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ABSTRACT

We interpret the function of individual neurons in CLIP by automatically describing
them using text. Analyzing the direct effects (i.e. the flow from a neuron through
the residual stream to the output) or the indirect effects (overall contribution) fails
to capture the neurons’ function in CLIP. Therefore, we present the “second-order
lens”, analyzing the effect flowing from a neuron through the later attention heads,
directly to the output. We find that these effects are highly selective: for each
neuron, the effect is significant for < 2% of the images. Moreover, each effect can
be approximated by a single direction in the text-image space of CLIP. We describe
neurons by decomposing these directions into sparse sets of text representations.
The sets reveal polysemantic behavior—each neuron corresponds to multiple, often
unrelated, concepts (e.g. ships and cars). Exploiting this neuron polysemy, we
mass-produce “semantic” adversarial examples by generating images with concepts
spuriously correlated to the incorrect class. Additionally, we use the second-order
effects for zero-shot segmentation, outperforming previous methods. Our results
indicate that a automated interpretation of neurons can be used for model deception
and for introducing new model capabilities1.

1 INTRODUCTION

Automated interpretability of the roles of components in neural networks enables the discovery of
model limitations and interventions to overcome them. Recently, such a technique was applied
for interpreting the attention heads in CLIP (Gandelsman et al., 2024), a widely used class of
image representation models (Radford et al., 2021). However, this approach has only scratched the
surface, failing to explain a major set of CLIP’s components—neurons. Here we will introduce a
new interpretability lens for studying the neurons and use the gained understanding for zero-shot
segmentation and mass-production of semantic adversarial examples.

Interpreting the neurons in CLIP is a harder task than interpreting the attention heads. First, there are
more neurons than individual heads, which requires a more automated approach. Second, their direct
effect on the output—the flow from the neuron, through the residual stream directly to the output—is
negligible (Gandelsman et al., 2024). Third, most information is stored redundantly—many neurons
encode the same concept, so just ablating a neuron (i.e. examining indirect effects) does not reveal
much since other neurons make up for it.

The limitations presented above mean that we can neither look at the direct effect nor the indirect
effect to analyze a single neuron. To address this, we introduce a “second-order lens” for investigating
the second-order effect of a neuron—its total contribution to the output, flowing via all the consecutive
attention heads (see Figure 1).

We start by analyzing the empirical behavior of second-order effects of neurons. We find that these
effects have high significance in the late layers. Additionally, each neuron is highly selective: its
second-order effect is significant for only a small set (about 2%) of the images. Finally, this effect
can be approximated by a single direction in the joint text-image representation space of CLIP
(Section 3.3).

As each direction that corresponds to a neuron lives in a joint representation space, it can be
decomposed as a sparse sum of text representations that describes the neurons’ functionality (see

1Code will be available upon acceptance.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

P

MLP L-1

MSA L

MLP 0

MSA 0

MLP L

“A cat lounging in the 
sun, with a group of 
elephants in the 
background and a 
value sign in the 
foreground”

Language
Model

Text-to-Image
Model

1. dog
2. elephant
3. value
4. cabbage
...
32. sun

CLIP’s
prediction:

dog: 65%
cat: 35%

Text-based sparse neuron 
decomposition Automatic generation of adversarial examples

Second order effects of CLIP’s neurons

Figure 1: Second order effects of CLIP’s neurons. Top: We analyze the second-order effects
of neurons in CLIP-ViT (flow in pink). Bottom-left: Each second-order effect of a neuron can
be decomposed to a sparse set of word directions in the joint text-image space. Bottom-right: co-
appearing words in these sets can be used for mass-generation of semantic adversarial images.

Figure 1). These text representations show that neurons are polysemantic (Elhage et al., 2022)—
each neuron corresponds to multiple semantic concepts. To verify that the neuron decompositions
are meaningful, we show that these concepts correctly track which inputs activate a given neuron
(Section 4).

The polysemantic behavior of neurons allows us to find concepts that inadvertently overlap in
the network, due to being represented by the same neuron. We use these spurious cues for mass
production of “semantic” adversarial examples that will fool CLIP (see bottom of Figure 1). We
apply this technique to automatically produce adversarial images for a variety of classification tasks.
Our qualitative and quantitative analysis shows that incorporating spuriously overlapping concepts in
an image deceives CLIP with a significant success rate (Section 5.1).

The text representations that describes the neurons’ functionality enable an additional application—
zero-shot segmentation. Mining for text representations of class names, we can identify class-relevant
neurons with the second-order lens. Averaging the activation patterns of such neurons, we generate
attribution heatmaps. Binarizing them yields a strong zero-shot image segmenter that outperforms
recent work (Chefer et al., 2021; Gandelsman et al., 2024).

In summary, we present an automated interpretability approach for CLIP’s neurons by modeling
their second-order effects and spanning them with text descriptions. We use these descriptions to
automatically understand neuron roles and apply this to two applications. This shows that a scalable
understanding of internal mechanisms both uncovers errors and elicits new capabilities from models.

2 RELATED WORK

Contrastive vision-language models. Models like ALIGN (Jia et al., 2021), CLIP (Radford et al.,
2021), and its variants (Zhai et al., 2023; Li et al., 2023) produce image representations from pre-
training on images and their captions. They demonstrated impressive zero-shot capabilities for
various downstream tasks, including OCR, geo-localization, and classification (Wortsman, 2023).
These models’ representations are also used for segmentation (Lüddecke & Ecker, 2022), image
generation (Ramesh et al., 2021; Rombach et al., 2022) and 3D understanding (Kerr et al., 2023). We
aim to reveal the roles of neurons in such models.

Mechanistic interpretability of vision models. Mechanistic interpretability aims to reverse engineer
the computation process in neural networks. In computer vision, this approach was applied to model
individual network components (Shah et al., 2024) and to extract intermediate mechanisms like curve
detectors (Olah et al., 2020), object segmenters (Bau et al., 2019; 2020), high-frequency boundary
detectors (Schubert et al., 2021), and multimodal concepts detectors (Goh et al., 2021). More closely
to us, a few works made use of the intrinsic language-image space of CLIP to interpret the direct effect
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of attention heads and the output representation in CLIP with automatic text descriptions (Gandelsman
et al., 2024; Bhalla et al., 2024). We go beyond the output and direct effects of individual layers to
interpret intermediate neurons in CLIP.

Neurons interpretability. The role of individual neurons (post-non-linearity single channel acti-
vations) is broadly studied in computer vision models (Bau et al., 2019; 2020; Goh et al., 2021)
and language models (Radford et al., 2017; Geva et al., 2021; Meng et al., 2022). (Dravid et al.,
2023; Gurnee et al., 2024) demonstrate that neurons can learn universal mechanisms across different
models in both domains. Elhage et al. (2022) show that neurons can be polysemantic (i.e. activated
on multiple concepts) and exploit this property for generation of L2 adversarial examples. Some
work seeks to extract neurons’ concepts by learning sparse dictionaries (Bricken et al., 2023; Raja-
manoharan et al., 2024). Other methods use large language models to automatically describe neurons
based on which examples they activate on (Bills et al., 2023; Oikarinen & Weng, 2023; Hernandez
et al., 2022; Shaham et al., 2024). In contrast, we focus on the contribution of neurons to the output
representation.

3 SECOND-ORDER EFFECTS OF NEURONS

We start by presenting the CLIP-ViT architecture. Then, we derive the second-order effect of neurons
and present their benefits over first-order and the indirect effects. Finally, we empirically characterize
the second-order effects, setting the stage for automatically interpreting them via text in Section 4.

3.1 CLIP-VIT PRELIMINARIES

Contrastive pre-training. CLIP is trained via a contrastive loss to produce image representations
from weak text supervision. The model includes an image encoder Mimage and a text encoder Mtext

that map images and text descriptions to a shared latent space Rd. The two encoders are trained
together to maximize the cosine similarity between the output representations Mimage(I) and Mtext(t)
for matching input text-image pairs (t, I):

sim(I, t) = ⟨Mimage(I),Mtext(t)⟩/(||Mimage(I)||2||Mtext(t)||2). (1)

Using CLIP for zero-shot classification. Given a set of classes, each name of a class ci (e.g.
the class “dog”) is mapped to a fixed template template(ci) (e.g. “A photo of a {class}”), and
encoded via the text encoder Mtext(template(ci)). The classification prediction for a given
image I is the class ci whose text representation is most similar to the image representation:
argmaxci sim(I, template(ci)).

CLIP-ViT architecture. The CLIP-ViT image encoder consists of a Vision Transformer followed
by a linear projection2. The vision transformer (ViT) is applied to the input image I ∈ RH×W×3 to
obtain a d′-dimensional representation ViT(I). Denoting the projection matrix by P ∈ Rd×d′

:
Mimage(I) = P (ViT(I)). (2)

The input I to ViT is first split into K non-overlapping image patches that are encoded into K
d′-dimensional image tokens. An additional learned token, named the class token, is included and
used later as the output token. As shown in Figure 1, the tokens are processed simultaneously by
applying L alternating residual layers of multi-head self-attention (MSA) and MLP blocks.

MLP neurons in CLIP. The MLP layers are applied separately on each image token and the class
token. They consist of an input linear layer, parametrized by W l

in ∈ RN×d′
, followed by a GELU

non-linearity σ and an output linear layer, parametrized by W l
out ∈ Rd′×N . Here l is the layer number

and N is the width (number of neurons) of the MLP. We next analyze the contributions of each
individual neuron n ∈ {1, ..., N} for each layer.

3.2 ANALYZING THE NEURON EFFECTS ON THE OUTPUT

Individual neurons have different types of contributions to the output—the first-order (direct) effects,
second-order effects, and (higher-order) indirect effects. We introduce them and explain the limita-

2Throughout the paper, we ignore layer-normalization terms to simplify derivations. We address layers-
normalization in detail in Appendix A.6.
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Figure 2: First/Second-order effects. The first
order is the flow coming from a neuron to the
projection layer and the output (blue). The sec-
ond order goes from a single neuron through all
the consecutive attention heads, to the projection
layer, and to the output (pink).
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Figure 3: Mean-ablation of second order ef-
fects (ViT-B-32). We evaluate the performance
on ImageNet validation set. Second-order effects
concentrate in late layers, significant for only a
part of the images, and can be approximated by
one direction in the output space.

tions of the direct and indirect effects before continuing to characterize the second-order effects in
Section 3.3.

First-order effects (logit lens (nostalgebraist, 2020)). The first-order effect is the direct contribution
of a component to the residual stream, multiplied by the projection layer (see blue flow in Figure 2).
For an individual neuron n in layer l, let pl,ni (I) ∈ R denote its post-GELU activation on the i-th
token of the input image I . Then the contribution el,ni of the n-th neuron to the i-th token in the
residual stream is:

el,ni = pl,ni (I)wl,n (3)

where wl,n ∈ Rd′
is the the n-th column of W l

out. As the output representation is the class token
(indexed 0) multiplied by P , the first-order effect for neuron n on the output is Pel,n0 .

As observed by Gandelsman et al. (2024), the first-order effects of MLP layers are close to constants
in CLIP and most of the first-order contributions are from the late attention layers. We therefore focus
on the second-order effects: the flow of information from the neurons through the attention layers.

Second-order effects. The contribution el,ni to the residual stream directly affects the input to later
layers. We focus on the flow of el,ni through subsequent MSAs and then to the output (pink flow in
Figure 2). We call this interpretability lens the “second-order lens”, in analogy to the “logit lens”.

Following Elhage et al. (2021), the output of an MSA layer MSAl that corresponds to the class token
is a weighted sum of its K + 1 input tokens [z0, ..., zK ]:[

MSAl([z0, ..., zK ])
]
0
=

H∑
h=1

K∑
i=0

al,hi (I)W l,h
V Ozi (4)

where W l,h
V O ∈ Rd′×d′

are transition matrices (the OV matrices) and al,hi (I) ∈ R are the attention
weights from the class token to the i-th token (

∑K
i=0 a

l,h
i = 1).

To obtain the second-order effect of a neuron n at layer l, ϕl
n(I), we compute the additive contribution

of the neuron through all the later MSAs and project it to the output space via P . Plugging in
Equation (3) as the contribution to zi in Equation (4) and summing over layers, the second order
effect of neuron n is then:

ϕl
n(I) =

L∑
l′=l+1

H∑
h=1

K∑
i=0

(
pl,ni (I)al

′,h
i (I)

)
︸ ︷︷ ︸

attention-weighted activations

(
PW l′,h

V Owl,n
)

︸ ︷︷ ︸
input-independent

(5)

Indirect effects. An alternative approach is to analyze the indirect effect of a neuron by measuring the
change in output representation when intervening on a neuron’s output. Specifically, the intervention
is done by replacing the activation pl,ni of the neuron for each token with a pre-computed per-token
mean. However, as was shown by McGrath et al. (2023), models often learn “self-repair” mechanisms
that can obscure the individual roles of neurons. We illustrate these issues in the next section.
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effect type accuracy after
mean-ablation

variance
explained
by first PC

indirect 52.3 11.0
second-order 29.6 48.2

Table 1: Comparison to indirect effect. We
compare the second-order effects and the indi-
rect effects by mean-ablating layer 9 in ViT-B-32
on ImageNet validation set.
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Figure 4: Accuracy for neuron reconstructed
from sparse text representations (ViT-B-32,
layer 9). We evaluate the sparse text decompo-
sitions for different initial description pools and
description set sizes.

3.3 CHARACTERIZING THE SECOND-ORDER EFFECTS

We analyze the empirical behavior of the second-order effects of neurons ϕl
n derived in the previous

section. We find that only neurons from the late MLP layers have a significant second-order effect
and that each individual neuron has a significant effect for less than 2% of the images. Finally, we
show that ϕl

n can be approximated by one linear direction in the output space. These findings will
help motivate our algorithm for describing output spaces of neurons with text in Section 4.

Experimental setting. To evaluate the second-order effects and their contributions to the output
representation, we measure the downstream performance on the ImageNet classification task (Deng
et al., 2009) after ablating these effects for each neuron. Specifically, we apply mean-ablation (Nanda
et al., 2023), replacing the additive contributions of individual ϕl

n(I)’s to the representation with the
mean computed across a dataset D. In our experiments, we mean-ablate all the neurons in a layer
simultaneously and evaluate the downstream classification performance before and after ablation.
Components with larger effects should result in larger accuracy drops.

We take D to be ∼5000 images from the ImageNet training set. We report zero-shot classification
accuracy on the ImageNet validation set. Our model is OpenAI’s ViT-B-32 CLIP, which has 12
layers. We present additional results for ViT-L-14 and for ImageNet-R (Hendrycks et al., 2021) in
Appendix A.1 and Figure 10.

Second-order effects concentrate in moderately late layers. We evaluate the contributions of all
the ϕl

n across different layers and observe that the neurons with the most significant second-order
effects appear relatively late in the model. The results for different layers in ViT-B-32 CLIP model are
presented in Figure 3 (“w/o all neurons”). As shown, mean-ablating layers 8-10 leads to the largest
drop in performance. These layers appear right before the MSA layers with the most significant direct
effects, as shown in Gandelsman et al. (2024) (layers 9-11; see Appendix A.2). The same trend is
preserved for a larger model size as well (see Appendix A.1).

The second-order effect is sparse. We find that the second-order effect of each individual neuron
is significant only for less than 2% of the images across the validation set. We repeat the same
experiment as before, but this time we only mean-ablate ϕl

n(I) for a subset of images, while keeping
the original effects for other images. For most of the images, except the subset of images in which
ϕl
n(I) has a large norm, we can mean-ablate ϕl

n(I) without changing the accuracy significantly, as
shown in Figure 3 (“w/o small norm”). Differently, mean-ablating the contributions for the 100
images with the largest ϕl

n(I) norms results in a significant drop in performance (“w/o large norm”).
The same trend is shown for images from ImageNet-R in Figure 10.

The second-order effect is approximately rank 1. While the second-order effect for a given neuron
can write to different directions in the joint representation space for each image, we find that ϕl

n(I)
can be approximated by one direction rln ∈ Rd in this space, multiplied by a coefficient xl

n(I)
that depends on the image. We use the set Sl

n, which contains the largest second-order effects in
norm from D, and set rln to be the first principle component computed from Sl

n. We approximate

5
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Neuron ImageNet class descriptions Common words (30k)

#4

+“Picture with falling snowflakes” +“snowy”
+“Picture portraying a person [...] in extreme weather conditions” +“frost”
-“Picture with a bucket in a construction site” +“closings”
+“Photograph taken during a holiday service” +“advent”

#391

+“Image with a traditional wooden sled” +“woodworking”
+“Image with a wooden cutting board” -“swelling”
+“Picture showcasing beach accessories” +“cedar”
-“Photograph with a syringe and a surgical mask” +“heirloom”

#2137

+“Photo with a lime garnish” +“refreshments”
+“Image with candies in glass containers” +“gelatin”
-“Picture featuring lifeboat equipment” +“sour”
+“Close-up photo of a melting popsicle” +“cosmopolitan”

#2914

+“Photo that features a stretch limousine” +“motorhome”
+“Image capturing a suit with pinstripes” +“yacht”
+“Caricature with a celebrity endorsing the brand” +“cirrus”
+“Image showcasing a Bullmastiff’s prominent neck folds” +“cabriolet”

Table 2: Examples of sparse decompositions (ViT-B-32, layer 9). We present the top-4 texts
corresponding to the sparse decomposition of each neuron and the signs of the decomposition
coefficients, for two initial pools (m = 128). See Table 5 for more neurons.

ϕl
n(I) with xl

n(I)r
l
n + bln, where bln ∈ Rd is the bias computed by averaging ϕl

n(I) across D, and
xl
n(I) ∈ R is the norm of the projection of ϕl

n(I) onto rln.

To verify that this approximation recovers ϕl
n(I) we replace each ϕl

n(I) for each neuron and image
in the validation set with the approximation. We then evaluate the downstream classification per-
formance. As shown in Figure 3 (“reconstruction from PC #1”), for each layer l, this replacement
results in a negligible drop in performance from the baseline, that uses the full representation. The
same behavior is observed for ViT-L model and for a different initial set of images in the Appendix.

Comparison to indirect effect. We compare the second-order effect to the indirect effect and
present the variance explained by the first principle component for each of them and the drop in
performance when simultaneously mean-ablating all the effects from one layer. As shown in Table 1,
Mean-ablating the indirect effects results in a smaller drop in performance due to self-repair behavior.
Moreover, the first principle component explains significantly less of the variance in the indirect
effect, than in the second-order effect. This demonstrates two advantages of the second-order effects—
uncovering neuron functionality that is obfuscated by self-repair, and one-dimensional behavior that
can be easily modeled and decomposed, as we will show in the next section.

4 SPARSE DECOMPOSITION OF NEURONS

We aim to interpret each neuron by associating its second-order effect with text. We build on the
previous observation that each second-order effect of a neuron ϕl

n is associated with a vector direction
rln. Since rln lies in a shared image-text space, we can decompose it to a sparse set of text directions.
We use a sparse coding method (Pati et al., 1993) to mine for a small set of texts for each neuron, out
of a large pool of descriptions. We evaluate the found texts across different initial pools with different
set sizes.

Decomposing a neuron into a sparse set of descriptions. Given the first principal component of the
second-order effect of each neuron, rln, we will decompose it as a sparse sum of text directions tj :
rln ≈ r̂ln =

∑M
j=1 γ

l,n
j Mtext(tj). To do this, we start from a large pool T of M text descriptions (e.g.

the most common words in English). We apply a sparse coding algorithm to approximate rln as the
sum above, where only m of the γl,n

j ’s are non-zero, for some m ≪ M .

Experimental settings. We verify that the reconstructed r̂ln from the text representations captures
the variation in the image representation, as measured by zero-shot accuracy on ImageNet. We simul-
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Neuron
#4

Neuron
#391

Neuron
#2137

Neuron
#2914

Figure 5: Images with largest second-order effect norm per neuron. We present the top images
from 10% of ImageNet validation set for the neurons in Table 2. Note that neurons are polysemantic -
they have large second-order effects on images that show multiple concepts (e.g. cars and boats). See
top-50 images in Figure 13.

taneously replace the neurons’ second-order contributions in a single layer with the approximation
xl
n(I)r̂

l
n + bln.

To obtain sparse decomposition for each neuron, we use scikit-learn’s implementation of orthogonal
matching pursuit (Pati et al., 1993). We consider two strategies for constructing the pool of text
descriptions T . The first type is single words - the 10k and 30k most common words in English. The
second type is image descriptions - we prompt ChatGPT-3.5 to produce descriptions of images that
include an object of a specific class. Repeating this process for all the ImageNet (IN) classes results
in ∼28k unique image descriptions. We then evaluate the reconstruction of rln for different m’s and
pools.

Effect of sparse set size m and different pools. We experiment with m ∈ {4, 8, 16, 32, 64, 128}
and the three text pools, and present the accuracy on 10% of ImageNet validation set in Figure 4. We
approach the original classification accuracy with 128 text descriptions per neuron reconstruction
r̂ln. Using full descriptions outperforms using single words for the text pool, but the gap vanishes for
larger m.

Qualitative results. We present the images with the largest second-order norms in Figure 5, and
the corresponding top-4 text descriptions in Table 2. As shown, the found descriptions match the
objects in the top 10 images. Moreover, some individual neurons correspond to multiple concepts
(e.g. writing both toward “yacht” and a type of a car - “cabriolet”). This property is even more
apparent if more nearest neighbors are presented (see Figure 13 for the top 50 nearest neighbors).
This corroborates with previous literature on neurons’ polysemantic behavior (Elhage et al., 2022) -
single neurons behave as a superposition of multiple interpretable features. This property will allow
us to generate adversarial images in Section 5.1.

5 APPLICATIONS

5.1 AUTOMATIC GENERATION OF ADVERSARIAL EXAMPLES

The sparse decomposition of rln’s allows us to find overlapping concepts that neurons are writing
to. We use these spurious cues to generate semantic adversarial images. Our pipeline, shown in
Figure 1, mines for spurious words that correlate with the incorrect class in CLIP (e.g. “elephant”,
that correlates with “dog”), combines them into image descriptions that include the correct class
name (“cat”), and generates adversarial images by providing these descriptions to a text-to-image
model. We explain the steps in the pipeline and provide quantitative and qualitative results.

Finding relevant spurious cues in neurons. Given two classes c1 and c2, we first select neurons
that contribute the most toward the classification direction v = Mtext(c2) − Mtext(c1), then mine
their sparse decompositions for spurious cues. Specifically, we extract the set of neurons N whose

7
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horse     automobile

A horse is driven by a 
trucker on a road with a 
sign saying "Emissions" in 
the background.

dog       deer

A dog is running through a 
fishery, chasing after a 
squirrel and a rabbit, with 
a scenic view of the 
surrounding forests.

frog       bird

A poodle wearing a ring 
and holding a frog, 
standing next to a sign 
saying "Thanksgiving" in a 
festive atmosphere.

truck        ship

A duo of trainers are run-
ning alongside a truck, with 
a pirate flag waving in the 
background, and a sea of 
people cheering them on.

ship      automobile

A ship sailing through a 
quartet of cyclists on a 
Brooklyn road, with a hus-
band and wife driving a mo-
torcycle in the background.

Figure 6: Adversarial images generated by our method. For each binary classification task, we
present the generated images, the input text to the text-to-image model (words from W v are bold),
and an attribution map (Gandelsman et al., 2024) for the classification (areas that contribute to the
incorrect class score are red). See additional results in Figure 15.

directions are most similar to v: N = top-kn∈N |⟨v, rln⟩|. Utilizing the sparse decomposition from
before, we compute a contribution score wj for each phrase j in the pool T :

wv
j =

∑
n∈N

γl,n
j ⟨v, rln⟩. (6)

This looks at the weight that each neuron in N assigns to j in its sparse decomposition, weighted by
how important that neuron is for classification. A phrase with a high contribution score has significant
weight in one or more important neurons, and so is a potential spurious cue. The top phrases, sorted
by the contribution score are collected into a set of phrase candidates Wv .

Generating “semantic” adversarial examples. We use text and image generative models to create
examples with the object c2 that are classified as c1. First, we generate image descriptions with a
large language model (LLM) by providing it phrases from the set W v and the class name c1 and
prompting it to generate image descriptions that include elements from both. We prompt the model
to exclude anything related to c2 from the descriptions and use visually distinctive words from Wv .

The resulting descriptions are fed into a text-to-image model to generate the adversarial images. Note
that the adversarial images lie on the manifold of generated images, differently from non-semantic
adversarial attacks that modify individual pixels.

Experimental settings. We generate adversarial images for classifying between pairs of classes from
CIFAR-10 (Krizhevsky, 2009). We use the 30k most common words as our pool T . We choose the
top 100 neurons from layers 8-10 for N , and the top 25 words according to their contribution scores
for prompting the LLM. We prompt LLaMA3 (Touvron et al., 2023) to generate 50 descriptions for
each classification task (see prompt in Appendix A.7). We then filter out descriptions that include the
class name and choose 10 random descriptions. We generate 10 images for each description with
DeepFloyd IF text-to-image model (StabilityAI, 2023). This results in 100 images per experiment.
We repeat the experiment 3 times and manually remove images that include c2 objects or do not
include c1 objects.

We report three additional baselines. First, we repeat the same process with 100 random neurons
instead of the set N . Second, we repeat the same generation process with sparse text decompositions
computed from the first principle components of the indirect effects instead of the second-order effect.
Third, we do not rely on the neuron decompositions, and instead prompt the language model with the
words from M for which their text representations are the most similar to v. Both for our pipeline and
the baselines, we automatically filter out synonyms of c2 from the phrases provided to the language
model according to their sentence similarity to c2 (Reimers & Gurevych, 2019).
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Task Random Indirect Similar Second
effect words order

horse → automobile 1.0 (±1.4) 2.8 (±3.7) 1.0 (±1.4) 5.3 (±1.9)

dog → deer 0.3 (±0.5) 6.3 (±4.8) 3.3 (±0.9) 22.7 (±0.5)

bird → frog 0.3 (±0.5) 1.0 (±1.4) 5.0 (±2.9) 8.0 (±4.5)

ship → truck 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0) 5.7 (±0.9)

ship → automobile 1.3 (±1.9) 0.0 (±0.0) 1.3 (±0.9) 7.0 (±4.5)

Table 3: Accuracy of adversarial images. We report how many generated images out of 100, fooled
the binary classifier (standard deviation in parentheses).

Pix. Acc. ↑ mIoU ↑ mAP ↑
Partial-LRP (Voita et al., 2019) 55.0 35.5 66.9
Rollout (Abnar & Zuidema, 2020) 61.8 42.6 74.0
LRP (Binder et al., 2016) 62.9 35.8 68.5
GradCAM (Selvaraju et al., 2017) 67.3 39.3 61.9
Chefer et al. (2021) 68.9 49.1 79.7
Raw-attention 69.6 49.8 80.0
TextSpan (Gandelsman et al., 2024) 76.5 58.1 84.1
Ours 78.1 59.0 84.9

Table 4: Segmentation performance on ImageNet-segmentation. Our zero-shot segmentation is
more accurate than previous methods across all metrics.

Quantitative results. The classification accuracy results for the adversarial images are presented
in Table 3. The success rate of our adversarial images is significantly higher than the indirect effect
baseline, the similar words baseline, and the random baseline, which succeeds only accidentally. For
the task of generating “ship” images the will be missclassified as “truck”, no other baseline manged
to generate any adversarial images, while ours generated 5.7 images on average.

Qualitative results. Figure 6 includes generated adversarial examples and the descriptions that were
used in their generation. The presented attribution heatmaps (Gandelsman et al., 2024) show that the
found spurious objects from Wv contribute the most to the misclassification, while the object from
the correct class (e.g. a horse in the left-most image) contributes the least. We provide more results
for additional classification tasks (e.g. “stop-sign v.s. yield”) in Figure 15.

We show that understanding internal components in models can be grounded by exploiting them for
adversarial attacks. Our attack is optimization-free and is not compute-intensive. Hence, it can be
used for measuring interpretability techniques, with better understanding leading to improved attacks.

5.2 ZERO-SHOT SEGMENTATION

Finally, we use our understanding of neurons for zero-shot segmentation. Each neuron corresponds
to an attribution map, by looking at its activations pl,ni (I) on each image patch. Ensembling all
the neurons that contribute towards a concept results in an aggregated attribution map that can be
binarized to generate reliable segmentations.

Specifically, to generate a segmentation map for an image I , we find a set of neurons with the largest
absolute value of the dot product with the encoded class name ci we aim to segment: |⟨rln,Mtext(ci)⟩|.
We then average their spatial activation maps pl,ni (I), standardize the average activations into [0, 1],
and binarize the values into foreground/background segments by applying a threshold of 0.5.

Segmentation results. We provide results on ImageNet-Segmentation (Guillaumin et al., 2014),
which includes foreground/background segmentation maps of ImageNet objects. We use activation
maps from the top 200 neurons of layers 8-10. Table 4 presents a quantitative comparison to previous
explainability methods. Our method outperforms other zero-shot segmentation methods across all
standard evaluation metrics. We provide qualitative results before thresholding in Figure 7. While the
first-order effects (“TextSpan”) highlight individual discriminative object parts, our heatmaps capture
more parts of the full object.
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Ours

TextSpan

Input image

Figure 7: Qualitative results on ImageNet-Segmentation (ViT-B-32). Our heatmaps capture more
object parts than the first-order token decomposition of Gandelsman et al. (2024).

6 LIMITATIONS AND DISCUSSION

We analyzed the second-order effects of neurons on the CLIP representation and used our understand-
ing to perform zero-shot segmentation and generate adversarial images. We present mechanisms that
we did not analyze in our investigation and conclude with a discussion of broader impact and future
directions.

Neuron-attention maps mechanisms. We investigated how the neurons flow through individual
consecutive attention values, and ignored the effect of neurons on consecutive queries and keys in
the attention mechanism. Investigating these effects will allow us to find neurons that modify the
attention map patterns. We leave it for future work.

Neuron-neuron mechanisms. We did not analyze the mutual effects between neurons in the same
layer or across different layers. Returning to our adversarial “frog/bird” attack example, a neuron
that writes toward “dog” may not be activated if a different neuron writes simultaneously toward
“frog”, thus reducing our attack efficiency. While we can still generate multiple adversarial images,
we believe that understanding dependencies between neurons can improve it further.

Future work and broader impact. The mass production of adversarial images can be harmful to
systems that rely on neural networks (e.g., the adversarial attack that causes misclassification between
“yield” and “stop sign” in Figure 15). Automatic extraction of such cases allows the defender to be
prepared for them and, possibly, fine-tune the model on the generated images to avoid such attacks.
We plan to investigate this approach to improve CLIP’s robustness in future work.

Currently, our attack pipeline relies on a few independent components, each of which has failure
modes. For example, the language model can fail to generate a coherent sentence that includes
many phrases from Wv, and can omit the class name c2 or accidentally include the class name c1.
Additionally, the text-to-image model can fail to generate an image that follows the exact description
and can drop crucial elements from the description. We believe that future improvements in the
language and vision models will increase the success rate of our attack, and plan to continue to
develop and improve it in the future.

10
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A APPENDIX

A.1 SECOND ORDER ABLATIONS FOR VIT-L

We repeat the same experiments from Section 3.3 for ViT-L-14, trained on LAION dataset (Schuh-
mann et al., 2022). For this model, we only use 10% of ImageNet validation set. Here, the maximal
drop in performance when ablating the second order is relatively smaller and is spread across more
layers. Nevertheless, the same properties presented and discussed in Section 3.3 hold for this model.

A.2 FIRST ORDER ABLATIONS

For the two models discussed above, ViT-B-32 and ViT-L-14, we provide the mean-ablation results
for the first-order effects of MSA layers, as computed in Gandelsman et al. (2024). For each model,
we present the performance before and after accumulative mean-ablation of all the first-order effects
of MSA layers. As shown in Figure 11 and Figure 12, the neurons with the significant second-order
effects appear right before the layers with the significant first-order effects.

A.3 ADDITIONAL ADVERSARIAL IMAGES

We present additional semantic adversarial results, generated by our method for ViT-B-32, in Fig-
ure 15. We demonstrate a wide variety of tasks, including additional pairs from CIFAR-10 dataset,
and adversarial attacks related to traffic signs (e.g. misclassification between a stop sign and a yield
sign or a crossroad). For each image, we provide the text used for generating it, and highlight the
spurious cues words from the sparse decompositions.

A.4 ADDITIONAL SPARSE DECOMPOSITION RESULTS

We provide additional examples of sparse decompositions of neurons in Table 5 and the images with
the top norms for the second-order effects of the same neurons in Figure 14. As shown, the found
descriptions match the objects in the top 10 images.

A.5 CONCEPT DISCOVERY IN IMAGES

We present an additional application - concept discovery in images. We aim to discover concepts
in image I , by aggregating phrases that correspond to the neurons that are activated on I . Here,
we start from the set of activated neurons N (for which ||ϕl

n(I)||2 is above the 98th percentile
of norms computed across ImageNet images). Similarly to the contribution score described in
Section 5.1, we compute an image-contribution score wI

j for each phrase j according to its combined
weight in the decompositions of neurons in N . Formally, wI

j is the overall sum of weights that
each neuron in N assigns to j in its decomposition, weighted by the neuron second-order norms:
wI

j =
∑

n∈N γl,n
j ||ϕl

n(I)||2. The phrases with the highest image-contribution score are picked to
describe the image concepts.

0.39 ducks
0.20 chickens
0.19 eagle
0.16 clover
0.16 carmel
0.16 park
0.14 hollister
0.14 golfing
0.14 goose
0.13 wynn

1.29 primates
0.66 chimp
0.63 alejandro
0.58 zoology
0.58 kong
0.47 bolivia
0.4 inverter
0.39 ears
0.37 motif
0.36 chests

0.90 bridge
0.36 fog
0.26 staten
0.23 tektronix
0.23 nel
0.21 postmaster
0.21 bridges
0.20 yugioh
0.20 continually
0.20 lisbon

0.69 violin
0.49 guitar
0.40 chords
0.32 faceted
0.32 cranes
0.27 elixir
0.25 sweetwater
0.24 additives
0.24 cello
0.23 parlor

Figure 8: Concept discovery in images (ViT-B-32). We include top-10 words discovered by
aggregating words in sparse decompositions of activated neurons.
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Qualitative results. We present qualitative results for neurons and the top-10 discovered concepts
from layer 9 of ViT-B-32 in Figure 8, when using the most common words as the pool. The number
of neurons activated on these images, |N |, is between 29 and 59, less than 2% of the neurons in the
layer. Nevertheless, the top words extracted from these neurons relate semantically to the objects in
the image and their locations. Surprisingly, the top word for each of the images appears only in one
or two of the neuron sparse decompositions and is not spread across many activated neurons.

We acknowledge that while this application discovers meaningful concepts that correspond to the
input images, there are other approaches for extract these concepts (e.g. sparsely decomposing the
image representation, as shown in Bhalla et al. (2024)).

A.6 DERIVATIONS WITH LAYER NORMALIZATION

In many implementations of CLIP, there is a layer normalization between the Vision Transformer and
the projection layer P . In this case, the representation is:

Mimage(I) = P (LN(ViT(I))) (7)

where the LN is the layer normalization. Specifically, LN can be written as:

LN(x) = γ ∗ x− µ√
σ2 + ϵ

+ β =

[
γ√

σ2 + ϵ

]
︸ ︷︷ ︸

=A

∗x−
[

µγ√
σ2 + ϵ

− β

]
︸ ︷︷ ︸

=B

, (8)

where x ∈ Rd′
is the input token, µl, σl ∈ R are the mean and standard deviation, and γ, β ∈ Rd′

are learned vectors. To include A and B in the second-order effect of a neuron flow, we replace the
input-independent component in Equation (5), PW l′,h

V Owl′,n, with:

P (A ∗W l′,h
V Owl,n +

B

c
) (9)

Where c is a normalization constant that splits B equally across all the neurons that can additively
contribute to it.

Except for the layer normalization before the projection layer, the input to the MSA layers that comes
from the residual stream also flows through a layer normalization. Thus, if the input to the MSA layer
in layer l is the list of tokens [zl0, ...z

l
K ], the output that corresponds to the class token is:[

MSAl([z0, ..., zK ])
]
0
=

H∑
h=1

K∑
i=0

al,hi (I)W l,h
V OLN

l(zi), (10)

where LN l is the normalization layer at layer l, that can be parameterized similarly to Equation (8)
by Al, Bl ∈ Rd′

. We modify the definition of the second-order effect accordingly:

ϕl
n(I) =

L∑
l′=l+1

H∑
h=1

K∑
i=0

(
pl,ni (I)al

′,h
i (I)

)(
P

(
A ∗W l′,h

V O (Al ∗ wl,n +
Bl′

cl′
) +

B

c

))
, (11)

where cl
′

is is a normalization coefficient that splits Bl′ equally across all the neurons before layer l′.

In all of our experiments, we use this modification. Most of the elements in the modification add
constant biases. Therefore, they can be ignored in our experiments as in many of the experiments
constant biases do not change the results. For example, in our mean-ablation experiment, we subtract
the mean, computed across a dataset.

A.7 PROMPTS

We provide the prompt that was used for generating sentences given the set of words Wv , as presented
in Section 5.1, in Table 6. This prompt is given to LLAMA3 model (Touvron et al., 2023).

Additionally, we provide the prompt that was used for generating the pool of ImageNet class
descriptions, presented in Section 4. We prompt ChatGPT (GPT 3.5) with the prompt template
provided in Table 7.
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Figure 9: ViT-L-14 second-order ablations.
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Figure 10: Mean-ablation of second order ef-
fects on ImageNet-R (ViT-B-32, layers 8-10).
We repeat the evaluation in Figure 3 on ImageNet-
R. The performance of different ablations follows
the same trends as that of ImageNet.

0 1 2 3 4 5 6 7 8 9 10 11
Layer index

0

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

baseline
attentions mean-ablation

Figure 11: ViT-B-32 first-order MSAs ablation.
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Figure 12: ViT-L-14 first-order MSAs ablation.

Neuron ImageNet class descriptions Common words (30k)

#600

+“Image with a wiry, weather-resistant coat” +“tents”
+“Image showcasing a compact and lightweight sleeping bag” +“svalbard”
+“Picture of a camper towing bicycles” +“miles”
+“Image with a Border Terrier jumping” -“mountainous”

#974

-“Photograph taken during a race” +“runners”
-“Silhouette of a running dog” +“races”
-“Picture taken in a fishing competition” -“dolphin”
+“Silhouette of hammerhead shark with other ocean creatures” +“expiration”

#1517

+“Chair with a foot pedal control” +“bus”
-“Picture that captures the breed’s intelligence” -“filings”
-“Image with snow-capped mountains as scenery” -“percussion”
+“Image with graffiti on a train” +“wheelchairs”

#2002

+“Image depicting a sustainable living option” -“genres”
+“Photo taken in a train yard” +“governance”
-“Image featuring snow-covered rooftops” +“‘gravel”
+“Rescue equipment” +“conserve”

Table 5: Additional examples of sparse decomposition results. For each neuron, we present the
top-4 texts corresponding to the sparse decomposition with m = 128 and the signs of the coefficients
in the decomposition.
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Neuron
#4

Neuron
#391

Neuron
#2137

Neuron
#2914

Top 5 Top 10 Top 15 Top 20 Top 30 Top 35 Top 40Top 25 Top 45 Top 50

Figure 13: Images with largest second-order effect norm per neuron. We present the top images
from 10% of ImageNet validation set, for the neurons in Table 2. Notice that additional concepts that
are not captured by the top-4 descriptions in Table 2 are starting to appear.

A.8 COMPUTE

As our method does not require additional training, the time of our experiments depends linearly on
the inference time of CLIP (and other generative models that were used for the adversarial images
generation), and on the number of images we use for the experiments (∼5000 in our case). All our
experiments were run on one A100 GPU. The most time-consuming experiment—computing the
per-layer mean-ablation results for ViT-L-14—took 5 days.

Neuron
#600

Neuron
#974

Neuron
#1517

Neuron
#2002

Figure 14: Images with largest second-order effect norm per neuron. We present the top images
from 10% of ImageNet validation set, for the neurons in Table 5.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

dog      cat

A dog is sitting on a moon-
light, looking at a group of 
owls perched on a nearby 
branch.

frog       bird

A writer sitting on a winged 
pony, holding a poodle and 
wearing a yuri-themed hat, 
with a frog on its shoulder.

frog       bird

A frog riding on the back of 
an elephant, with auras of 
purple and orange sur-
rounding them.

dog       deer dog       deer

A dog is walking with a pat-
terned leash through a 
forest with rabbits and 
squirrels, with a symmetri-
cal patterned tree in the 
background.

A dog is running through a 
forest, chasing after a 
squirrel, with a helicopter 
flying overhead and a pat-
terned stream in the dis-
tance.

dog      cat

A dog is sitting on a moon-
light, looking at a group of 
owls perched on a nearby 
branch.

bird       frog

A bird sits on a turtle's back, 
as it swims in a pool filled 
with reptiles and butter-
flies.

bird       frog

A bird perched on a green 
fence, with a turtle swimming 
in the nearby pond and a fred 
fisherman in the distance.

bird       frog

A bird perched on a pug's 
back, with a green emerald 
in its beak and a tues flag 
waving in the wind.

bird       cat

A tank driving through a 
jungle, bird soaring above

bird       horse

A bird feeding from a hand 
while elephants bathe in a 
river.

stop sign 
      crossroad

stop sign 
      crossroad

stop sign 
      crossroad

stop sign 
      crossroad

A stop sign stands tall in a 
gorge, surrounded by blocks 
of colorful rocks, with a 
chicken perched on top, and 
a pathway leading to a dis-
tant marathon finish line.

A stop sign is painted on a 
rock, with a chicken 
perched on top, and a path-
way leading to a distant 
journey.

A stop sign is placed on a 
block of wood, with a chick-
en sitting on top, and a 
crossword puzzle laid out 
below.

A stop sign marks the end of 
a journey, with a grandson 
and his grandfather sitting 
on a bench, surrounded by 
perfumes and blocks.

cat       vacuum 
cleaner

A cat is playing with a 
hockey stick near a shovel 
and a venous injection kit.

cat       vacuum 
cleaner

A cat is brushing its fur with 
a blunt comb, surrounded 
by drops of ethanol and a 
dvr recording in the corner.

stop sign 
   yield

stop sign 
   yield

stop sign 
   yield

A group of people wandered 
through a market filled with 
cans, eggs, and perfumes, 
with a stop sign in the dis-
tance.

A stop sign stands in front of 
a building with a sign that 
says "Yu's Banking Ser-
vices".

A stop sign stands in front of 
a building with a sign that 
says "Yu's Banking Ser-
vices".

Figure 15: Additional adversarial examples generated by our method. We provide the sentence
that was given to the text-to-image model to generate it. Words from W v are highlighted in bold.
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You are a capable instruction-following AI agent.
I want to generate an image by providing image descriptions as input to a text-to-image model.
The image descriptions should be short. Each of them must include the word "{class_1}".
They must not include the word "{class_2}", any synonym of it, or a plural version!
The image descriptions should include as many words as possible from the next list and almost no
other words:
{list}
Do not use names of people or places from the list unless they are famous and there is something
visually distinctive about them. In each of the image descriptions mention as many objects and
animals as possible from the list above. If you want to mention the place in which the image is taken
or a name of a person, describe it with visually distinctive words. For example, if "Paris" is in the list,
instead of saying "... in Paris", say "... with the Eiffel Tower in the background" or "... next to a sign
saying ’Paris’". Don’t mention words that are too similar to "{class_2}", even if they are in the list
above. For example, if the word was "tree" you should not mention "trees", "bush" or "eucalyptus".
Only use words that you know what they mean.
Generate a list of 50 image descriptions.

Table 6: The language model prompt for generating image descriptions.

Provide 40 image characteristics that are true for almost all the images of {class}. Be as general as
possible and give short descriptions presenting one characteristic at a time that can describe almost
all the possible images of this category. Don’t mention the category name itself (which is “{class}”).
Here are some possible phrases: “Image with texture of ...”, “Picture taken in the geographical
location of...”, "Photo that is taken outdoors”, “Caricature with text”, “Image with the artistic style
of...”, “Image with one/two/three objects”, “Illustration with the color palette ...”, “Photo taken from
above/below”, “Photograph taken during ... season”. Just give the short titles, don’t explain why, and
don’t combine two different concepts (with “or” or “and”).

Table 7: The prompt for generating the pool of class descriptions. We prompt the model with all
the ImageNet classes.
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