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Abstract

Though Large Language Models (LLMs) have
shown remarkable abilities in mathematics rea-
soning, they are still struggling with performing
numeric operations accurately, such as addition
and multiplication. Numbers can be tokenized
into tokens in various ways by different LLMs
and affect the numeric operations performance.
Currently, there are two representatives: 1) To-
kenize into 1-digit, and 2) Tokenize into 1 ~ 3
digit. The difference is roughly equivalent to
using different numeral systems (namely base
10 or base 10%). In light of this, we study the
scaling behavior of different numeral systems
in the context of transformer-based large lan-
guage models. We empirically show that a base
10 system is consistently more data-efficient
than a base 102 or 103 system across train-
ing data scale, model sizes under from-scratch
training settings, while different number sys-
tems have very similar performances when fine-
tuned. Through thorough analysis and exper-
iments, we conclude that tokenizing numbers
into 1-digit is more favorable for LLMs in nu-
merical operations. Additionally, we reveal
extrapolation behavior patterns on addition and
multiplication that sheds light on the mecha-
nism learnt by the models.

1 Introduction

Large Language Models (LLMs) have stormed the
world with their amazing reasoning abilities (Ope-
nAl, 2023; Google, 2023; Touvron et al., 2023b).
However, numeric operations remain challenging
for LLMs to comprehend under the architecture of
Transformer (Vaswani et al., 2017; Lee et al., 2023;
Yuan et al., 2023; Zhou et al., 2024; McLeish et al.,
2024). Several techniques have been proposed to
improve the performance of numeric operations in-
cluding improving positional embeddings (Kazem-
nejad et al., 2024; McLeish et al., 2024) and using
scratchpad (Nye et al., 2021; Liu and Low, 2023).
These works mostly focus on a random initialized

Transformer with 1-digit tokenization. However,
pre-trained LLMs have various tokenizers that can
affect the numeric operations performances. Cur-
rently, there are two main tokenization schemes:
1) Tokenize into 1-digit (Touvron et al., 2023a,b;
Jiang et al., 2023; Bai et al., 2023; Team et al.,
2024; Shao et al., 2024), and 2) Tokenize into 1 ~ 3
digit (Biderman et al., 2023; OpenAl, 2023; Cai
et al., 2024). An example of different tokenization
is shown in Table 1. Abstracting away practical
details of tokenizers, these two schemes can be
viewed as using a base 10 numeral system versus
a base 102 system. The former aligns better with
human intuition and the prevalent base 10 system
in daily usage. Yet, the latter encodes numbers
into fewer tokens. Our question follows intuitively:
What is the difference between these schemes in
numeric operations?

We resort to data-scaling efficiency to answer
this question. That is, there would be substantial
differences in the scaling behavior of these numeral
systems. More essentially, we are inspecting the
scaling proclivity towards learning foken classifica-
tion or length information for numeric operations.
Intuitively, a base 10 system has a smaller set of
tokens that could appear in the input but would be
more lengthy in decoding the same number than a
base 103 system. Out of practical considerations,
we choose to restrict our study to the base 10, base
102, and base 103 systems which adhere to tokeniz-
ers of existing large language models.

To design experiments for scaling behavior, we
identify the following critical dimensions: 1) nu-
meral system 2) data scale, and 3) model size.
To further corroborate the generalizability of our
claim, we also test if our conclusion holds for dif-
ferent numeric operations. On the other hand, it
is possible that pre-trained models have a bias to-
wards 2 ~ 3 digit tokens. To strengthen our claim,
we test if our observed trend holds irrespective of
whether our models are trained from-scratch or



Type Models Tokenize 31415926535
1-digit Llamal-2/Mistral/QWen/Gemma  [’3’,°1°,°4’,°1°,°5°,°9’,°2°,°6°,°5",°3",’5’]
Multiple  Pythia/GPT-4o/Llama3/InternLM  [’314°,°159’, ’265°, °35’]

Table 1: Tokenizing 31415926535 via different large language models.

fine-tuned. Our contributions can be summarized
as follows:

* A base 10 system is consistently more data-
efficient than a base 102 or base 10% system
under different data scales, model sizes, and
different operators, especially training from-
scratch.

* We study the effects of data scales and model
sizes on the metrics of interest, and showcase
that performance generally improves with
these two factors.

* We identify several calculation patterns in the
extrapolation setting including truncated addi-
tion and base-10 carry extrapolates at longer
input lengths.

2 Related Work

Numeral System A numeral system represents a
number by a sequence of tokens within pre-defined
sets. In order to perform numeric operations, the
model would have learned to discern between the
tokens precisely. Numeral systems are closely re-
lated to tokenizers. We first review prevalent tok-
enization conventions. Llamal/2 (Touvron et al.,
2023a,b) tokenize numbers into 1-digit, enforcing
a base-10 system. This design is also adopted by
other general-domain LLMs (Jiang et al., 2023;
Bai et al., 2023; Team et al., 2024) and math-
specialized model Deepseek-Math (Shao et al.,
2024). On the other hand, the most capable model
of date, GPT-40, tokenizes numbers into 1 ~ 3
digit, which is roughly equivalent to using a base
103 system. To the best of our knowledge, no one
has systematically studied how the numeral system
affects the transformers’ arithmetic ability.

Arithmetic Operations in Transformers To
improve the arithmetic abilities of the transformer
(Wang et al., 2021; Nogueira et al., 2021), people
have designed positional embeddings (Kazemnejad
etal., 2024; McLeish et al., 2024), scratchpad (Nye
et al., 2021), and special training procedures (Liu
and Low, 2023; Deng et al., 2023). In this paper,
we do not improve the performance of arithmetic

operations, but to understand the scaling impact of
choices of numeral systems. We focus on using
decoder-only transformers to decode the results
of arithmetic operations directly (i.e. without a
scratchpad).

Scaling Laws in Large Language Models Scal-
ing laws have been widely studied in the context
of LLMs (Kaplan et al., 2020; Hernandez et al.,
2021; Gao et al., 2023; Bi et al., 2024) which aims
for predicting model losses based on different data
scale and model parameters. Different from this
line of research, we do not aim to accurately predict
performances when we scale up computing. We
leverage scaling behavior as a proxy to study the
impact of numeral systems selection.

3 Scaling Behavior Experiment Designs

To understand how the numeral systems affect nu-
meric operation in LLMs, we identify the following
dimensions of interest for our experiments when
training an LLM with numerical operation: 1) nu-
meral system 2) training data scale 3) model size 4)
from-scratch or fine-tuning S) different operations.
For 1) and 2), we generate synthetic inputs ac-
cording to the process explained in section 3.1. For
3), we make use of the Pythia scaling suite (Bider-
man et al., 2023) for ranging over different model
sizes. For 4), we replicate experiments for both
settings to the best of our effort. For 5), we choose
to include results of addition and multiplication.

We list the complete configurations for our ex-
periments. 1) numeral system: base 10, base 102,
base 103 2) training data scale: 2'3~!9 training
samples 3) model size: 70M, 410M, 1.4B, 6.9B,
12B from Pythia 4) random-initialized or fine-tune
from Pythia (i.e. from-scratch or fine-tune) 5) op-
erations: addition, multiplication. After choosing
a configuration, we train our model based on our
generated samples and evaluate the model on a
non-overlapped evaluation set. The training pro-
cedure is the same as training an instruction lan-
guage model which masks the input (for example
12 4+ 23 =) and only calculates the losses on the
outputs (35).
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Figure 1: Answer Token Distribution for Multiplica-
tion. We sample 2'2 addition samples to illustrate the
distribution. Token values are normalized to [0, 1].

3.1 Synthetic Data Generation

We generate synthetic data of scales 2'3~19 for nu-
meral systems base 10, base 102, and base 10°. We
abstract away the nitty-gritty details involved in
practical tokenization schemes and generate syn-
thetic input ids and labels directly.

We first illustrate our training distribution gener-
ation process using addition as an example. Let a
and b be two operands, each row would be in the
form of a4+ b = c. Let la and [b be the digit lengths
of a and b in base 10. We fix la, b € [1,10], and
we attempt to evenly distribute generated data over
la x [b. If the total number of pairs for la x [b is
smaller than we request, we take all possible pairs.
No pairs are repeated during our generation.

Based on our generated training distribution, we
convert each number into the corresponding base
10, base 102, and base 103 representations. Note
that this could be easily done by grouping digits in
the original base 10 representation. We then map
the digit numbers onto their corresponding token
ids. Intuitively, base 10 would have 10 ids (corre-
sponding to 0 ~ 9), base 102 would have 100 ids,
and base 103 would have 1000 ids. In Figure 1,
we demonstrate the answer token distribution for
each numeral system. We obtain the distribution
by converting all answers into ids. We normalize
the token values from each numeral system by di-
viding against the base. As the base gets larger, the
probability density gets more imbalanced.

3.2 Evaluation Setup

We sample non-overlapping operand pairs for eval-
uation. We attempt to evenly sample 1000 pairs

for each la x [b. If half of the total number of
pairs is smaller than 1000, then we reserve half for
evaluation. Overall, we strive to make sure that
the training and evaluation sets are from the same
distribution and have no overlap.

To observe a clear trend, we record the following
metrics 1) relative error 2) exact match accuracy 3)
normalized edit distance. Of these three metrics,
exact match accuracy is the most intuitive, which
is a hard match between model-generated tokens
and ground truth tokens. Based on our initial exper-
iments, this metric is not informative enough for a
range of settings. We thus design two more metrics
to reveal the underlying dynamics of our models.

Relative Error To generate a metric that is mean-
ingful to practical settings, we calculate relative er-

ror as ‘Iog ﬁ , where gt is the ground truth answer
and o is the model output. We then compute the
mean of the magnitude difference over all evalu-
ation pairs. This metric is more informative than
exact match accuracy since it captures the relative
error made by the model.

Note that this metric has two inductive biases.
First, this metric gives more weight to the length
difference between model outputs and ground truth
answers. Even if the output has a long common
sub-sequence with the ground truth, it will still be
penalized for not getting the output length right.

Second, this metric biases towards the accuracy
of leading digits. If we make a connection between
the numeral system and signal processing, this is
equivalent to putting more weight on low frequency
component of the number (trailing digits change
rapidly while leading digits change slowly).

Generalized Normalized Edit Distance Since
numbers in a numeral system are sequences of to-
kens, we introduce a generalized normalized edit
distance metric, which would give credit to par-
tially correct answers based on string similarity.
Edit Distance is a powerful metric that can capture
substring similarities. We extend this metric to our
scenario using the following setup:

Each number could be represented as a sequence
of chars (instead of tokens) with each char tak-
ing the range of 0 ~ 9. We define the gener-
alized edit distance as the minimum number of
insertions, deletions, and substitutions needed to
transform one sequence into another. Suppose
that the two sequences are A = ajas...a, and
B = b1bo...b,,. Let ed be the edit distance be-
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Figure 2: Relative error and normalized edit distance for addition operation with different data scales, model
parameter sizes, from-scratch or fine-tune, and numeral systems.

tween A and B. We define the normalized edit
max(m,n)—ed

e This metric is

distance as ned =
max(m,n

normalized into [0, 1].

Compared with the Relative Error metric, this
metric connects more closely to human perception.
It prioritizes answers that would have the longest
sub-sequences with the ground truth. Since human
perception is largely visual for numbers, this metric
aligns more with the visual similarity between the
answer and the ground truth.

Note that Relative Error can be somewhat
viewed as a revised version of the Normalized Edit
Distance we used, where insert and delete opera-
tions are penalized harder, and replace operation is

reweighted by the magnitude of the difference.

4 Experiments and Results

In this section, we present the main results of our
experiments that demonstrate the scaling efficiency
of different numeral systems. There are some dif-
ferences between the results of addition and multi-
plication, which could have arisen because of the
distinct difficulties of the tasks, but the overall trend
is consistent.

4.1 Overall Trends

For each scenario, our main metrics of interest
are Relative Error and Normalized Edit Distance.
For the addition operation, we also report Exact
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Figure 3: Exact match accuracy for addition operation with different data scales, model parameter sizes, from-scratch

or fine-tune, and numeral systems.

Match Accuracy. However, for multiplication, ex-
act match accuracy is too low such that no informa-
tion could be gained.

Overall, a base 10 system is consistently more
data-efficient than a base 102 or a base 102 system
when trained from scratch, as shown in Figure 2
and Figure 4. That is, to obtain a certain perfor-
mance, a base 10 system would need data of a
smaller scale to achieve it. We highlight the fact
that do not display trends that favor base 100 and
base 1000. During pre-training, most tokenizers
lean towards combining consecutive digits, which
would have favored base 10 and base 103 over
base 10. Considering this, the decent performances
of base 10 fine-tuned models further corroborate
the superiority of the base 10 system.

When we plot Relative Error against data scale,
we are essentially using a log scale for both the x
and y axes. Along the x-axis, the training data sam-
ple number grows exponentially. Along the y-axis,
the metric of interest grows exponentially. Under
such a scale, there is a near-linear relationship for
most graphs. This connects with scaling laws de-
scribed in Kaplan et al. (2020). On the other hand,
Normalized Edit Distance is already near-linear
against the log of data samples. This could be ex-
plained by the fact that Edits are made to positions
of the number, which affects the magnitudes of
numbers exponentially.

We find larger models usually obtain better per-
formances under different scenarios. Models larger

than 1.4B show a different trend compared to mod-
els less than 1.4B.

4.2 Interpolation evaluation

4.2.1 Addition

In Figure 2, we showcase the scaling behavior for
addition. We first focus on from-scratch scenario.
We can observe a clear trend that base 10 is consis-
tently better than base 10 and base 10? for both
metrics, which is a strong affirmation of our claim.
Such a trend indicates that a base 10 system is at
least of a constant magnitude more data efficient
than base 102 and base 102 systems, and this trend
does not diminish as the model size gets larger.

For fine-tuning experiments, the difference be-
tween numeral systems is less profound. Using
NED as a metric, all numeral systems showcase
similar performances. On the whole, a base 10 sys-
tem is at least on par with base 102 or base 103,
as we do not observe an exaggerated performance
difference as we scale up data. Pythia is pre-trained
on tokenization with base 103, which weakens the
advantages of base 10.

4.2.2 Multiplication

We plot the Normalized Edit Distance for multipli-
cation in Figure 4. We can also conclude that the
base 10 number system is consistently more data-
efficient than base 10? and base 103. The trend
is consistent for both from-scratch and supervised
fine-tuning settings.
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Figure 4: Relative error and normalized edit distance for multiplication operation with different data scales, model
parameter sizes, from-scratch or fine-tune, and numeral systems.

The superiority of a base 10 system is more pro-
nounced and more consistent under the multipli-
cation setting. First, for Relative Error of models
trained from scratch, the advantage of a base 10
system is more perceivable than the addition set-
ting. For the Normalized Edit Distance metric, we
observe a trend where the data efficiency of a base
10 system gains more advantage at large data scales.
We relate this phenomenon to the differences be-
tween Figure 7 and Figure 6 in the Appendix. As
shown, addition is a much simpler task as compared
with multiplication. For a large range of operand
length pairs, the exact match accuracy remains zero.
The hypothesis that we have proposed is that the
sample efficiency of a base 10 system against base

100 and base 1000 systems is magnified by the
difficulty of the task.

4.3 Extrapolation evaluation

In our previous evaluations, we have tested whether
our trained models could interpolate between the
points identically sampled from the same training
distribution (i.e. whether our models could gener-
alize in-domain). An equally important question
is whether our models could extrapolate to unseen
data points, especially in terms of length.

During training distribution generation, we only
consider numbers that are less than 10!, Therefore,
we generate cases where one operand lies in the
range of 10*! ~ 1016 — 1, and the other operand



ranges from 1 ~ 10'® — 1. To this end, we perform
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Figure 5: Relative Error Matrix for Extrapolation Be-
havior Analysis. The results are obtained using a 1.4B
model fine-tuned on 2'9 training samples.

12 sets of case study experiments. Here we list
the complete configurations: 1) numeral system:
base 10, 102, 103 2) data scale: 22 3) model size:
6.9B 4) if from-scratch: True, False 5) operations:
addition, multiplication. We discover intriguing
extrapolation behavior that could shed light on the
mechanisms that the models have learned.

4.3.1 Addition

Note that although addition is an easy task to train,
the models have only seen numbers less than 10!
We leverage addition pairs of length la and [b,
where at least one of la or [b is greater than 10.
To illustrate how the performance of our model de-
cays, we plot the Relative Error matrices where one
operand length is in [1, 5] and the other in [11, 15]
in Figure 5. The results are obtained using a 1.4B
fine-tuned model trained on 2'° training samples.
For each pair of la x [b, we randomly generate 100
samples, which results in a total of 5000 samples.
Of all such samples, the extrapolation exact match
accuracy is 0.0.

Yet, the models do not collapse completely on
out-of-domain length distribution. We conduct case
studies in Table 2. Our first discovery is that there is
a consistent behavior of Truncated Addition across
all numeral systems of fine-tuned models. Our sec-
ond observation is that fine-tuned models are much
better at aligning the tokens involved in extrapo-
lated addition, as compared with models trained
from-scratch.

Truncated Addition Extrapolates While we
are manually inspecting the extrapolation behavior
of fine-tuned models, we discover consistently that

models would try to perform the addition truncat-
ing the tokens that exceed training length it has
seen. We elaborate on this behavior under two
configurations. For illustrative purposes, we add
a comma to denote the max training length posi-
tion the models have seen. First, take for exam-
ple a model trained on a base 10 system, a fine-
tuned model is given input a = 8318686348, 0
and b = 3, where the token representation of a
is 11. Only the first 10 digits of @ would partici-
pate in addition, yielding a result of 8318686348 +
3 = 8318686351. A fine-tuned model trained on
the base 10? system displays very similar results.
Given a = 734766443,03 and b = 3, the model
performs 734766643 4 3 = 734766446, ignoring
two trailing digits, which is equivalent to ignoring
the last token under base 102. The phenomenon
of truncated addition is hardly observed on mod-
els trained from-scratch. The main obstacle could
arise from the inability to align corresponding to-
kens with unseen token lengths. For example, a
base 10 model trained from-scratch would calcu-
late 2635078980, 7 + 1 = 2635079091, where the
1 seems to have been added to multiple positions.
This could also indicate that fine-tuned models have
learned to utilize positional information better.
Base 10 Carry Extrapolates  While we at-
tempted to explain extrapolation behavior us-
ing truncated addition, we noticed some outliers
where the answer is only 1 absolute value larger
than the truncated addition result. Manual in-
spection quickly reveals that the models gener-
ate carry for out-of-distribution positions. For a
base 10 fine-tuned model, 3968299531,8 + 2 =
3968299534 (= 3968299531 + 2 + 1), where a
carry has been generated because 8 42 = 10. Note
that the carry is not generated by aligning the ones
digit since 1 + 2 = 3 < 10, which is an ablation
showcasing that calculating carry exhibits extrapo-
lation behavior.

Tokens Generalize, Length Does Not For a
base 10 system, two kinds of behavior have been
observed. Before we describe the behaviors, we
restate our experiment settings. Our training distri-
bution only contains numbers that are less than 10!
under the base 10 system. This creates two scenar-
ios for extrapolation experiments of a model trained
with base 103. 1) both operands are less than 103
2) at least one of the operands is no smaller than
10'3. For 1), although the model has not seen any
data points within the range of 10*! ~ 10'3—1, the
length of both operands does not exceed 4, which



Model Pattern a b a+b Model Output
SFT-Base 10 w/o carry 8318686348,0 3 8318686348,3 8318686351
carry success  3968299531,8 2 3968299532,0 3968299534
SFT-Base 10>  w/o carry 73476 64 43,03 3 73476 64 43,06 73476 64 46
misaligned 1634753 10, 81 2 1634753 10, 83 163475312,83
carry failure 7 28 37 46 59, 47 94 7283746060, 41 728374753
SFT-Base 10°  w/o carry 2929747 175,022 9 2929747 175,031 2929 747 184
misaligned 8748392 297,087 2 8748392 297,089 8 748 392299, 089
carry failure 8 172938 472,837 494 8172938473,331 8172938 966

Table 2: Representative Cases for Addition Extrapolation. We add a comma to denote the maximum token length of

a single number that the model has seen during training.

Model a

axb Model Output

SFT-Base 10 9298574444, 7
SFT-Base 102 344 97 17 48, 09
SFT-Base 10° 18 419 335, 384

5579144666,82
27597739 84,72
73 677 341, 536

5579144666,82
27597739 84,72
73 677 341, 536

Scratch-Base 10 44527557923
Scratch-Base 102 24557 14 10, 66
Scratch-Base 10> 17 709 751, 495

WD oo | ~ood| o

356220463384
19 64 57 12 85, 28
88 548 757, 475

358888899984
2010881212, 48
87229 700, 075

Table 3: Representative Cases for Multiplication Extrapolation. We list successful cases for fine-tuned models (i.e.

SFT) and showcase the failure of from-scratch models.

has been trained. For 2), the length of at least one
operand has not been seen during training at all.

Out of a sample size of 100 for each la x b pair,
a base 103 fine-tuned model could achieve 90%
exact match accuracy with la = 11,1b € [1,8].
However, accuracy quickly drops to O if one of the
operands has a token length greater than 4 under
the base 103 system.

4.3.2 Multiplication

Different from addition, there is at least one suc-
cessful example of extrapolation of operand length
for fine-tuned models of all number systems shown
in Table 3. Yet, the exact match accuracy on the
extrapolation set of models tuned from-scratch is
consistently zero. Moreover, a closer look at the
generated results showcases that the model is only
able to get correct the starting tokens and ending
tokens of the answer, with gibberish and repetitive
tokens in the middle.

5 Conclusion

In this paper, we study the question of selecting a
numeral system for large language models. Specif-
ically, we compare the data-scaling efficiencies of
base 10, 100, and 1000 systems. We carefully de-
sign scaling experiments with respect to 5 factors:
1) numeral system 2) training data scale 3) model
size 4) from-scratch vs fine-tuning 5) addition and

multiplication. Through the lens of our selected
metrics, we showcase the superiority of the base 10
system. We find the specialized tokenization design
of tokenizing number sequences into 1-digit, espe-
cially training from scratch. Pythia is pretrained
with a base of 1000 numeral system, which weak-
ens the advantage of a base 10 numeral system
under the fine-tuning setting. We offer an analysis
of the extrapolation behavior of trained models on
addition and multiplication. We reveal calculation
patterns that successfully extrapolate, such as carry
generation in addition and magnitude estimation in
multiplication. Our work sheds light on the inner
workings that models have learned and hopefully
would promote future research on this topic.

Limitations

Scaling behavior analysis requires a huge amount
of computational resources. Limited by this fac-
tor, we have not performed a thorough grid search
for hyperparameters of every setting. It is possi-
ble that for every configuration that is of interest,
we should use a unique set of hyperparameters to
achieve optimal performance. In our experiments,
we have witnessed instability issues regarding some
data points where the training loss seemingly col-
lapses. It is possible that such issues arose because
of suboptimal hyperparameter choices. Research
on numerical operation has few potential risks.
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A Metric Matrix for Different Length
Pairs

We take a 1.4B model trained from-scratch on ad-
dition and multiplication as an exemplar and plot
matrices for both Exact Match Accuracy and Nor-
malized Edit Distance with respect to each pair of
input lengths in Figure 6 and Figure 7.
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Figure 6: Exact Match Accuracy and Normalized Edit
Distance Matrices for Addition Eval Set. The results
are obtained using a 1.4B model trained from scratch
on 2% samples.

B Overfitting Analysis

Alongside our main results, we also perform abla-
tion studies on overfitting under addition settings,
since the accuracy quickly saturates to 100.0%.
First of all, we subsample a portion of our train-
ing set to forward through the model. We attempt
to sample 1000 examples for each la x lb pair in
10 x 10. If the total number of training pairs is
smaller, we take all training pairs for la X [b.
Generally, for all the metrics of interest, we ob-
serve nearly identical performance on our training
and evaluation set. Furthermore, since our evalu-
ation set is non-overlapping with the training set,
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Figure 7: Exact Match Accuracy and Normalized Edit
Distance Matrices for Multiplication Eval Set. The
results are obtained using a 1.4B model trained from
scratch on 219 samples.

it would be safe to conclude that no overfitting
phenomenon has been observed.

C Hyper-parameters

We briefly discuss the hyperparameter search pro-
cess that we have gone through for each configu-
ration. Based on our initial experiments, models
exhibit nearly identical behavior in both the train-
ing set and the evaluation set. We therefore use
training set metrics for hyperparameter selection.
Then, we first fix the learning rate magnitude
and sweep for training epochs. We observed
that fine-tuned models are insensitive for training
epochs, while the model training from-scratch con-
sistently improves with more epochs. We choose
epochs where the performances of models begin to
plateau. Generally, epoch performance trends only
depend on the training setting (i.e. fine-tuning or
from-scratch). Fixing the training epoch, we per-
form a grid search over learning rate magnitudes
{2e — 3,2e — 4,2e¢ — 5,2e — 6,2e — 7} for each
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configuration. Generally, we found that 70M and
410M models favor a larger learning rate of 2e — 4
while models larger than 1.4B use 2e — 5. There
is no significant difference between fine-tuning
learning rates and from-scratch learning rates. To
speed up training, we pack sequences to a maxi-
mum length of 2048, therefore fixing the batch size.
All experiments are trained using 8xA100 Nvidia
GPUs.
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Figure 8: Exact Match Accuracy on the training set versus the eval set for addition operation with different models
trained from scratch, on different data scale and numeral systems.
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