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Abstract

Optimization over the Stiefel manifold has played a significant role in various1

machine learning tasks. Many existing algorithms either use the retraction operator2

to keep each iterate staying on the manifold, or solve an unconstrained quadratic3

penalized problem. The retraction operator in the former corresponds to orthonor-4

malization of matrices and can be computationally costly for large-scale matrices.5

The latter approach usually equips with an unknown large penalty parameter. To6

address the above issues, we propose a retraction-free and penalty parameter-free7

algorithm, which lands on the manifold. A key component of the analysis is the8

convex-like property of the quadratic penalty of the Stiefel manifold, which enables9

us to explicitly characterize the penalty parameter. As an application, we introduce10

a new algorithm, Manifold-LoRA, which employs the landing technique and a11

carefully designed step size strategy to accelerate low-rank adaptation (LoRA)12

in fine-tuning large language models. Numerical experiments on the benchmark13

datasets demonstrate the efficiency of our proposed method.14

1 Introduction15

Optimization over the Stiefel manifold has attracted considerable attention in the context of machine16

learning, e.g., RNN [3], batch normalization [10], and distributionally robust optimization [8]. The17

mathematical formulation of this class of problems is:18

min
X∈Rd×r

f(X) subject to X ∈ St(d, r) := {X ∈ Rd×r : X⊤X = Id}, (1)

where r ≤ d and f : Rd×r → R is a continuously differentiable function. The most popular methods19

for solving (1) are retraction-based algorithms, which have been extensively studied in the context20

of manifold optimization [2, 23, 6]. Recently, to alleviate the possible computational burden of the21

retraction operator, some retraction-free methods have been developed in [19, 18, 41, 1]. The ideas22

in these papers are based on a combination of the manifold geometry and a penalty function for the23

manifold constraint, which involves an unknown but sufficiently large penalty parameter. For large-24

scale machine learning applications, retraction-free algorithms are preferred. However, designing25

retraction-free algorithms with a known penalty parameter for solving (1) remains a challenge.26

Another motivation for studying retraction-free methods arises from its application in the fine-tuning27

of large language models (LLMs). Recently, LLMs have revolutionized the field of natural language28

processing (NLP), achieving unprecedented performance across various applications [33, 32]. To29

tailor pretrained LLMs for specific downstream tasks, the most common approach is full fine-tuning,30

which requires prohibitively large computational resources due to the need to adapt all model weights,31

hindering the deployment of large models. As a result, parameter-efficient fine-tuning (PEFT) has32

gained widespread attention for requiring few trainable parameters while delivering comparable33
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or even superior results to full fine-tuning. This paradigm involves inserting learnable modules or34

designating only a small portion of weights as trainable, keeping the main model frozen [21, 26, 44].35

Among fine-tuning methods, low-rank adaptation (LoRA) [22] has become the de facto standard36

among parameter-efficient fine-tuning techniques. It assumes that the change in weights lies in a37

“low intrinsic dimension”, thereby modelling the update ∆W ∈ Rd×m by two low-rank (not greater38

than a small integer r) matrices A ∈ Rr×m and B ∈ Rd×r, i.e., ∆W = BA. Since r ≪ d, the39

requirements on both storage and computation are significantly reduced. Due to its decompositional40

nature, there is redundancy in the representation of ∆W . Traditional optimization methods for LoRA41

do not exploit this redundancy, which consequently undermines model performance. Instead, we42

reformulate LoRA fine-tuning as an optimization problem over the product of Stiefel manifolds43

and Euclidean spaces. Therefore, we propose an algorithmic framework called Manifold-LoRA to44

accelerate the fine-tuning process and enhance model performance. Moreover, by exploiting projected45

gradients and incorporating a parameter-free penalty, the overhead that our method incurs is relatively46

negligible. Our contributions are as follows:47

• We first prove the existence of explicit choice for the penalty parameter by establishing a48

strong convexity-like condition of the nonconvex penalty problem associated with the Stiefel49

manifold constraint. Furthermore, for the given penalty parameter, under mild conditions,50

we prove that the iterates of our proposed retraction-free gradient descent method eventually51

land on the Stiefel manifold and achieve the optimality of (1).52

• Building upon the established landing theory of retraction-free and penalty parameter-free53

method and the AdamW framework, we proposed a new method, Manifold-LoRA, which54

employs a carefully designed step size strategy to accelerate the training process of fine-55

tuning. Compared with the conventional AdamW method, we use the penalized gradient56

instead of the usual gradient, and the computational overhead is negligible.57

• Numerical experiments are conducted on a wide range of NLP tasks, demonstrating the58

efficiency of our algorithm. Specifically, compared to the vanilla LoRA, our Manifold-LoRA59

with half the trainable parameters not only delivers fast convergence but also yields improved60

generalization. In particular, Our method converges twice as fast as baseline methods on61

several typical datasets, including the SQuAD 2.0 dataset and the CoLA dataset.62

1.1 Related Work63

Optimization over the Stiefel manifold. Optimization over the Stiefel manifold has attracted lots of64

attention due to its broad applications. Through the use of retraction, known as the generalization of65

the exponential map, the Riemannian gradient descent is proposed [2, 6, 23], where all iterates lie on66

the manifold. When such retraction is computationally costly, the authors [19] develop a retraction-67

free algorithm based on the augmented Lagrangian method. More recently, by defining the constraint68

dissolving operator and adding a sufficiently large penalty term, the authors [41] convert the manifold69

constrained problem (1) into an unconstrained problem and then apply unconstrained optimization70

algorithms. In [1], motivated by the convergence of the Oja’s flow, a landing flow, consisting of the71

projected gradient and the gradient of the penalty function, is developed to retraction-free method for72

the squared Stiefel manifold, i.e., d = r. All of these methods rely on an unknown penalty parameter73

to ensure the convergence. This motivates us to design penalty parameter-free algorithms, which74

could significantly reduce the need for tuning parameters in practical implementations.75

LoRA. There are numerous variants of LoRA aiming to improve performance or reduce memory76

usage. AdaLoRA [46], a well-known successor, introduces the idea of adaptively adjusting the rank77

of different layers by incorporating an additional vector g to serve as the diagonal of a singular78

value matrix. This approach leverages a revised sensitivity-based importance measure to decide79

whether to disable entries in vector g and in matrices A and B. A similar work, SoRA [15],80

adopts the same model architecture as AdaLoRA, but proposes a different way to update vector81

g after training. This update rule is the proximal gradient of L1 loss, acting as a post-pruning82

method. Additionally, a recently emerged method called VeRA [25] significantly reduces memory83

overhead while maintaining competitive performance. Based on the idea that networks with random84

initialization contain subnetworks that are near-optimal or optimal [17], VeRA only uses two frozen85

low-rank matrices shared by all layers, training scaling vectors unique to each layer. Although LoRA86

has gained significant popularity and various variants have been developed, the potential for efficient87

training through leveraging the manifold geometry to reduce redundancy has not been well-explored.88

2



1.2 Notation89

For a matrix X ∈ Rd×r, we use ∥X∥ to denote its Frobenius norm. For a squared matrix A ∈ Rd×d,90

we define sym(A) = A+A⊤

2 and use diag(A) ∈ Rd to denote its diagonal part. For two matrices91

X,Y ∈ Rd×r, we use ⟨X,Y ⟩ :=
∑d

i=1

∑r
j=1 XijYij to denote their Euclidean inner product. For a92

differential function f : Rd×r → d, we use ∇f(X) to denote its Euclidean gradient at X .93

2 Retraction-free and penalty parameter-free optimization over the Stiefel94

manifold95

In this section, we focus on the design of retraction-free and penalty parameter-free algorithms for96

solving problem (1). We will first present the retraction-free algorithm and then show how the penalty97

parameter can be explicitly determined by characterizing the landscape of the penalty function.98

2.1 Retraction-free algorithms99

Inspired by the retraction-free algorithms [19, 41, 1], we consider the following retraction-free100

gradient descent method for problem (1):101

Xk+1 = Xk − αgradf(Xk)− µXk(X
⊤
k Xk − Id), (2)

where α, µ > 0 are step sizes and the projected gradient gradf(Xk) := ∇f(Xk) −102

Xksym(X⊤
k ∇f(Xk)). Note that the tangent space of St(d, r) is TXk

St(d, r) := {ξ ∈ Rd×r :103

X⊤
k ξ + ξ⊤Xk = 0}. Then, for Xk ∈ St(d, r), gradf(Xk) is the projection of the Euclidean gra-104

dient ∇f(Xk) to the tangent space, i.e., gradf(Xk) = PTXk
St(d,r)(∇f(Xk)). Note that the term105

Xk(X
⊤
k Xk − Id) is exactly the gradient of the following quadratic penalty function106

φ(X) :=
1

4
∥X⊤X − I∥2.

As will be shown in our theorem, the use of the projected gradient is essential for landing on the107

manifold. This differs with the usual penalty method, which optimizes f(X) + µφ(X) using the108

update Xk+1 = Xk − α∇f(Xk)− µXk(X
⊤
k Xk − Id), needs µ → ∞ to guarantee the feasibility.109

2.2 Explicit choice for the penalty parameter110

It is known that a large penalty parameter yields better feasibility [29, Chapter 17]. To make the111

iterative scheme (2) be penalty parameter-free, we need a careful investigation on the landscape of112

the following optimization problem:113

min
X∈Rd×r

φ(X). (3)

It can be easily verified that problem (3) is nonconvex and its the optimal solution set is St(d, r). The114

key of obtaining an explicit formula of µ is to establish certain strong convexity-type inequality and115

show the gradient descent method with step size µ has linear convergence.116

For any X ∈ St(d, r), let us denote X̄ := PSt(d,r)(X). Let X = USV ⊤ be the singular value117

decomposition with orthogonal matrices U ∈ Rd×r, V ∈ Rd×d and diagonal matrix S ∈ Rd×d, then118

X̄ = UV ⊤. Building on these notations, we demonstrate that problem (3) satisfies the restrict secant119

inequality (RSI) [45], which serves as an alternative to the strong convexity in the linear convergence120

analysis of gradient-type methods.121

Lemma 1. For any X ∈ Rd×r with ∥X − X̄∥ ≤ 1
8 , we have122 〈

∇φ(X), X − X̄
〉
≥ ∥X − X̄∥2. (4)

With the above RSI, we have the linear convergence of the gradient descent update for (3), i.e.,123

Xk+1 = Xk − µ∇φ(Xk). (5)
Lemma 2. Let the sequence {Xk} be generated by (5) with µ = 1

3 . Suppose that ∥X0 − X̄0∥ ≤ 1
8 .124

We have125

∥Xk+1 − X̄k+1∥2 ≤ 2

3
∥Xk − X̄k∥2. (6)

The proofs of Lemmas 1 and 2 can be found in Appendix B.126
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2.3 Landing on the Stiefel manifold127

Building on the established linear convergence of gradient descent for problem (3), we are now able128

to show that the iterates generated by (2) will land on the Stiefel manifold eventually, and the limiting129

point is a stationary point of (1), i.e., gradf(X∞) = 0.130

Let us start with the Lipschitz continuity of gradf(X). For any X ∈ ŪSt(d,r)(
1
8 ), we define131

PTXSt(d,r)(U) = U −Xsym(X⊤U) for U ∈ Rd×r. We first have the following quadratic upper132

bound on f from its twice differentiability and the compactness of St(d, r).133

Lemma 3. There exists a constant L > 0 such that for any X,Y ∈ St(d, r), the following quadratic134

upper bound holds:135

f(Y ) ≤ f(X) + ⟨gradf(X), Y −X⟩+ L

2
∥Y −X∥2. (7)

In addition, there exists a constant L̂ > 0 such that for any X ∈ St(d, r), Y ∈ UM( 18 ),136

∥gradf(X)− gradf(Y )∥ ≤ L̂∥X − Y ∥. (8)

By the linear convergence result in Lemma 2, we have the following bound on the feasibility error.137

Lemma 4. Let {Xk} be the sequence generated by (2) with µ = 1
3 and ∥X0 − X̄0∥ ≤ 1

8 . We have138

∥Xk+1 − X̄k+1∥ ≤ 2

3
∥Xk − X̄k∥+ α∥gradf(Xk)∥. (9)

The following one-step descent lemma on f is crucial in establishing the convergence.139

Lemma 5. Let {Xk} be the sequence generated by (2) with µ = 1
3 and ∥X0 − X̄0∥ ≤ 1

8 . We have140

f(X̄k+1)− f(X̄k) ≤− (α− (4L̂2 + 4L+ 1)α2)∥gradf(Xk)∥2 +
1

2
∥Xk+1 − X̄k+1∥2

+
1

2

(
4D̂f + 16L̂2 + 16L+ 3

)
∥Xk − X̄k∥2.

(10)

From the above lemma, the one-step descrease on f is related to both the gradient norm of f and the141

feasibility error. In terms of convergence, we need both gradf(Xk) and ∥X⊤
k Xk − I∥ converge to 0.142

The following theorem demonstrates that the retraction-free and penalty parameter-free update (2)143

converges.144

Theorem 1. Let {Xk} be the sequence generated by (2) with µ = 1
3 and ∥X0 − X̄0∥ ≤ 1

8 . If the145

step size α < 1
2c1

for some c1 large enough, then we have146

min
k=0,...,K

∥gradf(Xk)∥2 ≤ 1

K
, min

k=0,...,K
∥X⊤

k Xk − I∥2 ≤ 1

K
. (11)

The proofs of the above lemmas and theorem are presented in Appendix B.147

3 Accelerate LoRA fine-tuning with landing148

In this section, we will first clarify where the Stiefel manifold constraint comes from in the LoRA149

fine-tuning. Then, we will apply the above developed retraction-free and penalty parameter-free150

method to enhance LoRA fine-tuning.151

3.1 Manifold optimization formulation of LoRA fine-tuning152

In neural networks, the dense layers perform matrix multiplication, and the weight matrices in these153

layers usually have a full rank. However, when adapting to a specific task, pre-trained language models154

have been shown to have a low intrinsic dimension, allowing them to learn efficiently even with a155

random projection to a smaller subspace. One possible drawback in the current LoRA fine-tuning156

framework is that the low-rank decomposition ∆W into product BA is not unique. Specifically,157

for any invertible matrix C, it holds that BA = (BC)(C−1A). Note that BC shares the same158
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column space with B. This suggests us optimizing the subspace generated by B instead of B itself.159

Numerous studies in the field of low-rank optimization, e.g., [7, 13, 12], investigate the manifold160

geometry of the low-rank decomposition and develop efficient algorithms. However, such geometry161

has not been explored in the LoRA fine-tuning.162

To address such redundancy (i.e., the non-uniqueness of BA representations), we regard B as the basis163

through the manifold constraint and A as the coordinate of ∆W under B. Hence, the optimization164

problem can be formulated as165

min
A,B

L(BA), subject to B ∈ St(d, r) or B ∈ Ob(d, r), (12)

where Ob(d, r) := {B ∈ Rd×r : diag(B⊤B) = 1}. Compared to the Stiefel manifold St(d, r),166

the oblique manifold Ob(d, r) necessitates that the matrix B has unit norms in its columns, without167

imposing requirements for orthogonality between the columns. Problem (12) is an optimization168

problem over the product of manifolds and Euclidean spaces.169

3.2 Manifold-LoRA170

The retraction-free method is well-suited to address (12), simultaneously minimizing the loss function171

L(BA) and constraint violation. To control the constraint violation, we use the quadratic penalties172

Rs(B) := ∥B⊤B − I∥2 and Ro(B) := ∥diag(B⊤B) − 1∥2 for the Stiefel manifold and oblique173

manifold, respectively. As shown in the landing theory in Section 2, we shall use the projected174

gradient of the loss part instead of the Euclidean gradient. For the Stiefel manifold and the oblique175

manifold, the respective projected gradients are176

gradBL(BA) = ∇BL(BA)−Bsym(B⊤∇BL(BA)) (13)

and177

gradBL(BA) = ∇BL(BA)−Bdiag(diag(B⊤∇BL(BA))), (14)

where sym(X) := (X +X⊤)/2. Thus, the gradients of our retraction-free method for A and B are178

∇AL(BA) and gradBL(BA) + µ∇Rs(B)( or ∇Ro(B)).179

Note that B and A represent the basis and the coordinate of ∆W , respectively. This results in180

different magnitudes and different Lipschitz constants of their gradient function. In fact, let X = BA.181

It follows182

∇AL(BA) = B⊤∇XL(X), ∇BL(BA) = ∇XL(X)A⊤.

Then,183

∥∇AL(BA1)−∇L(BA2)∥ ≤ ∥B∥2Lg∥A1 −A2∥,
∥∇BL(B1A)−∇L(B2A)∥ ≤ ∥A∥2Lg∥B1 −B2∥,

where Lg is the Lipschitz constant of ∇XL(X) and ∥ · ∥2 represent the matrix ℓ2 norm (i.e., the184

largest singular value). Note that the step size generally should be propositional to the reciprocal of185

Lipschitz constant for the gradient type algorithms [29, 5]. Hence, we schedule the learning rates for186

the two matrices based on their respective ℓ2 norms. Having prepared the above, we incorporate the187

AdamW optimizer [28] with our manifold-accelerated technique to enhance the LoRA fine-tuning, as188

presented in Algorithm 1.189

4 Experiments190

In this section, we delve into the experimental results and their detailed analysis. This discussion is191

structured around two principal areas: (1) the performance gain compared to other mainstream fine-192

tuning methods and accelerated convergence achieved through our manifold-constrained optimization193

approach; (2) the convergence of matrix B onto the manifold, illustrated by the heat map of B⊤B.194

Baselines We compare our approach against several baseline methods, including full fine-tuning,195

Adapter [21], BitFit [44] and LoRA [22]. The variants of the Adapter method are excluded from the196

baselines, as their performance are relatively similar.197

Implementation Details Our code is based on Pytorch [31], Huggingface Transformers [40] and an198

open-source plug-and-play library for parameter-efficient fine-tuning opendelta [24]. The bottleneck199

dimension for the Adapter is set to 16 or 32, ensuring that the number of trainable parameters aligns200
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Algorithm 1: Manifold-LoRA
Input: Initial point A0, B0, µ ∈ R, β1 = 0.9, β2 = 0.999, upper bound ≥ lower bound > 0,

ϵ = 10−8, γ > 0, λ ∈ R, and k = 0.
while Stopping conditions not met do

for C ∈ {A,B} do
if C = B then

Set g(Ck) according to (13) or (14) using the stochastic estimate of∇BL(BkAk)
// Projected gradient for matrix B

else
Set g(Ck) to be the stochastic estimate of∇AL(BkAk)

end
end
m(Ck)← β1m(Ck) + (1− β1)g(Ck)

v(Ck)← β2v(Ck) + (1− β2)g
2
t (Ck)

m̂(Ck)← m(Ck)

1−βt
1

v̂(Ck)← v(Ck)

1−βt
2

η(Ck)← clip(normCk , upper bound, lower bound)
// Scheduling step size of matrix A and B

Ck ← Ck−1 − ηt(Ck)
(
m̂t(Ck)/

(√
v̂t(Ck) + ϵ

))
− λCk−1

if C = B then
Ck ← Ck − µ∇Rs(Ck)( or∇Ro(Ck)) // Apply penalty gradient for matrix B

end
end
k ← k + 1

end

closely with that of the LoRA method and the new layers are inserted into the attention layer and201

feed-forward layer. The update of LoRA is scaled by a hyper-parameter α. This value is typically left202

unmodified, as it is usually set as 16 or 32 and never tuned [22, 43]. The exponential moving average203

parameters β1 and β2 of AdamW [27] are set to their default values of 0.9 and 0.999, respectively. All204

the experiments are conducted on NVIDIA A800 GPUs. More details are presented in Appendix C.205

4.1 Natural language understanding206

We first evaluate our backbone model DeBERTaV3-base [20] on GLUE [37] benchmark containing207

nine sub datasets, including MNLI [39], SST-2 [36], CoLA [38], QQP [37], QNLI [35], RTE [4],208

MRPC [16], and STS-B [37].209

Experimental results of the GLUE dataset are recorded in Table 1. It can be seen that our method210

is consistently superior to other baselines. Notably, for RTE and STS-B datasets, both sphere-211

constrained (i.e., oblique manifold-constrained) and Stiefel-constrained have an obvious performance212

gain even with only half the trainable parameters compared to the LoRA baseline, i.e., Spherer=8 and213

Stiefelr=8 beat LoRAr=16. In addition, with the help of manifold geometry, the fine-tuning process214

can be significantly accelerated compared to the vanilla AdamW optimizer, achieving a lower training215

loss, as shown in Figure 1. Particularly on the CoLA dataset presented in Figure 1a, our approach216

achieves the same training loss as the standard Adam optimizer but requires nearly half the number217

of epochs.218

4.2 Question Answering219

We conduct an evaluation on two question answering datasets: SQuAD v1.1 [35] and SQuADv2.0220

[34]. Manifold-LoRA is used to fine-tune DeBERTaV3-base for these tasks, which are treated as221

sequence labeling problems predicting the probability of each token as the start or end of an answer222

span.223

The main experimental results are presented in Table 2. For LoRA and our algorithms, new layers224

are inserted into Wq,Wk,Wv,Wo, FC1, FC2. Notably, both manifold-regularized LoRA variants225

consistently outperform all fine-tuning methods. Additionally, we plot the training loss, evaluation226
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Table 1: Results with DeBERTaV3-base on GLUE benchmark. We denote the best results in bold.
Method # Params MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B All

m / mm Acc Mcc Acc / F1 Acc Acc Acc Corr Ave.

Full
FT

184.42M 90.45/90.60 95.48 68.17 91.99/89.12 93.60 79.28 88.93 90.92 87.85

Adapter 0.61M 90.13/90.16 94.86 69.37 91.38/88.46 93.54 81.87 89.12 91.52 88.06
BitFit 0.06M 87.08/86.39 94.88 69.11 87.96/84.35 92.19 76.52 87.06 90.96 85.65
LoRAr=8 0.30M 90.20/90.08 94.93 68.14 90.78/87.68 93.85 80.15 90.40 90.29 87.60
LoRAr=16 0.59M 90.44/90.12 95.41 68.19 90.92/87.77 94.00 80.58 90.20 90.34 87.74
Spherer=8 0.30M 90.37/90.09 95.48 69.55 91.25/88.34 94.02 82.44 91.55 91.26 88.44
Spherer=16 0.59M 90.52/90.19 95.64 70.14 91.46/88.65 94.29 82.16 91.67 91.59 88.63
Stiefelr=8 0.30M 90.25/89.99 95.46 69.85 91.44/88.60 94.09 83.16 91.18 91.22 88.52
Stiefelr=16 0.59M 90.26/90.28 95.76 68.92 91.71/89.00 94.10 82.16 91.10 91.51 88.48

exact match, and evaluation F1 scores against epochs in Figure 2. We conclude that the proposed227

Manifold-LoRA method achieves a 2x speed-up in training epochs compared to AdamW, while228

simultaneously improving model performance. We also illustrate the heat map of B⊤B in Figure 3,229

which indicates that the matrix B lands on the manifold eventually. This supports our assertion that230

landing on manifold enhances the performance of LoRA.231

4.3 Natural Language Generation232

The E2E NLG Challenge[30], as introduced by Novikova, provides a dataset for training end-to-end,233

data-driven natural language generation systems, widely used in data-to-text evaluations. The E2E234

dataset comprises approximately 42,000 training examples, 4,600 validation examples, and 4,600235

test examples, all from the restaurant domain. We test our method on the E2E dataset using GPT-2236

Medium and Large models, following the experimental setup outlined by LoRA [22]. For LoRA, we237

set the hyperparameters to match those specified in the original paper.238

The results from the E2E dataset are recorded in Table 3, where we focus on comparing LoRA and239

Manifold-LoRA. The results clearly indicate that our proposed algorithm outperforms the established240

baselines. Also, as shown in Figure 4, the matrix B resides on the manifold even at the early training241

stage, validating the feasibility of our method.242
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Figure 1: The figures illustrate that both sphere constrained and Stiefel constrained manifold-LoRA
achieve a faster convergence rate and attain a lower training loss within same optimization steps
compared to LoRA method on three distinct datasets CoLA, QQP, STSB.
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Table 2: Results with DeBERTaV3-base on SQuAD v1.1 and SQuADv2.0. We report EM/F1. The
best results in each setting are shown in bold.

Methods Params SQuADv1.1 SQuADv2.0

Full FT 184M 86.30 / 92.85 84.30 / 87.58
Adapterr=16 0.61M 87.46 / 93.41 85.30 / 88.23
Adapterr=32 1.22M 87.53 / 93.51 85.42 / 88.36

Bitfit 0.07M 80.26 / 88.79 74.21 / 87.19
LoRAr=8 1.33M 87.90 / 93.88 85.56 / 88.52
LoRAr=16 2.65M 87.94 / 93.75 85.90 / 88.81
Spherer=8 1.33M 88.51 / 94.25 86.33 / 89.20
Spherer=16 2.65M 88.32 / 94.03 86.15 / 89.03
Stiefelr=8 1.33M 88.68 / 94.23 86.35 / 89.09
Stiefelr=16 2.65M 88.25 / 94.04 86.41 / 89.22
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Figure 2: The figures compare the training loss, evaluation exact match, and evaluation F1 metrics
against the number of epochs for the SQuADv2.0 dataset.
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Figure 3: The heat map of B⊤B with the Stiefel manifold (the first and second rows) and the oblique
manifold (the third and fourth rows) at the end of training on SQuADv2.0 dataset.
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Table 3: GPT-2 medium (M) and large (L) models were evaluated on the E2E NLG Challenge. *
denotes results from previously published works.

Model Parameters BLEU NIST MET ROUGE-L CIDEr

GPT-2 M (FT)* 354.92M 68.2 8.62 46.2 71.0 2.47
GPT-2 M (AdapterL)* 0.37M 66.3 8.41 45.0 69.8 2.40
GPT-2 M (AdapterL)* 11.09M 68.9 8.71 46.1 71.3 2.47
GPT-2 M (AdapterH)* 11.09M 67.3±.6 8.50±.07 46.0±.2 70.7±.2 2.44±.01

GPT-2 M (FTTop2)* 25.19M 68.1 8.59 46.0 70.8 2.41
GPT-2 M (PreLayer)* 0.35M 69.7 8.81 46.1 71.4 2.49

GPT-2 M (LoRA) 0.35M 68.9 8.69 46.5 71.5 2.51
GPT-2 M(Stiefel) 0.35M 70.1 8.82 46.8 71.7 2.53
GPT-2 M(Sphere) 0.35M 70.3 8.83 46.7 71.7 2.52

GPT-2 L (FT)* 774.03M 68.5 8.78 46.0 69.9 2.45
GPT-2 L (AdapterL)* 0.88M 69.1±.1 8.68±.03 46.3±.0 71.4±.2 2.49±.0

GPT-2 L (AdapterL)* 23.00M 68.9±.3 8.70±.04 46.1±.1 71.3±.2 2.45±.02

GPT-2 L (PreLayer)* 0.77M 70.3 8.85 46.2 71.7 2.47
GPT-2 L (LoRA) 0.77M 70.1 8.82 46.7 72.0 2.53
GPT-2 L(Stiefel) 0.77M 70.4 8.86 46.8 72.1 2.53
GPT-2 L(Sphere) 0.77M 70.9 8.92 46.8 72.5 2.55
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Figure 4: The heat map of B⊤B with the Stiefel manifold (left) and the oblique manifold (right) on
E2E dataset.

5 Conclusion243

Optimization over the Stiefel manifold has been widely used in machine learning tasks. In this work,244

we develop a retraction-free and penalty parameter-free gradient method, and prove that the generated245

iterates eventually land on the manifold and achieve the optimality simultaneously. We then apply246

this landing theory to avoid the possible redundancy of LoRA fine-tuning in LLMs. Specifically, we247

reformulate the LoRA fine-tuning as an optimization problem over the Stiefel manifold, and propose248

a new algorithm, Manifold-LoRA, which incorporates a careful analysis of step sizes to enable fast249

training using the landing properties. Extensive experimental results demonstrate that our approach250

not only accelerates the training process but also yields significant performance improvements.251

Our study suggests several potential directions for future research. Although the established landing252

theory focuses on the Stiefel manifold, extending this theory to general manifolds is one potential253

direction. Additionally, evaluating the performance of Manifold-LoRA on LLMs with billions of254

parameters would be valuable. Due to the heterogeneity of different layers, incorporating adaptive255

ranks for ∆W across different layers is another possible direction. This may be achievable by adding256

sparsity regularization to the coordinate matrix A.257
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A Proximal smoothness373

The notion of proximal smoothness, as introduced by [11], refers to the characteristic of a closed set374

whereby the nearest-point projection becomes a singleton when the point is in close enough to the set.375

This property facilitates algorithmic and theoretical advancements by endowing nonconvex sets with376

convex-like structural attributes. Specifically, for any positive real number γ, we define the γ-tube377

around M as UM(γ) := {x : dist(x,M) < γ}. We say a closed set M is γ-proximally smooth if378

the projection operator PM(x) := argminy∈M ∥y − x∥2 is a singleton whenever x ∈ UM(γ).379

Obviously, any closed and convex set is proximally smooth for arbitrary γ ∈ (0,∞). According to380

[11, Corollary 4.6], a closed set M is convex if and only if it is proximally smooth with a radius of γ381

for every γ > 0. It is worth noting that the Stiefel manifold is 1-proximally smooth. By following the382

proof in [11, Theorem 4.8],383 ∥∥PSt(d,r)(x)− PSt(d,r)(y)
∥∥ ≤ 2∥x− y∥, ∀x, y ∈ ŪSt(d,r)(

1

2
), (15)

where ŪSt(d,r)(
1
2 ) := {x : dist(x,St(d, r)) ≤ 1

2} is the closure of USt(d,r)(
1
2 ). It is worth noting384

that for any closed convex set M ⊂ Rd×r, the projection operator PM is 1-Lipschitz continuous385

over Rd×r.386

B Proofs387

Proof of Lemma 1388

Proof. Denote the SVD of X by X = USV ⊤. Then, it holds that dist(X,St(d, r)) = ∥X − X̄∥ =389

∥s− 1∥2, where s = diag(S). Furthermore, we have390 〈
∇φ(X), X − X̄

〉
=

〈
USV ⊤(V S2V ⊤ − I), USV ⊤ − UV ⊤〉

=
〈
U(S3 − S)V ⊤, U(S − I)V ⊤〉

= tr((S3 − S)(S − I))

≥ 3

2
∥s− 1∥22 =

3

2
∥X − X̄∥2,

where the last inequality is from mini si(si + 1) ≥ 105
64 ≥ 3

2 . This completes the proof.391

Proof of Lemma 2392

Proof. Assume that ∥Xk − X̄k∥ ≤ 1
8 . Denote the SVD of Xk by USV ⊤. Let s = diag(S). Then,393

we have 7
8 ≤ si ≤ 9

8 for any i. This implies394

∥∇φ(Xk)∥2 = tr((S3 − S)2) ≤ 6∥Xk − X̄k∥2. (16)

Hence, we have395

∥Xk+1 − X̄k+1∥2 ≤ ∥Xk+1 − X̄k∥2

= ∥Xk − 1

3
∇φ(Xk)− X̄k∥2

= ∥Xk − X̄k∥2 −
2

3

〈
Xk − X̄k,∇φ(Xk)

〉
+

1

9
∥∇φ(Xk)∥2

≤ (1− 1 +
2

3
)∥Xk − X̄k∥2

=
2

3
∥Xk − X̄k∥2,

where the first inequality is from X̄k+1 = argminX∈St(d,r) ∥X −Xk∥2 and the second inequality is396

due to Lemma 1 and (16).397

Proof of Lemma 3398
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Proof. Due to the twice differentiability of f and the compactness of St(d, r), the inequality (7)399

directly follows from [9, Lemma 2.4] and [14, Lemma 4.2], where L := Lf +Df with Lf being the400

Lipschitz constant of ∇f(X) over St(d, r) and Df := maxX∈St(d,r) ∥∇f(X)∥.401

For the second argument, we have402

∥gradf(X)− gradf(Y )∥
≤∥PTXSt(d,r)(∇f(X))− PTXSt(d,r)(∇f(Y ))∥+ ∥PTXSt(d,r)(∇f(Y ))− gradf(Y )∥

≤Lf∥X − Y ∥+ 1

2
∥X(X⊤∇f(Y ) +∇f(Y )⊤X)− Y (Y ⊤∇f(Y ) +∇f(Y )⊤Y )∥

≤Lf∥X − Y ∥+ 1

2
∥X((X − Y )⊤∇f(Y ) +∇f(Y )⊤(X − Y ))∥

+
1

2
∥(X − Y )(Y ⊤∇f(Y ) +∇f(Y )⊤Y )∥

≤Lf∥X − Y ∥+ 1

2
(2D̂f + 3D̂f )∥X − Y ∥

=(Lf +
5

2
D̂f )∥X − Y ∥,

where D̂f := maxX∈ŪSt(d,r)(
1
8 )
∥∇f(X)∥, the second inequality is due to the contractive property403

of PTXSt(d,r), and the last inequality is from the fact that ∥Y ∥2 ≤ 3
2 . By setting L̂ = Lf + 5

2D̂f ,404

we complete the proof.405

Proof of Lemma 4406

Proof. It follows that407

∥Xk+1 − X̄k+1∥ ≤ ∥Xk+1 − X̄k∥
≤ ∥Xk − µφ(Xk)− X̄k∥+ α∥gradf(Xk)∥

≤ 2

3
∥Xk − X̄k∥+ α∥gradf(Xk)∥.

We complete the proof.408

Proof of Lemma 5409
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Proof. It follows from (7) that410

f(X̄k+1)− f(X̄k) ≤
〈
gradf(X̄k), X̄k+1 − X̄k

〉
+

L

2
∥X̄k+1 − X̄k∥2

≤
〈
gradf(X̄k), X̄k+1 −Xk+1 +Xk − X̄k

〉
+

〈
gradf(X̄k), Xk+1 −Xk

〉
+ 2L∥Xk+1 −Xk∥2

≤
〈
gradf(X̄k), X̄k+1 −Xk+1

〉
+

〈
gradf(X̄k), Xk+1 −Xk

〉
+ 4L(α2∥gradf(Xk)∥2 + µ2∥∇φ(Xk)∥2)

=
〈
gradf(X̄k)− gradf(X̄k+1), X̄k+1 −Xk+1

〉
+ ⟨gradf(Xk), Xk+1 −Xk⟩

+
〈
gradf(X̄k)− gradf(Xk), Xk+1 −Xk

〉
+ 4L(α2∥gradf(Xk)∥2 + µ2∥∇φ(Xk)∥2)

≤2L̂2∥Xk+1 −Xk∥2 +
1

2
∥Xk+1 − X̄k+1∥2 − α∥gradf(Xk)∥2

− µ ⟨gradf(Xk),∇φ(Xk)⟩+
1

2
(L̂2∥Xk − X̄k∥2 + ∥Xk+1 −Xk∥2)

+ 4L(α2∥gradf(Xk)∥2 + µ2∥∇φ(Xk)∥2)

≤− α∥gradf(Xk)∥2 − µ
〈
∇f(Xk),PTXk

St(d,r)(∇φ(Xk))
〉
+

1

2
∥Xk+1 − X̄k+1∥2

+
1

2
∥Xk − X̄k∥2 + (4L̂2 + 4L+ 1)(α2∥gradf(Xk)∥2 + µ2∥∇φ(Xk)∥2)

≤− (α− (4L̂2 + 4L+ 1)α2)∥gradf(Xk)∥2 +
1

2
∥Xk+1 − X̄k+1∥2

+ (6µD̂f +
1

2
+ 16(4L̂2 + 4L+ 1)µ2)∥Xk − X̄k∥2,

(17)

where the second inequality is from the 2-Lipschitz continuity of PSt(d,r) over ŪSt(d,r)(
1
8 ), the third411

inequality is due to the facts that Xk − X̄k ∈ NX̄k
St(d, r) and ⟨A,B⟩ ≤ 1

2 (∥A∥2 + ∥B∥2) for any412

A,B ∈ Rn×d, and the last inequality comes from413

∥PTXk
St(d,r)(∇φ(Xk))∥ = ∥Xk(X

⊤
k Xk − I)2∥ ≤ 6∥Xk − X̄k∥2.

Plugging µ = 1
3 into (17) gives (10).414

Proof of Theorem.415

Proof. Applying [42, Lemma 2] to (9) yields416

K∑
k=0

∥Xk − X̄k∥2 ≤ 18α2
K∑

k=0

∥gradf(X̄k)∥2 + 4. (18)

Then, summing (10) over k = 0, . . . ,K gives417

f(X̄k+1)− f(X̄0)

≤− (α− (4L̂2 + 4L+ 1)α2)

K∑
k=0

∥gradf(Xk)∥2

+
1

2

(
4D̂f + 16L̂2 + 16L+ 3

)K+1∑
k=0

∥Xk − X̄k∥2

≤− (α− (4L̂2 + 4L+ 1)α2 + 9(4D̂f + 16L̂2 + 16L+ 3)α2)

K∑
k=0

∥gradf(Xk)∥2

+
1

2

(
4D̂f + 16L̂2 + 16L+ 3

)
(18α2∥gradf(Xk+1)∥2 + 4).

(19)
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Define c1 = 148L̂2 + 148L+ 36D̂f + 28 and c2 = (9D̂2
f + 2)(4D̂f + 16L̂2 + 16L+ 4). Then, we418

have419

α(1− c1α)

K∑
k=0

∥gradf(Xk)∥2 ≤ f(X̄0)− f(X̄k+1) + c2.

Therefore, for any α ≤ 1
2c1

, taking K → ∞ gives
∑∞

k=0 ∥gradf(Xk)∥2 < ∞. Then by (11),420 ∑∞
k=0 ∥Xk − X̄k∥2 < ∞. These lead to (11).421

C Hyperparameters422

Table 4: Hyperparameter setup of Manifold-LoRA for question answering tasks.
Method Hyperparamter SQuADv1.1 SQuADv2.0

Warmup Ratio 0.06
LR Schedule Linear
Weight Decay 0.1
β1 0.9
β2 0.999
Batch Size 64
Learning Rate 3e-3
Epochs 4

Sphere(r=8) µ 0.85 0.85
Lower 0.25 0.25
Upper 0.75 0.5

Sphere(r=16) µ 0.9 0.85
Lower 0.25 0.25
Upper 0.5 0.5

Stiefel(r=8) µ 0.85 0.85
Lower 0.25 0.25
Upper 0.5 0.5

Stiefel(r=16) µ 0.9 0.85
Lower 0.25 0.25
Upper 0.5 0.5
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Table 5: Hyperparameter configurations of Manifold-LoRA for GLUE benchmark
Method Hyperparameter MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B

Warmup Ratio 0.06
LR Schedule Linear

Max Sequence Length 256
Weight Decay 0.1

β1 0.9
β2 0.999

Batch Size 32
LoRA Layer Wq,Wv

Epochs 7 24 25 5 5 50 30 25
Learning rate 5e-4 8e-4 5e-4 5e-4 1.2e-3 1.2e-3 1e-3 2.2e-3

Sphere(r=16) µ 1 0.9 0.8 0.9 0.95 1.2 0.85 0.9
Lower 0.25 0.25 0.5 0.5 0.5 0.5 1 1
Upper 2 2 2 4 2 2 4 4

Sphere(r=8) µ 0.95 0.95 1 0.9 1 0.9 0.85 1
Lower 2 0.5 1 0.5 0.5 0.25 2 1
Upper 8 2 8 2 2 0.5 4 8

Stiefel(r=16) µ 0.8 0.85 0.95 0.9 0.95 1.2 0.8 1
Lower 2 0.5 2 0.5 0.5 0.5 1 1
Upper 8 1 8 4 1 2 4 16

Stiefel(r=8) µ 0.8 0.95 0.95 0.9 0.85 0.9 1 1
Lower 2 0.5 2 0.5 0.5 0.25 1 1
Upper 8 2 8 2 2 1 4 16

Table 6: Hyperparameter setup of Manifold-LoRA for E2E benchmark.
Method Hyperparamter GPT-2(M) GPT-2(L)

Warmup Steps 500
LR Schedule Linear
Weight Decay 0.01
β1 0.9
β2 0.999
LoRA dropout 0
Batch Size 8
Learning Rate 2e-4
Epochs 5

Sphere(r=4) µ 1 0.9
Lower 0.5 0.5
Upper 2 2

Stiefel(r=4) µ 1 1.1
Lower 0.5 0.5
Upper 4 2
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NeurIPS Paper Checklist423

1. Claims424

Question: Do the main claims made in the abstract and introduction accurately reflect the425

paper’s contributions and scope?426

Answer: [Yes]427

Justification: Our empirical results in Section 4 justify ours claims.428

Guidelines:429

• The answer NA means that the abstract and introduction do not include the claims430

made in the paper.431

• The abstract and/or introduction should clearly state the claims made, including the432

contributions made in the paper and important assumptions and limitations. A No or433

NA answer to this question will not be perceived well by the reviewers.434

• The claims made should match theoretical and experimental results, and reflect how435

much the results can be expected to generalize to other settings.436

• It is fine to include aspirational goals as motivation as long as it is clear that these goals437

are not attained by the paper.438

2. Limitations439

Question: Does the paper discuss the limitations of the work performed by the authors?440

Answer: [Yes]441

Justification: We discuss our limitations in Section 5.442

Guidelines:443

• The answer NA means that the paper has no limitation while the answer No means that444

the paper has limitations, but those are not discussed in the paper.445

• The authors are encouraged to create a separate ”Limitations” section in their paper.446

• The paper should point out any strong assumptions and how robust the results are to447

violations of these assumptions (e.g., independence assumptions, noiseless settings,448

model well-specification, asymptotic approximations only holding locally). The authors449

should reflect on how these assumptions might be violated in practice and what the450

implications would be.451

• The authors should reflect on the scope of the claims made, e.g., if the approach was452

only tested on a few datasets or with a few runs. In general, empirical results often453

depend on implicit assumptions, which should be articulated.454

• The authors should reflect on the factors that influence the performance of the approach.455

For example, a facial recognition algorithm may perform poorly when image resolution456

is low or images are taken in low lighting. Or a speech-to-text system might not be457

used reliably to provide closed captions for online lectures because it fails to handle458

technical jargon.459

• The authors should discuss the computational efficiency of the proposed algorithms460

and how they scale with dataset size.461

• If applicable, the authors should discuss possible limitations of their approach to462

address problems of privacy and fairness.463

• While the authors might fear that complete honesty about limitations might be used by464

reviewers as grounds for rejection, a worse outcome might be that reviewers discover465

limitations that aren’t acknowledged in the paper. The authors should use their best466

judgment and recognize that individual actions in favor of transparency play an impor-467

tant role in developing norms that preserve the integrity of the community. Reviewers468

will be specifically instructed to not penalize honesty concerning limitations.469

3. Theory Assumptions and Proofs470

Question: For each theoretical result, does the paper provide the full set of assumptions and471

a complete (and correct) proof?472

Answer: [Yes]473
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Justification: We provide complete proofs in Appendix B and full set of assumptions in474

Section 2475

Guidelines:476

• The answer NA means that the paper does not include theoretical results.477

• All the theorems, formulas, and proofs in the paper should be numbered and cross-478

referenced.479

• All assumptions should be clearly stated or referenced in the statement of any theorems.480

• The proofs can either appear in the main paper or the supplemental material, but if481

they appear in the supplemental material, the authors are encouraged to provide a short482

proof sketch to provide intuition.483

• Inversely, any informal proof provided in the core of the paper should be complemented484

by formal proofs provided in appendix or supplemental material.485

• Theorems and Lemmas that the proof relies upon should be properly referenced.486

4. Experimental Result Reproducibility487

Question: Does the paper fully disclose all the information needed to reproduce the main ex-488

perimental results of the paper to the extent that it affects the main claims and/or conclusions489

of the paper (regardless of whether the code and data are provided or not)?490

Answer: [Yes]491

Justification: We specify the training details in Section 4 and Appendix C492

Guidelines:493

• The answer NA means that the paper does not include experiments.494

• If the paper includes experiments, a No answer to this question will not be perceived495

well by the reviewers: Making the paper reproducible is important, regardless of496

whether the code and data are provided or not.497

• If the contribution is a dataset and/or model, the authors should describe the steps taken498

to make their results reproducible or verifiable.499

• Depending on the contribution, reproducibility can be accomplished in various ways.500

For example, if the contribution is a novel architecture, describing the architecture fully501

might suffice, or if the contribution is a specific model and empirical evaluation, it may502

be necessary to either make it possible for others to replicate the model with the same503

dataset, or provide access to the model. In general. releasing code and data is often504

one good way to accomplish this, but reproducibility can also be provided via detailed505

instructions for how to replicate the results, access to a hosted model (e.g., in the case506

of a large language model), releasing of a model checkpoint, or other means that are507

appropriate to the research performed.508

• While NeurIPS does not require releasing code, the conference does require all submis-509

sions to provide some reasonable avenue for reproducibility, which may depend on the510

nature of the contribution. For example511

(a) If the contribution is primarily a new algorithm, the paper should make it clear how512

to reproduce that algorithm.513

(b) If the contribution is primarily a new model architecture, the paper should describe514

the architecture clearly and fully.515

(c) If the contribution is a new model (e.g., a large language model), then there should516

either be a way to access this model for reproducing the results or a way to reproduce517

the model (e.g., with an open-source dataset or instructions for how to construct518

the dataset).519

(d) We recognize that reproducibility may be tricky in some cases, in which case520

authors are welcome to describe the particular way they provide for reproducibility.521

In the case of closed-source models, it may be that access to the model is limited in522

some way (e.g., to registered users), but it should be possible for other researchers523

to have some path to reproducing or verifying the results.524

5. Open access to data and code525

Question: Does the paper provide open access to the data and code, with sufficient instruc-526

tions to faithfully reproduce the main experimental results, as described in supplemental527

material?528
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Answer: [Yes]529

Justification: We specify the code and dataset in Section 4.530

Guidelines:531

• The answer NA means that paper does not include experiments requiring code.532

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/533

public/guides/CodeSubmissionPolicy) for more details.534

• While we encourage the release of code and data, we understand that this might not be535

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not536

including code, unless this is central to the contribution (e.g., for a new open-source537

benchmark).538

• The instructions should contain the exact command and environment needed to run to539

reproduce the results. See the NeurIPS code and data submission guidelines (https:540

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.541

• The authors should provide instructions on data access and preparation, including how542

to access the raw data, preprocessed data, intermediate data, and generated data, etc.543

• The authors should provide scripts to reproduce all experimental results for the new544

proposed method and baselines. If only a subset of experiments are reproducible, they545

should state which ones are omitted from the script and why.546

• At submission time, to preserve anonymity, the authors should release anonymized547

versions (if applicable).548

• Providing as much information as possible in supplemental material (appended to the549

paper) is recommended, but including URLs to data and code is permitted.550

6. Experimental Setting/Details551

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-552

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the553

results?554

Answer: [Yes]555

Justification: We specify training details in Section 4 and hyperparameters in Appendix C.556

Guidelines:557

• The answer NA means that the paper does not include experiments.558

• The experimental setting should be presented in the core of the paper to a level of detail559

that is necessary to appreciate the results and make sense of them.560

• The full details can be provided either with the code, in appendix, or as supplemental561

material.562

7. Experiment Statistical Significance563

Question: Does the paper report error bars suitably and correctly defined or other appropriate564

information about the statistical significance of the experiments?565

Answer: [Yes]566

Justification: We specify these in our Section 4.567

Guidelines:568

• The answer NA means that the paper does not include experiments.569

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-570

dence intervals, or statistical significance tests, at least for the experiments that support571

the main claims of the paper.572

• The factors of variability that the error bars are capturing should be clearly stated (for573

example, train/test split, initialization, random drawing of some parameter, or overall574

run with given experimental conditions).575

• The method for calculating the error bars should be explained (closed form formula,576

call to a library function, bootstrap, etc.)577

• The assumptions made should be given (e.g., Normally distributed errors).578

• It should be clear whether the error bar is the standard deviation or the standard error579

of the mean.580
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• It is OK to report 1-sigma error bars, but one should state it. The authors should581

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis582

of Normality of errors is not verified.583

• For asymmetric distributions, the authors should be careful not to show in tables or584

figures symmetric error bars that would yield results that are out of range (e.g. negative585

error rates).586

• If error bars are reported in tables or plots, The authors should explain in the text how587

they were calculated and reference the corresponding figures or tables in the text.588

8. Experiments Compute Resources589

Question: For each experiment, does the paper provide sufficient information on the com-590

puter resources (type of compute workers, memory, time of execution) needed to reproduce591

the experiments?592

Answer: [Yes]593

Justification: We use the Hugging face and opendelta as our base code and make some594

modifications. We use GLUE, E2E, and Suqad three dataset.595

Guidelines:596

• The answer NA means that the paper does not include experiments.597

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,598

or cloud provider, including relevant memory and storage.599

• The paper should provide the amount of compute required for each of the individual600

experimental runs as well as estimate the total compute.601

• The paper should disclose whether the full research project required more compute602

than the experiments reported in the paper (e.g., preliminary or failed experiments that603

didn’t make it into the paper).604

9. Code Of Ethics605

Question: Does the research conducted in the paper conform, in every respect, with the606

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?607

Answer: [Yes]608

Justification: Our research is compatible with the NeurIPS Code of Ethics.609

Guidelines:610

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.611

• If the authors answer No, they should explain the special circumstances that require a612

deviation from the Code of Ethics.613

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-614

eration due to laws or regulations in their jurisdiction).615

10. Broader Impacts616

Question: Does the paper discuss both potential positive societal impacts and negative617

societal impacts of the work performed?618

Answer: [NA]619

Justification: There is no societal impact of our work performed620

Guidelines:621

• The answer NA means that there is no societal impact of the work performed.622

• If the authors answer NA or No, they should explain why their work has no societal623

impact or why the paper does not address societal impact.624

• Examples of negative societal impacts include potential malicious or unintended uses625

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations626

(e.g., deployment of technologies that could make decisions that unfairly impact specific627

groups), privacy considerations, and security considerations.628
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• The conference expects that many papers will be foundational research and not tied629

to particular applications, let alone deployments. However, if there is a direct path to630

any negative applications, the authors should point it out. For example, it is legitimate631

to point out that an improvement in the quality of generative models could be used to632

generate deepfakes for disinformation. On the other hand, it is not needed to point out633

that a generic algorithm for optimizing neural networks could enable people to train634

models that generate Deepfakes faster.635

• The authors should consider possible harms that could arise when the technology is636

being used as intended and functioning correctly, harms that could arise when the637

technology is being used as intended but gives incorrect results, and harms following638

from (intentional or unintentional) misuse of the technology.639

• If there are negative societal impacts, the authors could also discuss possible mitigation640

strategies (e.g., gated release of models, providing defenses in addition to attacks,641

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from642

feedback over time, improving the efficiency and accessibility of ML).643

11. Safeguards644

Question: Does the paper describe safeguards that have been put in place for responsible645

release of data or models that have a high risk for misuse (e.g., pretrained language models,646

image generators, or scraped datasets)?647

Answer: [NA]648

Justification: Our work poses no such risks.649

Guidelines:650

• The answer NA means that the paper poses no such risks.651

• Released models that have a high risk for misuse or dual-use should be released with652

necessary safeguards to allow for controlled use of the model, for example by requiring653

that users adhere to usage guidelines or restrictions to access the model or implementing654

safety filters.655

• Datasets that have been scraped from the Internet could pose safety risks. The authors656

should describe how they avoided releasing unsafe images.657

• We recognize that providing effective safeguards is challenging, and many papers do658

not require this, but we encourage authors to take this into account and make a best659

faith effort.660

12. Licenses for existing assets661

Question: Are the creators or original owners of assets (e.g., code, data, models), used in662

the paper, properly credited and are the license and terms of use explicitly mentioned and663

properly respected?664

Answer: [Yes]665

Justification: We correctly cite the code and datasets we used in Section 4.666

Guidelines:667

• The answer NA means that the paper does not use existing assets.668

• The authors should cite the original paper that produced the code package or dataset.669

• The authors should state which version of the asset is used and, if possible, include a670

URL.671

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.672

• For scraped data from a particular source (e.g., website), the copyright and terms of673

service of that source should be provided.674

• If assets are released, the license, copyright information, and terms of use in the675

package should be provided. For popular datasets, paperswithcode.com/datasets676

has curated licenses for some datasets. Their licensing guide can help determine the677

license of a dataset.678

• For existing datasets that are re-packaged, both the original license and the license of679

the derived asset (if it has changed) should be provided.680
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• If this information is not available online, the authors are encouraged to reach out to681

the asset’s creators.682

13. New Assets683

Question: Are new assets introduced in the paper well documented and is the documentation684

provided alongside the assets?685

Answer: [NA]686

Justification: Our paper does not release new asset.687

Guidelines:688

• The answer NA means that the paper does not release new assets.689

• Researchers should communicate the details of the dataset/code/model as part of their690

submissions via structured templates. This includes details about training, license,691

limitations, etc.692

• The paper should discuss whether and how consent was obtained from people whose693

asset is used.694

• At submission time, remember to anonymize your assets (if applicable). You can either695

create an anonymized URL or include an anonymized zip file.696

14. Crowdsourcing and Research with Human Subjects697

Question: For crowdsourcing experiments and research with human subjects, does the paper698

include the full text of instructions given to participants and screenshots, if applicable, as699

well as details about compensation (if any)?700

Answer: [NA]701

Justification: Our study does not involve crowdsourcing nor research with human subjects.702

Guidelines:703

• The answer NA means that the paper does not involve crowdsourcing nor research with704

human subjects.705

• Including this information in the supplemental material is fine, but if the main contribu-706

tion of the paper involves human subjects, then as much detail as possible should be707

included in the main paper.708

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,709

or other labor should be paid at least the minimum wage in the country of the data710

collector.711

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human712

Subjects713

Question: Does the paper describe potential risks incurred by study participants, whether714

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)715

approvals (or an equivalent approval/review based on the requirements of your country or716

institution) were obtained?717

Answer: [NA]718

Justification: The paper does not involve crowdsourcing nor research with human subjects.719

Guidelines:720

• The answer NA means that the paper does not involve crowdsourcing nor research with721

human subjects.722

• Depending on the country in which research is conducted, IRB approval (or equivalent)723

may be required for any human subjects research. If you obtained IRB approval, you724

should clearly state this in the paper.725

• We recognize that the procedures for this may vary significantly between institutions726

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the727

guidelines for their institution.728

• For initial submissions, do not include any information that would break anonymity (if729

applicable), such as the institution conducting the review.730

23


	Introduction
	Related Work
	Notation

	Retraction-free and penalty parameter-free optimization over the Stiefel manifold
	Retraction-free algorithms
	Explicit choice for the penalty parameter
	Landing on the Stiefel manifold

	Accelerate LoRA fine-tuning with landing
	Manifold optimization formulation of LoRA fine-tuning
	Manifold-LoRA

	Experiments
	Natural language understanding
	Question Answering
	Natural Language Generation

	Conclusion
	Proximal smoothness
	Proofs
	Hyperparameters

