sentiment
accounts for the highest proportion across all 4
target entities. For the drug entities, users have
significantly more positive sentiments than negative sentiments, whereas for the vaccine entities,
users have similar positive and negative sentiments.

Table 1: Statistics of METS-CoV-NER dataset.

Number Train Dev Test
Tweets 7,000 1,500 1,500
Tokens 285k 59k 60k
All Entities 13,570 2,749 2,738

Person 2,253 472 487
Location 1,371 294 279
Organization 1,934 396 381
Disease 1,555 301 258
Drug 1,077 262 227
Symptom 4,223 806 869
Vaccine 1,157 218 237

Table 2: Statistics of METS-CoV-TSA dataset.

Number Train Dev Test

Person

POS 260 64 58
NEU 1293 256 240
NEG 700 152 189

Organization

POS 126 24 31
NEU 1346 284 251
NEG 462 88 99

Drug

POS 234 85 64
NEU 730 147 142
NEG 113 30 21

Vaccine

POS 112 25 20
NEU 913 173 183
NEG 132 20 34

4 Model Benchmarking
In this section, we evaluate the performance of statistical machine learning models, neural networks,
general domain large-scale pre-trained language models (PLM), and COVID-19-related PLM for the
NER task and the TSA task on METS-CoV, respectively. In addition, we select the best model from
each group for in-depth analysis and discussion.

4.1 Named Entity Recognition
Models. The NER models that we benchmark on the NER dataset can be divided into 4 branches:
a traditional statistical machine learning model: Conditional Random Field (CRF) (Lafferty et al.,
2001); 6 neural network models from a combination of (1) a BiLSTM for word-level feature extraction
(denoted as WLSTM in Table 3) and (2) CRF or non-CRF as the inference layer or (3) without
character information or encoding character feature with structure CNN, LSTM (denoted as CCNN
and CLSTM respectively) (Yang et al., 2017; Lample et al., 2016; Huang et al., 2015; Ma and Hovy,
2016); 3 general domain PLM including BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019) and
BART (Lewis et al., 2020); two COVID-19-related PLM: BERTweet-covid19 (Nguyen et al., 2020)
and COVID-TWITTER-BERT (Müller et al., 2020). BERTweet is RoBERTa-base further trained on

3Some matched symptom keywords are not real symptom entities in tweets due to the ambiguity of words,
that is why the total number of Symptom entities is less than 10,000.

5



Table 3: Model performance on METS-CoV-NER dataset. (* means uncased model)

Results (F1 value ± std) Person Location Organization Disease Drug Symptom Vaccine Overall
CRF 64.43±1.59 76.37±0.62 54.64±2.08 73.61±0.44 77.34±1.60 74.05±0.56 84.85±0.82 71.58±0.54
WLSTM 72.05±0.79 79.82±0.61 60.79±0.77 73.52±1.26 79.63±1.36 76.72±0.83 86.03±0.84 75.02±0.36
WLSTM + CCNN 80.63±0.62 81.47±0.89 61.30±0.91 74.52±0.75 80.46±0.28 76.63±0.91 85.91±1.17 76.78±0.29
WLSTM + CLSTM 81.16±0.29 81.37±0.48 62.28±1.41 74.80±1.49 79.50±1.01 76.70±0.25 85.59±1.46 76.91±0.22
WLSTM + CRF 72.41±0.44 79.25±0.59 62.39±0.97 74.89±1.28 79.60±0.71 79.14±0.51 88.72±0.62 76.38±0.22
WLSTM + CCNN + CRF 81.38±0.44 82.15±0.44 62.79±0.91 76.12±0.76 80.41±0.58 78.12±0.51 89.11±0.36 78.10±0.19
WLSTM + CLSTM + CRF 77.49±1.67 81.26±1.19 63.21±0.93 75.61±0.76 81.27±0.65 79.14±0.53 87.85±0.43 77.63±0.40
BERT-base* 86.99±1.27 84.47±0.84 71.01±0.52 76.18±1.49 84.78±1.02 80.26±0.43 89.83±0.56 81.49±0.36
BERT-base 86.71±0.73 84.09±1.67 71.90±0.91 76.93±1.11 84.54±1.05 79.70±1.22 89.48±0.99 81.34±0.41
BERT-large* 87.47±1.22 84.43±1.05 71.21±0.59 76.34±0.96 85.53±1.52 81.44±0.18 89.33±1.25 81.98±0.30
BERT-large 88.25±0.52 84.63±1.38 73.30±1.38 76.52±1.11 86.05±1.06 80.12±0.55 89.16±1.58 82.05±0.24
RoBERTa-base 85.58±0.73 85.46±0.86 72.21±1.11 76.49±1.63 85.38±1.15 79.81±0.67 89.89±0.28 81.43±0.20
RoBERTa-large 86.79±0.44 85.85±2.12 73.78±0.72 76.84±0.57 86.79±0.78 81.32±0.67 90.42±1.12 82.55±0.27
BART-base 84.24±0.59 82.85±0.71 70.60±1.46 75.01±1.80 83.39±1.03 79.03±0.48 90.22±1.58 80.17±0.46
BART-large 81.60±4.93 80.04±4.74 64.66±8.86 71.24±1.90 80.61±2.90 74.27±4.45 81.21±6.20 75.56±5.04
BERTweet-covid19-base* 91.63±0.79 85.79±0.75 77.07±0.51 77.09±1.61 83.57±0.65 81.16±0.45 91.16±1.54 83.63±0.36
BERTweet-covid19-base 91.50±0.81 86.26±0.97 76.47±0.46 77.80±0.57 84.16±1.22 80.89±0.52 89.98±1.04 83.49±0.18
COVID-TWITTER-BERT* 91.29±0.42 85.68±0.92 76.27±0.64 77.48±0.81 86.35±0.96 81.85±0.53 90.44±0.94 83.88±0.20

Table 4: Span F1 of NER models.
Model (F1 value ± std) Person Location Organization Disease Drug Symptom Vaccine Overall
CRF 64.43±1.59 76.37±0.62 54.64±2.08 73.61±0.44 77.34±1.60 74.05±0.56 84.85±0.82 74.52±0.77
WLSTM + CCNN + CRF 81.38±0.44 82.15±0.44 62.79±0.91 76.12±0.76 80.41±0.58 78.12±0.51 89.11±0.36 82.15±0.33
RoBERTa-large 86.79±0.44 85.85±2.12 73.78±0.72 76.84±0.57 86.79±0.78 81.32±0.67 90.42±1.12 85.91±0.43
COVID-TWITTER-BERT 90.51±0.67 85.37±0.30 76.31±0.55 77.14±1.77 86.64±0.65 81.36±0.38 89.71±2.35 86.70±0.45

850 million general English tweets and 23 million COVID-19-related tweets. COVID-TWITTER-
BERT is BERT-large further trained on 97 million COVID-19-related tweets. All the experiments of
NER models are conducted using NCRF++ (Yang and Zhang, 2018).

Training and Test Sets. To compare the model performance, we perform a train-dev-test splitting
of our dataset with a ratio of 70:15:15. Statistics of the train-dev-test splits are presented in Table 1.
Hyperparameters of the models are default settings from Yang et al. (2018a).

Results and Discussion. Table 3 shows the performance of NER models on the NER test set
evaluated by micro-F1. We list both the mean values and standard deviations. We can observe that
COVID-TWITTER-BERT achieves the best performance with an overall micro-F1 value of 83.88,
outperforming both general domain PLM and classical NER models based on CRF or BiLSTM (and
their variants). Specifically, for the 3 general entity types (Person, Organization and Location), the
language models pre-trained on COVID-19-related tweets (COVID-TWITTER-BERT) outperform
the best general PLM (RoBERTa-large). The absolute F1 improvements are 3.38, 0.41, and 3.29 for
Person, Organization, and Location, respectively. For the 4 medical entity types, COVID-TWITTER-
BERT outperforms RoBERTa-large except for the Drug entity type, for which a slightly worse
performance is observed.

To compare various models in detail, we select the best models from each branch, i.e., CRF, WLSTM
+ CCNN + CRF, RoBERTa-large, and COVID-TWITTER-BERT, to represent the state-of-the-art
statistical machine learning model, traditional neural network model, general domain PLM, and
COVID-19 related PLM, respectively. Following Liu et al. (2021), we adopt the Span F1 and the Type
Accuracy (Type Acc) as the two metrics to evaluate the 4 models. Span F1 indicates the correctness
of entity spans in NER, while Type Acc refers to the proportion of the predicted entities that have
both correct spans and types out of predicted entities with the correct spans.

As shown in Table 4 and Table 5, we observe that COVID-TWITTER-BERT achieves the best overall
performance in both metrics, followed by RoBERTa-large. Specifically, COVID-TWITTER-BERT
achieves the best performance on Person and Organization entities compared to the RoBERTa-large,
with 3.72% and 2.53% improvement in terms of Span F1, respectively. For Type Acc, COVID-
TWITTER-BERT performs the best on four entity types including Person, Location, Organization
and Drug. These results demonstrate the effectiveness of incremental pre-training of language models
on COVID-19-related tweets. In addition, we also conduct an experiment to investigate the effect of
tweet lengths on the model performance. Experimental results are presented in Fig 3. We observe
that all models perform better when the tweet length is short (less than 40 tokens). Their performance

6



Table 5: Type Acc of NER models.
Model (Acc ± std) Person Location Organization Disease Drug Symptom Vaccine Overall
CRF 97.25±0.85 93.75±0.66 93.38±0.57 92.61±2.07 98.00±0.30 97.13±0.14 97.63±0.53 96.06±0.32
WLSTM + CCNN + CRF 95.88±0.61 93.89±0.15 88.08±1.32 90.12±1.47 97.64±0.90 97.42±0.22 97.97±0.41 95.06±0.20
RoBERTa-large 97.38±0.66 95.72±0.89 93.87±1.03 87.46±0.44 98.75±0.86 97.58±0.34 99.27±0.42 96.18±0.21
COVID-TWITTER-BERT 97.66±0.34 96.86±0.83 94.34±0.77 89.38±0.77 99.42±0.21 97.20±0.59 97.65±0.57 96.39±0.16
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Figure 3: F1 values of different NER models
against the tweet length.

Figure 4: The confusion matrix of
COVID-TWITTER-BERT on NER test set.

gradually decreases dealing with longer tweets. We also visualize the confusion matrix of the best
performing model, COVID-TWITTER-BERT, on the test set in Fig 4. We find that in most cases,
COVID-TWITTER-BERT extracts the entities correctly. However, it tends to get confused when
labeling Symptom and Disease entities. This confusion is expected because diseases and symptoms
oftentimes have similar expressions and contexts. Besides, we also notice that all models performed
worse on Organization entities. This problem has also been encountered and discussed in previous
Twitter NER dataset papers such as (Jiang et al., 2022).

Through the above experiments and analysis, we conclude that COVID-TWITTER-BERT can be
regarded as a strong baseline on the NER dataset of METS-CoV, and there is still vast room for
improvement. Specifically, the F1 value of Disease and Organization entities is suboptimal. More
effective NER models are needed for this challenging dataset.

4.2 Targeted Sentiment Analysis
Models. The TSA models that we benchmark on METS-CoV-TSA could be classified into 4
categories: 1 statistical machine learning model: SVM (Vo and Zhang, 2015); 7 traditional neural
network models: ASGCN (Zhang et al., 2019), LSTM (Hochreiter and Schmidhuber, 1997), TD-
LSTM (Tang et al., 2016b), MemNet (Tang et al., 2016a), IAN (Ma et al., 2017), MGAN (Fan et al.,
2018) and TNet-LF (Li et al., 2018); 6 general domain PLM (BERT-base-uncased): AEN (Song
et al., 2019), LCF (Zeng et al., 2019), BERT-SPC (Devlin et al., 2019), depGCN (Zhang et al., 2019),
kumaGCN (Chen et al., 2020b) and dotGCN (Chen et al., 2022); and 4 models (BERT-SPC, depGCN
, kumaGCN and dotGCN) with COVID-19 related PLM (COVID-TWITTER-BERT).

Train and Test Sets. The TSA dataset’s train-dev-test splitting (with a ratio of 70:15:15) corresponds
to that of the NER dataset mentioned above. In this setting, the TSA training dataset is the subset
of the NER training dataset, where only the tweets containing targeted entities are kept. A similar
procedure is also adopted to obtain the dev and test sets of TSA. The details of TSA split statistics can
be found in Table 2. Still, we set the hyperparameters of the models according to the original papers.

Results and Discussion. The experiment results of TSA are listed in Table 6. We can observe that
models incorporating COVID-TWITTER-BERT as feature extractor significantly outperform other
types of models. Specifically, depGCN (COVID-TWITTER-BERT) achieves the best performance on

4https://github.com/duytinvo/ijcai2015
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Table 6: Model performance on METS-CoV-TSA dataset.
(† means our implementation. The standard deviation of SVM model is not reported because the

prediction of LibSVM4 is not affected by random seeds when the dataset splitting is fixed.)

Model (mean ± std)
Person Organization Drug Vaccine Overall

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
SVM (Vo and Zhang, 2015) 50.72 36.99 64.57 42.02 58.15 30.17 70.89 46.09 59.53 38.73
LSTM (Hochreiter and Schmidhuber, 1997) 58.56±1.79 50.41±2.48 61.00±0.95 45.64±0.47 56.39±2.18 41.53±1.92 65.99±2.41 40.03±3.62 60.21±1.53 49.08±1.58
TD-LSTM (Tang et al., 2016b) 59.26±0.98 49.54±1.81 63.90±2.19 41.57±2.76 59.91±1.72 41.04±2.22 73.08±0.77 38.14±2.73 63.16±0.65 48.26±1.09
MemNet (Tang et al., 2016a) 59.79±1.57 43.97±3.30 64.79±2.48 37.98±1.92 59.21±1.86 40.24±1.19 74.43±1.21 36.98±2.79 63.73±0.85 45.04±1.65
IAN (Ma et al., 2017) 52.81±1.72 32.75±2.65 67.68±0.45 36.70±1.94 59.73±0.45 25.22±0.10 77.22±0.00 30.88±0.00 62.59±0.55 34.62±1.77
MGAN (Fan et al., 2018) 57.17±2.00 43.84±4.70 63.84±2.68 40.09±1.20 58.33±2.22 35.32±5.01 72.49±0.98 37.05±5.10 62.00±1.10 42.55±3.17
TNet-LF (Li et al., 2018) 58.07±1.19 51.17±2.10 63.16±1.52 47.68±1.59 60.00±2.00 46.30±2.51 68.52±3.15 41.57±2.17 61.71±1.01 50.80±1.22
ASGCN(Zhang et al., 2019) 58.89±0.63 42.48±2.61 63.89±0.84 39.73±2.62 58.41±1.90 31.12±3.91 72.66±2.02 38.24±2.95 62.69±0.23 41.32±2.22
AEN (Song et al., 2019) 56.84±2.54 47.91±4.12 60.63±4.22 45.68±3.58 52.51±3.12 37.08±4.31 69.12±4.59 41.46±3.31 59.37±2.43 46.28±3.73
LCF (Zeng et al., 2019) 60.29±2.10 52.43±2.31 68.58±1.06 50.15±4.17 58.42±3.16 44.01±1.64 71.14±2.73 41.75±1.90 64.27±1.61 51.29±2.06
BERT-SPC (Devlin et al., 2019) † 64.39±0.91 60.06±1.01 73.28±0.93 58.48±1.50 62.38±1.33 49.11±2.90 77.22±0.96 50.28±5.09 68.87±0.34 59.31±1.18
depGCN (Zhang et al., 2019)† 67.39±1.16 62.35±2.08 74.02±0.71 58.62±1.06 63.61±1.07 49.32±0.74 77.13±1.54 47.50±2.73 70.38±0.40 59.96±0.77
kumaGCN (Chen et al., 2020b)† 66.28±1.33 61.84±2.46 72.86±0.59 58.01±2.04 63.61±0.77 49.67±3.14 76.88±0.73 50.17±4.56 69.59±0.73 59.91±2.48
dotGCN (Chen et al., 2022)† 67.06±1.63 62.56±1.54 73.33±0.68 58.34±1.52 63.35±2.13 50.20±1.98 77.55±0.77 45.98±2.90 70.09±0.75 60.05±1.41
BERT-SPC(COVID-TWITTER-BERT)† 73.72±1.47 70.25±2.10 78.53±0.61 66.24±1.59 75.07±1.06 62.67±3.10 79.15±1.02 61.68±3.70 76.29±0.57 70.03±0.92
depGCN (COVID-TWITTER-BERT) † 75.85±1.22 72.70±1.78 79.42±1.25 66.94±2.66 76.92±1.49 67.35±2.45 77.89±2.14 59.85±4.45 77.42±0.77 71.39±1.65
kumaGCN (COVID-TWITTER-BERT) † 74.37±1.39 71.46±1.43 78.48±1.46 64.56±1.61 76.30±2.38 62.96±7.41 78.73±1.50 58.87±2.63 76.65±1.20 70.20±1.95
dotGCN (COVID-TWITTER-BERT) † 74.95±1.60 72.53±1.54 79.11±0.89 65.21±2.06 74.10±1.90 61.26±2.14 78.65±1.72 59.41±2.92 76.65±0.49 70.32±0.96
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Figure 5: F1 values of different TSA models
against the tweet length.

Figure 6: The confusion matrix of depGCN
(COVID-TWITTER-BERT) on TSA test set.

the Person entities compared to the BERT-based depGCN, with 8.46% and 10.35% improvement in
terms of ACC and F1, respectively. For Organization entities, depGCN (COVID-TWITTER-BERT)
still performs the best, with at least 5.4% and 8.32% improvement on ACC and F1, respectively. For
Drug entities, depGCN (COVID-TWITTER-BERT) outperforms other models by a large margin
and achieves 13.31% and 18.03% absolute improvements in terms of ACC and F1 compared with
BERT-based depGCN. For Vaccine entities, BERT-SPC (COVID-TWITTER-BERT) outperforms all
other models, with at least 1.6% and 11.4% improvement in terms of ACC and F1.

To investigate the impacts of tweet lengths on different TSA models, we select the best models from
each branch, i.e., SVM, MemNet, depGCN (BERT-base), and depGCN (COVID-TWITTER-BERT).
As shown in Fig 5, we observe that the impacts of tweet length varies for different TSA models.
For SVM and TNET, the F1 value gradually decrease when the length of tweets gets longer. For
dotGCN, the F1 value fluctuates sharply when the tweet length is between 20 and 40. Afterwards, it
increases moderately as the tweet length grows from 40. For depGCN (COVID-TWITTER-BERT),
the F1 value remains stable when the tweet length is less than 50 and then increases to 0.8 and finally
decreases to about 0.6.

We choose depGCN (COVID-TWITTER-BERT) for an in-depth analysis since it achieves the best
overall performance. Fig 6 shows the confusion matrix of applying depGCN (COVID-TWITTER-
BERT) to the TSA test set. The results show that, for all the targeted entities, most confusion is
caused by the misclassification between positive (negative) and neutral.
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To summarize, we find that the pre-trained models on COVID-19 tweets, such as COVID-TWITTER-
BERT, can be utilized to further improve the performance of previous TSA models on the TSA
dataset of METS-CoV. Moreover, the in-depth study shows that the performance of the current best
TSA model remains insufficient, and more robust TSA models are needed to distinguish sentiment
polarities sufficiently.

5 Ethics

General Ethical Conduct. METS-CoV is the first dataset to include medical entities and targeted
sentiments on COVID-19-related tweets. These human-derived data are openly displayed on the
Twitter platform and are allowed to be used for research purposes following Twitter’s Developer
Agreement and Policy. Following the guidelines, we release only the Tweet IDs but not the original
content. Meanwhile, the download script we provide for promoting replicable research could be
configured not to store user information. Readers can request desensitized tweets if the tweets can no
longer be accessed. All tweets used in this study were retrieved in an entirely random manner. No
new bias should have been introduced except for potentially associated issues with label imbalance.
We expect future studies to investigate such issues and provide solutions. We also encourage users to
conduct sanity checks to avoid potential bias for specific sub-populations regarding social economics
status, cultural groups, etc. Note that we did not filter offensive content in our study because
directly removing such words can alter user sentiments expressed in the original tweet. However, we
encourage the users to consider doing so in tailored ways for developing fair models.

Potential Negative Societal Impacts. Readers should not use the dataset to assess the reputation of
public figures or accounts because it was collected and annotated only to develop models for NER
and TSA rather than direct causal referential analyses. It is also vital to note that TSA models trained
on METS-CoV-TSA should not be used to analyze public attitudes toward people or organizations for
non-medical purposes, given that METS-CoV derives from COVID-19-related tweets. Even using
such models in a non-COVID-19 setting should be evaluated because public attitudes towards specific
topics may change in different settings, and the model may have learned information associated
explicitly with COVID-19. Moreover, sentiment analysis for vaccines and drugs can only reveal the
user’s overall viewpoint and attitude, not their willingness to take drugs or get vaccinated. In addition,
readers should be aware that the TSA dataset only reflects user attitudes in the provided contexts and
does not explain underlying reasons. Although our work does not directly result in negative social
impacts, it is necessary to take appropriate precautions to avoid such impacts.

6 Limitations

We acknowledge the following limitations: First, METS-CoV has imbalanced entity distribution
in that the medical-related tweets are matched using a symptom lexicon to reduce the sparsity of
medical entities. To mitigate this problem, we have provided performance evaluation for each entity
in the NER benchmark analysis to help readers understand how the models perform on different
entities. Second, we do not filter tweets in MES-CoV-TSA because we want to show the actual
distribution of sentiments. This again results in label imbalance, reflected by the high proportion of
neutral labels. Readers should be aware of this imbalance when using the dataset. Third, the TSA
annotations unavoidably contain subjectivity. To relieve this problem, we have made strict guidelines,
conducted multi-rounds of pre-annotation training, and had annotators work in pairs with third-party
validation.

7 Conclusion & Future Work

In this work, we introduce METS-CoV, the first dataset to include medical entities and targeted
sentiments on COVID-19-related tweets. Based on this dataset, we evaluate the performance of both
classical and state-of-the-art models for NER and TSA tasks. Results show that existing models can
not fully exploit the potential of METS-CoV. The METS-CoV dataset is built from a medical research
perspective. It fully considers the characteristics of the medical field and can therefore be used
to help researchers use natural language processing models to mine valuable medical information
from tweets. Much COVID-19 research could leverage this dataset. For example, investigating the
public attitudes toward COVID-19 vaccines and drugs, tracking the public’s mental status change
during different COVID-19 phases, etc. Besides the data, we hope our released annotation guidelines,
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benchmark models, and source code could facilitate and encourage the curation of more datasets and
novel models for medical social medial research.
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Checklist
The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 6
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] All the datasets,
benchmarks and code are available at https://github.com/YLab-Open/METS-CoV

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Those details were listed in Section 4. For the hyperparameter
selecting, we used the default hyperparameters of the benchmark models.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Yes, we reported the results based on experiments on 5
different random seeds. Mean ± std were reported in this paper.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] We didn’t include the consumption
of resources as we are releasing a new dataset rather than proposing new architecture.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We used code from
several models in our benchmarks, all the sources were properly cited in this paper.

(b) Did you mention the license of the assets? [No] The code we used are all open available,
they were used to evaluate model performance in our new dataset. We do not claim any
copyright from the code.

(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See Section 5. This work was conducted on public available data,
so this study is waived from the participant’s consent. We follow the privacy policy of
Twitter platform when sharing this dataset.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] See Section 5

5. If you used crowdsourcing or conducted research with human subjects...
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(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] This work was conducted on public available data, it doesn’t have
participants.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] This dataset is based on public available
tweet text, it doesn’t have potential participant risks.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [No] This dataset was voluntarily annotated by the
authors and members of Prof. Jie Yang’s group.

17


	Introduction
	Related Work
	Named Entity Recognition Datasets
	Targeted Sentiment Analysis Datasets

	METS-CoV
	Data Collection Methodology
	Data Annotation Process
	Dataset Statistics

	Model Benchmarking
	Named Entity Recognition
	Targeted Sentiment Analysis

	Ethics
	Limitations
	Conclusion & Future Work

