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ABSTRACT
In the big data era, personalized pricing has become a popular

strategy that sets different prices for the same product according to

individual customers’ features. Despite its popularity among compa-

nies, this practice is controversial due to the concerns over fairness

that can be potentially caused by price discrimination. In this paper,

we consider the problem of single-product personalized pricing for

different groups under fairness constraints. Specifically, we define

group fairness constraints under different distance metrics in the

personalized pricing context. We then establish a stochastic formu-

lation that maximizes the revenue. Under the discrete price setting,

we reformulate this problem as a linear program and obtain the

optimal pricing policy efficiently. To bridge the gap between the

discrete and continuous price setting, theoretically, we prove a gen-

eral 𝒪 ( 1

𝑙
) gap between the optimal revenue with continuous and

discrete price set of size 𝑙 . Under some mild conditions, we improve

this bound to 𝒪 ( 1

𝑙2
). Empirically, we demonstrate the benefits of

our approach over several baseline approaches on both synthetic

data and real-world data. Our results also provide managerial in-

sights into setting a proper fairness degree as well as an appropriate

size of discrete price set.
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• Social and professional topics→ Computing / technology
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1 INTRODUCTION
The widespread availability of individuals’ features and behavioral

information has led to the increased adoption of personalized pric-

ing strategies in various industries. Firms can leverage collected

data to predict consumers’ willingness to pay, ultimately increasing

profits by charging each customer exactly their valuation. However,

despite its popularity and profitability, concerns about fairness in

personalized pricing have arisen due to its potential discriminatory

nature. Protected groups, such as Black individuals in race, Asians

in national origin, and females in gender identity, may be charged

higher prices due to their potentially higher valuations for a prod-

uct, resulting in disparities against these protected classes [8, 15, 20].

Moreover, this pricing strategy is illegal if it discriminates on the

basis of race, religion, nationality, or gender, or if it violates an-

titrust or price-fixing laws such as the Civil Rights Act of 1964 and

the Equal Credit Opportunity Act of 1974. Ensuring fairness is also

a concern for the Federal Trade Commission (FTC).

Considering the significance of fairness in the pricing context,

we investigate a single-product personalized pricing problem for

different groups under group fairness constraints. We propose a

constrained revenue maximization framework that balances the

seller’s profit and the fairness of different groups based on their

sensitive attributes.

Recent works have focused on developing fair pricing algorithms

to restrict price discrimination [22–24, 27, 41]. A study by [12]

considered a simple scenario of a single-product seller facing two

consumer groups and proposed pricing approaches with fairness

constraints in price, demand, customer surplus, and social wel-

fare. They characterized the impact of imposing different types of

fairness. However, their model did not involve features, and they

adopted a single pricing strategy where the monopolist offers the

product to all customers in one group at the same price. In contrast,

we apply a feature-based "contextual" pricing strategy where the

monopolist offers a customized price based on the observed feature

vectors for each customer. Moreover, their price fairness measure is

a looser constraint on price than ours, which only restricts the sin-

gle prices of the two sensitive groups to be close. Another work [28]

studied fairness and ethical issues under personalized pricing set-

tings but only considered parity constraints with respect to the

first moment of the price distribution, which is also looser than

ours. In addition, these two works only considered limited types

https://doi.org/10.1145/3593013.3594097
https://doi.org/10.1145/3593013.3594097
https://doi.org/10.1145/3593013.3594097
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of demand models, while our results can extend to more general

demand models with mild assumptions.

In this paper, we generalize the non-contextual pricing frame-

work in [12] to the contextual setting [19] and consider a stronger

price fairness constraint than [12, 28]. Our contributions are four-

folds:

• We introduce a context-dependent personalized pricingmodel

that considers group fairness by measuring statistical parity,

a more suitable metric in the personalized pricing context

compared to alternatives like accuracy parity, equalized odds,

or predictive value parity [3, 28]. This model captures price

sensitivity and customer valuation distributions in a more

practical manner for real-world settings. To our knowledge,

this is the first work to formulate a personalized pricing prob-

lem with fairness constraints as a stochastic programming

problem, where the constraint is the pairwise probability

distance between the price distributions of different groups.

• To solve the stochastic formulation under discrete price set-

tings, we reformulate it as a maximum flow type of linear

program which can be solved efficiently. To bridge the gap

between the discrete and continuous price settings, we theo-

retically prove an 𝒪 ( 1

𝑙
) gap between the optimal revenue

with continuous and discrete price sets of size 𝑙 under fair-

ness constraints measured by total variation distance (TVD)

and earth mover’s distance (EMD). Furthermore, under mild

assumptions, we improve this bound to 𝒪 ( 1

𝑙2
) for the TVD

constraint.

• Empirically, we demonstrate the benefits of the fairness con-

straint under several metrics (i.e., higher customer surplus,

higher social welfare, and lower Gini Index) and superior

pricing policy compared with several baselines, and provide

business insights into the implementation of this algorithm

(i.e., setting a proper fairness degree and an appropriate size

of discrete price set).

1.1 Related Literature
Our work is mainly related to three streams of literature:

Personalized pricing and price discrimination. With the increas-

ing availability of consumers’ data, personalized pricing or price

discrimination has become more popular in e-commerce [11, 18],

airlines [39], and many other industries [27]. The value of per-

sonalized pricing is studied in [4, 19, 34, 38] and there are several

methods have been proposed to solve the personalized pricing prob-

lem efficiently in the offline setting [7, 9]. There are three types of

price discrimination in the classical economic taxonomy [36]. First-

degree price discrimination offers individual prices to customers

exactly at their willingness to pay, which is assumed to be known.

Second-degree price discrimination depends on the quantity pur-

chased but does not differ across consumers, such as bulk discounts.

Third-degree price discrimination charges different prices to differ-

ent groups of consumers. We focus on analyzing contextual prices,

which is first-degree price discrimination.

Fairness in personalized pricing. The discriminatory nature of

personalized pricing has triggered a heated debate among policy-

makers and academics on designing fair policies to restrict price

discrimination [22–24, 27, 41]. People have developed legal con-

straints on anti-discrimination [2, 29], which aim to protect different

subgroups of consumers such as females and blacks. In this paper,

similar to [13, 28], we suppose a monopoly with perfect informa-

tion on consumers’ willingness to pay and consider the regulation

towards first-degree price discrimination.

Algorithmic Fairness. Recently, the volume of literature and pub-

lic attention on machine learning fairness has been growing signif-

icantly [5, 33]. Various fairness notions, including group fairness

[25, 30, 42], individual fairness [17, 44], and causality-based fairness

notions [10, 31, 32] are proposed to protect different subgroups or

individuals. In this work, we adopt statistical parity as our fairness

metric.

The rest of this paper is organized as follows. In Section 2, we

first provide the preliminaries of the problem setting and define

the distance metric and fairness measure. Then, we establish our

optimization model with group fairness constraint. In Section 3,

we illustrate the linear programming reformulation of the origi-

nal optimization problem with group fairness constraint. We also

provide theoretical guarantees for our algorithm. In Section 4, we

demonstrate the benefits of our approach over several baseline ap-

proaches on both synthetic data and real-world data. In the main

text, we only show the results under the TVD constraint, while all

theoretical and numerical results could be extended to the problem

under the EMD constraint, which is deferred to the Appendix.

2 MODEL
2.1 Problem Setup
We study a monopolist selling a product with the ability to ob-

serve each customer’s feature vector, represented as an (𝑚 + 𝑞)-
dimensional random vector X̃ := (X, S) ∈ R𝑚+𝑞

. Here, S := (𝑆1, . . .,

𝑆𝑞) ∈ R𝑞 denotes the sensitive feature vector (e.g., race, gender,

nationality), and X := (𝑋1, . . . , 𝑋𝑚) ∈ R𝑚 represents the feature

vector excluding sensitive attributes.

The problem involves 𝑛 =
∑𝑘
𝑢=1

𝑛𝑢 customers divided into 𝑘

sensitive groups, with 𝑛𝑢 customers in each group 𝑢, ∀ 𝑢 ∈ [𝑘]. We

assume each customer’s feature vector X̃𝑖 := (X𝑖 , S𝑖 ),∀𝑖 ∈ [𝑛] to be
independent and identically distributed. However, each component

in X̃𝑖 may not be independent, as specific features may be correlated,

such as gender affecting height or weight.

To define the fairness constraint, we use a function 𝑔 : R𝑞 ↦→
1, 2, . . . , 𝑘 to map sensitive features to group labels, where 𝑘 repre-

sents the number of possible groups. In our focus, each sensitive

feature takes a finite number of values, and a group is specified

by the value of sensitive features. Thus, all customers with the

same sensitive features are assigned to the same group. We can also

treat each sensitive feature separately or define groups based on

combinations of sensitive features.

We assume that the conditional distribution X|S is close for each
group 𝑢 ∈ [𝑘]. If not, the difference in price distribution may result

from the discrepancy in non-sensitive attributes, deviating from

our original purpose of imposing a fairness constraint.

Each customer has a valuation (i.e., willingness-to-pay) for the

product denoted by a function 𝑉 (X̃) ∼ 𝐹X̃ (·), where 𝐹X̃ (·) is the
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feature-dependent cumulative distribution function known by the

seller, and 𝑉 (X̃) is the valuation function of attribute X̃.
We assume that the conditional distribution X|S needs to be

close for each group 𝑢 ∈ [𝑘]. Otherwise, the difference in the price

distribution may cause by the discrepancy in their non-sensitive

attributes, which deviate from our original purpose of imposing

the fairness constraint.

Each customer has a valuation (i.e., willingness-to-pay) for the

product denoted by a function 𝑉 (X̃) ∼ 𝐹X̃ (·), where 𝐹X̃ (·) is the
feature-dependent cumulative distribution function known by the

seller and 𝑉 (X̃) is the valuation function of attribute X̃. We define

the pricing policy 𝜌 : R𝑚+𝑞 ↦→ P mapping the features to the

admissible prices, where P is a bounded price set created by the

seller.

Then, the demand function is defined as

𝐷 (X̃, 𝜌 (X̃)) = E𝑉 [𝑎(X̃)1[𝑉 (X̃) > 𝜌 (X̃)]], (1)

where 1[·] is the 0-1 indicator function and function 𝑎 : R𝑚+𝑞 ↦→ R
is a feature dependent scalar.

Our demand function differs from the classical valuation-based

demand function [13, 28] in that besides the purchasing probability,

we also capture the purchasing amount by a multiply of a context-

aware function 𝑎(X̃) which could better capture the personalized

behavior and is appropriate in many business setting. Taking the

product candy for example, the intention of buying candies for

the elderly and children might be similar but the amount they buy

usually differs since children buy more candies than the elderly.

In this case, the difference in market size for different customer

groups can be captured by our formulation.

Given a pricing policy 𝜌 , the seller’s expected revenue is

𝑅(𝜌) :=EX̃ [𝐷 (X̃, 𝜌 (X̃))𝜌 (X̃)]
=EX̃,𝑉 [𝑎(X̃)1[𝑉 (X̃) > 𝜌 (X̃))]𝜌 (X̃)],

(2)

and the corresponding customer surplus is

𝑆 (𝜌) :=EX̃,𝑉 [𝑎(X̃) (𝑉 (X̃) − 𝜌 (X̃))+], (3)

where (·)+ := max{0, ·}.
For society as a whole, the total welfare is a combination of the

revenue obtained by the seller through selling and the surplus 𝑆 (𝜌)
gained by the customer via purchase, which is

𝑊 (𝜌) :=𝑅(𝜌) + 𝑆 (𝜌)
=EX̃,𝑉 [𝑎(X̃)1[𝑉 (X̃) > 𝜌 (X̃))]𝑉 (X̃)] .

(4)

We consider general demand models, for instance, linear, ex-

ponential, logistic, and log-log demand. Their expressions of the

demand 𝐷 , Revenue 𝑅, and consumer surplus 𝑆 are listed in Table 1.

Note that we winsorize the support of the logistic demand and

made a slight adjustment to the log-log demand function to ensure

that it fits into the random utility framework
1
.

1
The common form of log-log demand is 𝑎 (x̃)

(
𝑐 (x̃)
𝜌 (x̃)

)𝑏 (x̃)
, where 𝑏 (x̃) is the price

elasticity and 𝜌 (x̃) is the price given the context x̃. To avoid the demand goes to infinity

when the price 𝜌 (x̃) is close to zero, we truncate it by 𝑎 (x̃) min

{(
𝑐 (x̃)
𝜌

)𝑏 (x̃)
, 1

}
.

Also, we require 𝑐 (x̃) (𝑏 (x̃) − 1) < Constant · 𝑏 (x̃) to ensure that the no-purchase

probability is positive.

Consider the personalized pricing framework: upon observing

X̃ = x̃, the seller offers a price from the price setP to each individual.

Then, the seller obtains each customer’s demand in response to the

price through the known demand function 𝐷 defined in Eq. (1).

Finally, the seller’s goal is to determine a pricing policy 𝜌 that

maximizes the revenue.

However, without any regulation constraint, the monopoly could

charge each consumer with his or her willingness to pay exactly (if

the monopoly knows them), which is well known as first-degree

price discrimination [6]. In this case, consumers get no benefits and

the revenue is maximized.

However, in practice, certain price discrimination is prohibited by

regulations for the concerns of social well-being. Specifically, in this

paper, we propose a personalized pricing framework incorporating

group fairness for sensitive consumer groups, which will be defined

in Section 2.2.

2.2 Distance Metrics and Fairness Measure
In this section, we introduce the foundation of statistical parity

by first defining the distance metric. Similar to [16], we consider

two different distance metrics under statistical parity: total varia-

tion distance (TVD) and earth mover’s distance (EMD), which are

commonly used for measuring distribution differences in statistical

parity [40].

Definition 1 (Total Variation Distance (TVD)). Given the set
𝑀 of all probability measures on a countable set Ω. The total variation
distance of probability measures TVD : 𝑀 ×𝑀 ↦→ [0, 1] is defined as

TVD(𝑄1, 𝑄2) =
1

2

∑︁
𝜔∈Ω

|𝑄1 (𝜔) −𝑄2 (𝜔) |, (5)

where𝑄1 and𝑄2 denote two probability measures on the finite domain
Ω.

The definition of EMD is deferred to Appendix A.1.

In our experiments, we observed that TVD and EMD yield qual-

itatively similar insights into the fairness of personalized pricing

policies. While there are differences in the mathematical proper-

ties of these metrics and their respective bounds, the managerial

insights derived from both metrics generally align. This similarity

in insights might suggest that, regardless of the specific proba-

bility metric used, the qualitative findings in terms of fairness in

personalized pricing are likely to be consistent.

Group fairness is a requirement that the protected groups should

be treated similarly to the advantaged group or the population as a

whole. Common notions concerning group fairness are statistical

parity [16, 40], disparate impact [26], statistical discrimination [43]

and etc. Here, we consider statistical paritymeasuring the difference

in probabilities of an outcome across two groups
2
, which is defined

as follows.

Definition 2. Statistical Parity: Two probability measures 𝑄1

and 𝑄2 satisfy statistical parity up to bias 𝛿 ≥ 0 if

𝑑 (𝑄1, 𝑄2) ≤ 𝛿, (6)

2
This can be generalized to more than two groups. For multiple groups, we compare

their probability measures pair-wisely.
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Demand model 𝐷 (x̃, 𝜌) 𝑅(x̃, 𝜌) 𝑆 (x̃, 𝜌)

Linear 𝑎(x̃) max

{
0,

(
1 − 𝜌

𝑐 (x̃)

)}
𝑎(x̃) max

{
0,

(
1 − 𝜌

𝑐 (x̃)

)}
𝜌 𝑎(x̃) (max{0,𝑐 (x̃)−𝜌 })2

2𝑐 (x̃)
Exponential 𝑎(x̃)𝑒−𝑐 (x̃)𝜌 𝑎(x̃)𝑒−𝑐 (x̃)𝜌𝜌 𝑎 (x̃)

𝑐 (x̃) 𝑒
−𝑐 (x̃)𝜌

Logistic
𝑏 (x̃)𝑒−𝑐 (x̃)𝜌

1+𝑏 (x̃)𝑒−𝑐 (x̃)𝜌
𝑎 (x̃)𝑏 (x̃)𝑒−𝑐 (x̃)𝜌

1+𝑏 (x̃)𝑒−𝑐 (x̃)𝜌 𝜌
𝑎 (x̃)
𝑐 (𝑥 ) log(1 + 𝑏 (x̃)𝑒−𝑐 (x̃)𝜌 )

Log-log 𝑎(x̃) min

{(
𝑐 (x̃)
𝜌

)𝑏 (x̃)
, 1

}
𝑎(x̃) min

{(
𝑐 (x̃)
𝜌

)𝑏 (x̃)
, 1

}
𝑎 (x̃)𝑏 (x̃)
𝑏 (x̃)−1

𝑐 (x̃) ·
(
min

{(
𝑐 (x̃)
𝜌

)𝑏 (x̃)
, 1

})
1− 1

𝑏 (x̃) )

−𝑎(x̃)𝜌 min

{(
𝑐 (x̃)
𝜌

)𝑏 (x̃)
, 1

}
Table 1: Demand, Revenue, and Surplus for Different Demand Models

where 𝑑 (·, ·) is some distance metric between two distributions.

Statistical parity is a more suitable fairness measure under the

personalized pricing setting due to perception and regulations.

Firstly, consumers are more concerned with being treated fairly

in terms of the prices they are offered, rather than the accuracy

or odds of receiving a particular price. Statistical parity focuses

on ensuring that different groups receive a similar distribution of

prices, thus promoting a perception of fairness among consumers.

Secondly, many jurisdictions have regulations prohibiting price

discrimination based on certain protected attributes, such as race,

gender, or nationality. Statistical parity as a fairness measure aligns

with these regulations by ensuring that the distribution of prices

offered to different groups is not significantly different, thereby

reducing the risk of regulatory violations.

2.3 Stochastic optimization problem with group
fairness constraint

In this section, we introduce the stochastic optimization formula-

tion of a personalized pricing model that takes into account group

fairness. To simplify the presentation, we first assume that the seller

prespecifies a discrete price set of size 𝑙 , i.e.,

P :=

{
{𝑝 𝑗 }𝑙𝑗=1

����0 < 𝑝 ≤ 𝑝1 < 𝑝2 < · · · < 𝑝𝑙 ≤ 𝑝 < ∞
}
, (7)

where 𝐹𝑢 (X̃) denotes the cumulative distribution function of the

feature X̃ in group 𝑢. ∀ 𝑝 𝑗 , 𝑗 ∈ [𝑙], we define the probability mass

of taking price 𝑝 𝑗 of group 𝑢 as

𝑞𝑢 (𝑝 𝑗 ) :=EX̃ [1[𝑔(S) = 𝑢]1[𝜌 (X̃) = 𝑝 𝑗 ]]

=

∫
X̃
1[𝑔(S) = 𝑢]1[𝜌 (X̃) = 𝑝 𝑗 ]𝑑𝐹𝑢 (X̃).

(8)

The empirical counterpart of the price distribution in group 𝑢

for discrete price 𝑝 𝑗 ∈ [𝑝, 𝑝],∀𝑗 ∈ [𝑙] is

𝑞𝑢 (𝑝 𝑗 ) :=
1

𝑛𝑢

𝑛∑︁
𝑖=1

1[𝑔(s𝑖 ) = 𝑢]1[𝜌 (x̃𝑖 ) = 𝑝 𝑗 ] . (9)

Now, we define 𝑄𝑢 : P ↦→ Δ(P) as a measurable function,

where Δ(P) is the probability simplex over the setP represented as

Δ(P) :=

{
{𝑞 𝑗 }𝑙𝑗=1

∈ [0, 1]𝑙 :

∑𝑙
𝑗=1

𝑞 𝑗 = 1

}
. Then∀p = (𝑝1, . . . , 𝑝𝑙 ) ∈

P , we have 𝑄𝑢 ((𝑝1, . . . , 𝑝𝑙 )) := (𝑞𝑢 (𝑝1), . . . , 𝑞𝑢 (𝑝𝑙 )).

The revenue maximization problem with price parity fairness

constraint can be written as

max

𝜌
𝑅(𝜌)

s.t. 𝑑 (𝑄𝑢 (p), 𝑄𝑣 (p)) ≤ 𝛿𝑑 (𝑄̃𝑢 (p), 𝑄̃𝑣 (p)), ∀𝑢, 𝑣 ∈ [𝑘] .
(10)

In the revenue maximization problem with group fairness con-

straint (10), the degree of fairness 𝛿 ≥ 0 determines our tolerance

for discrimination. A 𝛿 value of 0 enforces strict fairness, while

larger 𝛿 values allow for looser fairness constraints. 𝑅(𝜌) is defined
in Equation (2) and 𝑄𝑢 is the probability mass given by our pricing

policy for group 𝑢 ∈ [𝑘] while 𝑄̃𝑢 is that of the unconstrained

problem (i.e. max𝜌 𝑅(𝜌)) for group 𝑢 ∈ [𝑘]. 𝑑 (·, ·) denotes either
of the two different distance metrics: total variation distance and

earth mover’s distance.

We define the model with mean price constraint as follows:

max

𝜌
𝑅(𝜌 (·))

s.t. |𝑄𝑢 (p)𝑇 p −𝑄𝑣 (p)𝑇 p| ≤ 𝛿 |𝑄̃𝑢 (p)𝑇 p, 𝑄̃𝑣 (p)𝑇 p|, ∀𝑢, 𝑣 ∈ [𝑘] .
(11)

If we restrict the pricing policy to be independent of the feature

information, this model reduces to the price parity model in [14]

which does not consider feature information for determining the

pricing policy.

In the above formulation, we assume that the possible prices are

given. It would be interesting to determine the optimal prices as

well. Our model formulation under the discrete price setting can

be generalized to this setting, which is omitted here. In the next

section, we will show that as 𝑙 → ∞, the optimal objective under

the discrete price setting converges to the continuous price setting.

3 ALGORITHM AND THEORETICAL RESULTS
Under sample average approximation, we reformulate problem (10)

for general demand models as a linear program and solve it effi-

ciently.

Here, we only display the LP program and theoretical results for

TVD while its EMD counterpart is deferred to Appendix A.

3.1 Linear Program Reformulation under Total
Variation Distance

In the linear program, let each customer 𝑖 belong to a specific group

𝑢 ∈ [𝑘], associated with a pair of feature vectors (x𝑖 , s𝑖 ) - a standard
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feature vector x𝑖 and a sensitive feature vector s𝑖 corresponding to

group 𝑢. The seller selects 𝑙 admissible prices.

To describe the pricing policy by illustrating the connection

between customers and prices, we define 𝑓 𝑢
𝑖 𝑗

:= P(𝜌 (x̃𝑖 ) = 𝑝 𝑗 |
𝑔(s𝑖 ) = 𝑢) as the probability of customer 𝑖 in group𝑢 being assigned

to price 𝑝 𝑗 , and 𝛼
𝑢
𝑗

:= 𝑞𝑢 (𝑝 𝑗 ) as the proportion of customers in the

group 𝑢 assigned to price 𝑝 𝑗 by the pricing policy.The variables 𝑓

and 𝛼 are subject to the following constraints:

𝑙∑︁
𝑗=1

𝑓 𝑢𝑖 𝑗 = 1, ∀ 𝑖 ∈ [𝑛𝑢 ], 𝑢 ∈ [𝑘],

𝑓 𝑢𝑖 𝑗 ≥ 0, ∀ 𝑖 ∈ [𝑛𝑢 ], 𝑗 ∈ [𝑙], 𝑢 ∈ [𝑘],

1

𝑛𝑢

𝑛𝑢∑︁
𝑖=1

𝑓 𝑢𝑖 𝑗 = 𝛼𝑢𝑗 , ∀ 𝑗 ∈ [𝑙], 𝑢 ∈ [𝑘] .

The group fairness constraint for Total Variation Distance (TVD) is

given by:

𝑙∑︁
𝑗=1

|𝛼𝑢𝑗 − 𝛼𝑣𝑗 | ≤ 𝛿

𝑙∑︁
𝑗=1

|𝛼𝑢𝑗 − 𝛼𝑣𝑗 |, ∀ 𝑢, 𝑣 ∈ [𝑘], (12)

which ensures that the proportion of customers offered price 𝑝 𝑗 in

two groups should not be 𝛿-apart.

The revenue obtained from customers in group 𝑢 is given by

𝑟𝑢 =
∑𝑛𝑢
𝑖=1

∑𝑙
𝑗=1

𝑓 𝑢
𝑖 𝑗
𝑝 𝑗𝐷

𝑢
𝑖 𝑗
, where 𝐷𝑢

𝑖 𝑗
is the demand for customer 𝑖

with feature vector x𝑢
𝑖
in group 𝑢 under price 𝑝 𝑗 . The total revenue

is then

∑𝑘
𝑢=1

∑𝑛𝑢
𝑖=1

∑𝑙
𝑗=1

𝑓 𝑢
𝑖 𝑗
𝑝 𝑗𝐷

𝑢
𝑖 𝑗
.

Combining all the above, our problem is formulated as,

max

𝑓 ,𝛼

𝑘∑︁
𝑢=1

𝑛𝑢∑︁
𝑖=1

𝑙∑︁
𝑗=1

𝑓 𝑢𝑖 𝑗𝑝 𝑗𝐷
𝑢
𝑖 𝑗

s.t.

𝑙∑︁
𝑗=1

𝑓 𝑢𝑖 𝑗 = 1, ∀ 𝑖 ∈ [𝑛𝑢 ], 𝑢 ∈ [𝑘],

1

𝑛𝑢

𝑛𝑢∑︁
𝑖=1

𝑓 𝑢𝑖 𝑗 = 𝛼𝑢𝑗 , ∀ 𝑗 ∈ [𝑙], 𝑢 ∈ [𝑘],

𝑙∑︁
𝑗=1

|𝛼𝑢𝑗 − 𝛼𝑣𝑗 | ≤ 𝛿

𝑙∑︁
𝑗=1

|𝛼𝑢𝑗 − 𝛼𝑣𝑗 |, ∀ 𝑢, 𝑣 ∈ [𝑘],

𝑓 𝑢𝑖 𝑗 ≥ 0, ∀ 𝑖 ∈ [𝑛𝑢 ], 𝑗 ∈ [𝑙], 𝑢 ∈ [𝑘] .

(13)

Existing linear programming algorithms, such as the Simplex Algo-

rithm, Interior Point Algorithms, and the Ellipsoid Method [1] can

be applied to solve it efficiently.

However, the limited discrete price options may not exhaust the

optimal prices. To address the issue, we consider the LP (13)
3
with

3
Note that problem (13) and (14) are for the empirical model while not the one with

distribution 𝐹 (X̃) .

continuous price set defined as

max

𝑓 ,𝛼

𝑘∑︁
𝑢=1

𝑛𝑢∑︁
𝑖=1

∫ 𝑝

𝑝

𝑓 𝑢𝑖 (𝑝)𝑝𝐷𝑢
𝑖 (𝑝)𝑑𝑝

subject to:

∫ 𝑝

𝑝

𝑓 𝑢𝑖 (𝑝)𝑑𝑝 = 1, ∀ 𝑖 ∈ [𝑛𝑢 ], 𝑢 ∈ [𝑘],

1

𝑛𝑢

𝑛𝑢∑︁
𝑖=1

𝑓 𝑢𝑖 (𝑝) = 𝛼𝑢 (𝑝), ∀ 𝑝 ∈ [𝑝, 𝑝], 𝑢 ∈ [𝑘],∫ 𝑝

𝑝

|𝛼𝑢 (𝑝) − 𝛼𝑣 (𝑝) |𝑑𝑝 ≤ 𝛿

∫ 𝑝

𝑝

|𝛼𝑢 (𝑝) − 𝛼𝑣 (𝑝) |, ∀ 𝑢, 𝑣 ∈ [𝑘],

𝑓 𝑢𝑖 (𝑝) ≥ 0,∀ 𝑖 ∈ [𝑛𝑢 ], 𝑢 ∈ [𝑘],
(14)

where the corresponding decision variables are 𝑓 𝑢
𝑖
(𝑝) and 𝛼𝑢 (𝑝).

𝐷𝑢
𝑖
(𝑝) denotes the demand for customer 𝑖 in group 𝑢 w.r.t. the

continuous price 𝑝 .

Problem (14) is an infinite dimension and is not solvable in prac-

tice. Instead, we use the finite dimension LP (13) to approximately

solve it. To show the efficacy of the proposed method, we provide

a theoretical guarantee to show the convergence rate of the gap

between the optimal revenue under a discrete price set and its

continuous counterpart (14) in Section 3.2.

3.2 Theoretical Results
In this section, we bridge the gap between the discrete and con-

tinuous price setting by providing a general 𝒪 ( 1

𝑙
) bound on the

difference between optimal revenue 𝑟∗ under the price set [𝑝, 𝑝] and
the optimal revenue 𝑟 𝑙 when the price set contains 𝑙 equally-spaced

prices. Furthermore, under the total variation distance constraints

and under mild assumptions, this revenue gap can be improved to

𝒪 ( 1

𝑙2
).

For all demand functions 𝐷𝑢
𝑖
(𝑝) satisfying Lipschitz continuity

on [𝑝, 𝑝] for ∀𝑢, 𝑖 , we prove in Theorem 1 that the optimal revenue

for the problem with a discrete price set converges to the optimal

revenue for the problem with a continuous price set at a rate of

𝒪 ( 1

𝑙
).

Theorem 1. Suppose 𝑟∗ is the optimal revenue for continuous price
set problem (14) and 𝑟 𝑙 is the optimal revenue for its discrete price
setting counterpart (13). Then

𝑟∗ − 𝑟 𝑙 ≤ 𝒪 ( 1

𝑙
).

Furthermore, as long as the demand function 𝐷𝑢
𝑖
(𝑝) is twice

continuously differentiable on [𝑝, 𝑝] for ∀𝑢, 𝑖 with bounded first

and second derivatives (which is satisfied in most demand models),

we can improve the revenue gap to𝒪 ( 1

𝑙2
), as we show in Theorem 2.

Theorem 2. Suppose 𝑟∗ is the optimal revenue for the problem (14)

with continuous price set and 𝑟 𝑙 is the optimal revenue for its discrete
price setting counterpart (13). If ∀𝑢, 𝑖 , 𝐷𝑢

𝑖
(𝑝) is twice continuously

differentiable on [𝑝, 𝑝] , and there exist constants 𝐶𝑐𝑜𝑛𝑡1,𝐶𝑐𝑜𝑛𝑡2 > 0

s.t. ∀𝑝 ∈ [𝑝, 𝑝],����𝑑𝐷𝑢
𝑖
(𝑝)

𝑑𝑝

���� ≤ 𝐶𝑐𝑜𝑛𝑡1,

�����𝑑2𝐷𝑢
𝑖
(𝑝)

𝑑𝑝2

����� ≤ 𝐶𝑐𝑜𝑛𝑡2,
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then we have

𝑟∗ − 𝑟 𝑙 ≤ 𝒪 ( 1

𝑙2
) .

All the proofs are deferred to Appendix B.

4 NUMERICAL EXPERIMENT
We demonstrate the benefits of imposing fairness constraints on

both synthetic data and real-world data. We evaluate the perfor-

mance of our model by customer surplus, social welfare, and the

Gini index.

Here, we only illustrate the results under linear demand with

TVD constraint and for a group size of 2 while the results under

other demand models in Table 1, with the EMD constraint and for

multiple groups are similar in general, and are deferred to Appen-

dix C.

4.1 Model Evaluation
We measure the performance of our model based on the trade-

off between the tightness of the fairness constraint and several

evaluation metrics.

We illustrate the impact of our proposed model by customer

surplus and social welfare defined in (3) and (4). The higher the

customer surplus and social welfare, the better the societal well-

being.

In addition, we assess our algorithm’s fairness using the Gini

index, a widely employed metric in economics [21]. The Gini index

serves as an indicator of inequality in wealth distribution, measur-

ing the deviation of a country’s wealth or income distribution from

perfect equality. In our context, 𝛼𝑢
𝑗
denotes the probability density

for each admissible price 𝑝 𝑗 in the group 𝑢 under our pricing pol-

icy. We define the Gini coefficients for each admissible price 𝑝 𝑗 as

follows:

𝐺 𝑗 :=

∑𝑘
𝑢=1

∑𝑘
𝑣=1

|𝛼𝑢
𝑗
− 𝛼𝑣

𝑗
|∑𝑘

𝑢=1
𝛼𝑢
𝑗
+∑𝑘

𝑣=1
𝛼𝑣
𝑗

, ∀ 𝑗 ∈ [𝑙] . (15)

The Gini index is calculated as the sum of all Gini coefficients, i.e.,

𝐺 :=
∑𝑙

𝑗=1
𝐺 𝑗 . A lower Gini index suggests a fairer pricing policy.

4.2 Simulation
The simulation experiments are designed mainly to test the perfor-

mance of our revenue maximization problem with group fairness

constraint under different fairness degrees 𝛿 and the impact of price

discretization.

The simulation study is under the assumption of the linear de-

mand function, that is, the customer valuation is simulated from a

uniform distribution.

4.2.1 Data. We simulate 2000 customers’ samples, each with a two-

dimensional feature vector x̃ = [𝑥, 𝑠], with one normal feature 𝑥 ∼
Gaussian(0, 1), and the sensitive attribute 𝑠 ∈ {0, 1}. In accordance

with the sensitive feature, we split all customers into two groups

with 1000 customers in each group. We assume price 𝑝 ∈ [1, 3] with
10 discrete realizations, i.e., {1.0,1.2,1.4.1.6,1.8,2.0,2.2,2.4,2.6,2.8,3.0}.

We assume the valuation function follows uniform distribu-

tion 𝑉 (x̃) ∼ 𝑈 (0, 𝑐 (x̃)), where 𝑐 (x̃) = (𝑐1, 𝑐2, 𝑐3) (1, 𝑥, 𝑠)𝑇 with

(𝑐1, 𝑐2, 𝑐3) ∈ [1, 2] × [1, 2] × {0, 1}. Then, we result in the linear de-

mand model defined in Table 1, where 𝑎(x̃) = (𝑎1, 𝑎2, 𝑎3) (1, 𝑥, 𝑠)𝑇
with (𝑎1, 𝑎2, 𝑎3) ∈ [1, 2] × [1, 2] × {0, 1}.

4.2.2 The impact of fairness degree. Figure 1 illustrates how the

optimal objective from the constrained linear programming prob-

lem (13) under different values of fairness degree 𝛿 . X-axis repre-

sents fairness degree 𝛿 and the y-axis represents various objectives

and evaluation metrics. Under TVD constraint, Figure 1 shows that

when we decrease 𝛿 , the revenue decreases which is due to the

stricter constraint on price fairness.

From the results under different parameter settings, we remark

that when the sensitive features are more significant than the nor-

mal features, we can obtain higher customer surplus, social welfare,

and lower Gini index as we impose stricter fairness regulation. This

result demonstrates one of the benefits of imposing group fairness

constraints that fairness can improve social welfare.

To see how the objective and metrics change within each group,

we look at Figure 2a. This figure demonstrates how the optimal

objective from the constrained linear programming problem (13)

under different values of fairness degree 𝛿 for each group respec-

tively. X-axis represents fairness degree 𝛿 and the y-axis represents

various objectives and evaluation metrics. We can interpret from

the Figure 2a that when we decrease the value of 𝛿 , group 2 gets

higher welfare and customer surplus while group 1 behaves the

opposite. From this interesting observation, we can tell that group

2 benefits from imposing fairness constraints.

Also, this analysis provides insight for decision-makers to select

the proper fairness degree 𝛿 to balance between the decrease in

revenue and the increase in social welfare.

4.2.3 Effect of price discretization. To see whether offering more

price options is beneficial and meaningful, we evenly discretize

prices from 1 to 3, with discrete price sets ranging from 2 to 20.

Figure 3 shows how the revenue, customer surplus, and welfare

change respectively as we increase the size of the price set. From

the results shown in Figure 3, we can see that the optimal revenue

converges faster than 𝒪 ( 1

𝑙
) rate when we increase the size of the

discrete price set, which is verified in Theorem 2. Moreover, we

can tell that under fairness constraints with TVD, the further we

discretize the prices, the higher the revenue, consumer surplus,

and social welfare. However, when the size of the discrete price

set reaches 8, the increase in the revenue, consumer surplus, and

social welfare become less significant and will cause more cost for

creating price labels. Thus, we conclude that it is appealing to set

the size of the price set moderately while aggressive discretization

may not be that rewarding.

Figure 3c shows how the inverse of the gap between the objective

of the discreet price set and the continuous price set changes with

respect to the number of prices. We use price set size 𝑙 = 30 to

approximate the continuous price set since the change of objective

for 𝑙 > 8 is not significant. We could tell that the gap converges at

a rate faster than linear, which is proved in Theorem 2.

4.3 Real Data
Weuse a real-world data set from the e-commerce company JD.com [37]

to demonstrate the benefits of our model.
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Figure 1: Impact of fairness under TVD constraint with linear demand using synthetic data with model parameters [𝑎0, 𝑎1, 𝑎2] =
[1, 1.4, 3], [𝑐0, 𝑐1, 𝑐2] = [1, 1, 1].

(a) Simulation data with parameters [𝑎0, 𝑎1, 𝑎2 ] =

[1, 1.4, 3], [𝑐0, 𝑐1, 𝑐2 ] = [1, 1, 1]
(b) JD.com data

Figure 2: Comparison of the impact of fairness degree with linear demand between two groups

(a) Impact of price discretization on opti-
mal objective

(b) Impact of price discretization on evalu-
ation metrics

(c) The convergence rate of the gap
𝑟 ∗ − 𝑟 𝑙

Figure 3: Impact of price discretization on various metrics under TVD constraint using synthetic data with model parameters
[𝑎0, 𝑎1, 𝑎2] = [1, 2, 2], [𝑐0, 𝑐1, 𝑐2] = [1, 2, 2]

4.3.1 Dataset Introduction. The datasets provided by JD.com grant

a comprehensive view of the activities related to all SKUs within an

anonymous consumable category during March 2018. This category

could be beauty care (e.g., face moisturizers) or men’s grooming

(e.g., electric shavers). Due to confidentiality, the specific category

remains undisclosed. We employ the transaction-level data labeled

as i) skus, ii) users, and iii) orders. The data description and basic

statistics can be found in Appendix C.3.

In this experiment, we use one top-selling product, including

2854 customer purchasing records. We select six normal features



FAccT ’23, June 12–15, 2023, Chicago, IL, USA Chen et al.

(i.e., user level, age, marital status, education, city level, purchase

power) and one sensitive feature (i.e., gender). We assign group

membership based on the sensitive attribute (i.e., gender), with 1931

in group 1 (i.e., male) and 923 in group 2 (i.e., female). The price set

is scaled to be {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0}.

4.3.2 Preliminary Analysis. We have checked that the distribution

of the normal features, conditioned on the sensitive attributes, is

similar. To verify this, we perform a Kolmogorov-Smirnov (KS) test

on the distribution of each normal feature, such as age, conditioned

on the sensitive attribute (gender). Table 2 presents the p-values

obtained from the KS test for each normal feature.

Normal Feature p-value from KS test
User Level 0.85

Age 0.87

Marital Status 0.92

Education 0.88

City Level 0.91

Purchase Power 0.82

Table 2: p-values from the Kolmogorov-Smirnov test for nor-
mal features conditioned on the sensitive attribute (gender)

In Table 2, the p-values from the KS test are all larger than a

typical significance level (e.g., 0.05). This indicates that we cannot

reject the null hypothesis that the distributions of the normal fea-

tures are the same between the two groups, conditioned on the

sensitive attribute (gender). As a result, we can conclude that the

distributions of the normal features, conditioned on the sensitive

attributes, are similar. In Figure 5a, we can tell that the original

pricing distributions between two groups are biased w.r.t. sensitive

attribute (i.e., gender). Group 2 (i.e., female) has been charged much

higher prices compared with group 1 (i.e., male). Given that the

distribution of normal features is similar between the two groups,

it is necessary to implement our fairness algorithm to correct this

bias and improve social well-being.

4.3.3 Analysis on the impact of fairness degree. The result is con-
sistent with our simulation study on the impact of fairness. Fig-

ure 4 shows how the revenue, customer surplus, and social welfare

change respectively as we increase the size of the price set under

TVD fairness measures, respectively. From Figure 4, we can tell

that as we impose less fairness degree (i.e., larger 𝛿), we get lower

customer surplus and social welfare as well as a larger Gini index.

From the preliminary analysis in Figure 5a, we find that the

female group has a higher valuation on the product and gets charged

a higher price compared with the male group. Thus, we treat the

protected group as the group having a higher valuation for a specific

product, which is female in this case. We can tell from the figure 2b

that when we decrease the value of 𝛿 , group 2 (i.e., female) gets

higher welfare and customer surplus while that group 1 (i.e., male)

behaves the opposite. From this interesting observation, we can

tell that the protected group (i.e., female) benefits from imposing a

fairness constraint, indicating that the protected group gets better

off when we impose a price parity constraint.

In Figure 6, we aim to demonstrate the influence of fairness on

social welfare and the Gini index under various pricing constraints.

The x-axis represents the fairness degree 𝛿 , while the y-axis indi-

cates social welfare (left plot) and the Gini index (right plot). As

illustrated in the left plot, our proposed model consistently achieves

higher social welfare compared to other baseline models, namely

those with mean price constraints and single price constraints. In

terms of the Gini index, as shown in the right plot, our model gen-

erally exhibits lower values than the mean price constraint model,

indicating a more equitable distribution of prices. However, the sin-

gle price constraint model exhibits a distinct behavior, with its Gini

index values not consistently lower than those of our model. Over-

all, our model outperforms the baseline models in terms of social

welfare while maintaining a relatively equitable price distribution,

as evidenced by the Gini index.

4.3.4 Analysis on Fair Pricing Policy. To demonstrate the advan-

tages of our proposed fairness constraint, we conduct a comparative

analysis of pricing policies derived from our fair algorithm and var-

ious baseline models.

The pricing policies for two groups under TVD, single-price

constraint, mean-price constraint, and the unconstrained model are

presented in Figure 5. The x-axis represents a range of 10 prices from

1 to 3, while the y-axis depicts the associated price distributions,

which represent the probability of customers being assigned to a

specific price. The light blue bars correspond to the pricing policy

for Group 1, and the navy blue bars display the policy for Group 2.

As illustrated in Figure 5d, the optimal policy derived from the

mean-price baseline shows significant variation in price distribu-

tions for both groups, while their average prices remain relatively

close. In contrast, the optimal policy derived from the single-price

baseline, as shown in Figure 5d, concentrates on a single price,

leading to a less diverse policy that may reduce revenue without

reaping the benefits of personalization.

Our results indicate that the pricing distribution achieved through

our model is more equitable and fairer than the policies obtained

through the mean-price constraint baseline and the unconstrained

baseline. Furthermore, our approach maintains policy diversity

while minimizing revenue loss.

From these results, we can infer that the optimal pricing distribu-

tion between the two groups obtained by our model is more closely

aligned (i.e., fairer) than the mean-price constraint baseline and the

unconstrained baseline without the loss of diversity.

In summary, our numerical studies suggest that for society as a

whole, implementing fairness regulations using statistical parity is

more advantageous than not doing so.

5 CONCLUSION
In this paper, we study the personalized pricing problem for differ-

ent groups under fairness constraints measured by total variation

distance and earth mover distance. We propose a stochastic pro-

gramming formulation that maximizes the revenue with statistical

parity constraint. Under the discrete price setting, we reformulate

this problem as a linear program that can be solved efficiently. To

bridge the gap between the discrete and continuous price settings,

theoretically, we prove an 𝒪 ( 1

𝑙
) gap between the optimal revenues

with continuous and discrete price sets of size 𝑙 under fairness

constraints measured by total variation distance (TVD) and earth
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Figure 4: Impact of fairness under TVD constraint with linear demand using JD.com data

(a) Comparison of price distribution from
JD.com data between 2 groups

(b) Comparison of pricing policy from TVD-
constraint problem between 2 groups

(c) Comparison of pricing policy from single-
price constraint problem between 2 groups

(d) Comparison of pricing policy from mean-
price constraint problem between 2 groups

(e) Comparison of pricing policy from an un-
constrained problem between 2 groups

Figure 5: Price distribution from the JD.com data; Comparison of Pricing policy under TVD, single-price constraint, mean-price
constraint, and unconstrained model using JD.com data

mover’s distance (EMD). Furthermore, under some mild assump-

tions, we improve this bound to 𝒪 ( 1

𝑙2
) for the TVD constraint. We

implement our model on both synthetic data and real-world data.

We demonstrate the benefits of imposing fairness constraints, in-

cluding higher customer surplus, higher social welfare, lower Gini

index, and superior pricing policy compared with several baselines.

Our results also provide managerial insights on setting a proper

fairness degree as well as an appropriate size of discrete price set.

There are various potential directions for future research. Firstly,

alternative distancemetrics, such asℋ -divergence or KL-divergence [35],

could be explored. Secondly, while our current theoretical results

provide an upper bound on the gap between optimal revenue with

continuous and discrete price sets, the numerical results in Fig-

ure 3c suggest that the convergence rate of the gap may be faster

than 𝒪 ( 1

𝑙2
). Investigating the lower bound of this gap would be

intriguing. Furthermore, future work could examine other fairness



FAccT ’23, June 12–15, 2023, Chicago, IL, USA Chen et al.

Figure 6: Comparison of the Impact of Fairness on Linear Demand with TVD Constraint using JD.com Data

notions, extend the framework to accommodate multiple products,

and consider the interplay between fairness and other societal ob-

jectives like environmental sustainability or customer satisfaction.

This could ultimately lead to the creation of more comprehensive

and ethically responsible pricing algorithms.
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