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Abstract

Though Large Language Models (LLMs) have001
shown remarkable abilities in mathematics rea-002
soning, they are still struggling with performing003
numeric operations accurately, such as addition004
and multiplication. Numbers can be tokenized005
into tokens in various ways by different LLMs006
and affect the numeric operations performance.007
Currently, there are two representatives: 1) To-008
kenize into 1-digit, and 2) Tokenize into 1 ∼ 3009
digit. The difference is roughly equivalent to010
using different numeral systems (namely base011
10 or base 103). In light of this, we study the012
scaling behavior of different numeral systems013
in the context of transformer-based large lan-014
guage models. We empirically show that a base015
10 system is consistently more data-efficient016
than a base 102 or 103 system across train-017
ing data scale, model sizes under from-scratch018
training settings, while different number sys-019
tems have very similar performances when fine-020
tuned. Through thorough analysis and exper-021
iments, we conclude that tokenizing numbers022
into 1-digit is more favorable for LLMs in nu-023
merical operations. Additionally, we reveal024
extrapolation behavior patterns on addition and025
multiplication that sheds light on the mecha-026
nism learnt by the models.027

1 Introduction028

Large Language Models (LLMs) have stormed the029

world with their amazing reasoning abilities (Ope-030

nAI, 2023; Google, 2023; Touvron et al., 2023b).031

However, numeric operations remain challenging032

for LLMs to comprehend under the architecture of033

Transformer (Vaswani et al., 2017; Lee et al., 2023;034

Yuan et al., 2023; Zhou et al., 2024; McLeish et al.,035

2024). Several techniques have been proposed to036

improve the performance of numeric operations in-037

cluding improving positional embeddings (Kazem-038

nejad et al., 2024; McLeish et al., 2024) and using039

scratchpad (Nye et al., 2021; Liu and Low, 2023).040

These works mostly focus on a random initialized041

Transformer with 1-digit tokenization. However, 042

pre-trained LLMs have various tokenizers that can 043

affect the numeric operations performances. Cur- 044

rently, there are two main tokenization schemes: 045

1) Tokenize into 1-digit (Touvron et al., 2023a,b; 046

Jiang et al., 2023; Bai et al., 2023; Team et al., 047

2024; Shao et al., 2024), and 2) Tokenize into 1 ∼ 3 048

digit (Biderman et al., 2023; OpenAI, 2023; Cai 049

et al., 2024). An example of different tokenization 050

is shown in Table 1. Abstracting away practical 051

details of tokenizers, these two schemes can be 052

viewed as using a base 10 numeral system versus 053

a base 103 system. The former aligns better with 054

human intuition and the prevalent base 10 system 055

in daily usage. Yet, the latter encodes numbers 056

into fewer tokens. Our question follows intuitively: 057

What is the difference between these schemes in 058

numeric operations? 059

We resort to data-scaling efficiency to answer 060

this question. That is, there would be substantial 061

differences in the scaling behavior of these numeral 062

systems. More essentially, we are inspecting the 063

scaling proclivity towards learning token classifica- 064

tion or length information for numeric operations. 065

Intuitively, a base 10 system has a smaller set of 066

tokens that could appear in the input but would be 067

more lengthy in decoding the same number than a 068

base 103 system. Out of practical considerations, 069

we choose to restrict our study to the base 10, base 070

102, and base 103 systems which adhere to tokeniz- 071

ers of existing large language models. 072

To design experiments for scaling behavior, we 073

identify the following critical dimensions: 1) nu- 074

meral system 2) data scale, and 3) model size. 075

To further corroborate the generalizability of our 076

claim, we also test if our conclusion holds for dif- 077

ferent numeric operations. On the other hand, it 078

is possible that pre-trained models have a bias to- 079

wards 2 ∼ 3 digit tokens. To strengthen our claim, 080

we test if our observed trend holds irrespective of 081

whether our models are trained from-scratch or 082
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Type Models Tokenize 31415926535

1-digit Llama1-2/Mistral/QWen/Gemma [’3’, ’1’, ’4’, ’1’, ’5’, ’9’, ’2’, ’6’, ’5’, ’3’, ’5’]

Multiple Pythia/GPT-4o/Llama3/InternLM [’314’, ’159’, ’265’, ’35’]

Table 1: Tokenizing 31415926535 via different large language models.

fine-tuned. Our contributions can be summarized083

as follows:084

• A base 10 system is consistently more data-085

efficient than a base 102 or base 103 system086

under different data scales, model sizes, and087

different operators, especially training from-088

scratch.089

• We study the effects of data scales and model090

sizes on the metrics of interest, and showcase091

that performance generally improves with092

these two factors.093

• We identify several calculation patterns in the094

extrapolation setting including truncated addi-095

tion and base-10 carry extrapolates at longer096

input lengths.097

2 Related Work098

Numeral System A numeral system represents a099

number by a sequence of tokens within pre-defined100

sets. In order to perform numeric operations, the101

model would have learned to discern between the102

tokens precisely. Numeral systems are closely re-103

lated to tokenizers. We first review prevalent tok-104

enization conventions. Llama1/2 (Touvron et al.,105

2023a,b) tokenize numbers into 1-digit, enforcing106

a base-10 system. This design is also adopted by107

other general-domain LLMs (Jiang et al., 2023;108

Bai et al., 2023; Team et al., 2024) and math-109

specialized model Deepseek-Math (Shao et al.,110

2024). On the other hand, the most capable model111

of date, GPT-4o, tokenizes numbers into 1 ∼ 3112

digit, which is roughly equivalent to using a base113

103 system. To the best of our knowledge, no one114

has systematically studied how the numeral system115

affects the transformers’ arithmetic ability.116

Arithmetic Operations in Transformers To117

improve the arithmetic abilities of the transformer118

(Wang et al., 2021; Nogueira et al., 2021), people119

have designed positional embeddings (Kazemnejad120

et al., 2024; McLeish et al., 2024), scratchpad (Nye121

et al., 2021), and special training procedures (Liu122

and Low, 2023; Deng et al., 2023). In this paper,123

we do not improve the performance of arithmetic124

operations, but to understand the scaling impact of 125

choices of numeral systems. We focus on using 126

decoder-only transformers to decode the results 127

of arithmetic operations directly (i.e. without a 128

scratchpad). 129

Scaling Laws in Large Language Models Scal- 130

ing laws have been widely studied in the context 131

of LLMs (Kaplan et al., 2020; Hernandez et al., 132

2021; Gao et al., 2023; Bi et al., 2024) which aims 133

for predicting model losses based on different data 134

scale and model parameters. Different from this 135

line of research, we do not aim to accurately predict 136

performances when we scale up computing. We 137

leverage scaling behavior as a proxy to study the 138

impact of numeral systems selection. 139

3 Scaling Behavior Experiment Designs 140

To understand how the numeral systems affect nu- 141

meric operation in LLMs, we identify the following 142

dimensions of interest for our experiments when 143

training an LLM with numerical operation: 1) nu- 144

meral system 2) training data scale 3) model size 4) 145

from-scratch or fine-tuning 5) different operations. 146

For 1) and 2), we generate synthetic inputs ac- 147

cording to the process explained in section 3.1. For 148

3), we make use of the Pythia scaling suite (Bider- 149

man et al., 2023) for ranging over different model 150

sizes. For 4), we replicate experiments for both 151

settings to the best of our effort. For 5), we choose 152

to include results of addition and multiplication. 153

We list the complete configurations for our ex- 154

periments. 1) numeral system: base 10, base 102, 155

base 103 2) training data scale: 213∼19 training 156

samples 3) model size: 70M, 410M, 1.4B, 6.9B, 157

12B from Pythia 4) random-initialized or fine-tune 158

from Pythia (i.e. from-scratch or fine-tune) 5) op- 159

erations: addition, multiplication. After choosing 160

a configuration, we train our model based on our 161

generated samples and evaluate the model on a 162

non-overlapped evaluation set. The training pro- 163

cedure is the same as training an instruction lan- 164

guage model which masks the input (for example 165

12 + 23 =) and only calculates the losses on the 166

outputs (35). 167
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Figure 1: Answer Token Distribution for Multiplica-
tion. We sample 213 addition samples to illustrate the
distribution. Token values are normalized to [0, 1].

3.1 Synthetic Data Generation168

We generate synthetic data of scales 213∼19 for nu-169

meral systems base 10, base 102, and base 103. We170

abstract away the nitty-gritty details involved in171

practical tokenization schemes and generate syn-172

thetic input ids and labels directly.173

We first illustrate our training distribution gener-174

ation process using addition as an example. Let a175

and b be two operands, each row would be in the176

form of a+b = c. Let la and lb be the digit lengths177

of a and b in base 10. We fix la, lb ∈ [1, 10], and178

we attempt to evenly distribute generated data over179

la × lb. If the total number of pairs for la × lb is180

smaller than we request, we take all possible pairs.181

No pairs are repeated during our generation.182

Based on our generated training distribution, we183

convert each number into the corresponding base184

10, base 102, and base 103 representations. Note185

that this could be easily done by grouping digits in186

the original base 10 representation. We then map187

the digit numbers onto their corresponding token188

ids. Intuitively, base 10 would have 10 ids (corre-189

sponding to 0 ∼ 9), base 102 would have 100 ids,190

and base 103 would have 1000 ids. In Figure 1,191

we demonstrate the answer token distribution for192

each numeral system. We obtain the distribution193

by converting all answers into ids. We normalize194

the token values from each numeral system by di-195

viding against the base. As the base gets larger, the196

probability density gets more imbalanced.197

3.2 Evaluation Setup198

We sample non-overlapping operand pairs for eval-199

uation. We attempt to evenly sample 1000 pairs200

for each la × lb. If half of the total number of 201

pairs is smaller than 1000, then we reserve half for 202

evaluation. Overall, we strive to make sure that 203

the training and evaluation sets are from the same 204

distribution and have no overlap. 205

To observe a clear trend, we record the following 206

metrics 1) relative error 2) exact match accuracy 3) 207

normalized edit distance. Of these three metrics, 208

exact match accuracy is the most intuitive, which 209

is a hard match between model-generated tokens 210

and ground truth tokens. Based on our initial exper- 211

iments, this metric is not informative enough for a 212

range of settings. We thus design two more metrics 213

to reveal the underlying dynamics of our models. 214

Relative Error To generate a metric that is mean- 215

ingful to practical settings, we calculate relative er- 216

ror as
∣∣∣log o

gt

∣∣∣, where gt is the ground truth answer 217

and o is the model output. We then compute the 218

mean of the magnitude difference over all evalu- 219

ation pairs. This metric is more informative than 220

exact match accuracy since it captures the relative 221

error made by the model. 222

Note that this metric has two inductive biases. 223

First, this metric gives more weight to the length 224

difference between model outputs and ground truth 225

answers. Even if the output has a long common 226

sub-sequence with the ground truth, it will still be 227

penalized for not getting the output length right. 228

Second, this metric biases towards the accuracy 229

of leading digits. If we make a connection between 230

the numeral system and signal processing, this is 231

equivalent to putting more weight on low frequency 232

component of the number (trailing digits change 233

rapidly while leading digits change slowly). 234

Generalized Normalized Edit Distance Since 235

numbers in a numeral system are sequences of to- 236

kens, we introduce a generalized normalized edit 237

distance metric, which would give credit to par- 238

tially correct answers based on string similarity. 239

Edit Distance is a powerful metric that can capture 240

substring similarities. We extend this metric to our 241

scenario using the following setup: 242

Each number could be represented as a sequence 243

of chars (instead of tokens) with each char tak- 244

ing the range of 0 ∼ 9. We define the gener- 245

alized edit distance as the minimum number of 246

insertions, deletions, and substitutions needed to 247

transform one sequence into another. Suppose 248

that the two sequences are A = a1a2...an and 249

B = b1b2...bm. Let ed be the edit distance be- 250
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Figure 2: Relative error and normalized edit distance for addition operation with different data scales, model
parameter sizes, from-scratch or fine-tune, and numeral systems.

tween A and B. We define the normalized edit251

distance as ned =
max(m,n)−ed

max(m,n) . This metric is252

normalized into [0, 1].253

Compared with the Relative Error metric, this254

metric connects more closely to human perception.255

It prioritizes answers that would have the longest256

sub-sequences with the ground truth. Since human257

perception is largely visual for numbers, this metric258

aligns more with the visual similarity between the259

answer and the ground truth.260

Note that Relative Error can be somewhat261

viewed as a revised version of the Normalized Edit262

Distance we used, where insert and delete opera-263

tions are penalized harder, and replace operation is264

reweighted by the magnitude of the difference. 265

4 Experiments and Results 266

In this section, we present the main results of our 267

experiments that demonstrate the scaling efficiency 268

of different numeral systems. There are some dif- 269

ferences between the results of addition and multi- 270

plication, which could have arisen because of the 271

distinct difficulties of the tasks, but the overall trend 272

is consistent. 273

4.1 Overall Trends 274

For each scenario, our main metrics of interest 275

are Relative Error and Normalized Edit Distance. 276

For the addition operation, we also report Exact 277
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Figure 3: Exact match accuracy for addition operation with different data scales, model parameter sizes, from-scratch
or fine-tune, and numeral systems.

Match Accuracy. However, for multiplication, ex-278

act match accuracy is too low such that no informa-279

tion could be gained.280

Overall, a base 10 system is consistently more281

data-efficient than a base 102 or a base 103 system282

when trained from scratch, as shown in Figure 2283

and Figure 4. That is, to obtain a certain perfor-284

mance, a base 10 system would need data of a285

smaller scale to achieve it. We highlight the fact286

that do not display trends that favor base 100 and287

base 1000. During pre-training, most tokenizers288

lean towards combining consecutive digits, which289

would have favored base 102 and base 103 over290

base 10. Considering this, the decent performances291

of base 10 fine-tuned models further corroborate292

the superiority of the base 10 system.293

When we plot Relative Error against data scale,294

we are essentially using a log scale for both the x295

and y axes. Along the x-axis, the training data sam-296

ple number grows exponentially. Along the y-axis,297

the metric of interest grows exponentially. Under298

such a scale, there is a near-linear relationship for299

most graphs. This connects with scaling laws de-300

scribed in Kaplan et al. (2020). On the other hand,301

Normalized Edit Distance is already near-linear302

against the log of data samples. This could be ex-303

plained by the fact that Edits are made to positions304

of the number, which affects the magnitudes of305

numbers exponentially.306

We find larger models usually obtain better per-307

formances under different scenarios. Models larger308

than 1.4B show a different trend compared to mod- 309

els less than 1.4B. 310

4.2 Interpolation evaluation 311

4.2.1 Addition 312

In Figure 2, we showcase the scaling behavior for 313

addition. We first focus on from-scratch scenario. 314

We can observe a clear trend that base 10 is consis- 315

tently better than base 102 and base 103 for both 316

metrics, which is a strong affirmation of our claim. 317

Such a trend indicates that a base 10 system is at 318

least of a constant magnitude more data efficient 319

than base 102 and base 103 systems, and this trend 320

does not diminish as the model size gets larger. 321

For fine-tuning experiments, the difference be- 322

tween numeral systems is less profound. Using 323

NED as a metric, all numeral systems showcase 324

similar performances. On the whole, a base 10 sys- 325

tem is at least on par with base 102 or base 103, 326

as we do not observe an exaggerated performance 327

difference as we scale up data. Pythia is pre-trained 328

on tokenization with base 103, which weakens the 329

advantages of base 10. 330

4.2.2 Multiplication 331

We plot the Normalized Edit Distance for multipli- 332

cation in Figure 4. We can also conclude that the 333

base 10 number system is consistently more data- 334

efficient than base 102 and base 103. The trend 335

is consistent for both from-scratch and supervised 336

fine-tuning settings. 337
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Figure 4: Relative error and normalized edit distance for multiplication operation with different data scales, model
parameter sizes, from-scratch or fine-tune, and numeral systems.

The superiority of a base 10 system is more pro-338

nounced and more consistent under the multipli-339

cation setting. First, for Relative Error of models340

trained from scratch, the advantage of a base 10341

system is more perceivable than the addition set-342

ting. For the Normalized Edit Distance metric, we343

observe a trend where the data efficiency of a base344

10 system gains more advantage at large data scales.345

We relate this phenomenon to the differences be-346

tween Figure 7 and Figure 6 in the Appendix. As347

shown, addition is a much simpler task as compared348

with multiplication. For a large range of operand349

length pairs, the exact match accuracy remains zero.350

The hypothesis that we have proposed is that the351

sample efficiency of a base 10 system against base352

100 and base 1000 systems is magnified by the 353

difficulty of the task. 354

4.3 Extrapolation evaluation 355

In our previous evaluations, we have tested whether 356

our trained models could interpolate between the 357

points identically sampled from the same training 358

distribution (i.e. whether our models could gener- 359

alize in-domain). An equally important question 360

is whether our models could extrapolate to unseen 361

data points, especially in terms of length. 362

During training distribution generation, we only 363

consider numbers that are less than 1011. Therefore, 364

we generate cases where one operand lies in the 365

range of 1011 ∼ 1016 − 1, and the other operand 366
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ranges from 1 ∼ 1016−1. To this end, we perform

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lb

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

la

0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0
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Figure 5: Relative Error Matrix for Extrapolation Be-
havior Analysis. The results are obtained using a 1.4B
model fine-tuned on 219 training samples.

367
12 sets of case study experiments. Here we list368

the complete configurations: 1) numeral system:369

base 10, 102, 103 2) data scale: 219 3) model size:370

6.9B 4) if from-scratch: True, False 5) operations:371

addition, multiplication. We discover intriguing372

extrapolation behavior that could shed light on the373

mechanisms that the models have learned.374

4.3.1 Addition375

Note that although addition is an easy task to train,376

the models have only seen numbers less than 1011.377

We leverage addition pairs of length la and lb,378

where at least one of la or lb is greater than 10.379

To illustrate how the performance of our model de-380

cays, we plot the Relative Error matrices where one381

operand length is in [1, 5] and the other in [11, 15]382

in Figure 5. The results are obtained using a 1.4B383

fine-tuned model trained on 219 training samples.384

For each pair of la× lb, we randomly generate 100385

samples, which results in a total of 5000 samples.386

Of all such samples, the extrapolation exact match387

accuracy is 0.0.388

Yet, the models do not collapse completely on389

out-of-domain length distribution. We conduct case390

studies in Table 2. Our first discovery is that there is391

a consistent behavior of Truncated Addition across392

all numeral systems of fine-tuned models. Our sec-393

ond observation is that fine-tuned models are much394

better at aligning the tokens involved in extrapo-395

lated addition, as compared with models trained396

from-scratch.397

Truncated Addition Extrapolates While we398

are manually inspecting the extrapolation behavior399

of fine-tuned models, we discover consistently that400

models would try to perform the addition truncat- 401

ing the tokens that exceed training length it has 402

seen. We elaborate on this behavior under two 403

configurations. For illustrative purposes, we add 404

a comma to denote the max training length posi- 405

tion the models have seen. First, take for exam- 406

ple a model trained on a base 10 system, a fine- 407

tuned model is given input a = 8318686348, 0 408

and b = 3, where the token representation of a 409

is 11. Only the first 10 digits of a would partici- 410

pate in addition, yielding a result of 8318686348 + 411

3 = 8318686351. A fine-tuned model trained on 412

the base 102 system displays very similar results. 413

Given a = 734766443, 03 and b = 3, the model 414

performs 734766643 + 3 = 734766446, ignoring 415

two trailing digits, which is equivalent to ignoring 416

the last token under base 102. The phenomenon 417

of truncated addition is hardly observed on mod- 418

els trained from-scratch. The main obstacle could 419

arise from the inability to align corresponding to- 420

kens with unseen token lengths. For example, a 421

base 10 model trained from-scratch would calcu- 422

late 2635078980, 7 + 1 = 2635079091, where the 423

1 seems to have been added to multiple positions. 424

This could also indicate that fine-tuned models have 425

learned to utilize positional information better. 426

Base 10 Carry Extrapolates While we at- 427

tempted to explain extrapolation behavior us- 428

ing truncated addition, we noticed some outliers 429

where the answer is only 1 absolute value larger 430

than the truncated addition result. Manual in- 431

spection quickly reveals that the models gener- 432

ate carry for out-of-distribution positions. For a 433

base 10 fine-tuned model, 3968299531, 8 + 2 = 434

3968299534 (= 3968299531 + 2 + 1), where a 435

carry has been generated because 8+2 = 10. Note 436

that the carry is not generated by aligning the ones 437

digit since 1 + 2 = 3 < 10, which is an ablation 438

showcasing that calculating carry exhibits extrapo- 439

lation behavior. 440

Tokens Generalize, Length Does Not For a 441

base 103 system, two kinds of behavior have been 442

observed. Before we describe the behaviors, we 443

restate our experiment settings. Our training distri- 444

bution only contains numbers that are less than 1011 445

under the base 10 system. This creates two scenar- 446

ios for extrapolation experiments of a model trained 447

with base 103. 1) both operands are less than 1013 448

2) at least one of the operands is no smaller than 449

1013. For 1), although the model has not seen any 450

data points within the range of 1011 ∼ 1013−1, the 451

length of both operands does not exceed 4, which 452
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Model Pattern a b a+ b Model Output

SFT-Base 10 w/o carry 8318686348,0 3 8318686348,3 8318686351
carry success 3968299531,8 2 3968299532,0 3968299534

SFT-Base 102 w/o carry 7 34 76 64 43, 03 3 7 34 76 64 43, 06 7 34 76 64 46
misaligned 1 63 47 53 10, 81 2 1 63 47 53 10, 83 1 63 47 53 12, 83
carry failure 7 28 37 46 59, 47 94 7 28 37 46 60, 41 7 28 37 47 53

SFT-Base 103 w/o carry 2 929 747 175, 022 9 2 929 747 175, 031 2 929 747 184
misaligned 8 748 392 297, 087 2 8 748 392 297, 089 8 748 392 299, 089
carry failure 8 172 938 472, 837 494 8 172 938 473, 331 8 172 938 966

Table 2: Representative Cases for Addition Extrapolation. We add a comma to denote the maximum token length of
a single number that the model has seen during training.

Model a b a× b Model Output

SFT-Base 10 9298574444, 7 6 5579144666,82 5579144666,82
SFT-Base 102 3 44 97 17 48, 09 8 27 59 77 39 84, 72 27 59 77 39 84, 72
SFT-Base 103 18 419 335, 384 4 73 677 341, 536 73 677 341, 536

Scratch-Base 10 44527557923 8 356220463384 358888899984
Scratch-Base 102 2 45 57 14 10, 66 8 19 64 57 12 85, 28 20 10 88 12 12, 48
Scratch-Base 103 17 709 751, 495 5 88 548 757, 475 87 229 700, 075

Table 3: Representative Cases for Multiplication Extrapolation. We list successful cases for fine-tuned models (i.e.
SFT) and showcase the failure of from-scratch models.

has been trained. For 2), the length of at least one453

operand has not been seen during training at all.454

Out of a sample size of 100 for each la× lb pair,455

a base 103 fine-tuned model could achieve 90%456

exact match accuracy with la = 11, lb ∈ [1, 8].457

However, accuracy quickly drops to 0 if one of the458

operands has a token length greater than 4 under459

the base 103 system.460

4.3.2 Multiplication461

Different from addition, there is at least one suc-462

cessful example of extrapolation of operand length463

for fine-tuned models of all number systems shown464

in Table 3. Yet, the exact match accuracy on the465

extrapolation set of models tuned from-scratch is466

consistently zero. Moreover, a closer look at the467

generated results showcases that the model is only468

able to get correct the starting tokens and ending469

tokens of the answer, with gibberish and repetitive470

tokens in the middle.471

5 Conclusion472

In this paper, we study the question of selecting a473

numeral system for large language models. Specif-474

ically, we compare the data-scaling efficiencies of475

base 10, 100, and 1000 systems. We carefully de-476

sign scaling experiments with respect to 5 factors:477

1) numeral system 2) training data scale 3) model478

size 4) from-scratch vs fine-tuning 5) addition and479

multiplication. Through the lens of our selected 480

metrics, we showcase the superiority of the base 10 481

system. We find the specialized tokenization design 482

of tokenizing number sequences into 1-digit, espe- 483

cially training from scratch. Pythia is pretrained 484

with a base of 1000 numeral system, which weak- 485

ens the advantage of a base 10 numeral system 486

under the fine-tuning setting. We offer an analysis 487

of the extrapolation behavior of trained models on 488

addition and multiplication. We reveal calculation 489

patterns that successfully extrapolate, such as carry 490

generation in addition and magnitude estimation in 491

multiplication. Our work sheds light on the inner 492

workings that models have learned and hopefully 493

would promote future research on this topic. 494

Limitations 495

Scaling behavior analysis requires a huge amount 496

of computational resources. Limited by this fac- 497

tor, we have not performed a thorough grid search 498

for hyperparameters of every setting. It is possi- 499

ble that for every configuration that is of interest, 500

we should use a unique set of hyperparameters to 501

achieve optimal performance. In our experiments, 502

we have witnessed instability issues regarding some 503

data points where the training loss seemingly col- 504

lapses. It is possible that such issues arose because 505

of suboptimal hyperparameter choices. Research 506

on numerical operation has few potential risks. 507
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A Metric Matrix for Different Length 648

Pairs 649

We take a 1.4B model trained from-scratch on ad- 650

dition and multiplication as an exemplar and plot 651

matrices for both Exact Match Accuracy and Nor- 652

malized Edit Distance with respect to each pair of 653

input lengths in Figure 6 and Figure 7.

1 2 3 4 5 6 7 8 9 10

lb
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Figure 6: Exact Match Accuracy and Normalized Edit
Distance Matrices for Addition Eval Set. The results
are obtained using a 1.4B model trained from scratch
on 219 samples.

654

B Overfitting Analysis 655

Alongside our main results, we also perform abla- 656

tion studies on overfitting under addition settings, 657

since the accuracy quickly saturates to 100.0%. 658

First of all, we subsample a portion of our train- 659

ing set to forward through the model. We attempt 660

to sample 1000 examples for each la × lb pair in 661

10 × 10. If the total number of training pairs is 662

smaller, we take all training pairs for la× lb. 663

Generally, for all the metrics of interest, we ob- 664

serve nearly identical performance on our training 665

and evaluation set. Furthermore, since our evalu- 666

ation set is non-overlapping with the training set, 667
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Figure 7: Exact Match Accuracy and Normalized Edit
Distance Matrices for Multiplication Eval Set. The
results are obtained using a 1.4B model trained from
scratch on 219 samples.

it would be safe to conclude that no overfitting668

phenomenon has been observed.669

C Hyper-parameters670

We briefly discuss the hyperparameter search pro-671

cess that we have gone through for each configu-672

ration. Based on our initial experiments, models673

exhibit nearly identical behavior in both the train-674

ing set and the evaluation set. We therefore use675

training set metrics for hyperparameter selection.676

Then, we first fix the learning rate magnitude677

and sweep for training epochs. We observed678

that fine-tuned models are insensitive for training679

epochs, while the model training from-scratch con-680

sistently improves with more epochs. We choose681

epochs where the performances of models begin to682

plateau. Generally, epoch performance trends only683

depend on the training setting (i.e. fine-tuning or684

from-scratch). Fixing the training epoch, we per-685

form a grid search over learning rate magnitudes686

{2e − 3, 2e − 4, 2e − 5, 2e − 6, 2e − 7} for each687

configuration. Generally, we found that 70M and 688

410M models favor a larger learning rate of 2e− 4 689

while models larger than 1.4B use 2e− 5. There 690

is no significant difference between fine-tuning 691

learning rates and from-scratch learning rates. To 692

speed up training, we pack sequences to a maxi- 693

mum length of 2048, therefore fixing the batch size. 694

All experiments are trained using 8xA100 Nvidia 695

GPUs. 696

11



14 16 18
Pythia 70M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 410M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 1.4B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 6.9B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 12B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

Train Acc for from_scratch Addition

14 16 18
Pythia 70M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 410M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 1.4B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 6.9B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 12B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

Eval Acc for from_scratch Addition

Figure 8: Exact Match Accuracy on the training set versus the eval set for addition operation with different models
trained from scratch, on different data scale and numeral systems.
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