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ABSTRACT

Recent large reasoning models (LRMs) driven by reinforcement learning algo-
rithms (e.g., GRPO) have achieved remarkable performance on challenging rea-
soning tasks. However, these models suffer from overthinking, generating unnec-
essarily long and redundant reasoning even for simple questions, which substan-
tially increases computational cost and response latency. While existing methods
incorporate length rewards to GRPO to promote concise reasoning, they incur sig-
nificant performance degradation. We identify the root cause: when rewards for
correct but long rollouts are penalized, GRPO’s group-relative advantage function
can assign them negative advantages, actively discouraging valid reasoning. To
overcome this, we propose Decoupled Reward Policy Optimization (DRPO), a
novel framework that decouples the length-based learning signal of correct roll-
outs from incorrect ones. DRPO ensures that reward signals for correct rollouts are
normalized solely within the positive group, shielding them from interference by
negative samples. The DRPO’s objective is grounded in integrating an optimized
positive data distribution, which maximizes length-based rewards under a KL reg-
ularization, into a discriminative objective. We derive a closed-form solution for
this distribution, enabling efficient computation of the objective and its gradients
using only on-policy data and importance weighting. Of independent interest, this
formulation is general and can incorporate other preference rewards of positive
data beyond length. Experiments on mathematical reasoning tasks demonstrate
DRPO’s significant superiority over six efficient reasoning baselines. Notably,
with a 1.5B model, our method achieves 77% length reduction with only 1.1%
performance loss on simple questions like GSM8k dataset, while the follow-up
baseline sacrifices 4.3% for 68% length reduction.

1 INTRODUCTION

Recently, large reasoning models (LRMs) driven by Reinforcement Learning (RL) (Guo et al., 2025;
Team et al., 2025b) have demonstrated remarkable performance on complex reasoning tasks like
mathematics, coding, and scientific problem-solving. Unlike conventional language models that
focus on direct thoughts and solutions, LRMs improve performance by generating extended chain-
of-thought paths (Wei et al., 2022), allowing them to revisit intermediate steps, correct errors, and
even explore alternative reasoning paths. This approach equips LRMs with stronger reasoning abil-
ities and has become a standard paradigm to develop models capable of solving complex tasks.

However, existing LRMs suffer from overthinking with lengthy and redundant reasoning paths. As
demonstrated by Chen et al. (2024), reasoning models like DeepSeek-R1 (Guo et al., 2025) need to
generate about 1,000 tokens to answer “what is the answer of 2 plus 3”, while only around 10 tokens
are needed for non-reasoning models. Such overly generated reasoning paths raise significant issues,
leading to substantially increased computational cost and longer inference time. Numerous studies
have been conducted to explore ways to eliminate redundant reasoning and improve the reasoning
efficiency. A popular strategy is to introduce explicit reward shaping with length penalties in RL to
guide the model toward concise reasoning (Arora & Zanette; Huang et al.; Xiang et al.; Aggarwal
& Welleck), e.g., penalizing rewards of correct answers based on reasoning length to encourage
shorter reasoning. Nevertheless, almost all existing methods fall short in preserving performance
while shortening reasoning, causing substantial performance loss. This raises a key question: how
to guide RL for efficient reasoning with minimal performance drop?
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We identify the root cause underlying the insufficiency of existing RL-based efficient reasoning
methods. The recent advancement of training efficient reasoning models has been largely built
upon the Group Relative Policy Optimization (GRPO) framework, due to its groundbreaking per-
formance (Guo et al., 2025). GRPO’s effectiveness hinges on its group-relative advantage function,
which normalizes a rollout’s reward against the group average to create a learning signal that dis-
tinguishes positive from negative examples. Yet, this very strength becomes its greatest weakness
when moving beyond simple correctness. We demonstrate that the framework is fundamentally ill-
suited for composite rewards. Incorporating a length penalty reduces the reward for correct but long
answers, often pushing their group-relative advantage below zero. Consequently, GRPO is misled
into interpreting verbose correct answers as negative examples, discouraging valid reasoning and
creating a significant optimization barrier (Figure 1).

An effective mechanism must not only distinguish right from wrong but also efficient right from
inefficient right—assigning a strong positive signal to concise answers and a weaker positive signal
to verbose ones, all while suppressing incorrect reasoning. To this end, we introduce Decoupled Re-
ward Policy Optimization (DRPO), a novel RL framework that fundamentally rethinks how learning
signals are constructed. DRPO’s core innovation is the decoupling of the learning signal calculation:
it normalizes rewards for a correct rollout only against other correct rollouts, completely insulating
them from the negative examples that corrupt GRPO’s signal. This ensures that length penalty pro-
portionally reduces the positive signal of a long correct answer but never pushes it into negative ter-
ritory, thereby achieving a more favorable trade-off between efficiency and accuracy. We formalize
this intuition by deriving a generalized objective in a discriminative RL framework. This objective
integrates a perturbed version of the on-policy positive data distribution, where the perturbation is
designed explicitly to maximize a length-based reward. We derive a closed-form solution of the
perturbed distribution, which allows us to efficiently optimize the objective without any additional
data collection, using only on-policy samples via importance weighting.

Our contributions are four-fold:

• We diagnose a critical, previously overlooked deficiency in the widely-adopted GRPO framework:
its group-relative advantage function is ill-suited for correctness–length composite rewards and
actively harms learning when incentivizing efficiency.

• We propose Decoupled Reward Policy Optimization (DRPO), a new paradigm that decouples
learning signals for positive and negative data. DRPO provides consistent, uncorrupted policy
gradients for multi-reward optimization (e.g., correctness and length).

• We derive a rigorous formulation for DRPO by integrating a reward-maximizing, perturbed pos-
itive data distribution directly into a discriminative objective. We obtain a tractable closed-form
solution to the perturbed distribution, yielding a practical algorithm requiring only on-policy data
with no overhead.

• We conduct experiments to demonstrate the superiority of DRPO in training efficient reasoning
models, substantially outperforming strong baselines across different model sizes and various
mathematical reasoning benchmarks.

2 RELATED WORK

Large Reasoning Models. Earlier structured prompting approaches such as Chain-of-Thought
(CoT) (Wei et al., 2022), Tree-of-Thought (ToT) (Yao et al., 2023), and Graph-of-Thought
(GoT) (Besta et al., 2024) demonstrated the importance of decomposing complex problems into
intermediate steps. However, these methods rely heavily on prompting and search heuristics, lack-
ing a unified learning framework to optimize reasoning efficiency and robustness.

The breakthrough came with DeepSeek-R1, which revealed that large reasoning models (LRMs)
trained via large-scale reinforcement learning, particularly GRPO (Shao et al., 2024), can au-
tonomously acquire advanced reasoning behaviors such as branching, verification, and backtracking.
This success inspired numerous follow-up studies: some aimed at reproducing the effectiveness of
GRPO (Wen et al., 2025; Luo et al., 2025b; He et al., 2025), while others investigated its lim-
itations and proposed refinements to further enhance reasoning performance (Yu et al., 2025; Li
et al., 2025a) (Chen et al., 2025; Zheng et al., 2025). In parallel, many open-weight reasoning mod-
els have adopted GRPO, including Qwen-3 (Yang et al., 2025a), GLM-4.5 (Team et al., 2025a),
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K2-Think (Cheng et al., 2025), and Goedel-solver (Lin et al., 2025), among others. Despite these
advances, existing LRMs often suffer from overthinking—producing unnecessarily long and redun-
dant reasoning even for simple problems. This work aims to directly address this issue by training
LRMs to reason both efficiently and effectively.

Efficient Reasoning in LRMs. To address the issue of overthinking in LRMs, a variety of tech-
niques have been proposed (Sui et al., 2025; Yue et al., 2025), including (1) training-free methods,
which shorten the reasoning paths via prompt (Aytes et al., 2025; Han et al., 2024) or manipulating
the decoding process (Yang et al., 2025b; Yong et al., 2025; Wang et al., 2025a; Liu et al., 2025a;
Wang et al., 2025c); (2) Supervised Fine-tuning (SFT) methods, which rely on compressed reason-
ing datasets for finetuning. These datasets are curated via token-level selection (Yuan et al., 2025;
Xia et al., 2025; Zhuang et al., 2025), step-level selection (Xiao et al., 2025; Cui et al., 2025; Wang
et al., 2025b), path-level selection (Munkhbat et al., 2025; Ghosal et al., 2025); (3) RL-based meth-
ods, which carefully design reward mechanisms to guide the model to reason efficiently (Hou et al.;
Aggarwal & Welleck; Arora & Zanette; Xiang et al.; Luo et al.; Huang et al.; Yi et al., 2025; Liu
et al., 2025b; Xu et al., 2025; Fang et al., 2025; Li et al., 2025b).

Among these techniques, RL-based methods have been demonstrated to be one of the most effective
approaches due to their scalability and flexibility. Specifically, L1 (Aggarwal & Welleck) integrates
a length constraint into the reward function to encourage higher performance while meeting the
length goal specified in the prompt. Arora & Zanette employs online RL with a length penalty
based on the distribution of correct answers, penalizing correct responses longer than the average
while encouraging those shorter than the average. ALP (Xiang et al.) adaptively adjusts length
penalties according to problem difficulty, measured by pass rate, assigning stronger penalties to
high pass-rate problems to discourage overlong reasoning. HAPO (Huang et al.) keeps track of
the minimum length of correct responses for each question, penalizing outputs that exceed this
length while rewarding those that are shorter. Nevertheless, these methods all suffer from misleading
learning signals and fall short in preserving performance while shortening reasoning, due to the
limitation of their adopted relative advantage function.

Discriminative Learning for LRMs. Discriminative learning is a classical paradigm applied widely
to traditional tasks like classifications (Bishop & Nasrabadi, 2006; Yang & Ying, 2022) and rank-
ings (Burges et al., 2005; Cao et al., 2007). These methods follow the principle of raising scores
for positive (correct) samples while lowering scores for negative (incorrect) ones. Recently, several
works have explored applying the principle of discriminative learning to LRM training. For exam-
ple, (Li et al., 2025a) proposed a discriminative constrained RL framework with verifiable binary
rewards to finetune LRMs. Lyu et al. (2025); Bai et al. (2025) utilize discriminative loss for behav-
ior cloning on positive samples and policy gradient on negative samples. Su et al. (2025) leverages
discriminative learning with positive-negative pairs for reasoning tasks. However, these methods are
limited to binary accuracy rewards and don’t address the challenge of overthinking in LRMs.

3 LIMITATION OF INCORPORATING LENGTH PENALTY INTO GRPO

Notations. We study the fine-tuning of a generative reasoning model πθ parameterized by θ. At each
learning step, the previous model is denoted by πold, which is responsible for generating answers to
a given set of questions. For a question q ∈ Σ∗ (including its prompt), the output o ∈ Σ∗ is sampled
from πold(·|q), consisting of both reasoning traces and the final answer, where Σ∗ denotes the space
of all sequences of tokens with arbitrary length. More concretely, o is generated sequentially at
the token level: ot ∼ πold(·|q, o<t), for t = 1, · · · , |o|. The correctness reward rc(o|q) ∈ {1, 0}
for a given question q and its corresponding answer in the output o is verified by either matching
the extracted answer against the ground-true answer or a formal verification tool (Guo et al., 2025;
Zhang et al., 2025). Let π+

old(·|q) denote the conditional distribution of outputs when the reward
is one (i.e., correct answers) and π−

old(·|q) denote the conditional distribution of outputs when the
reward is zero (i.e., incorrect answers). Let [·]+ = max(·, 0) denote the hinge function.

Following the success of DeepSeek-R1, Group Relative Policy Optimization (GRPO) is widely
adopted in existing RL-based efficient reasoning methods to estimate the relative advantage from
group rewards instead of the critic model. In the following, we illustrate the limitations of incorpo-
rating length penalty into GRPO for promoting efficient reasoning. We note that similar limitations
occur to other RL methods, such as RLOO (Ahmadian et al., 2024), and other REINFORCE-based
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Figure 1: Illustration of the limitation of GRPO with length penalty and the benefit of our approach.
Suppose [1, 1, 1, 0, 0, 0] are the accuracy rewards for 6 responses, and [0.73, 0.6, 0.2, 0, 0, 0] are the
rewards after applying the length penalty to correct answers. Using the group-relative advantage
calculation of GRPO, the advantages for the third response shift from 1 (without length penalty) to
-0.17 (with length penalty added), inadvertently penalizing the third correct response, which may
substantially harm performance. In contrast, our proposed DRPO reduces the learning signal for
lengthy and correct responses but never pushes them to the negative territory.

methods (Hu et al., 2025; Chu et al., 2025), which couple rewards for correct and incorrect answers
to compute advantages for learning.

The GRPO objective for maximization is given by:
JGRPO(θ) = EqE{oi}G

i=1∼πold(·|q) (1)[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ri,tA(oi|q), clip(ri,t, 1− ϵ, 1 + ϵ)A(oi|q)

)]
− βDKL(πθ||πref)

where ri,t =
πθ(oi,t|q,oi,<t)
πold(oi,t|q,oi,<t)

, πref is a frozen reference model, DKL(·, ·) denotes the KL divergence
between two distributions, and A(oi|q) denotes the relative advantage of output oi, which quantifies
how much better the reward of oi denoted by r(oi|q) compared to the group average reward and
guides the learning direction. Specifically, A(oi|q) is computed by

A(oi|q) =
r(oi|q)− mean(r(o1|q), r(o2|q), · · · , r(oG|q))

std(r(o1|q), r(o2|q), · · · , r(oG|q))
. (2)

Let us consider incorporating a length penalty into GRPO. Existing RL methods with length con-
trol reveal a shared principle: penalizing rewards of correct answers based on reasoning length to
encourage shorter reasoning, e.g., r(o|q) = rc(o|q) − rl(o|q), where rl(·) is a length-based cost
or reward function (refer to Table 2 for detailed formulations). The consequence is that the re-
ward of a correct with long output will be shifted down relatively. Incorporating this reward into
GRPO’s group relative advantage calculation may bias the intended effect, misleading the learning
process. Let us consider an illustrative example in Figure 1. Suppose there are six generated outputs
with different lengths, whose correctness rewards are [1, 1, 1, 0, 0, 0] and corresponding lengths are
[2000, 2500, 4000, 2800, 3800, 3200]. After combining the length reward with correctness reward,
the combined reward of each answer becomes [0.73, 0.6, 0.2, 0, 0, 0] 1. So far, it looks like that all
the designs work well since short correct answers have larger positive rewards and longer correct
answers have smaller positive rewards while incorrect answers have zero rewards. However, when
computing group relative advantage A(o|q) in GRPO (i.e., Eqn. (2)), the advantage for the third
correct response shifts from 1 (without length penalty) to -0.17 (with length penalty added). This

1These values are calculated with the formula proposed in (Arora & Zanette). We note that various reward
combination designs in the literature lead to the same issue. Refer to Appendix A.3 for a detailed discussion.
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negative signal will discourage valid reasoning and create a significant optimization barrier, which
may substantially harm performance.

4 DRPO: DECOUPLED REWARD POLICY OPTIMIZATION

The main reason of getting a negative learning signal in GRPO for a verbose correct answer is that
its reshaped reward could become less than the mean reward of all samples including positive and
negative ones. Our approach to avoid this issue is to decouple the rewarding of positive and negative
samples so that the length rewards are only normalized within the positive group. To this end,
we develop our approach based on a recent work (Li et al., 2025a), which proposes a discriminative
optimization framework (DisCO) that directly increases the generative likelihood of positive answers
and decrease that of negative answers. Below, we first introduce DisCO and then present our novel
approach of integrating length rewards into DisCO’s objective.

4.1 DISCRIMINATIVE CONSTRAINED POLICY OPTIMIZATION (DISCO)

DisCO was proposed to address several inherent limitations of GRPO, including difficulty bias and
clipping operations. Let sθ(o, q) be a scoring function, which measures the generative likelihood of
answer o given the input q. In this paper, we will consider sθ(o, q) = 1

|o|
∑|o|

t=1 log πθ(ot|q, o<t),
which is effective as demonstrated in (Li et al., 2025a). The objective of DisCO is formulated as:

max
θ

Eq

[
Eo∼π+

old(·|q)
sθ(o, q)− τ log

(
Eo′∼π−

old(·|q)
exp

(
sθ(o

′, q)

τ

))]
,

s.t. DKL(πold||πθ) ≤ δ,

(3)

where δ > 0 is a hyper-parameter. The intuition behind this formulation is straightforward: it
increases the scores of positive responses o ∼ π+

old(·|q) while decreasing the scores of negative re-
sponses, aggregated through a log-sum-exp function. The log-sum-exp has its roots in discriminative
learning, appearing in losses such as cross-entropy and contrastive loss, and naturally emphasizes
hard negatives by assigning them larger learning signal. The constraint DKL(πold||πθ) ≤ δ, inspired
by TRPO (Schulman et al., 2015), is added to ensure the stability of training.

While DisCO demonstrates impressive gains in reasoning performance over GRPO, the length of
its reasoning is uncontrolled, leaving the challenge of enhancing reasoning efficiency unresolved.
Moreover, the above objective is derived under a binary reward setting, which does not accept
flexible reward design. In the following, we discuss how to incorporate length rewards into the
framework to encourage efficient reasoning.

4.2 DECOUPLED REWARD POLICY OPTIMIZATION

We consider a simple length reward rl(o) = 1 − |o|
C for any correct response o, where C is a

constant denoting maximum response length. An intuitive idea is to assign a weight to positive
answers before their scores sθ(o, q) in (3) such that a shorter answer is assigned with a larger weight
than a longer answer. Below, we formalize this idea by proposing a principled objective.

Our goal is to maximize the score of correct outputs with high length rewards while penalizing those
of wrong outputs regardless of their lengths. Suppose we have a distribution P ∗

q , which specifies a
distribution of correct outputs with high length rewards given a question q. Then, we can modify the
objective in (3) as

maxEq

[
Eo∼P∗

q
sθ(o, q)− τ log

(
Eo′∼π−

old(·|q)
exp

(
sθ(o

′, q)

τ

))]
. (4)

This can be explained that if we have an off-policy data distribution P ∗
q of correct outputs with

high length rewards, we can use its sampled data to steer the model training such that it generates
correct outputs with high length rewards more likely. However, the issue is that P ∗

q is not readily
available. Although a naive solution is to curate such data manually, as in SFT-based efficient
reasoning methods, it requires substantial human effort and lacks scalability. To address this, we
draw insights from reinforcement learning from human feedback (RLHF) (Bai et al., 2022; Ouyang
et al., 2022; Ziegler et al., 2019) by finding an optimal policy P ∗

q that maximizes the length reward
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with a KL regularization:
P ∗
q = argmax

P∈P
Eo∼P rl(o)− λDKL(P, π

+
old(·|q)), (5)

where λ > 0 is a regularization parameter, P denotes the set of all probability measures P on correct
data given q, which are absolutely continuous with respect to π+

old(·|q), i.e., π+
old(o|q) = 0 indicates

P (o) = 0.

However, unlike RLHF that uses a LLM to learn P ∗, we derive its closed analytical solution similar
to (Rafailov et al., 2023) (See Appendix A.1 for a complete derivation):

P ∗
q (o) =

π+
old(o|q) exp(rl(o)/λ)

Eo∼π+
old(·|q)

exp(rl(o)/λ)
. (6)

As a result, we have

Eo∼P∗
q
sθ(o, q) =

∑
o∈Σ∗

π+
old(o|q) exp(rl(o)/λ)

Eo∼π+
old(·|q)

exp(rl(o)/λ)
sθ(o, q)

= Eo∼π+
old(o|q)

exp(rl(o)/λ)

Eo∼π+
old(·|q)

exp(rl(o)/λ)
sθ(o, q).

Plugging this formulation back into (4), we obtain the final objective function:

max Eq

[
Eo∼π+

old(·|q)
exp(rl(o)/λ)

Eo∼π+
old(·|q)

exp(rl(o)/λ)
sθ(o, q)− τ log

(
Eo′∼π−

old(·|q)
exp

(
sθ(o

′, q)

τ

))]
s.t. DKL(πold||πθ) ≤ δ.

(7)

It is notable that the final objective only relies on the on-policy data, and it has an explanation that
each positive data is assigned with a weight ω(o|q) = exp(rl(o)/λ)

E
o∼π

+
old(·|q)

exp(rl(o)/λ)
informed by its length

but normalized only within the positive data. It is notable that when λ = +∞, then ω(o|q) = 1 and
the above objective reduces to that of DisCO in (3).

We solve the optimization problem (7) similarly as (Li et al., 2025a). In particular, the expectations
are replaced by empirical averages and the KL divergence is estimated by using sampled data, and
the constraint is handled by adding a penalty function β0[DKL(πold||πθ)−δ]2+ to the objective, where
β0 is a penalty constant. For completeness, we present a full algorithm for solving (7) in Algorithm 1
in the Appendix. We refer to this method as Decoupled Reward Policy Optimization (DRPO).

5 EXPERIMENTS

Datasets. We validate our method on mathematical reasoning tasks. Specifically, we train mod-
els on the DeepScaleR-Preview-Dataset (Luo et al., 2025c), which consists of approximately 40.3k
question-answer pairs sourced from AIME problems from 1984 to 2023, AMC problems before
2023, Omni-MATH (Gao et al., 2024) and Still (Min et al., 2024) datasets. We evaluate all the mod-
els on math problems with different levels of difficulty, including (a) easy level: GSM8K (Cobbe
et al., 2021), (b) medium level: MATH-500 (Hendrycks et al., 2021), (c) hard level: Olympiad-
Bench (He et al., 2024), and (d) very hard level: AIME (aggregating 2024 and 2025). To verify the
generalizability of our method to non-mathematical reasoning tasks, we also conducted experiments
on K&K logic puzzle dataset (Xie et al., 2024), which is included in the Appendix A.4.

Models. We adopt three reasoning models as our base models: DeepSeek-R1-Distill-Qwen-1.5B
model, DeepSeek-R1-Distill-Qwen-7B, and DeepSeek-R1-Distill-Llama-8B, and conduct RL fine-
tuning from them.

Baselines. We compare our methods with six of the most recent state-of-the-art efficient reason-
ing methods, including (1) the method in (Arora & Zanette), which integrates length reshaped re-
wards into the RLOO advantage function, referred to as RLOO-LP; (2) ALP (Xiang et al.), which
uses a length penalty in GRPO that is the length scaled by the solving rate of each question; (3)
HAPO (Huang et al.), which penalizes the responses longer than the shortest correct answer in the
history while rewarding those that are shorter; (4) L1-max (Aggarwal & Welleck), which is a rea-
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Figure 2: Training dynamics of DRPO with different regularization weights λ. The left two plots
are for fine-tuning the 1.5B model, and the right two are for fine-tuning the 7B model. λ = +∞
denotes the reference method DisCO, which does not incorporate length rewards in training.

soning language model that produces outputs satisfying a maximum length constraint given in the
prompt; (5) ShorterBetter (SB) (Yi et al., 2025), which aims to match Sample Optimal Length de-
fined as the shortest correct response among multiple generations; (6) LASER-D (Liu et al., 2025b),
which employs a step length reward function based on difficulty-aware dynamic target length. We
train models for methods (1)-(3) using the experimental settings described below. For methods
(4)-(6), we evaluate the models provided in their original works. All the compared models were
finetuned from the same base models on the DeepScaleR-Preview dataset, except L1-max, which
was trained on DeepScaleR-1.5B-Preview. We summarize different reward designs of the above
baselines in Table 2 in Appendix.

Training Details. For all the training, we employ the AdamW optimizer with a weight decay of 0.01
and set the learning rate to a constant 2e−6 for 1.5B model, 1e−6 for 7B model, and 5e−7 for 8B
model, following Li et al. (2025a). We set the batch size to 128 for each step of RL, the mini-batch
size to 32 for each iteration of model update, and sample 8 responses per question for training. For
RLOO-LP, we tune their weight parameter α ∈ {0.05, 0.1, 0.2}. For ALP, we tune their penalty
weight β ∈ {1e−9, 1e−8, 1e−7}. For HAPO, we tune their weight parameter w ∈ {0.01, 0.1, 1}.
For the proposed method, we tune λ ∈ {0.5, 0.2, 0.1}. These parameters serve the same role that
controls the tradeoff between efficiency and accuracy. For all other hyperparameters, we follow the
default values from their official papers. Details are provided in Appendix A.2. The generation
budget is limited to 8k tokens for both training and evaluation.

Evaluation. We use Pass@1 averaged over the 16 generated answers per prompt as the performance
metric and use the averaged number of tokens as the length metric. For all methods, we train
the model for 1000 RL steps to enable convergence and conduct evaluation every 200 steps. The
models with the best pass@1 are reported, as we aim to enhance reasoning efficiency with minimal
performance reduction. For models that are trained by us, we set temperature = 0.6 and top-p = 0.95,
consistent with the training setup. For L1-MAX and LASER-D, we also use temperature = 0.6 and
top-p = 0.95, while we use temperature = 0.9 and top-p = 0.9 for SB, following the original paper.

In addition to pass@1 and reasoning length, following (Luo et al., 2025a; Yi et al., 2025), we also
adopt Accuracy Efficiency Score (AES) as a supplementary metric. AES integrates performance
and reasoning length into a single measure, directly quantifying the trade-off between accuracy and
computational cost. The AES is computed by:

AES =

{
α ∗∆Length + β ∗ |∆Acc|, if ∆Acc ≥ 0,

α ∗∆Length − γ ∗ |∆Acc|, if ∆Acc < 0.

where α, β, γ > 0, ∆Length =
Lengthref−Lengthmodel

Lengthref
and ∆Acc =

Accmodel−Accref
Accref

, where the quantities with
subscript “ref” means each method’s baseline that does not consider length reward, and that with
subscript “model” means the model for evaluation. In our experiments, we use the default values
α = 1, β = 3 same as (Luo et al., 2025a), but set γ = 10 to emphasize the importance of minimizing
performance degradation.

5.1 VISUALIZATION OF LEARNING PROCESS

To directly verify the effectiveness of the proposed method, we present training dynamics of DRPO
with different regularization weights λ in Figure 2, where λ=+∞ corresponds to the reference
method DisCO, which does not employ length reward during training. In terms of performance
(first and third figures in Figure 2), we can see that DRPO with smaller λ values exhibits marginally
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Figure 3: Comparison of performance-efficiency trade-off. Left is for fine-tuning 1.5B model, mid-
dle is for fine-tuning 7B model and right is for fine-tuning 8B model. Grey lines represent the base
model performance before finetuning, with generation length of 4698 for 1.5B model, 4119 for 7B
model, and 4325 for 8B model. Squares denote models trained with reference methods without
length penalties, i.e., λ=+∞ (corresponding to DisCO) for DRPO, α = 0 for RLOO-LP, β = 0
(corresponding to GRPO) for ALP, w = 0 for HAPO. Triangles denote the models trained by other
works.

worse or comparable performance compared with DisCO, while the second and fourth figures show
that smaller λ values lead to substantial reductions in response length, with λ = 0.1 reducing length
by over 50% relative to λ=+∞ (DisCO). These observations demonstrate the effectiveness of DRPO
to achieve more concise reasoning while maintaining nearly unchanged training performance. In the
following section, we will evaluate the generalization of DRPO to test datasets, compared with other
strong efficient reasoning baselines.

5.2 COMPARISON WITH BASELINES

In this part, we evaluate the effectiveness of the proposed method on test datasets, compared with
existing efficient reasoning baselines.

Trade-off between performance and efficiency. We present the trade-off between performance
and efficiency for various methods in Figure 3, where the averaged pass@1 over four math datasets
of different difficulty is reported. We observe that our proposed DRPO consistently achieves sig-
nificantly better performance-efficiency trade-off than all baselines on finetuning 1.5B, 7B and 8B
models, including the models trained by other work. Notably, relative to the reference learning
method (square marker), the proposed DRPO on finetuning 7B model in Figure 3 (Middle) effi-
ciently reduces reasoning length from 3053 to 1502 (51% length reduction) with only 2.6% loss of
performance via varying λ to control the tradeoff, demonstrating the effectiveness of DRPO to re-
duce reasoning length while preserving the reasoning capability. In contrast, all the efficient reason-
ing baselines suffer from severe performance degradation when the reasoning length is reduced. For
example, RLOO-LP reduces reasoning length from 2975 to 1841 (38% length reduction) but incurs
a 7.1% loss in performance on finetuning 7B model, with ALP showing a similar trend. Compared
with DRPO, these methods trade off more performance for less reduction in length, highlighting the
superiority of our method.

Evaluating Trade-off via AES. Additionally, we directly quantify the effectiveness of our proposed
method in enhancing reasoning efficiency with minimal performance drop, using the Accuracy-
Efficiency Score (AES). AES is positive when the model reduces output length while maintaining
or enhancing accuracy, and negative when accuracy deteriorates. For fair comparison, reference
model in AES is each method’s counterpart without length reward, i.e., λ=+∞ for DRPO, α = 0
for RLOO-LP, β = 0 for ALP, w = 0 for HAPO. We present the best AES score for each method
in Table 1 and defer detailed results in Appendix A.6. From Table 1, we observe that almost all
the baseline methods exhibit negative AES scores across 1.5B, 7B, and 8B models, indicating the
inefficiency of existing methods in reducing reasoning length while preserving performance. In
contrast, DRPO consistently achieves a positive AES score for finetuning 1.5B, 7B, and 8B models,
highlighting its capability of improving reasoning efficiency while maintaining performance.

5.3 LENGTH REDUCTION FOR DIFFERENT PROBLEM DIFFICULTY

In this part, we study the impact of length reduction on questions with varying difficulties. In
Figure 4, we present the performance of different methods across four math datasets of increasing
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Table 1: Accuracy Efficiency Score (AES) Comparison with Baselines. The best AES score for each
method is presented.

Method Pass@1 Length AES

1.5B Model RLOO-LP 0.567 2531 -0.129
ALP 0.606 3494 -0.387
HAPO 0.534 1791 -0.519
DRPO 0.624 1527 0.178

7B Model RLOO-LP 0.692 2649 -0.033
ALP 0.679 2170 -0.134
HAPO 0.596 1717 -1.080
DRPO 0.714 1502 0.249

8B Model RLOO-LP 0.619 2249 0.251
ALP 0.637 2358 -0.01
HAPO 0.595 1981 -0.366
DRPO 0.690 1758 0.297
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Figure 4: Performance-efficiency tradeoff on individual datasets with increasing difficulty levels
from left to right. (a) is for finetuning 1.5B model, (b) is for finetuning 7B model, (c) is for finetuning
8B model. Squares denote models trained with reference methods without length penalties (i.e.,
λ=+∞ (corresponding to DisCO) for DRPO, α = 0 for RLOO-LP, β = 0 (corresponding to GRPO)
for ALP, w = 0 for HAPO).

difficulty, from GSM8K (easy) to AIME (very hard). As shown in Figure 4, we observe that: (1)
on relatively easy questions like GSM8K, DRPO significantly reduces generation length from 1563
to 356 (77.2% length reduction) for 1.5B model and from 969 to 261 (73.1% length reduction) for
7B model with negligible performance drop (-1.1% for 1.5B model and -0.6% for 7B model). In
contrast, all the baselines still bring dramatic performance degradation, indicated by a steep slope.
(2) With question difficulty increasing from left to right in Figure 4, all the models exhibit longer
reasoning length and introduce increasing performance drop, which is reasonable since difficult
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problems inherently require longer reasoning paths to solve. (3) When comparing Figure 4(a) and
(b), with two models from the same LLM family, we can see that 7B models generally demand
shorter reasoning length than 1.5B models. Besides, models with larger sizes, e.g. 7B and 8B
models, are more resilient to length reduction introduced by DRPO, as evidenced by flatter slopes
than 1.5B models. (4) Across various difficulty levels, DRPO consistently achieves a better trade-off
between performance and length than all the baselines, demonstrating its effectiveness in guiding
efficient reasoning.

We conduct further case studies in Appendix A.8 to analyze the efficient reasoning behavior after
DRPO training, compared with DisCO. It is shown that models trained by DRPO preserve existing
reflection capability while effectively reducing redundant back-and-forth reasoning.

6 CONCLUSION AND DISCUSSIONS

In this work, we revealed a key limitation of existing RL-based efficient reasoning methods, that their
reliance on group-relative advantages can mislead learning when length rewards are included. To
address this, we proposed DRPO, which decouples learning signals of correct and incorrect answers
so that length penalties reduce the positive signals for correct reasoning but never reverse them. Our
method integrates an optimized positive data distribution under a KL regularization into a discrimi-
native objective, for which we derived a closed-form solution, enabling efficient computation using
only on-policy data with importance weighting. Experiments on math reasoning tasks demonstrate
significant superiority of our approach, compared with existing efficient reasoning methods.

A limitation of this study is that experiments were confined to 1.5B and 7B models due to compu-
tational constraints. Extending the proposed approach to larger models or broader reasoning tasks
remains an interesting direction. Besides, while DRPO is designed for efficient reasoning, its for-
mulation is general and can be extended to incorporate other rewards on positive data beyond length,
such as process rewards. Another interesting direction is to incorporate mechanisms to adapt λ to the
difficulty level of questions, larger λ for more difficult questions and smaller λ for easier questions
as implied by our results in Figure 4, which we leave for future investigation.

REPRODUCIBILITY STATEMENT

We provide detailed settings of our experiments in the experimental part and the appendix to help
reproduce the results. Furthermore, we include the source code in the supplementary materials to
help with reproducibility.

LLM USAGE

We use LLM only to help correct grammar errors and polish writing.
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A APPENDIX

A.1 DERIVING THE OPTIMUM OF THE KL-CONSTRAINED REWARD MAXIMIZATION
OBJECTIVE

In this part, we derive the optimal policy P ∗
q that maximizes the length reward with a KL regular-

ization:
max
P∈P

Eo∼P rl(o)− λDKL(P, π
+
old(·|q)), (8)

where λ > 0 is a regularization parameter, rl(o) denotes length reward of response o, P denotes
the set of all probability measures P on correct data given q, which are absolutely continuous with
respect to π+

old(·|q), i.e., π+
old(o|q) = 0 indicates P (o) = 0.

Following prior work Rafailov et al. (2023); Go et al. (2023), we have
max
P∈P

Eo∼P rl(o)− λDKL(P, π
+
old(·|q))

=max
P∈P

Eo∼P rl(o)− λEo∼P log
P (o|q)
π+

old(o|q)

=max
P∈P

Eo∼P

(
rl(o)− λ log

P (o|q)
π+

old(o|q)

)
=min

P∈P
Eo∼P

(
log

P (o|q)
π+

old(o|q)
− rl(o)/λ

)
=min

P∈P
Eo∼P

(
log

P (o|q)
1

Z(q)π
+
old(o|q) exp(rl(o)/λ)

− logZ(q)
)

(9)

where Z(q) =
∑

o π
+
old(o|q) exp(rl(o)/λ) is a partition function, which doesn’t depend on P .

Let’s first define P̄ (o|q) = 1
Z(q)π

+
old(o|q) exp(rl(o)/λ). Since P̄ (o|q) ≥ 0 for all o and∑

o P̄ (o|q) = 1, P̄ (o|q) is a a valid probability distribution. Thus, we can reformulate (9) as:

min
P∈P

Eo∼P

(
log

P (o|q)
1

Z(q)π
+
old(o|q) exp(rl(o)/λ)

− logZ(q)
)

=min
P∈P

(
DKL(P, P̄ )− logZ(q)

)
(10)

Since Z(q) doesn’t depend on P , the minimum of (10) is achieved by minimizing the first KL term.
With Gibbs’ inequality that KL-divergence is minimized at 0 if and only if the two distributions are
identical. Therefore, we have the optimal solution:

P ∗
q (o) = P̄ (o|q) = 1

Z(q)
π+

old(o|q) exp(rl(o)/λ) (11)

=
π+

old(o|q) exp(rl(o)/λ)
Eo∼π+

old(·|q)
exp(rl(o)/λ)

. (12)

A.2 DETAILED HYPERPARAMETER SETTING

In this section, we provide detailed hyperparameter settings used in our experiments.

For all the methods, we employ the AdamW optimizer with a weight decay of 0.01 and set constant
learning rate to 2e−6 for 1.5B model and 1e−6 for 7B model, following Li et al. (2025a). We set the
batch size to 128 for each step of RL, the mini-batch size to 32 for each iteration of model update,
and sample 8 responses per question for training. The generation budget is limited to 8k tokens for
both training and evaluation. The temperature is set to 0.6 for training.

For RLOO-LP, we use RLOO advantage estimator and clip ratio ϵ = 0.2. We tune their weight
parameter α ∈ {0.05, 0.1, 0.2}. Following their paper, we normalize its loss by the length of the
response.
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Table 2: Various reward designs for efficient reasoning, where rc(o|q) = I(o is correct) ∈ {1, 0}
denotes correctness reward.

Method r(o, q)

RLOO-LP (Arora & Zanette) rc(o, q)− α ∗ rc(o, q) ∗ σ( |o|−mean{|oi|,rc(oi,q)=1}
std{|oi|,rc(oi,q)=1} )

ALP (Xiang et al.) rc(o, q)− β ∗ |o| ∗max(mean{rc(oi, q)},K−1)

HAPO (Huang et al.) rc(o, q) + w ∗max
(
cos(min(π2

|o|
h(q) , π)), c

)
rc(o, q) + w ∗min

(
cos(min(π2

|o|
h(q) , π)), 0

)
(1− rc(o, q))

L1-MAX (Aggarwal & Welleck) rc(o, q) ∗ clip(α(LT − |o|) + δ), 0, 1)

SB (Yi et al., 2025) α ∗ rc(o, q)− β ∗ abs
(
|o| − LSOL(q)

)
,

where LSOL(q) = min{|oi|, rc(oi, q) = 1} if at least one response is correct, mean{|oi|} otherwise

LASER-D (Liu et al., 2025b) rc(o, q) + rc(o, q) ∗ αI(|o| ≤ LA)

Table 3: Illustration of negative learning signal of correct outputs of existing reward designs.

Method Hyperparamter Length Correctness Reward Advantage

RLOO-LP α=0.4 [1500, 1200, 1900, 2200, 2800,
2000, 3600, 6400, 1300, 1200]

[1, 1, 1, 1, 1,
1, 1, 1, 0, 0]

[0.87, 0.89, 0.85, 0.83, 0.79,
0.84, 0.74, 0.63, 0., 0. ]

[ 0.25, 0.27, 0.23, 0.21, 0.16,
0.22, 0.11, -0.02, -0.72, -0.72]

ALP β=0.0001 [1500, 1200, 1900, 2200, 2800,
2000, 3600, 6400, 1300, 1200]

[1, 1, 1, 1, 1,
1, 1, 1, 0, 0]

[ 0.88, 0.9, 0.85, 0.82, 0.78,
0.84, 0.71, 0.49, -0.1 , -0.1 ]

[ 0.74, 0.8, 0.65, 0.58, 0.46,
0.63, 0.28, -0.32, -1.92, -1.9 ]

HAPO w=1, c=-0.7, h=1200 [1500, 1200, 1900, 2200, 2800,
2000, 3600, 6400, 1300, 1200]

[1, 1, 1, 1, 1,
1, 1, 1, 0, 0]

[ 0.62, 1., 0.3, 0.3, 0.3,
0.3, 0.3, 0.3, -0.13, -0. ]

[ 0.99, 2.29, -0.1, -0.1, -0.1,
-0.1, -0.1, -0.1, -1.57 ,-1.12]

L1-MAX α=0.0003, LT =4000, δ=0.5 [1500, 1200, 1900, 2200, 2800,
2000, 3600, 6400, 1300, 1200]

[1, 1, 1, 1, 1,
1, 1, 1, 0, 0]

[1., 1., 1., 1. , 0.86 ,
1., 0.62 ,0., 0., 0. ]

[0.8, 0.8, 0.8, 0.8 , 0.48,
0.8, -0.06, -1.48, -1.48, -1.48 ]

SB α=2, β=0.001 [1500, 1200, 1900, 2200, 2800,
2000, 3600, 6400, 1300, 1200]

[1, 1, 1, 1, 1,
1, 1, 1, 0, 0]

[ 1.7, 2., 1.3, 1., 0.4, ,
1.2, -0.4, -3.2, -0.1, 0.]

[ 0.92, 1.14, 0.64, 0.43, 0.01,
0.57, -0.56, -2.53, -0.35, -0.28]

LASER-D α=0.5, LA=4000 [1500, 1200, 1900, 2200, 2800,
2000, 3600, 6400, 1300, 1200]

[1, 1, 1, 1, 1,
1, 1, 1, 0, 0]

[1.5, 1.5, 1.5, 1.5, 1.5,
1.5, 1.5, 1., 0., 0. ]

[ 0.59, 0.59, 0.59, 0.59, 0.59,
0.59, 0.59, -0.25, -1.94, -1.94]

For ALP, we follow their paper to use GRPO advantage estimator and normalize its loss by the
total number of tokens. The KL Coefficient is set to 0.001. We tune their penalty weight β ∈
{1e−9, 1e−8, 1e−7} and and clip ratio ϵ = 0.2

For HAPO, we follow their paper to use GRPO advantage estimator, set the cutoff c = −0.7, KL
Coefficient to 0, and clip ratio ϵ = 0.2. The loss is normalized by the length of the response. We
tune their weight parameter w ∈ {0.01, 0.1, 1}.

For the proposed DRPO, we follow Li et al. (2025a) to set constraint value δ = 1e−4, penalty
constant β0 = 1e3, τ = 10. we tune regularization parameter λ ∈ {0.5, 0.2, 0.1}.

A.3 LIMITATION OF INCORPORATING LENGTH REWARD WITH GROUP ADVANTAGE

In this part, we summarize different reward designs of existing baselines, which incorporate a
length reward to encourage efficient reasoning, in Table 2. To illustrate the inherent limitation
of incorporating length reward with group advantage, in Table 3, we provide detailed examples
of how these reward designs fail to work with group advantage, resulting in misleading learn-
ing signals. Specifically, we follow the hyperparameters used in their paper to calculate the ad-
vantage with RLOO advantage estimator for RLOO-LP method and GRPO advantage estima-
tor (i.e., Eqn. (2)) for other methods. RLOO advantage estimator is calculated as A(oi|q) =
r(oi|q)− mean(r(o1|q), · · · , r(oi−1|q), r(oi+1|q), · · · , r(oG|q)). As indicated by red values in Ta-
ble 3, all reward designs produce varying amounts of misleading learning signals. We see that HAPO
suffers most, yielding incorrect learning directions in 6 out of 10 cases. This could help explain why
HAPO exhibits larger performance degradation than other baselines in our experiments.

A.4 EXPERIMENTS ON NON-MATHEMATICAL REASONING TASK

To evaluate DRPO’s generalization on non-mathematical reasoning tasks, we conducted additional
experiments on the logic puzzle reasoning task. Following Xie et al. (2025); Su et al. (2025), the
training dataset is limited to 3 to 7-person logic puzzles with K&K logic puzzle dataset (Xie et al.,
2024) and the test dataset contains 2 to 8-person puzzles. We train 1.5B models for all methods
for 400 steps and conduct evaluation every 80 steps. As shown in Figure 5, DRPO method still
exhibits a substantially better trade-off than all other baselines, demonstrating the generalizability
of the proposed method to other tasks. Notably, DRPO significantly reduces the generation length
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Figure 5: Comparison of performance-efficiency trade-off on logical puzzle reasoning task. Squares
denote models trained with reference methods without length penalties, i.e., λ=+∞ (corresponding
to DisCO) for DRPO, α = 0 for RLOO-LP, β = 0 (corresponding to GRPO) for ALP, w = 0 for
HAPO. Triangles denote the models trained by other works.
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Figure 6: Ablation studies on different reward designs. Left is the length reward values with respect
to |o|/C; Right is the performance-efficiency trade-offs for different reward designs on mathematical
reasoning task. Square denotes the model trained without length penalties, i.e., λ=+∞ (DisCO).

from 2095 to 1400 (33.2% length reduction) without any performance drop (from an accuracy of
0.972 to 0.974 ).

A.5 ABLATION STUDY ON LENGTH REWARD DESIGN

In the main experiments, we adopted a simple length reward rl(o) = 1 − |o|
C , where C is a con-

stant denoting maximum response length. To study the effect of different length reward designs
in DRPO, we conduct experiments on mathmatical reasoning task with (1) a concave length reward
(i.e.,rl(o) = 1−( |o|C )2) and (2) cosine length reward (i.e., 0.5+0.5 cos(π∗ |o|

C )), using a 1.5B model.
For all reward design choices, we tune λ in {0.5, 0.2, 0.1}. The results are summarized in Figure 6.
We observe that all reward designs achieve competitive performance. The linear reward provides
the broadest trade-off spectrum, while the concave and cosine rewards tend to yield higher accuracy
at the cost of longer reasoning lengths. These findings suggest that developing more sophisticated
length rewards is a promising direction for further improving DRPO.

A.6 DETAILED AES PERFORMANCE

In this part, we present detailed AES performance for each method in Table 4, 5, and 6, where bold
values denote the best AES performance for each method. We observe that all baseline methods
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Table 4: Detailed AES performance for 1.5B models.

Method GSM8K MATH500 OlympiadBench AIME Ave.

RLOO-LP (α=0.1) 0.078 0.021 -0.423 -0.738 -0.172
RLOO-LP (α=0.2) 0.246 0.325 -0.279 -0.694 -0.129
RLOO-LP (α=0.4) 0.026 -0.13 -0.454 -1.18 -0.412

ALP (β=1e-9) 0.06 0.016 -0.603 -1.571 -0.387
ALP (β=1e-8) -0.189 -0.088 -0.91 -2.229 -0.602
ALP (β=1e-7) -1.019 -0.518 -1.887 -3.774 -1.4

HAPO (w=0.01) -0.209 -0.348 -0.879 0.202 -0.519
HAPO (w=0.1) -0.74 -0.811 -1.066 -0.457 -0.969
HAPO (w=1) -1.05 -1.127 -0.841 -0.182 -1.063

DRPO (λ=0.5) 0.296 0.21 0.152 -0.143 0.093
DRPO (λ=0.2) 0.614 0.296 0.184 -0.597 0.164
DRPO (λ=0.1) 0.662 0.332 0.098 -0.729 0.178

Table 5: Detailed AES performance for 7B models.

Method GSM8K MATH500 OlympiadBench AIME Ave.

RLOO-LP (α=0.1) 0.391 0.23 -0.051 -0.532 -0.033
RLOO-LP (α=0.2) 0.211 0.284 -0.046 -0.829 -0.122
RLOO-LP (α=0.4) 0.045 -0.04 -0.103 -0.709 -0.331

ALP (β=1e-9) 0.451 0.265 -0.297 -0.984 -0.134
ALP β=1e-8) 0.161 -0.351 -1.048 -1.798 -0.68
ALP (β=1e-7) -0.923 -1.211 -1.745 -2.679 -1.573

HAPO (w=0.01) -0.105 -1.001 -1.318 -1.676 -1.08
HAPO (w=0.1) -0.999 -1.483 -1.252 -1.197 -1.42
HAPO (w=1) -1.483 -1.407 -1.344 -1.503 -1.6

DRPO (λ=0.5) 0.053 0.106 -0.126 -0.155 -0.007
DRPO (λ=0.2) 0.439 0.303 0.015 -0.33 0.115
DRPO (λ=0.1) 0.672 0.514 0.254 -0.455 0.249

yield negative AES scores for almost all settings, underscoring their inefficiency in preserving per-
formance while reducing reasoning length. In contrast, DRPO consistently achieves positive AES
scores for most cases, demonstrating its effectiveness in improving reasoning efficiency without
sacrificing performance.

A.7 PERFORMANCE IN TERMS OF PASS@K

In our main experiments, we reported pass@1 averaged over 16 sampled responses for each question
to ensure reliability. This evaluation protocol is widely used in recent reasoning works, including
those of our baseline methods and DeepSeek-R1 (DeepSeek-AI et al.). Nevertheless, we also include
pass@16 as a complementary metric. As shown in Figure 7 with pass@16 metric, DRPO method
consistently outperforms all other baselines by a large margin, exhibiting a substantially better trade-
off and highlighting the robustness of our approach across metrics.

A.8 CASE STUDY

We analyze the reasoning path of DRPO, compared with DisCO, which corresponds to DRPO with
λ = +∞. Figure 8 shows the reasoning paths on an easy prompt, where DRPO reaches the correct
answer with clear reasoning in only 89 tokens, achieving a 6× reduction compared to the 526 tokens
required by DisCO. Although DisCO also produces the correct answer, its reasoning is highly re-
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Table 6: Detailed AES performance for 8B models.

Method GSM8K MATH500 OlympiadBench AIME Ave.

RLOO-LP (α=0.1) 0.378 0.198 0.282 0.295 0.212
RLOO-LP (α=0.2) 0.515 0.203 0.313 0.315 0.251
RLOO-LP (α=0.4) 0.064 -0.126 0.127 0.392 -0.119

ALP (β=1e-9) 0.476 0.215 0.053 -0.67 -0.01
ALP β=1e-8) 0.22 -0.252 -0.686 -2.405 -0.584
ALP (β=1e-7) -2.139 -1.773 -1.81 -3.733 -2.289

HAPO (w=0.01) -0.021 -0.17 -0.251 -0.755 -0.413
HAPO (w=0.1) 0.197 -0.264 -0.445 -0.673 -0.366
HAPO (w=1) -0.23 -0.667 -0.542 -1.579 -0.775

DRPO (λ=0.5) 0.29 0.172 0.098 0.091 0.122
DRPO (λ=0.2) 0.607 0.435 0.313 0.068 0.296
DRPO (λ=0.1) 0.624 0.449 0.292 0.04 0.297
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Figure 7: Comparison of performance-efficiency trade-off with pass@16 metric. Left is for fine-
tuning 1.5B model, middle is for fine-tuning 7B model and right is for fine-tuning 8B model. Squares
denote models trained with reference methods without length penalties, i.e., λ=+∞ (corresponding
to DisCO) for DRPO, α = 0 for RLOO-LP, β = 0 (corresponding to GRPO) for ALP, w = 0 for
HAPO. Triangles denote the models trained by other works.

Algorithm 1 Decoupled Reward Policy Optimization (DRPO)

1: Input: Initial policy model π0, reward function r, question set D, hyperparameter δ, β, τ, λ.
2: Policy model πθ = π0

3: for Step = 1, · · · , T do
4: Sample a batch of questions B from D
5: Update the old policy model πold = πθ

6: For each question q ∈ B, sample n responses {oi}ni=1 ∼ πold(·|q) denoted by Sq and partition
it into S+

q and S−
q based on correctness rewards r(oi|q) ∈ {0, 1}

7: for minibatch Bm ∈ B do
8: Compute KL divergence estimator by

D̂KL(θ) =
1∑

q∈Bm

∑
o∈Sq

|o|
∑

q∈Bm

∑
o∈Sq

|o|∑
t=1

log
πθold

(ot|q,o<t)

πθ(ot|q,o<t)

9: Compute gradient estimator of the objective in Eqn. 7 by

G1 = 1
|Bm|

∑
q∈Bm

( ∑
o∈S+

q

exp(rl(o)/λ)∑
o∗∈S

+
q

exp(rl(o∗)/λ)
∇sθ(o, q)−∇

(
τ log

∑
o′∈S−

q

exp( sθ(o
′,q)

τ )
))

10: Compute gradient estimator of a penalty function of the constraint by G2 = 2β0[D̂KL(θ)−
δ]+∇D̂KL(θ)

11: Update πθ with Adam-W using the gradient estimator G = G1 +G2

12: end for
13: end for
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dundant, including four occurrences of reflection words (e.g., wait) and three repeated answers. By
contrast, DRPO’s reasoning involves only a single reflection and one correct answer.

We further evaluate the reasoning efficiency on a more challenging prompt in Figure 9 and Figure 10.
As shown in Figure 9, DisCO requires 4497 tokens, about 10 times longer than the 455 tokens of
DRPO, to solve the question. Moreover, the reasoning of DisCO contains 78 reflection words and 19
answers, six of which are incorrect. In comparison, DRPO produces only two correct answers and
five reflection words as seen in Figure 10. It is worth noticing that reasoning from DisCO explicitly
says that ’but I’m not 100% sure’ before concluding the final answer. It suggests that excessive
back-and-forth in the reasoning, indicated by frequent use of reflection words, may result in less
confident answers.
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Prompt 1

A robe takes 2 bolts of blue fiber and half that much white fiber.  How many bolts in total does it take? Let's 
think step by step and output the final answer within \\boxed{}.

Okay, so I have this problem here: A robe takes 2 
bolts of blue fiber and half that much white fiber. 
I need to figure out how many bolts in total it 
takes. Hmm, let me break this down step by step.

First, the problem says the robe uses 2 bolts of 
blue fiber. That's straightforward. Now, it also 
says it takes half that much white fiber. So, I need 
to find out how much white fiber is that.

Let me write this out. Blue fiber is 2 bolts. White 
fiber is half of that. So, I can calculate the white 
fiber as:

White fiber = (1/2) * Blue fiber
White fiber = (1/2) * 2

Hmm, let me do that math. Half of 2 is 1, so 
white fiber is 1 bolt.

Now, the total number of bolts is the sum of blue 
fiber and white fiber. So, that would be:

Total bolts = Blue fiber + White fiber
Total bolts = 2 + 1

Which equals 3. So, the total number of bolts 
needed is 3.

Wait, let me just make sure I didn't skip any steps 
or make any mistakes. So, blue fiber is 2, white 
fiber is half of that, so 2 divided by 2 is indeed 1. 
Adding them together, 2 + 1 is 3. Yeah, that 
seems right.

I don't think I need to consider any other factors 
here, like mixing them or something. The problem 
just says it takes 2 bolts of blue and half that 
much white. So, 2 blue and 1 white, totaling 3. 

Wait, another way to think about it: If half that 
much white is 1 bolt, then 2 blue plus 1 white is 3 
total. Yeah, that's correct.

I don't think I need to overcomplicate this. It's 
pretty straightforward. So, the total number of 
bolts is 3.

**Final Answer**
The total number of bolts needed is \boxed{3}.
</think>

The robe takes 2 bolts of blue fiber. The white 
fiber required is half of that, which is:

\[
\text{White fiber} = \frac{1}{2} \times 2 = 1 \text{ 
bolt}
\]

Adding the blue and white fibers together:

\[
\text{Total bolts} = 2 + 1 = 3
\]

The total number of bolts needed is \boxed{3}.

Okay, so I need to figure out how many total bolts 
a robe takes. It says the robe takes 2 bolts of blue 
fiber and half that much white fiber. Wait, so blue 
is 2 bolts, white is half of blue, which is 1 bolt. So 
total is 2 +1=3 bolts. That seems right.
</think>

The total number of bolts needed is 3.

$\boxed{3}$

Answer from DRPO (𝝀 = 𝟎. 𝟏)Answer from DisCO (DRPO 𝝀 = +∞) 89 tokens526 tokens

Figure 8: Example reasoning for Prompt 1 from DisCo (DRPO λ = +∞) and DRPO (λ = 0.1).
Words with green color are answers, and with blue color are reflection words. DRPO reaches the
correct answer with clear reasoning in only 89 tokens, achieving a 6× reduction compared to the 526
tokens required by DisCO.
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Prompt 2 
Josh decides to try flipping a house.  He buys a house for $80,000 and then puts in $50,000 in repairs.  This 
increased the value of the house by 150%.  How much profit did he make? Let's think step by step and 
output the final answer within \\boxed{}.

Okay, so Josh bought a house for $80,000. Then he spent $50,000 on repairs. After that, the value of the house increased by 150%. I need to 
figure out how much profit he made. Let me break this down step by step. First, the original price of the house was $80,000. He spent $50,000 
on repairs, so his total investment becomes: $80,000 (purchase) + $50,000 (repairs) = $130,000 Wait, but the problem says that the increase in 
value is 150%. So, I need to calculate the new value of the house after the increase. Hmm, the increase is 150% of the original purchase price? 
Or is it 150% of the total investment after repairs? Let me read the problem again: "This increased the value of the house by 150%." So, the 
increase is 150% of the original house price. Wait, no. The original value is $80,000, but he's already invested $130,000. Wait, maybe I should 
clarify. The problem says he bought the house for $80,000, then spent $50,000 on repairs, so total investment is $130,000. Then, the value of 
the house increased by 150%. I think that the increase is 150% on top of the total investment. So, the new value is the total investment plus 
150% of that. Wait, let's represent this mathematically. Let me denote: Original cost: $80,000 Repairs: $50,000 Total cost: $80,000 + $50,000 = 
$130,000 The value increased by 150%. So, the increase is 150% of $130,000? Or is it 150% of the original house price? Wait, the problem says 
"increased the value of the house by 150%." So, the increase is 150% of the original value before repairs? Wait, no. It's probably the increase is 
150% of the total investment. Wait, let's read the problem again: "Josh buys a house for $80,000 and then puts in $50,000 in repairs. This 
increased the value of the house by 150%. How much profit did he make?” So, he spent $80k and then $50k, so total $130k. Then the value 
increased by 150%, meaning the new value is 130k plus 150% of 130k? Wait, that can't be. Wait, maybe the increase is 150% on the repairs or 
something else. Wait, perhaps it's better to think that the increase in value is 150% of the original purchase price. Wait, no. Wait, the problem 
says "this increased the value of the house by 150%.” Wait, maybe the total value after repairs is the original price plus 150% of the original 
price. Wait, the problem says "this increased the value by 150%." So, if the original value was $80k, then the new value is $80k + 150% of $80k? 
Wait, that would be: $80k + 1.5 * $80k = $80k + $120k = $200k. But that seems high. Wait, perhaps the increase is 150% of the total investment. 
So, total investment was $130k, and it increased by 150%, so the increase is 1.5*130k = $195k. So, the new value is $130k + $195k = $325k. 
Then, the total profit would be $325k - $80k (original) - $50k (repairs) = $325k - $130k = $195k. But that seems too high. Wait, maybe I need to 
clarify: Original price: $80,000 Repairs: $50,000, so total investment: $130,000 After repairs, the value increased by 150%. So, the increase is 
150% of the total investment. So, the increase is 1.5 * 130,000 = 195,000. So, the new value is 130,000 + 195,000 = 325,000. Then, his total 
outflow was 80,000 + 50,000 = 130,000. His total inflow is 325,000. So, his profit is 325,000 – 130,000 = 195,000. Wait, but that seems like a lot. 
Alternatively, maybe the increase is 150% on top of the original purchase price. So, original purchase was $80,000, increased by 150% would 
be 80,000 * 1.5 = 120,000. So, the new value is 80,000 + 120,000 = 200,000. But he already put in 50k, so his total outflow is 130k. So, profit is 
200k - 130k = 70k. Wait, this is conflicting. Wait, let's read the problem statement again: Josh buys a house for $80,000 and then puts in 
$50,000 in repairs. This increased the value of the house by 150%. How much profit did he make?” So, the process: 1. Buy house: $80,000  2. 
Repair: $50,000 3. Value increased by 150%: So, the increase is 150% of the total value after repair. Wait, let's formalize: Let V be the value 
after repairs. He bought it for 80k, spent 50k on repairs, so total outlay: 130k. The value V increased by 150%, so: V + 150% of V = total outlay? 
Wait, I think I need to model it differently. The value of the house increased by 150%, meaning that the new value is 150% more than the original 
purchase price? Wait, the problem says "this increased the value of the house by 150%." So, if the original value before repairs was 80k, then 
after repairs, it's 80k + 150% of 80k? Wait, that would be: Value after repairs = 80k + (1.5 * 80k) = 80k + 120k = 200k But he had already spent 
50k on repairs, so his total outlay is 80k + 50k = 130k. So, his total gain is 200k - 130k = 70k profit. Wait, but the problem says "this increased 
the value of the house by 150%." So, the increase is 150% of the original value? Or 150% of the current value? Wait, perhaps the increase is 
150% on top of the purchase price, so: Original purchase: 80k Repairs: 50k So, total outlay: 130k Value after repairs: 130k + (150% of 130k) = 
130k + 195k = 325k Wait, but that seems too high. Alternatively, maybe the increase is 150% of the original value, so 80k * 1.5 = 120k. So, the 
new value is 130k (after repair) + 120k = 250k? Wait, I'm getting confused. Wait, let's try another approach. Let me denote V as the new value 
after repairs. The increase is 150% of something. The problem says "this increased the value of the house by 150%." So, the increase is 150% of 
the original house price, which is 80k. So, the increase is 1.5*80k=120k. So, the new value is 80k + 120k=200k. But Josh already put in 50k on 
repairs, so his total outlay is 80k +50k=130k. So, his profit is 200k -130k=70k. Wait, but that's the same as before. Wait, another interpretation: 
The increase is 150% on top of his investment. His investment was 130k, so the increase is 1.5*130k=195k. So, new value is 130k +195k=325k. 
Profit is 325k -130k=195k. Wait, but the problem says "this increased the value of the house by 150%." So, the value went up by 150% of its 
original value? Or of its current value? Wait, the problem is ambiguous in that sense. Let's see. It's possible that the total increase is 150% of 
the original purchase price. So, original price is 80k, increase is 150% of 80k=120k, so new value is 80k +120k=200k. Then, his outlay was 
80k+50k=130k, so profit is 200k -130k=70k. Alternatively, the increase is 150% of the current value. Current value after repairs is 
80k+50k=130k. So, increase is 150% of 130k=195k, new value would be 130k +195k=325k. Profit would be 325k -130k=195k. Wait, but the 
problem says "this increased the value of the house by 150%." So, the value increased by 150%, meaning that the new value is 150% more than 
the original. Wait, the original value is 80k, so 80k +150% of 80k=80k +120k=200k. Wait, that's another way. So, the increase is 150% of the 
original value, not the current value. So, in this case, the new value is 80k +150% of 80k=200k. His total outlay was 80k +50k=130k. So, profit is 
200k -130k=70k. Wait, but the problem says "increased the value of the house by 150%." So, perhaps the value went up by 150%, meaning the 
new value is 100% +150%=250% of the original. Wait, that can't be because the original was 80k, and he spent 50k on repairs. Wait, I'm getting 
tangled here. Wait, maybe let's model it step by step: 1. Josh buys the house for $80k. 2. He then spends $50k on repairs, so total expenditure 
is $130k. 3. The value of the house increases by 150%, so the increase is 150% of the original purchase price? Or the total expenditure? Wait, 
the problem says "increased the value of the house by 150%." So, the increase is 150% of the current value? Or the original value. Wait, I think 
the problem is that the increase is 150% of the original purchase price. So, the increase is 150% of $80k, which is $120k. So, the new value is 
80k +120k=200k. His total expenditure was 80k +50k=130k. So, his profit is 200k -130k=70k. Wait, but the problem says "increased the value of 
the house by 150%." So, if the original value was 80k, then 150% of that is 120k, so the new value is 80k +120k=200k. So, profit is 200k -
130k=70k. Wait, but another way: Maybe the increase is 150% of the total expenditure. So, 150% of $130k is $195k, so new value is 130k 
+195k=325k. Profit is 325k -130k=195k. Wait, but that seems high. I think the problem is that the increase is 150% of the original purchase 
price, so 150% of 80k=120k, making the new value 80k +120k=200k. Hence, profit is 200k -130k=70k. Wait, but the problem says "increased 
the value of the house by 150%." So, the new value is 150% of the original. Wait, no. Wait, maybe the value went up by 150%, meaning the new 
value is 100% +150%=250% of the original. So, 250% of 80k=200k, same as before. Hence, profit is 200k -130k=70k. Wait, but 150% increase 
on the value after repairs. Wait, this is getting too tangled. Perhaps, the correct approach is: Let V be the value after repairs. The increase is 
150%, so V + 1.5V = total outlay? Wait, no. Wait, the total outlay was 80k +50k=130k. The value after repairs increased by 150%, so V - 150% of 
V= original? Wait, I'm not getting this. Wait, perhaps the problem is that the value increased by 150% of the original purchase price. So, the 
increase is 150% of 80k=120k. So, the new value is 80k +120k=200k. Hence, profit is 200k -130k=70k. Wait, that seems reasonable. Let me 
check the steps: 1. Buy for 80k. 2. Repair: 50k, total spent 130k. 3. Value increased by 150% of original: 150% of 80k=120k, so new value 80k 
+120k=200k. 4. So, profit is 200k -130k=70k. Hence, Josh made a profit of $70,000. Wait, but I should make sure that the increase is 150% of 
the original or the current value. Wait, the problem says "this increased the value of the house by 150%." So, the increase is 150% of the original 
value, so 150% of 80k=120k. So, new value is 80k +120k=200k. Hence, profit is 200k -130k=70k. Hence, the answer is $70,000. Wait, but let me 
check this once more. Original purchase: 80k Repairs: 50k, total:130k Value increased by 150%: So, the value becomes 130k +150% of 
130k=130k +195k=325k Wait, that's another way. Wait, so the increase is 150% of the current value, which is 150% of 130k=195k, so new value 
is 130k +195k=325k. Hence, profit is 325k -130k=195k. Wait, but which interpretation is correct? The problem says "increased the value of the 
house by 150%." So, it's ambiguous whether it's 150% of the original or 150% of the current. 
Wait, if it's 150% of the original, it's 120k increase, new value 200k, profit 70k. If it's 150% of the current, it's 195k increase, new value 325k, 
profit 195k. Given that the problem says "this increased the value of the house by 150%," I think it's 150% of the original purchase price. So, 
150% of 80k=120k, new value 200k. Hence, profit is 200k -130k=70k. Wait, but wait, another thought: The "increase" is 150% of the total 
investment. Wait, total investment was 130k, 150% of that is 195k, so new value is 130k +195k=325k, profit 325k -130k=195k. I think I need to 
settle on one answer. Wait, maybe the problem is that the value increased by 150% of the original purchase price, which is 80k*1.5=120k, so 
new value is 80k+120k=200k. Hence, profit is 200k - (80k+50k)=200k -130k=70k. Hence, the answer is $70,000. Wait, but I'm not 100% sure, 
but given the problem statement, I think that's the answer. **Final Answer**
\boxed{70000}
</think> Josh bought a house for $80,000 and spent $50,000 on repairs, totaling $130,000. The value of the house increased by 150%, meaning 
the new value is 80,000 + 150% of 80,000 = 200,000. The profit is calculated as the new value minus the total investment:
200,000 - 130,000 = 70,000. Thus, Josh made a profit of \boxed{70000}.

Answer from DisCO (DRPO with 𝝀 = +∞)4497 tokens

Figure 9: Example reasoning for Prompt 2 from DisCo (DRPO λ = +∞) . Words in green/red color
are correct and incorrect answers, respectively. Blue words are reflection words. The reasoning of
DisCO contains 78 reflection words and 19 answers, six of which are incorrect.
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Okay, so Josh buys a house for $80,000 and spends another $50,000 on repairs. So total cost is 80k +50k=130k.

Then the house's value increased by 150%. Wait, increased by 150% means it's now 100%+150%=250% of the 
original value.

Wait, original cost was $80,000, but after repairs, the total investment is $130,000, right? Wait, maybe I should 
clarify: when they say the house's value increased by 150%, is it based on the original purchase price or the 
total cost?

Hmm, usually, such problems consider the increase based on the cost basis. So if the house increased by 
150%, that's 150% of the original purchase price, which was $80,000.

So 150% of 80k is 1.5*80k=120k. So the value went up by 120k, so new value is 80k+120k=200k.

Wait, but he spent 50k on repairs. So his total investment was 130k, and he sold it for 200k. So profit is 200k -
130k=70k.

Wait, let me double-check:

Purchase price:80k

Repairs:50k

Total cost:130k

Value increased by150%: so 150% of 80k=120k, so new value=80k+120k=200k.

He sold it for 200k, so profit=200k-130k=70k.

Yes, so profit is $70,000.
</think>

Josh made a profit of $70,000.

The answer is \boxed{70000}.

Answer to prompt 2 from DRPO (𝝀 = 𝟎. 𝟏)	 455 tokens

Prompt 2 
Josh decides to try flipping a house.  He buys a house for $80,000 and then puts in $50,000 in repairs.  This 
increased the value of the house by 150%.  How much profit did he make? Let's think step by step and 
output the final answer within \\boxed{}.

Figure 10: Example reasoning for Prompt 2 from DRPO (λ = 0.1). Words in green/red color are
correct and incorrect answers, respectively. Blue words are reflection words. DisCO uses 4497
tokens, about 10 times longer than the 455 tokens of DRPO.
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